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A detailed discussion is given of the analysis of recent data to obtain improved upper bounds on the
couplings jUe4j2 and jUμ4j2 for a mainly sterile neutrino mass eigenstate ν4. Using the excellent agreement
among the F t values (products of kinematic rate factors times half-lives with radiative corrections
included) for superallowed nuclear beta decays, an improved upper limit is derived for emission of a ν4.

The agreement of the ratios of branching ratios RðπÞ
e=μ ¼ BRðπþ → eþνeÞ=BRðπþ → μþνμÞ, RðKÞ

e=μ, R
ðDsÞ
e=τ ,

RðDsÞ
μ=τ , and R

ðDÞ
e=τ , and the branching ratios BRðBþ → eþνeÞ and BRðBþ → μþνμÞ decays with predictions of

the Standard Model is utilized to derive new constraints on ν4 emission covering the ν4 mass range from
MeV to GeV. We also discuss constraints from peak search experiments probing for emission of a ν4 via
lepton mixing, as well as constraints from pion beta decay, CKM unitarity, μ decay, leptonic τ decay, and
other experimental inputs.
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I. INTRODUCTION

In a recent paper [1], we presented improved upper
bounds on the coupling jUe4j2 of an electron to a sterile
neutrino ν4 from analyses of data on nuclear and particle
decays, for ν4 masses in the MeV to GeV range, and
pointed out new experiments that could improve these
constraints. Here we give the details of our analysis that
yielded these constraints and also present a number of
additional bounds on sterile neutrino mixings, in particular,
on the coupling jUμ4j2.
Neutrino oscillations and hence neutrino masses and

lepton mixing have been established and are of great
importance as physics beyond the original Standard
Model (SM) [2–11]. Most of the data from experiments
with solar, atmospheric, accelerator, and reactor (anti)
neutrinos can be explained within the minimal framework
of three neutrino mass eigenstates with values of Δm2

ij ¼
m2

νi −m2
νj given approximately by Δm2

21¼ 0.74×10−4 eV2

and jΔm2
32j ¼ 2.5 × 10−3 eV2, with normal mass ordering

mν3 > mν2 favored; furthermore, the lepton mixing angles
θ23, θ12, and θ13 have been measured, with a tentative

indication of a nonzero value of the CP-violating quantity
sinðδCPÞ (for compilations and fits, see [12–18]).
The possible existence of light sterile neutrinos, in

addition to the three known neutrino mass eigenstates, is
a fundamental question in particle physics. These would
have to be primarily electroweak-singlets (sterile), since
the invisible width of the Z boson is consistent with being
due to decays to ν̄lνl, where νl ¼ νe; νμ, and ντ, corre-
sponding to the known three SM fermion families [19].
In the presence of sterile neutrinos, the neutrino interaction
eigenstates νe, νμ, and ντ are linear combinations that
include these additional mass eigenstates. In a basis in
which the charged leptons are simultaneously flavor and
mass eigenstates, the charged weak current has the form
Jλ ¼ l̄Lγλνl;L, where l ¼ e, μ, τ and

νl ¼
X3þns

i¼1

Uliνi; ð1:1Þ

where ns denotes the number of additional mass eigen-
states. The near sterility of the νi with 4 ≤ i ≤ ns is
reflected in small upper bounds on the corresponding
jUlij. We will use the term “sterile neutrino” both in its
precise sense as an electroweak-singlet interaction eigen-
state and in a commonly used approximate sense as the
corresponding, mainly sterile, mass eigenstate(s) in this
neutrino interaction eigenstate. For technical simplicity, we
will assume one heavy neutrino, ns ¼ 1, with i ¼ 4; it is
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straightforward to generalize to ns ≥ 2. Since a ν4 in the
mass range of interest here decays on a time scale much
shorter than the age of the universe, it is not excluded by the
cosmological upper limit on the sum of stable neutrinos,P

i mνi ≲ 0.12 eV [20].
Possible sterile neutrinos are subject to many constraints

from neutrino oscillation experiments using solar and atmos-
pheric neutrinos, accelerator and reactor (anti)neutrinos, and
kinematic effects in particle and nuclear decays, as well as
cosmological constraints. Bounds from the nonobservation
of neutrinoless double beta decay are satisfied by assuming
that ν4 is a Dirac, rather than Majorana, neutrino. Although
Majorana neutrino masses have often been regarded as
more generic, many ultraviolet extensions of the SM contain
additional gauge symmetries that forbid Majorana mass
terms, so that in these models, neutrinos are Dirac fermions
[21]. Much attention has been focused on possible sterile
neutrinos with masses in the eV region because of results
from the LSND [22] and Miniboone [23] experiments and
possible anomalies in reactor antineutrino experiments
(recent reviews and discussions include [24–26]). In addition
to eV-scale sterile neutrinos, there has also been interest in
possible keV-scale sterile neutrinos as warm dark matter,
and in even heavier sterile neutrinos with masses extending
to the GeV range, and cosmological constraints on these
have been discussed [27–34]. These cosmological con-
straints involve assumptions about properties of the early
universe. One valuable aspect of laboratory bounds on heavy
neutrinos is that they are free of such assumptions about the
early universe.
Since sterile neutrinos violate the conditions for the

diagonality of the weak neutral current [35,36], ν4 has
invisible tree-level decays of the form ν4 → νjν̄iνi where
1 ≤ i; j ≤ 3 with model-dependent branching ratios.
Because our bounds are purely kinematic, they are

complementary to bounds from searches for neutrino
decays, which involve model-dependent assumptions on
branching ratios into visible versus invisible final states.
This paper is organized as follows. In Sec. II we derive

upper bounds on jUe4j2 from nuclear beta decay data.
Section III discusses pion beta decay. Section IV considers
connections of nuclear decay data with the unitarity of
the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix. In Sec. V we discuss peak search experiments. In
Secs. VI and VII we derive upper bounds on lepton mixing
matrix coefficients from two-body leptonic decays of πþ,
Kþ, Dþ, Ds, and Bþ mesons. Sections VIII and IX are
devoted to constraints from μ decay and leptonic τ decays.
In Sec. X we briefly discuss other constraints on sterile
neutrinos. Section XI contains our conclusions.

II. LIMIT ON EMISSION OF MASSIVE
NEUTRINOS IN NUCLEAR BETA DECAY

The emission of a heavy neutrino νj via lepton mixing
and the associated nonzero jUejj2, with a mass in the
keV-MeV region can be searched for in several ways using
nuclear beta decays. If the νj mass is less than the energy
release Q in a given beta decay, its emission produces a
kink in the Kurie plot. Reference [37] suggested a search
for such kinks and used a retroactive data analysis to set
upper bounds on this type of emission via lepton mixing
of neutrinos with kinematically non-negligible masses in
nuclear beta decays. In standard notation, (Z, A) denotes
a nucleus with Z protons and A nucleons. For a nuclear
beta decay ðZ; AÞ → ðZ þ 1; AÞ þ e− þ ν̄e or ðZ; AÞ →
ðZ − 1; AÞ þ eþ þ νe into a set of neutrino mass eigen-
states νi ∈ νe with negligibly small masses relative to the
energy release in the decay plus a mass eigenstate ν4 in νe
with non-negligible mass, the differential decay rate is

dN
dE

¼ C½ð1 − jUe4j2ÞpEðE0 − EÞ2 þ jUe4j2pEðE0 − EÞ½ðE0 − EÞ2 −m2
ν4 �1=2θðE0 − E −mν4Þ�; ð2:1Þ

where p≡ jpj and E denote the 3-momentum and (total)
energy of the outgoing e� in the parent nucleus rest frame,
E0 denotes its maximum energy for the SM case, the
Heaviside θ function is defined as θðxÞ ¼ 1 for x > 0 and
θðxÞ ¼ 0 for x ≤ 0, and C ¼ G2

FjVudj2FFjMj2=ð2π3Þ,
where M denotes the nuclear transition matrix element,
V is the Cabibbo-Kobayashi-Maskawa (CKM) quark mix-
ing matrix, and FF is the Fermi function, which takes
account of the Coulomb interactions of the outgoing e�. In
general, there is also a shape correction factor, but this is
not important for the superallowed decays considered here.
It is understood that if the decay is to an excited state of the
daughter nucleus rather than to its ground state, then there
is a corresponding reduction in the maximal value of E0

relative to its value for the decay to the ground state. The
kink in the Kurie plot arises as E reaches the endpoint for
the decay yielding a ν4 and the second term in Eq. (2.1)
vanishes.
Early bounds on jUe4j2 were set from searches for

kinks in Kurie plots in [37] and analyses of particle decays
[38–40]. Subsequently, dedicated experiments were con-
ducted to search for kinks in the Kurie plots due to possible
emission of a massive neutrino via lepton mixing for a
number of nuclear beta decays over a wide range of
neutrino masses from O(10) eV to the MeV range. For
example, a search for kinks in the Kurie plot in 20F beta
decay reported in Ref. [41] yielded an upper bound on
jUe4j2 decreasing from 5.9 × 10−3 for mν4 ¼ 0.4 MeV to
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1.8 × 10−3 for mν4 ¼ 2.8 MeV. (These and other upper
bounds discussed in this paper are at the 90% confidence
level unless otherwise stated.) Some recent reviews of
searches for sterile neutrinos in various mass ranges include
[24,25], and [42–50].
A general effect of the emission of a heavy neutrino ν4 in

a nuclear beta decay is to reduce the rate in a manner
dependent on its mass, due to phase space suppression of
the decay, and, if it is too massive to be emitted, to reduce
the rate of the given decay by the factor (1 − jUe4j2).
Hence, in addition to examination of Kurie plots for
possible kinks, a powerful method to constrain heavy
neutrino emission, via lepton mixing, in nuclear beta
decays is to analyze the overall rates. The apparent (app)
rate, assuming no emission of a heavy neutrino, can be
succinctly expressed as

dN
dE

����
app

∝ G2
F;appjVud;appj2Fapp; ð2:2Þ

where Fapp ¼ pEðE0 − EÞ2 is the SM kinematic function
assuming no heavy neutrino emission. Since, in general, the
heavy neutrino would also be emitted in μ decay, the
measurement of the μ lifetime performed assuming the SM
would yield an apparent (app) value of the Fermi constant,
denoted GF;app, that would be smaller than the true value
[38–40], GF, given at tree level by

GFffiffiffi
2

p ¼ g2

8m2
W
¼ g2 þ g02

8m2
Z

; ð2:3Þ

where g and g0 are the weak SU(2) and Uð1ÞY gauge
couplings, and mW and mZ are the masses of the W and Z
bosons. The apparent kinematic function Fapp is larger than
the true kinematic function indicated in the square brackets
in Eq. (2.1), which depends onmν4 and jUe4j2. SinceGF;app

would be smaller than the true value of GF, while Fapp

would be larger than the true F, the apparent value,
jVud;appj2, extracted from a particular nuclear beta decay
in the context of the SM could be larger or smaller than the
true value. To avoid this complication, we compare ratios of
rates of different nuclear beta decays. In these ratios, the
factorG2

F;app cancels, so one can gain information about the
kinematic factor and hence about jUe4j2 as a function
of mν4 .
The integration of dN=dE over E gives the kinematic

rate factor f. The combination of this with the half-life for
the nuclear beta decay, t≡ t1=2, yields the product ft.
Incorporation of nuclear and radiative corrections yields
the corrected ft value for a given decay, denoted F t.
Conventionally, analyses of the most precisely measured
superallowed 0þ → 0þ nuclear beta decays have been used
for many years to infer a value of the weak mixing matrix
element jVudj [51,52]. (In our discussion of these fits, we

will follow conventional notation and denote the CKM
mixing matrix factor as Vud, with the implicit under-
standing that in our present context with possible emission
of a heavy neutrino ν4, this is really Vud;app.) In turn, these
values of jVudj extracted from superallowed nuclear beta
decays were used in early Cabibbo fits, e.g., [53], which
were subsequently extended to the full CKM matrix
[54–56]. The analyses of nuclear beta decay data have
continued up to the present with significant recent progress
in precision [57–66].
A first step in these analyses has been to establish the

mutual consistency of the F t values for these superallowed
0þ → 0þ decays. The emission of a ν4 with a massmν4 of a
few MeV would have a different effect on the kinematic
functions and integrated rates for nuclear beta decays with
different Q (energy release) values and would therefore
upset this mutual consistency. Therefore, from this mutual
agreement of F t values, an upper limit on jUe4j2 can be
derived for values of mν4 in the MeV range, such that a ν4
could be emitted in some of these superallowed decays. F t
is conventionally written as [58–61,63,65,66]

F t ¼ K
2G2

Vð1þ ΔV
RÞ

; ð2:4Þ

where K¼2π3 ln2=m5
e¼0.81202776ð9Þ×10−6GeV−4−sec,

GV ¼ GFjVudj and the radiative correction factor ΔV
R is

transition-independent. Reference [63] obtains the aver-
age F t ¼ 3072.27� 0.72 sec.
The excellent mutual agreement between the F t values

obtained from a set of the most precisely measured
superallowed 0þ → 0þ nuclear beta decays, which involve
only the vector part of the charged weak current, in
comparison with the value of GF obtained from muon
decay, allows one to extract, in a self-consistent manner, a
value of jVudj. In the 1990 study [58], this yielded the result
jVudj ¼ 0.9740� 0.001. At present, using a set of the 14
most precisely measured superallowed 0þ → 0þ nuclear
beta decays, Hardy and Towner have obtained the consid-
erably more precise value [64,67] (denoted HT)

HT∶ jVudj ¼ 0.97420ð21Þ: ð2:5Þ

Another recent estimate, in agreement with these, is
jVudj ¼ 0.97425ð13Þ [68] (see also [69]). Using a different
method for calculating ΔV

R , Seng et al. [65] (denoted
SGPRM) obtain the slightly lower value

SGPRM∶ jVudj ¼ 0.97370ð14Þ; ð2:6Þ

with a smaller reported uncertainty than in Eq. (2.5). As
noted in [65], this lower value of jVudj leads to tension with
first-row CKM unitarity. Although the central values of
jVudj in Eqs. (2.5) and (2.6) differ, the bounds on jUe4j
obtained below depend primarily on the precision in the
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mutual agreement of the F t values. The 14 parent nuclei in
the set used in [64] are

10C; 14O; 22Mg; 26mAl; 34Cl; 34Ar; 38mK; 38Ca
42Sc; 46V; 50Mn; 54Co; 62Ga; and 74Rb ð2:7Þ

where the superscript m refers to a metastable excited
state. The maximal Q value in this set is Q ¼ 9.4 MeV
(74Rb) [63,70].
The emission of a neutrino with a mass of order MeV in

superallowed nuclear beta decays would cause kinematic
suppression depending on the energy release Q and the
neutrino mass mν4 , which would vary from nucleus to
nucleus owing to the different values of the phase space
factor in the third term, proportional to jUe4j2, in Eq. (2.1).
Reference [57] set upper limits on jUe4j2 ranging from
3 × 10−2 to 4 × 10−3 for mν4 from 0.5 to 4.5 MeV, while
Ref. [58] obtained an upper bound on jUe4j2 ranging from
10−2 down to 2 × 10−3 for mν4 from 0.5 to 2 MeV.
Reference [41] incorporated the phase space integration
for the massive-neutrino term proportional to jUe4j2 in
Eq. (2.1) for eight available superallowed beta decays and
then derived upper bounds on jUe4j2 from the consistency

of corrected F t values, depending nonmonotonically on ν4
masses from 1 to 7 MeV, with the results jUe4j2 < 1 × 10−3

to jUe4j2 < 2 × 10−3, shown as BD1 in Fig. 1.
A measure of the mutual agreement among F t values of

the superallowed beta decays is the precision with which
jVudj2 is determined, so a reduction in the fractional
uncertainty of the value of jVudj2 results in an improved
upper limit on jUe4j2. Let us denote this fractional uncer-
tainty from the ith data analysis, as ½δðiÞjVud;ij2�=jVud;ij2.
Then it follows that

δð2ÞjUe4j2
δð1ÞjUe4j2

¼ ½δð2ÞjVud;2j2�=jVud;2j2
½δð1ÞjVud;1j2�=jVud;1j2

: ð2:8Þ

The fractional uncertainties of ½δð2ÞjVudj�=jVudj ¼ 2 × 10−4

and 1.4 × 10−4 in Refs. [63–65] are improvements by the
respective factors of 5 and 7.5 relative to the inputs used in
the 1990 studies [41,58].
We use these improvements to infer respective improved

upper bounds on jUe4j2, following from the mutual agree-
ment of the F t values among the fourteen superallowed
beta decays [63–65]. Using the HT value in Eq. (2.5), we
find the upper bound

jUe4j2 ≲ 4 × 10−4 ð2:9Þ

for ν4 masses in the range from mν4 ≃ 1 MeV to
mν4 ≃ 9.4 MeV, as indicated in Fig. 1 (BD2, upper line).
Using the SGPRM value in Eq. (2.6), we find

jUe4j2 ≲ 2.7 × 10−4; ð2:10Þ

also shown in Fig. 1 (BD2, lower line). Of course, the flat
line segments shown are approximations; the actual upper
limits on jUe4j2 from the nuclear beta decay data are not
precisely constant as a function of mν4 over the range
shown. If the uncertainties in the F t values for each of the
superallowed nuclear beta decays used for the overall fit in
[63–65] were equal, then one could extend this analysis to
derive an upper bound on jUe4j2 as a function ofmν4 in this
range of 1 to 9.4 MeV. However, this condition, of equal
precision for the measurement of the F t value of each
individual nuclear beta decay in this set, has not yet been
achieved. For this reason, we have conservatively presented
our upper bounds (2.9) and (2.10) as applying uniformly
throughout the specified range 1 MeV < mν4 < 9.4 MeV,
i.e., as flat line segments in Fig. 1.
Since our bounds (2.9) and (2.10) above do not involve

jUμ4j2, they complement the upper limits on jUe4j2 derived
from the measurement of the ratio of decay rates RðπÞ

e=μ ¼
Γðπþ → eþνeÞ=Γðπþ → μþνμÞ discussed in Sec. VI A in
the subset of the range of ν4 mass values where they
overlap, namely 1≲mν4 ≲ 10 MeV.

FIG. 1. 90% C.L. upper limits on jUe4j2 vs mν4 from various
souces: PIBETA, pion beta decay (this work); BD1, previous
limits from nuclear beta decay [41]; BD2, nuclear beta decay,
based on our analysis using [64,65]; PIENU and PIENU-H, the

ratio BRðπþ→eþνeÞ
BRðπþ→μþνμÞ in the kinematically allowed and forbidden

regions for ν4 emission [90]; πe2 PIENU, πþ → eþν4 peak
searches (upper and lower curves from [84,91], respectively);

KENU and KENU-H, the ratio BRðKþ→eþνeÞ
BRðKþ→μþνμÞ in the kinematically

allowed and forbidden regions for ν4 emission; Ke2 KEK, Kþ →
eþν4 peak search [82]; Ke2 NA62, Kþ → eþν4 peak search [94];
and Ke2 NA62*, the preliminary upper limit from a Kþ → eþν4
peak search [95]. Other bounds are denoted Dse2, from our

analysis of BRðD
þ
s →eþνeÞ

BRðDþ
s →τþντÞ, and Be2, from our analysis of peak search

data in Bþ → eþν4 [125]. Our new bounds are colored blue,
while previous bounds are colored black. See text for older
bounds and further discussion.
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Other methods of determining jVudj include pion beta
decay (discussed in Sec. III) and the neutron lifetime
(which also has the complication of involving the axial-
vector part of the weak charged current), but these are
not as accurate as the determination from the superallowed
0þ → 0þ beta decays.

III. LIMITS FROM π + → π0e+ νe DECAY

In this section we analyze limits on sterile neutrinos
obtainable from pion beta decay, πþ → π0eþνe. The mass
difference between the charged and neutral pions is
Δπ ¼ mπþ −mπ0 ¼ 4.5936� 0.0005 MeV [13]. It will
be convenient to define

ϵe ¼
m2

e

Δ2
π
¼ 1.237 × 10−2: ð3:1Þ

If νe consists only of neutrino mass eigenstates with
negligibly small masses, then the Standard-Model expres-
sion for the decay rate, denoted Γπβ;SM, is [71]

Γπβ;SM ¼ G2
FjVudj2Δ5

π

30π3

�
1 −

Δπ

2mπþ

�
3

fðϵeÞð1þ δÞ; ð3:2Þ

where

fðxÞ ¼ ð1 − xÞ1=2
�
1 −

9

2
x − 4x2 þ 15

2
x2 ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − x
pffiffiffi
x

p
�
−

3Δ2
π

7ðmπþ þmπ0Þ2
�

ð3:3Þ

and δ incorporates radiative corrections, calculated to be
δ ¼ 0.033 [72,73]. Note that the last term in the square
brackets in Eq. (3.3) is −1.20 × 10−4 and thus is much
smaller than the leading-x terms. Neglecting this last term,
the function fðxÞ has the expansion

fðxÞ ¼ 1 − 5xþ fOðx2Þ; Oðx2 ln xÞg: ð3:4Þ

If νe contains the known three neutrinos with masses that
are negligibly small for the kinematics here, together with
an O(1) MeV ν4, then the rate for pion beta decay has the
form

Γπβ ¼ð1− jUe4j2ÞΓπβ;SMþjUe4j2Γ̄πβ;ν4θðΔπ −me−mν4Þ;
ð3:5Þ

where Γπβ;ν4 ≡ jUe4j2Γ̄πβ;ν4 denotes the rate for the decay
πþ → π0eþν4. As in the case of nuclear beta decay, the
emission of the ν4 would produce a kink in the differential
decay distribution dΓπβ=dEe, where Ee is the electron
energy. In particular, while the maximum electron energy in
the case of emission of neutrinos with negligibly small
masses is

Ee;max;SM ¼ m2
πþ þm2

e −m2
π0

2mπþ
¼ 4.01 MeV; ð3:6Þ

this is reduced to

Ee;max;ν4 ¼
m2

πþ þm2
e − ðmπ0 þmν4Þ2
2mπþ

ð3:7Þ

in the πþ → π0eþν4 decay. However, in contrast to nuclear
beta decay, events ascribed to the decay πþ → π0eþνe were

identified by the diphoton decay of the π0, and the eþ
energy was not systematically measured, e.g., in the
PIBETA experiment at PSI [74,75]. Hence, one could
not do a kink search for this decay, which would be quite
difficult anyway because of the very small branching ratio
of 10−8 for pion beta decay.
However, one can use the comparison of the measured

decay rate, or equivalently, branching ratio for pion beta
decay with the SM prediction to obtain a limit on possible
emission of a ν4. We have

BRπβ ¼
BRðπþ → π0eþνeÞ
BRðπþ → π0eþνeÞSM

¼ ð1 − jUe4j2Þ þ jUe4j2rπβ;ν4 ; ð3:8Þ
where rπβ;ν4 denotes the ratio of the kinematic factor for the
πþ → π0eþν4 decay divided by that for the decay into
neutrinos of negligibly small mass, and, including radiative
corrections [74,75],

BRðπþ → π0eþνeÞSM ¼ ð1.039� 0.001Þ × 10−8: ð3:9Þ

Defining ϵν4 ¼ m2
ν4=Δ

2
π , the function rπβ;ν4 can be approxi-

mated to leading order in ϵe and ϵν4 as

rπβ;ν4 ≃
1 − 5ðϵe þ ϵν4Þ

1 − 5ϵe
≃ 1 − 5ϵν4 : ð3:10Þ

The current value listed by the Particle Data Group,
dominated by the PIBETA measurement [74,75], is [13]

BRðπþ → π0eþνeÞ ¼ ð1.036� 0.006Þ × 10−8: ð3:11Þ

This is in good agreement with the SM prediction (3.9),
yielding

CONSTRAINTS ON STERILE NEUTRINOS IN THE … PHYS. REV. D 100, 073011 (2019)

073011-5



BRπ=β ¼ 0.997� 0.006: ð3:12Þ

From this we obtain the upper limit on jUe4j2 shown in
Fig. 1 as PIBETA. As mν4 increases, and finally exceeds
the value mπþ −mπ0 −me ¼ 4.08 MeV, the decay πþ →
π0eþν4 is kinematically forbidden, and hence the observed
rate divided by the rate predicted in the SM with the usual
mass eigenstates in νe of negligibly small masses is reduced
to the first term in Eq. (3.8), namely 1 − jUe4j2. The upper
bounds on jUe4j2 from pion beta decay are less stringent
than the bounds in Eqs. (2.9) and (2.10).

IV. CONSTRAINT FROM CKM UNITARITY

If the mass of ν4 were sufficiently large so that it could
not be emitted in any superallowed nuclear beta decays
used in the determination of jVudj, then, although there
would still be mutual consistency in this determination
between the different superallowed nuclear decays, the
result would be a spurious apparent value of jVudj2, namely
jVud;appj2 ¼ jVudj2ð1 − jUe4j2Þ (where we again assume
just one heavy neutrino). In turn, this would reduce the
apparent value of jVudj2 þ jVusj2 þ jVubj2 used to check
the first-row unitarity of the CKM matrix. If one uses the
value of jVudj in Eq. (2.5), then the sum jVudj2 þ jVusj2 þ
jVubj2 is equal to unity to within the stated theoretical and
experimental uncertainties. Thus, this provides another
constraint on possible massive neutrino emission in the
decays involved. Numerically, using the value of jVudj in
Eq. (2.5), together with the values jVusj ¼ 0.2243ð5Þ and
jVubj2 ¼ ð1.55� 0.28Þ × 10−5 from [13], Ref. [64] obtains

Σ≡ jVudj2 þ jVusj2 þ jVubj2 ¼ 0.99939ð64Þ: ð4:1Þ

The jVudj2 term dominates both the sum and the uncer-
tainty in (4.1). Thus, with the assumption of first-row CKM
unitarity, this also yields an upper limit on jUe4j2, depend-
ing on mν4 and estimates of uncertainty in jVusj2. If, on the
other hand, one uses the lower value of jVudj in Eq. (2.6),
then, as was observed in [65], there is tension with first-row
CKM unitarity. However, since the difference between
the analyses in [63–65] is in the value for the transition-
independent correction term ΔV

R , this does not upset the
mutual agreement between the F t values, which was the
key input for the bound (2.9).

V. CONSTRAINTS FROM PEAK SEARCH
EXPERIMENTS

It is also of considerable interest to discuss correlated
limits on sterile neutrinos from two-body leptonic decays of
pseudoscalar mesons. Searches for subdominant peaks in
charged lepton momenta in two-body leptonic decays of
pseudoscalar mesons were suggested as a way to search for
emission, via lepton mixing, of a possible heavy neutrino

νh, and to set upper limits on the associated couplings
jUlhj2, also including effects on ratios of branching
ratios, in [37,38]. These observations were applied retro-
actively to existing data to derive such limits in [37–39].
In particular, the upper limit jUe4j2 ≲ 10−5 was obtained
from retroactive analysis of data on Kþ → eþνe decays
for 82 < mν4 < 163 MeV, and upper limits on jUμ4j2 in
the range 10−4–10−5 were obtained from data on πþ →
μþνμðπμ2Þ decay (Figs. 17, 22 in [38]). An analogous
discussion of the emission of massive neutrino(s) in muon
decay was given in [39,76], and an analysis of μ decay data
was used in [39] to set upper limits on jUe4j2 and on jUμ4j2
(see Sec. VIII).
Dedicated experiments have been carried out from 1981

to the present to search for the emission, via lepton mixing,
of a heavy neutrino in two-body leptonic decays of Mþ ¼
πþ; Kþ mesons and to search for effects of possible heavy
neutrinos on the ratio BRðMþ → eþνeÞ=BRðMþ → μþνμÞ
[77–96]. These have set very stringent bounds. Data from
the corresponding experiments with heavy-quark pseudo-
scalar mesons will be used below to derive new limits on
sterile neutrinos. Some relevant properties of these experi-
ments with two-body leptonic decays of charged pseudo-
scalar mesons will be discussed next. The peak search
experiments are quite sensitive to massive neutrino emis-
sion because one is looking for a monochromatic signal
and, furthermore, for a considerable range of mν4 masses,
there is a kinematic enhancement of the decays Mþ →
eþν4 and Mþ → μþν4 relative to the decays into neutrinos
with negligibly small masses.
In the SM, the rate for the decay Mþ → lþνl of a

charged pseudoscalar Mþ, where Mþ ¼ πþ; Kþ, etc., and
l is a charged lepton, is, to leading order,

ΓðMþ → lþνlÞSM ¼ G2
FjVijj2f2MmMm2

l

8π

�
1 −

m2
l

m2
M

�
2

;

ð5:1Þ
where Vij is the relevant CKM mixing matrix element, fM
is the corresponding pseudoscalar decay constant (normal-
ized such that fπ ¼ 130 MeV), and we have used the fact
that the three known neutrino mass eigenstates νi, i ¼ 1, 2,
3 in νl are negligibly small compared with mM for all
pseudoscalar mesons M.
However, because of lepton mixing, other decay modes

may also occur into some number of neutrinos with non-
negligible masses. Focusing, as above, on the case of a
single heavy neutrino ν4, the SM rate is reduced by the
factor (1 − jUl4j2) and there is another decay yielding the
heavy neutrino with rate,

ΓðMþ → lþν4Þ ¼
G2

FjVijj2jUl4j2f2Mm3
M

8π
ρðδðMÞ

l ; δðMÞ
ν4 Þ;

ð5:2Þ
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in which the notation is as follows [37,38]:

δðMÞ
l ¼ m2

l

m2
M
; δðMÞ

ν4 ¼ m2
ν4

m2
M
; ð5:3Þ

ρðx; yÞ ¼ fMðx; yÞ½λð1; x; yÞ�1=2; ð5:4Þ

where the factor fM arises from the square of the matrix
element M, and

fMðx; yÞ ¼ xþ y − ðx − yÞ2: ð5:5Þ

In Eq. (5.4), λð1; x; yÞ arises from the final-state two-body
phase space, with

λðz; x; yÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ: ð5:6Þ

Note that ρðx; yÞ has the symmetry property

ρðx; yÞ ¼ ρðy; xÞ: ð5:7Þ

In the SM case with zero or negligibly small neutrino
masses, ρðx; 0Þ ¼ xð1 − xÞ2. Here and below, it is implic-

itly understood that ρðδðMÞ
l ; δðMÞ

ν4 Þ ¼ 0 if mν4 ≥ mM −ml,
since in this case the decay Mþ → lþν4 is kinematically
forbidden.
There is a clear signature for the decayMþ → lþν4 into

a heavy neutrino, namely the appearance of a monochro-
matic peak in the energy or momentum distribution of the
charged lepton below the dominant peak associated with
the emission of neutrino mass eigenstates of negligibly
small mass. The energy and momentum of this additional
peak, in the rest frame of the parent meson M, are

El ¼ m2
M þm2

l −m2
ν4

2mM
ð5:8Þ

and

pl ¼ jplj ¼
mM

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1; δðMÞ

l ; δðMÞ
ν4 Þ

q
: ð5:9Þ

An experiment on the two-body leptonic decay of a
pseudoscalar meson Mþ → lþνl, searching for a sub-
dominant peak in the charged lepton momentum or energy
distribution due to the decay Mþ → lν4, is limited to the
mass range mν4 < mM −ml for which the decay is kine-
matically allowed. It is also limited (i) to sufficiently small
mν4 such that the momentum or energy of the outgoing lþ

is large enough so that the event will not be rejected by the
lower cut used in the event reconstruction and (ii) to
sufficiently large mν4 so that the subdominant peak can
be resolved from the dominant peak.

The function fMðδðMÞ
l ; δðMÞ

ν4 Þ increases from a minimum

at δν4 ¼ 0 to a maximum at δðMÞ
ν4 ¼ ð1=2Þ þ δðMÞ

l , where it

has the value 2δðMÞ
l þ ð1=4Þ. The maximum in fM is in the

physical region if ml < ðmM=4Þ. The ratio of the value of
fM;max divided by fM for emission of neutrinos of
negligible mass is

fM;max

fMðδðMÞ
l ; 0Þ

¼ 2δðMÞ
l þ 1

4

δðMÞ
l ð1 − δðMÞ

l Þ
: ð5:10Þ

For decays in which ml ≪ mM and hence δðMÞ
l ≪ 1, this

produces a large enhancement, since

fM;max

fMðδðMÞ
l ; 0Þ

¼ 1

4δðMÞ
l

½1þOðδðMÞ
l Þ�

≫ 1: ð5:11Þ

For example, for πe2, Ke2,De2, ðDsÞe2, and Be2 decays, this
ratio (5.10) has the very large values 1.87 × 104,
2.33 × 105, 3.35 × 106, 3.71 × 106, and 2.67 × 107,
respectively. Physically, these large enhancement factors
are due to the removal of the helicity suppression of the
decay of the Mþ into a light lþ and neutrinos νi with
negligibly small masses.
It is convenient to define the ratio

ρ̄ðx; yÞ≡ ρðx; yÞ
ρðx; 0Þ ¼

ρðx; yÞ
xð1 − xÞ2 : ð5:12Þ

Thus,

ΓðMþ → lþν4Þ
ΓðMþ → lþνlÞSM

¼ jUl4j2ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ
1 − jUl4j2

: ð5:13Þ

Note that the dominant radiative corrections divide out
between the numerator and denominator of Eq. (5.13).
Since a given value of lepton momentum pl is uniquely
determined by mν4 for a given pseudoscalar meson M, a
null observation of an additional peak in an experiment and
hence an upper limit on the ratio ΓðMþ → lþν4Þ=ΓðMþ →
lþνlÞSM at a particular pl yields an upper limit on jUl4j2
for the corresponding value of mν4 . Solving Eq. (5.13) for
jUl4j2 gives

jUl4j2 ¼
ΓðMþ→lþν4Þ

ΓðMþ→lþνlÞSM
ΓðMþ→lþν4Þ

ΓðMþ→lþνlÞSM þ ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ
: ð5:14Þ

Hence, denoting ΓðMþ → lþν4Þul as the upper limit on
ΓðMþ → lþν4Þ, one has the resultant upper limit on jUl4j2:
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jUl4j2 <
ΓðMþ→lþν4Þul
ΓðMþ→lþνlÞSM

ΓðMþ→lþν4Þ
ΓðMþ→lþνlÞSM þ ρ̄ðδðMÞ

l ; δðMÞ
ν4 Þ

: ð5:15Þ

Provided that jUl4j2 ≪ 1, the right-hand side of Eq. (5.13)

is, to a good approximation, equal to jUl4j2ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ, so
that the upper limit (5.15) simplifies to

jUl4j2 <
ΓðMþ→lþν4Þul
ΓðMþ→lþνlÞSM
ρ̄ðδðMÞ

l ; δðMÞ
ν4 Þ

: ð5:16Þ

The large values of ρ̄ðδðMÞ
e ; δðMÞ

ν4 Þ decays over a sub-
stantial part of the kinematically allowed range ofmν4 mean
that Mþ → eþν4 decays are quite sensitive to the possible
emission of a heavy ν4. With fixed x, the function ρ̄ðx; yÞ
has the following Taylor series expansion in y for small y:

ρ̄ðx; yÞ ¼ 1þ
�
1 − 3x2

xð1 − xÞ2
�
yþOðy2Þ: ð5:17Þ

The derivative of ρ̄ðx; yÞ with respect to y is

dρ̄ðx; yÞ
dy

¼ 1

xð1 − xÞ2
dρðx; yÞ

dy
¼ 1 − x − 5y − 3x2 þ 7y2 − 4xyþ 9xyðy − xÞ þ 3ðx3 − y3Þ

xð1 − xÞ2½λð1; x; yÞ�1=2 : ð5:18Þ

Hence,

dρ̄ðx; yÞ
dy

����
y¼0

¼ 1 − 3x2

xð1 − xÞ2 : ð5:19Þ

In our application,

x ¼ δðMÞ
l and y ¼ δðMÞ

ν4 : ð5:20Þ

For Mþ → lþν4 decays such that δðMÞ
l ≪ 1, which include

all of the Mþ → eþν4 decays, the derivative (5.19) is
½dρ̄ðx; yÞ=dy�y¼0 ¼ x−1½1þOðxÞ�, i.e.,

dρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ
dδν4

����
δðMÞ
ν4

¼0

¼ 1

δðMÞ
l

½1þOðδðMÞ
l Þ� ≫ 1: ð5:21Þ

Hence, in Mþ → eþν4 decays, as δðMÞ
ν4 increases from 0,

ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ increases very rapidly from unity to val-
ues ≫ 1.
For a given x, the maximal value of ρ̄ðx; yÞ, as a function

of y occurs where dρðx; yÞ=dy ¼ 0, or equivalently,
dρ̄ðx; yÞ=dy ¼ 0 in the physical region. The value of y
at this maximum is given by the solution for y, of the
equation

3y3 − ð9xþ 7Þy2 þ ð9x2 þ 4xþ 5Þy
þ ð−3x3 þ 3x2 þ x − 1Þ ¼ 0: ð5:22Þ

In Mþ → eþν4 decays, x ¼ δðMÞ
e ≪ 1, so that, to a very

good approximation, Eq. (5.22) reduces to the equation
ð3y − 1Þðy − 1Þ2 ¼ 0. The relevant solution of this equa-
tion, giving the value of y at which ρðx; yÞ and ρ̄ðx; yÞ reach
their respective maxima if x ≪ 1, is

yρ̄max
¼ 1

3
; i:e:;

mν4 ¼
mMffiffiffi
3

p : ð5:23Þ

Then (with x ≪ 1),

ρ̄ðx; 1=3Þ ¼ 4

27x

�
1þ 13

2
xþOðx2Þ

�
; ð5:24Þ

so

½ρ̄ðx; yÞ�max ≃ ρ̄ðx; 1=3Þ ¼ 4

27x
; ð5:25Þ

which is ≫ 1. In Table I we list the maximal values of

ρ̄ðx; yÞ ¼ ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ for the various pseudoscalar mes-
onsMþ considered here, and for l ¼ e, μ, together with the
respective values of mν4 where these maxima occur.
Particularly large maximal values of the ρ̄ function occur
for heavy-quark pseudoscalarmesons, including 1.98×106,
2.20 × 106, and 1.58×107 for theDþ → eþν4,Dþ

s → eþν4,
andBþ → eþν4 decays, respectively. As is evident from this
table, these maximal values are only slightly less than the

maximal values of f̄MðδðMÞ
l ; δðMÞ

ν4 Þmentioned above. This is
due to the slow falloff of the two-body phase space factor

½λð1; x; yÞ�1=2 ¼ ½λð1; δðMÞ
l ; δðMÞ

ν4 Þ�1=2 with increasingmν4 . To
see this, let us define, as in [38], the ratio of the phase space
factor divided by its value for zero neutrino mass,

½λ̄ð1; x; yÞ�1=2 ≡ ½λð1; x; yÞ�1=2
½λð1; x; 0Þ�1=2 ¼

½λð1; x; yÞ�1=2
1 − x

: ð5:26Þ

This has the Taylor series expansion

½λ̄ð1; x; yÞ�1=2 ¼ 1 −
ð1þ xÞ
ð1 − xÞ2 yþOðy2Þ ð5:27Þ
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for small y. Hence, the phase space function normalized to

its value for zero neutrino mass, i.e., ½λ̄ð1; δðMÞ
l ; δðMÞ

ν4 Þ�1=2,
decreases from unity rather slowly for small δðMÞ

ν4 . The

maximal value of y ¼ δðMÞ
ν4 is

ymax ¼ ð1 − ffiffiffi
x

p Þ2; i:e:;

ðδðMÞ
ν4 Þmax ¼

�
1 −

ffiffiffiffiffiffiffiffiffi
δðMÞ
l

q 	
2
: ð5:28Þ

For fixedx ¼ δðMÞ
l , as y ¼ δðMÞ

ν4 approaches ymax frombelow,
the phase space factor ½λð1; x; yÞ�1=2 → 0, and hence so do
ρðx; yÞ and ρ̄ðx; yÞ. From the factorized expression

λð1; x; yÞ ¼ ð1þ ffiffiffi
x

p þ ffiffiffi
y

p Þð1þ ffiffiffi
x

p
−

ffiffiffi
y

p Þ
× ð1 − ffiffiffi

x
p þ ffiffiffi

y
p Þð1 − ffiffiffi

x
p

−
ffiffiffi
y

p Þ ð5:29Þ

it follows that as y → ymax from below, ½λð1; x; yÞ�1=2
vanishes like 2x1=4ðymax − yÞ1=2. Hence,

dρ̄ðx; yÞ
dy

→ −
2x3=4

½1 − y
ymax

�1=2 as y → ymax: ð5:30Þ

FromEq. (5.30), it follows that for any physical value of x, as
y → ymax from below, ρðx; yÞ and ρ̄ðx; yÞ approach 0 with a
negatively infinite slope.
For fixed x, over almost all of the kinematically allowed

region in y, the reduced function ρ̄ðx; yÞ is larger than 1.

The fact that ρ̄ðδðMÞ
e ; δðMÞ

ν4 Þ > 1 up to values ofmν extremely
close to its upper endpoint is understandable in view of
the property embodied in Eq. (5.30), that this function
approaches zero with a slope that approaches −∞, i.e.,

nearly vertically, as δðMÞ
ν4 → ðδðMÞ

ν4 Þmax. For example, in the

Mþ → eþν4 decay, with Mþ ¼ πþ or Kþ, ρ̄ðδðMÞ
e ; δðMÞ

ν4 Þ >
1 for all mν4 > 0 up to values that are within 0.015 MeV
of the respective kinematic endpoints mπþ −me ¼
139.059 MeV and mKþ −me ¼ 493.156 MeV. At these
respective values of mν4 , the momentum of the eþ is very
small, namely 0.125MeV, which would be below the lower
cutoff for such an event to be accepted as a πe2 or Ke2
event. Similar comments apply for the leptonic decays of
heavy-quark pseudoscalar mesons. We will use this prop-
erty in the limits that we derive below on jUe4j2.
Recent bounds from πl2 and Kl2 peak search experi-

ments include those from the searches for πþ → eþνh and
πþ → μþνh decays by the PIENU experiment at TRIUMF
[90,91,96], for Kþ → μþνh decay in the E949 experiment
at BNL [89], and for the Kþ → μþνh and Kþ → eþνh
decays in the NA62 experiment at CERN [93–95], where
νh ≡ ν4 in our notation. From the various πe2, πμ2, Ke2,
and Kμ2 peak search experiments, some upper bounds
include

(i) jUe4j2 ≲ 10−7–10−8 for 50 MeV<mν4 < 135 MeV
[90,91];

(ii) jUe4j2 ≲ 10−6–10−7 for 170MeV<mν4 < 450MeV
[94];

(iii) jUμ4j2 ≲ 10−2 to 10−5 for 5 MeV<mν4 < 30 MeV
[77];

(iv) jUμ4j2 ≲ 10−4 for 3 MeV < mν4 < 19.5 MeV [83];
(v) jUμ4j2 ≲ 0.6 × 10−5 for 16 MeV < mν4 < 29 MeV

and jUμ4j2≲1×10−5 for 29MeV<mν4 <32MeV
[96];

(vi) jUμ4j2≲10−8–10−9 for 200MeV<mν4 < 300MeV
[89]; and,

(vii) jUμ4j2 ≲ ð1 − 4Þ × 10−7 for 300 MeV < mν4 <
450 MeV [94].

Recently, the NA62 experiment at CERN reported more
stringent preliminary upper limits on jUe4j2 and jUμ4j2:

(i) jUe4j2 ≲ ð1 − 3Þ × 10−9 for 150 MeV < mν4 <
400 MeV, increasing to jUe4j2≲ð0.3–2Þ×10−8 for
400MeV<mν4 < 450MeV, and

(ii) jUμ4j2≲ð1–3Þ×10−8 for 220MeV<mν4<380MeV
[95].

Peak search experiments have also been conducted very
near to the kinematic endpoint in πþ → μþν4 decay,
which occurs at mν4 ¼ 33.9122 MeV [85–87]. For
mν4 ¼ 33.905 MeV, a PSI experiment obtained an upper
bound BRðπþ → μþν4Þ < 6.0 × 10−10 (95% C.L.) [87].
From Eq. (5.16), we estimate an upper limit

jUμ4j2 < 1.7 × 10−8ð90% C:L:Þ at mν4 ¼ 33.905 MeV;

ð5:31Þ

which is shown in Fig. 2. An analysis of data on the μ
capture reaction μ− þ 3He → ν̄μ þ 3H yielded upper limits
on jUμ4j2 from ∼0.1 to ≲10−2 for mν4 in the interval from

TABLE I. Maximal values of the normalized kinematic rate

factor ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ for the two-body leptonic decay Mþ → lþν4
of the pseudoscalar mesonMþ, where l ¼ e, μ, together with the
corresponding value of mν4 , denoted ðmν4Þρ̄max

(in MeV), where
this maximum is reached.

Decay ðmν4Þρ̄max
ρ̄max

πþ → eþν4 80.6 1.105 × 104

Kþ → eþν4 285 1.38 × 105

Dþ → eþν4 1.08 × 103 1.98 × 106

Dþ
s → eþν4 1.14 × 103 2.20 × 106

Bþ → eþν4 3.05 × 103 1.58 × 107

πþ → μþν4 3.46 1.00
Kþ → μþν4 263 4.13
Dþ → μþν4 1.07 × 103 47.3

Dþ
s → μþν4 1.13 × 103 52.4

Bþ → μþν4 3.05 × 103 371
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62 to 72 MeV [97]. See [13] for further limits and
references to the literature.
Upper limits on jUe4j2 vs mν4 from πe2 and Ke2 peak

searches are shown in Fig. 1, labeled as πe2 PIENU, Ke2
KEK, Ke2 NA62, and Ke2 NA62*, as well as the Be2 limit
presented in [1], which will be discussed further below.
Upper limits on jUμ4j2 vs mν4 from πμ2 and Kμ2 peak
searches are shown in Fig. 2, labeled as πμ2 PSI, πμ2 PSI2,
πμ2 PIENU, Kμ2 KEK, Kμ2 BNL, Kμ2 NA62, and Kμ2

NA62*.

VI. CONSTRAINTS FROM DATA ON
e− μ UNIVERSALITY

A. General formalism

In addition to producing a subdominant peak in the
charged lepton momentum pl at the value (5.9), the
emission of a massive neutrino in the two-body leptonic
decay of a pseudoscalar meson Mþ would cause an
apparent deviation from the SM prediction for the ratio
of decay rates or branching ratios,

RðMÞ
l=l0 ≡

BRðMþ → lþνlÞ
BRðMþ → l0þνl0 Þ

: ð6:1Þ

The experimental measurements of Mþ → lþνl include
events with very soft photons; this is to be understood
implicitly below. By convention, we take ml0 > ml. This
deviation would constitute an apparent violation of e − μ

universality for the case l ¼ e, l0 ¼ μ. In contrast to a peak
search experiment with the decay Mþ → lþνl, which
places an upper bound on jUl4j2 as a function of mν4 , a

deviation in RðMÞ
l=l0 depends, in general, on both jUl4j2 and

jUl04j2, as well as mν4 [see Eqs. (6.11) and (6.12) below].
The nonobservation of any additional peak in the dN=dpl
spectrum in two-body leptonic decays of πþ and Kþ was
used via a retroactive data analysis in [37,38] and in a series
of dedicated peak-search experiments to set stringent upper
limits on jUe4j2 and jUμ4j2 (individually) as functions of
mν4 . Furthermore, the nonobservation of any deviation

from e − μ universality in the ratio RðMÞ
e=μ was used in

[38,80,84] to obtain upper limits on lepton mixing, as will
be discussed further below. As was the case with peak
search experiments, in deriving a constraint from a com-

parison of a measured value of RðMÞ
l=l0 with the SM prediction

for this ratio, one must take into account that even if mν4 is
small enough to be kinematically allowed to occur in either
or both of these decays, an experiment might reject events
involving emission of a ν4 if the momentum or energy of
the outgoing lþ or l0þ were below the cuts used in the
event reconstruction and data analysis. We comment further
on this below.
In Sec. V we reviewed the general formalism describing

effects of possible massive neutrino emission in Ml2
decays, i.e., the decays Mþ → lþνl, where l ¼ e, μ,
and, where allowed kinematically, also l ¼ τ [37,38].
Although the actual decays and branching ratios depend
on the pseudoscalar decay constants fM and the CKM
mixing matrix elements, these cancel in ratios of branching
ratios, which can thus be calculated to high precision and
compared with experimental measurements. Let us, then,
consider the ratio of branching ratios (6.1). In the Standard
Model, since the neutrino mass eigenstates νi, i ¼ 1, 2, 3
have negligible masses, this ratio is

RðMÞ
l=l0;SM ¼ m2

l

m2
l0

2
41 − m2

l
m2

M

1 −
m2

l0
m2

M

3
52

ð1þ δRCÞ; ð6:2Þ

where δRC is the radiative correction [98–104], which takes
into account soft photon emission, matching experimental
conditions. We define the ratio of the measured ratio of

branching fractions, RðMÞ
l=l0 to the SM prediction for this

ratio, RðMÞ
l=l0;SM, as

R̄ðMÞ
l=l0 ≡

RðMÞ
l=l0

RðMÞ
l=l0;SM

: ð6:3Þ

Including the radiative correction δRC, one has the

following SM prediction for RðπÞ
e=μ;SM [100–103]

FIG. 2. Best 90% C.L. upper limits on jUμ4j2 vs mν4 from
various experiments: πþ → μþν4 peak searches, labeled as
follows: πμ2 PSI [83], πμ2 PSI2 [87], πμ2 PIENU [96]; Kþ →
μþν4 peak searches: Kμ2 KEK [79,82], Kμ2 BNL [89], Kμ2 NA62
[94], and the preliminary limit Kμ2 NA62* [95]. Other limits
include μ spectrum [39]; μ capture [97]; a Bþ → μþν4 peak

search denoted Bμ2 [125]; and our analysis of
BRðDþ

s →μþνμÞ
BRðDþ

s →τþτμÞ, labeled

Dsμ2, Our new bounds are colored blue while previous bounds
are colored black. See text for previous bounds and further
discussion.
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RðπÞ
e=μ;SM ¼ ð1.2352� 0.0002Þ × 10−4: ð6:4Þ

The most recent and precise experimental measurement
of this ratio of branching ratios was carried out by the
PIENU experiment at TRIUMF, with the result [90]

RðπÞ
e=μ ¼ ð1.2344� 0.0023stat � 0.0019systÞ × 10−4: ð6:5Þ

Combined with earlier data from lower-statistics experi-
ments, this yields the current weighted average listed by the
Particle Data Group (PDG) for this ratio, namely [13]

RðπÞ
e=μ ¼ ð1.2327� 0.0023Þ × 10−4: ð6:6Þ

Using the PDG value of RðπÞ
e=μ, one finds

R̄ðπÞ
e=μ ¼ 0.9980� 0.0019: ð6:7Þ

For RðKÞ
e=μ, a similar analysis including radiative correc-

tions [100–103] gives the SM prediction

RðKÞ
e=μ;SM ¼ ð2.477� 0.001Þ × 10−5: ð6:8Þ

The current average experimental value which is dominated
by the measurement from the NA62 experiment [105]
is [13]

RðKÞ
e=μ ¼ ð2.488� 0.009Þ × 10−5: ð6:9Þ

To within the joint theoretical and experimental uncertain-

ties, the measured value of RðKÞ
e=μ is in agreement with the

SM prediction, as shown by the ratio

R̄ðKÞ
e=μ ¼ 1.0044� 0.0037: ð6:10Þ

If a ν4 is emitted, then the ratio RðMÞ
l=l0;SM changes to the

following [37,38]:

RðMÞ
l=l0 ¼

"
½ð1 − jUl4j2ÞρðδðMÞ

l ; 0Þ þ jUl4j2ρðδðMÞ
l ; δðMÞ

ν4 Þ
ð1 − jUl04j2ÞρðδðMÞ

l0 ; 0Þ þ jUl04j2ρðδðMÞ
l0 ; δðMÞ

ν4 Þ

#
ð1þ δRCÞ; ð6:11Þ

where δðMÞ
l and δðMÞ

ν4 were defined in Eq. (5.3). In Eq. (6.11)
we have used the fact that the leading order radiative
correction is independent of mν4 [104]. As noted above, in
analyzing experimental data, one must take account of
the fact that unless an experiment is specifically searching
for effects of possible heavy neutrino emission, it would
normally set cuts on the energy and/or momentum of
the outgoing charged lepton near to the value for the SM
decay. It would thus reject events due to a sufficiently
massive ν4 and would thus measure an apparent total rate
that would be reduced from the actual rate by the factor
(1 − jUe4j2).
Combining Eqs. (6.2) and (6.11), we have, for the ratio

of branching ratios divided by the SM prediction, R̄ðMÞ
l=l0 ,

R̄ðMÞ
l=l0 ¼

1 − jUl4j2 þ jUl4j2ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ
1 − jUl04j2 þ jUl04j2ρ̄ðδðMÞ

l0 ; δðMÞ
ν4 Þ

: ð6:12Þ

With a given M, one can distinguish three different
intervals for mν4 :

(i) IðMÞ
1 ∶ mν4 < mM −ml0 ,

(ii) IðMÞ
2 ∶ mM −ml0 < mν4 < mM −ml, and

(iii) IðMÞ
3 ∶ mν4 > mM −ml.

Thus, (i) if mν4 ∈ IðMÞ
1 , then both the Mþ → lþν4 and

Mþ → l0þν4 decays can occur; (ii) if mν4 ∈ IðMÞ
2 , then the

Mþ → lþν4 can occur, but the Mþ → l0þν4 decay is

kinematically forbidden; and finally, (iii) if mν4 ∈ IðMÞ
3 ,

then both of the decays Mþ → lþν4 and Mþ → l0þν4 are
kinematically forbidden. We recall the values of these
intervals for the comparison of the branching ratios for
Me2 andMμ2 decays withM ¼ πþ andM ¼ Kþ (where we
use the standard notation Ml2 for the decay Mþ → lþνl).
Here, the mass intervals are

(i) IðπÞ1 ∶ mν4 < 33.91 MeV,

(ii) IðπÞ2 ∶ 33.91 MeV < mν4 < 139.1 MeV,

(iii) IðπÞ3 ∶ mν4 > 139.1 MeV.

(iv) IðKÞ1 ∶ mν4 < 388.0 MeV,

(v) IðKÞ2 ∶ 388.0 MeV < mν4 < 493.2 MeV, and

(vi) IðKÞ3 ∶ mν4 > 493.2 MeV.
The general forms of Eq. (6.12) are

jUl4j2 <
½1þ jUl04j2ðρ̄ðδðMl0 ; δðMÞ

ν4 Þ − 1Þ�R̄ðMÞ
l=l0 − 1

ρ̄ðδðMl ; δðMÞ
ν4 Þ − 1

for mν4 ∈ IðMÞ
1 and ð6:13Þ

R̄ðMÞ
l=l0 ¼

1 − jUl4j2 þ jUl4j2ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ
1 − jUl04j2

for mν4 ∈ IðMÞ
2 : ð6:14Þ

Consequently, for mν4 ∈ IðMÞ
2 , from the upper limit on the

deviation of BRðMþ → lþνlÞ=BRðMþ → l0þνl0 Þ from its
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SM value, i.e., the upper limit on the deviation of R̄ðMÞ
l=l0

from 1, an upper bound on jUl4j2 can be obtained. Then,

jUl4j2 <
ð1 − jUl04j2ÞR̄M;l=l0 − 1

ρ̄ðδðMl ; δðMÞ
ν4 Þ − 1

for mν4 ∈ IðMÞ
2 :

ð6:15Þ

If mν4 ∈ IðMÞ
3 , then Eq. (6.12) takes the still simpler form

R̄ðMÞ
l=l0 ¼ 1 − jUl4j2

1 − jUl04j2
for mν4 ∈ IðMÞ

3 : ð6:16Þ

In general, if for a given mν4 , one knows, e.g., from peak-
search experiments, that jUl04j2 is sufficiently small that the
denominator of (6.12) can be approximated well by 1, then

an upper bound on the deviation of R̄ðMÞ
l=l0 from 1 yields an

upper bound on jUl4j2:

jUl4j2 <
R̄ðMÞ
l=l0 − 1

ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ − 1
: ð6:17Þ

For cases in which l ¼ e, this gives very stringent upper

limits on jUl4j2 because ρ̄ðδðMe ; δðMÞ
ν4 Þ ≫ 1 over much of the

intervals IðMÞ
1 and IðMÞ

2 , as can be seen from Figs. 3–5 in

[38]. For mν4 ∈ IðMÞ
3 , the inequality (6.17) takes a simpler

form, since ρ̄ðδðMÞ
l ; δðMÞ

ν4 Þ ¼ 0, namely

jUl4j2 < 1 − R̄ðMÞ
l=l0 for mν4 ∈ IðMÞ

3 : ð6:18Þ

We now apply this analysis to RðπÞ
e=μ, using (6.17) and

(6.18) withM ¼ πþ, l ¼ e, and l0 ¼ μ. From previous πμ2
peak search experiments [77,83] and the recent [96], and

the calculation of ρ̄ðδðπÞμ ; δðπÞν4 Þ, it follows that jUμ4j2 is

sufficiently small for mν4 ∈ IðπÞ2 that we can approximate

the denominator of Eq. (6.12) by 1. From R̄ðπÞ
e=μ in Eq. (6.7),

using the procedure from [106], we obtain the limit

R̄ðπÞ
e=μ < 1.0014. Then, for ν4 ∈ IðπÞ2 , we find

jUe4j2 <
R̄ðπÞ
e=μ − 1

ρ̄ðδðπÞe ; δðπÞν4 Þ − 1
<

0.0014

ρ̄ðδðπÞe ; δðπÞν4 Þ − 1
: ð6:19Þ

This bound is labeled as PIENU in Fig. 1. Ifmν4 ∈ IðπÞ3 , i.e.,
mν4 > 139 MeV, then, using (6.18), we obtain the upper
bound on jUe4j2 given by the flat line labeled PIENU-H
in Fig. 1.
We next obtain a bound on jUe4j2 by applying the same

type of analysis to RðKÞ
e=μ. From Kμ2 peak search experiments

[78,89,94,95] and the calculation of ρ̄ðδðKÞμ ; δðKÞν4 Þ, jUμ4j2 is
sufficiently small that we can approximate the denominator

of Eq. (6.12) well by 1. Using Eq. (6.10) for ν4 ∈ IðKÞ2 , we
find

jUe4j2 <
R̄ðKÞ
e=μ − 1

ρ̄ðδðKÞe ; δðKÞν4 Þ − 1
<

0.010

ρ̄ðδðKÞe ; δðKÞν4 Þ − 1
: ð6:20Þ

This upper limit on jUe4j2 is labeled KENU in Fig. 1. For

mν4 ∈ IðKÞ3 , i.e., mν4 > 493 MeV, using ((6.18), we obtain
the flat upper bound labeled KENU-H in Fig. 1.

VII. BOUNDS FROM LEPTONIC DECAYS
OF HEAVY-QUARK MESONS

Two-body leptonic decays of heavy-quark pseudoscalar
mesons [37,38] are also valuable sources of information on
sterile neutrinos. We discuss the available bounds in this
section.

A. Bounds from Ds → l+ νl decays

The two-body leptonic decays of the Dþ
s ¼ ðcs̄Þ involve

a large CKMmixing matrix factor jVcsj2. Two of these have
been measured by the CLEO [107], BABAR [108], Belle
[109], and BES III [110–112] experiments, yielding the
current values

BRðDþ
s → μþνμÞ ¼ ð5.49� 0.17Þ × 10−3 ð7:1Þ

and

BRðDþ
s → τþντÞ ¼ ð5.48� 0.23Þ × 10−2: ð7:2Þ

Equation (7.1) is a weighted average of CLEO, BABAR,
Belle, and earlier BES III measurements, combined with
the most recent BES III result, BRðDþ

s → μþνμÞ ¼ ð5.49�
0.16stat � 0.15systÞ × 10−3 (both this new result and the
weighted average (7.1) are reported in Ref. [111]).
Searches forDþ

s → eþνe have been carried out by CLEO
[107], BABAR [108], and Belle [109], giving the current
upper bound

BRðDþ
s → eþνeÞ < 0.83 × 10−4: ð7:3Þ

Hence, for the ratio of the e and τ branching ratios, one has
the resultant upper limit

RðDsÞ
e=τ ¼ BRðDþ

s → eþνeÞ
BRðDþ

s → τþντÞ
����
exp

< 1.6 × 10−3: ð7:4Þ

For this ratio, from [100,104] we calculate the radiative
correction 1þ δRC ¼ 0.948. Substituting this in Eq. (6.2)
with M ¼ Ds, l ¼ e, and l0 ¼ τ, we find that in the SM,
this ratio of branching ratios is
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RðDsÞ
e=τ;SM ¼ BRðDþ

s → eþνeÞSM
BRðDþ

s → τþντÞSM
¼ 2.29 × 10−6: ð7:5Þ

Hence, the current experimental upper limit on BRðDþ
s →

eþνeÞ yields the upper limit R̄ðDsÞ
e=τ < 7.0 × 102. Note

that mDs
−mτ ¼ 191 MeV.

For RðDsÞ
e=τ , the interval IðDsÞ

2 is 191 MeV < mν4 <
1.457 GeV. We restrict mν4 to a lower-mass subset of this
full interval, for the following reason. In the Dþ

s → eþν4
decay, as mν4 increases from small values to its kinematic
limit, the momentum of the outgoing eþ in the rest frame of
the parent Ds decreases from its SM value, pe ≡ jpej ¼
0.984 GeV. In order for the event reconstruction procedure
in a given experiment to count such a decay as a Dþ

s →
eþνe decay, it is necessary that pe > pe;cut, where pe;cut

denotes a lower experimental cut on pe. A representative
value of this cut is the value pe;cut ¼ 0.8 GeV used in the
BES III experiment [112]. The eþ momentum decreases to
pe ¼ 0.8 GeV as mν4 reaches the value mν4 ¼ 0.85 GeV.
Thus, we consider the interval 0.191 GeV < mν4 <
0.85 GeV. For mν4 in this interval, the ratio of branching
ratios of the observed Dþ

s → eþνe and Dþ
s → τþντ decays

is given by Eq. (6.12) with M ¼ Dþ
s , l ¼ e, and l0 ¼ τ.

Hence, from Eq. (6.14), this ratio of branching ratios,
divided by the value in the SM, is

R̄ðDsÞ
e=τ ¼ 1 − jUe4j2 þ jUe4j2ρ̄ðδðDsÞ

e ; δðDsÞ
ν4 Þ

1 − jUτ4j2
: ð7:6Þ

Requiring that the emission of the ν4 should not alter the

experimentally observed upper limit on R̄ðDsÞ
e=τ given above,

we obtain the following upper bound on jUe4j2 for mν4 in
this mass range, which is the special case of (6.15) with
M ¼ Ds, l ¼ e, and l0 ¼ τ:

jUe4j2 <
ð1 − jUτ4j2ÞR̄ðDsÞ

e=τ;ul − 1

ρ̄ðδðDsÞ
e ; δðDsÞ

ν4 Þ − 1
: ð7:7Þ

This limit is largely independent of the jUτ4j2 term, since
jUτ4j2 is constrained to be less than upper bounds ranging
from ∼0.1 to ∼0.01 for mν4 in this mass range [42,44,48].
For the minimal value of mν4 taken here, namely
mν4 ¼ 0.191 GeV, the ρ̄ function in Eq. (7.7) is already
quite large, having the value 1.37 × 105. Asmν4 increases to
0.85GeV, this ρ̄ function increases to 1.83 × 106. Thus, over
this range ofmν4 , the upper limit on jUe4j2 in (7.7) decreases
from jUe4j2 < 5.1 × 10−3 to jUe4j2 < 3.8 × 10−4. We thus
obtain the upper bound on jUe4j2 labeled Dse2 in Fig. 1. In
the interval 450 MeV < mν4 < 850 MeV, these upper
bounds on jUe4j2 (denoted as Dse2 in Fig. 1) are the best

available. As was pointed out in [1], dedicated peak-search
experiments to search for the heavy-neutrino decaysDþ

s →
eþν4 and Dþ → eþν4 would be worthwhile and could
improve our upper bound on jUe4j2.
In addition to the comparison of the branching ratios

BRðDþ
s → eþνeÞ and BRðDþ

s → τþντÞ, it is also useful
to comment on the comparison of BRðDþ

s → μþνμÞ and
BRðDþ

s → τþντÞ, both of which have been measured. From
the experimental results (7.1) and (7.2), the resultant
measured ratio of branching ratios is

RðDsÞ
μ=τ ¼ 0.100� 0.005: ð7:8Þ

Substituting our calculated 1þ δRC ¼ 0.985 for this decay
in the general formula (6.2), we find that the SM prediction
for the branching ratio is

RðDsÞ
μ=τ;SM ¼ 0.101; ð7:9Þ

so to this order,

R̄ðDsÞ
μ=τ ¼ 0.990� 0.05: ð7:10Þ

This yields the upper limit R̄ðDsÞ
μ=τ < R̄ðDsÞ

μ=τ;ul, where

R̄ðDsÞ
μ=τ;ul ¼ 1.05: ð7:11Þ

Emission of a ν4 with non-negligible mass would change
the ratio (7.10) to the expression in Eq. (6.12) with

M ¼ Ds, l ¼ μ, and l0 ¼ τ. The interval IðDsÞ
2 for this

decay is 191 MeV < mν4 < 1.863 GeV, and formν4 in this
interval, Eq. (6.12) reduces to the expression in (6.14) with
M ¼ Ds, l ¼ μ, and l0 ¼ τ. The maximum value ofmν4 to
enable a large enough pμ to satisfy an experimental lower
momentum cut of 0.8 GeV is mν4 ¼ 0.84 GeV, which is
almost the same as for the Dþ

s → eþν4 decay. We thus
obtain an upper limit on jUμ4j2 which is the special case of
(6.15) with M ¼ Ds, l ¼ μ, and l0 ¼ τ, namely

jUμ4j2 <
ð1 − jUτ4j2ÞR̄ðDsÞ

μ=τ;ul − 1

ρ̄ðδðDsÞ
μ ; δðDsÞ

ν4 Þ − 1
: ð7:12Þ

Given that jUτ4j2 ≪ 1, this reduces to the special case of
Eq. (6.17) with M ¼ Ds, l ¼ μ, and l0 ¼ τ. For
mν4 ¼ 0.191 GeV, the ρ̄ function in Eq. (7.12) has the
value 4.22. As mν4 increases to 0.84 GeV, this ρ̄ function
increases to 43.4. With jUτ4j2 ≪ 1, the resultant upper
bound on jUμ4j2 is shown in Fig. 2. This bound decreases
from ∼10−2 to ∼10−3 over this range of mν4 . In the lower
part of this interval, 0.22 GeV < mν4 < 0.38 GeV, the
BNL E949 and NA62 peak search experiments with Kμ2

decay have set more stringent upper bounds, but in the
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upper part of the interval, between mν4 ¼ 0.46 GeV and
mν4 ¼ 0.84 GeV, our upper bound on jUμ4j2 from this
analysis of Ds decays is the best current direct laboratory
upper bound.

B. Bounds from D + → l+ νl leptonic decays

In the case of the Dþ meson, the cd̄ annihilation
amplitude is suppressed by the CKM factor jVcdj2 relative
to semileptonic and hadronic decay channels, which can
proceed by c → s charged-current vertices and hence
involve the much larger jVcsj2 factor in the rates. There
is significant phase-space suppression of the Dþ → τþντ
channel, since mDþ −mτ is only 92.8 MeV. For one of
these leptonic D decays, one has an upper limit, namely

BRðDþ → eþνeÞ < 0.88 × 10−5: ð7:13Þ

The branching ratio for Dþ → μþνμ has been measured by
CLEO and BES III [13,113,114] as

BRðDþ → μþνμÞ ¼ ð3.74� 0.17Þ × 10−4: ð7:14Þ

Recently, BES III has measured the branching ratio for
Dþ → τþντ [115] as

BRðDþ→ τþντÞ¼ ð1.20�0.24stat�0.12systÞ×10−3:

ð7:15Þ

With the radiative correction 1þ δRC ¼ 0.963, the SM
prediction for the ratio of these branching ratios is, from
Eq. (6.1),

R̄ðDÞ
e=μ;SMjSM ¼ 2.27 × 10−5: ð7:16Þ

From the experimental limit (7.13) and measurement
(7.14), we have the 90% C.L. upper limit

R̄ðDÞ
e=μjexp < 2.5 × 10−2: ð7:17Þ

With ν4 emission, this ratio would be changed to

R̄ðDÞ
e=μ ¼ 1 − jUe4j2 þ jUe4j2ρ̄ðδðDÞ

e ; δðDÞ
ν4 Þ

1 − jUμ4j2 þ jUμ4j2ρ̄ðδðDÞ
μ ; δðDÞ

ν4 Þ
: ð7:18Þ

Requiring that R̄ðDÞ
e=μ not violate the upper bound (7.17)

yields correlated upper limits on jUe4j2 and jUμ4j2 as a
function of mν4 .

C. Bounds from B+ → l+ νl leptonic decays

Here we analyze constraints from two-body leptonic Bþ

decays. These decays involve ub̄ annihilation and hence are
suppressed by the small CKM factor jVubj2 relative to

semileptonic and hadronic Bþ decays involving the larger
CKM factor jVcbj2. Currently, there is an upper limit on one
leptonic Bþ decay,

BRðBþ → eþνeÞ < 0.98 × 10−6 ð7:19Þ

from Belle [116] and BABAR [117], and measurements of
the other two, namely

BRðBþ→ μþνμÞ¼ ð6.46�2.22stat�1.60systÞ×10−7

ð7:20Þ

from Belle [118],

BRðBþ → μþνμÞ ¼ ð5.3� 2.0stat � 0.9systÞ × 10−7 ð7:21Þ

from a Belle update [119,120], and

BRðBþ → τþντÞ ¼ ð1.09� 0.24Þ × 10−4 ð7:22Þ

from BABAR [121] and Belle [122,123]. Both the published
and preliminary updated values of the BRðBþ → μþνμÞ are
in agreement with the SM prediction [118]

BRðBþ → μþνμÞSM ¼ ð3.80� 0.31Þ × 10−7: ð7:23Þ

The measured value of BRðBþ → τþντÞ in (7.22) is also in
agreement with the SM prediction [123,124]

BRðBþ → τþντÞSM ¼ ð0.75þ0.10
−0.05Þ × 10−4: ð7:24Þ

From [100] we calculate the radiative correction factor 1þ
δRC ¼ 0.942 for RðBÞ

e=τ;SM. Combining this with (7.22) and
(6.2), we then obtain the SM prediction

BRðBþ → eþνeÞSM ¼ ð1.08� 0.24Þ × 10−11: ð7:25Þ

A recent experiment to search for Bþ → eþX0 and Bþ →
μþX0 was carried out by Belle [125], where X0 is a weakly
interacting particle that does not decay in the detector.
Assuming that X0 ¼ ν4, one can use the results of this
experiment to set upper limits on jUe4j2 and jUμ4j2. Formν4
in the range from 0.1 GeV to 1.4 GeV, this experiment
obtained an upper limit on BRðBþ → eþν4Þ of 2.5 × 10−6,
while in the interval of mν4 from 1.4 GeV to 1.8 GeV, this
upper limit increased to 7 × 10−6. In the range of mν4 from
0.1 to 1.3 GeV, the experiment obtained (nonmonotonic)
upper limits on BRðBþ → μþν4Þ of approximately 2 ×
10−6 to 4 × 10−6, and in the interval ofmν4 from 1.3 GeV to
1.8 GeV, it obtained upper limits varying from 2 × 10−6 to
1.1 × 10−5. These limits are less restrictive than the bounds
(7.19) and (7.20), but have the advantage of being reported
for specific values of mν4 .
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Substituting the experimental upper limit on BRðBþ →
eþν4Þ as a function of mν4 from [125] into the relevant
special case of (5.15) with M ¼ Bþ and l ¼ e, we obtain
the upper bound on jUe4j2 as a function of mν4 shown in
Fig. 1. This upper bound decreases from 0.83 to 3.4 × 10−2

as mν4 increases from 0.1 to 1.2 GeV. Since the exper-
imental upper limit on BRðBþ → eþν4Þ is less stringent
as mν4 increases from 1.4 to 1.8 GeV, the same is true
of the resultant upper limit on jUe4j2; for example, if
mν4 ¼ 1.6 GeV, we get jUe4j2 < 5.4 × 10−2.
Carrying out the analogous procedure with the upper

bound on BRðBþ → μþν4Þ from [125], we obtain an upper
limit on jUμ4j2 that decreases from 0.83 to 3.4 × 10−2 asmν

increases from 0.1 GeV to 1.2 GeV. As mν4 increases from
1.2 to 1.5 GeV and then to 1.8 GeV, the upper limit on
BRðBþ → μþν4Þ from [125] rises from approximately 3 ×
10−6 to 1.1 × 10−5 and then decreases again to 3 × 10−6. In
this interval of mν4 masses, using the appropriate special
case of (5.15), we obtain upper limits ranging from jUμ4j2
of 0.12 for mν4 ¼ 1.5 GeV to jUμ4j2 of 2.7 × 10−2 at
mν4 ¼ 1.8 GeV. See also [48]. Further peak searches for
Bþ → eþν4 and Bþ → μþν4 with Belle II would be
valuable and could improve the limits from Ref. [125].
Moreover, when measurements of two-body leptonic
decays of Bþ

c mesons become available, it would also be
of interest to use them to constrain lepton mixing matrix
coefficients.
As was true for the other decays, in obtaining these limits

from leptonic B decays, it is assumed that the only new
physics is the emission of the massive ν4. However, in
the B system there are currently several quantities whose
experimental measurements are in possible tension with
SM predictions, including, for example, the ratios of
branching ratios RðDð�ÞÞ ¼ BRðB → Dð�Þτν̄τÞ=BRðB →
Dð�Þlν̄lÞ, where l¼ e, μ, and the ratio RðKð�ÞÞ ¼ BRðB →
Kð�Þeþe−Þ=BRðB → Kð�Þμþμ−Þ (see, e.g., [126,127]).

VIII. CONSTRAINTS FROM μ DECAY

A. General analysis with massive neutrino emission

In this section we discuss constraints from μ decays.
The lifetime of the μþ was measured to 0.5 ppm
accuracy by the MuLan experiment at PSI [128], yielding
the value GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 with the
implicit assumption of decays only into the three known
neutrino mass eigenstates. With this assumption, the
uncertainty in this determination of GF is mainly from
the experimental measurement; it is estimated that the
uncertainty due to radiative corrections [129–131] is
approximately 0.14 ppm and the uncertainty from the
measured value of mμ is 0.08 ppm [128].
However, as was pointed out and analyzed in [37,39], in

the presence of neutrino masses and lepton mixing,
the decay μ → νμeν̄e would actually consist of the decays

μ → νieν̄j into the individual mass eigenstates νi and ν̄j
in the interaction eigenstates νμ and ν̄e, where 1 ≤ i; j ≤
3þ ns, as allowed by phase space. The emission of massive
neutrino(s) with non-negligible mass(es) in muon decay
would produce several changes relative to the Standard
Model. These include (i) kink(s) in the observed electron
energy spectrum associated with the fact that the maximum
electron energy in the rest frame of the parent μ is reduced
from its SM value with neutrinos of negligibly small
masses,

Ee;max ¼
m2

μ þm2
e

2mμ
ð8:1Þ

to

Ee;max;ij ¼
m2

μ þm2
e − ðmνi þmνjÞ2
2mμ

; ð8:2Þ

(ii) reduction of the differential and total decay rate; (iii) a
reduction in the apparent value of the Fermi coupling GF,
relative to its value in the Standard Model with neutrinos of
negligibly small masses; and (iv) changes in the spectral
parameters ρ and η, and, for a polarized muon, ξ, and δ, that
have been used to fit the differential decay spectrum of
the muon. Reference [39] calculated the changes in these
spectral parameters that would be caused by emission of a
massive (anti)neutrino in μ decay and used existing data to
set upper limits on lepton mixing coefficients as functions
of neutrino mass. From data on the ρ parameter describing
the eþ momentum distribution in unpolarized μþ decay,
Ref. [39] derived an upper limit on jUr4j2, where r ¼ e, μ
in the interval mν4 up to 70 MeV, extending down to a few
times 10−3 at mν4 ¼ 30 MeV. This constraint applies to
both jUe4j2 and jUμ4j2 since the ν4 or ν̄4 can be emitted at
either the charged-current vertex with the μ or with the e.
The upper bound on jUe4j2 from μ decay is not as restrictive
as upper bounds from πe2 or Ke2 decay. However, the upper
bound on jUμ4j2 from μ decay is valuable for an interval of
mν4 that is not covered by peak search experiments, namely
the interval above the kinematic endpoint for πμ2 decay at
mν4 ¼ 33.9 MeV and below the value of mν4 ≃ 40 MeV,
which was the lowest value at which a Kμ2 peak search
experiment (at KEK [82]) obtained an upper limit on
jUμ4j2. In [40,132] it was pointed out that because, in
the presence of massive neutrino emission in μ decay, the
value of GF;app extracted in the framework of the SM is
smaller than the true value of GF, this would lead to
predictions of the masses of the W and Z, that would be
larger than the true values, and these effects were calcu-
lated. Subsequent discussions of massive neutrino effects in
μ decay include [32,48,133–135]. In particular, the TWIST
experiment at TRIUMF measured ρ with greater accuracy
[49]. Using an analysis similar to that in [39] applied to the
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TWIST data, one obtains upper limits on jUμ4j2 extending
down to 2 × 10−3 at mν4 ¼ 30 MeV (e.g., [48]).
Let us consider the change in the total rate as a

consequence of muon decays to a neutrino mass eigenstate
ν4 with a non-negligible mass. In the SM with neutrinos of
negligibly small mass, the rate for μ decay has the form

Γμ;SM ¼ G2
Fm

5
μ

192π3
ð1þ δαÞΓ̄μ;SM: ð8:3Þ

Here we have separated off a rate factor

Γ̄μ;SM ¼ fðaðμÞe ; 0; 0Þ; ð8:4Þ

where f is a dimensionless kinematic function resulting from
the integration over the three-body final-state phase space,
which depends on three arguments, namely the (squares
of the) ratios of each of the final-state particle masses to
the muon mass. Finally, in Eq. (8.3), the δα term incorpo-
rates electroweak corrections and has the leading-order
value δα ¼−½αem=ð2πÞ�½π2− ð25=4Þ� ¼−4.2× 10−3 [129].

For the SM with neutrinos of negligibly small mass, the
kinematic function f is

fða; 0; 0Þ ¼ ð1 − 8aþ a2Þð1 − a2Þ þ 12a2 ln

�
1

a

�
ð8:5Þ

with

aðμÞe ¼ m2
e

m2
μ
¼ 2.339010 × 10−5: ð8:6Þ

Numerically, fðaðμÞe ; 0; 0Þ ¼ 1 − ð1.87 × 10−4Þ. The SM
kinematic function for μ decay has the series expansion

fða; 0; 0Þ ¼ 1 − 8aþOðfa2; a2 ln agÞ ð8:7Þ

with a ¼ aðμÞe . Because aðμÞe ≪ 1, fðaðμÞe ; 0; 0Þ is very well
approximated, to three-figure accuracy, by the first two terms

in its series expansion, 1 − 8aðμÞe .
For our case, from the general formulas in [39], the μ

decay rate is given by

Γ̄μ ¼ ð1 − jUe4j2Þð1 − jUμ4j2ÞfðaðμÞe ; 0; 0Þ þ ð1 − jUe4j2ÞjUμ4j2fðaðμÞe ; 0; aðμÞν4 Þ
þ jUe4j2ð1 − jUμ4j2ÞfðaðμÞe ; aðμÞν4 ; 0Þ þ jUe4j2jUμ4j2fðaðμÞe ; aðμÞν4 ; a

ðμÞ
ν4 Þ

¼ Γμ;SM½ð1 − jUe4j2Þð1 − jUμ4j2Þ þ ð1 − jUe4j2ÞjUμ4j2f̄ðaðμÞe ; 0; aðμÞν4 Þ
þ jUe4j2ð1 − jUμ4j2Þf̄ðaðμÞe ; aðμÞν4 ; 0Þ þ jUe4j2jUμ4j2f̄ðaðμÞe ; aðμÞν4 ; a

ðμÞ
ν4 Þ�; ð8:8Þ

where f̄ðx; y; zÞÞ is the ratio of the kinematic phase space
integral for each of the decays divided by the kinematic
integral for the SM decay (8.5):

f̄ðx; y; zÞ ¼ fðx; y; zÞ
fðx; 0; 0Þ ð8:9Þ

with

aðμÞν4 ¼ m2
ν4

m2
μ
: ð8:10Þ

Here and below, the kinematic function fðx; y; zÞ ¼ 0

if the decay is kinematically forbidden, i.e., if
ffiffiffi
x

p þffiffiffi
y

p þ ffiffiffi
z

p
≥ 1. The four terms in Eq. (8.8) arise from the

decays (a) μ → νieν̄j, (b) μ → ν4eν̄i, (c) μ → νieν̄4, and
(d) μ → ν4eν̄4, where here νi and νj denote the known three
neutrino mass eigenstates, whose masses are negligibly
small in μ decay. Note that the second and third terms are
present only ifmμ > me þ ν4, and the fourth term is present
only if mμ > me þ 2mν4 . Furthermore, the fourth term is
strongly suppressed because it involves the product of the
squares of two small leptonic mixing matrix coefficients,

jUe4j2jUμ4j2, and because of the smaller phase space if
mν4=mμ is substantial. Hence, to evaluate Eq. (8.8) for Γ̄μ,
to a very good approximation, we may drop the last term,
and hence we need only the kinematic function fðx; y; 0Þ,
which was calculated in Ref. [39]. A basic symmetry
property of the kinematic function is that [39]

fðx; y; zÞ ¼ fðx; z; yÞ; ð8:11Þ

so the second and third terms in Eq. (8.8) have the same

kinematic factor, f̄ðaðμÞe ; 0; aðμÞν4 Þ ¼ f̄ðaðμÞe ; aðμÞν4 ; 0Þ.
The apparent value of the Fermi coupling, GF;app,

obtained from the measurement of the μ decay rate is
given by

G2
F;app

G2
F

¼ Γμ

Γμ;SM
≡ κ ð8:12Þ

and is less than unity if (anti)neutrinos with non-negligible
masses are emitted in μ decay [39]. Explicitly,
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G2
F;app

G2
F

¼ ð1 − jUe4j2Þð1 − jUμ4j2Þ þ ð1 − jUe4j2ÞjUμ4j2f̄ðaðμÞe ; 0; aðμÞν4 Þ

þ jUe4j2ð1 − jUμ4j2Þf̄ðaðμÞe ; aðμÞν4 ; 0Þ þ jUe4j2jUμ4j2f̄ðaðμÞe ; aðμÞν4 ; a
ðμÞ
ν4 Þ: ð8:13Þ

In the SM, the predicted mass of the Z is determined
in terms of α ¼ e2=ð4πÞ, the weak mixing angle
θW ¼ arctanðg0=gÞ, and GF;app by

mZ;pred ¼
�

πα

21=2GF;app

�
1=2 1

sin θW cos θW
ð1þ δZ;RCÞ;

ð8:14Þ

and mW;pred ¼ mZ;pred cos θW , where δZ;RC is the radiative
correction [136]. As pointed out in [40,132], in the
presence of massive neutrino emission in μ decay, these
predicted values of mZ and mW would be larger than the
true values, since GF;app < GF:

mZ;true ¼ κ1=2mZ;pred < mZ;pred ð8:15Þ

and

mW;true ¼ κ1=2mW;pred < mW;pred: ð8:16Þ

The effects on the W and Z widths were also discussed in
[40,132]. The agreement between the predicted and
observed masses and widths of the W and Z thus yield
constraints on leptonic mixing angles as functions of mν4 .
With current values of mW , mZ, ΓW , and ΓZ, these imply
jUl4j2 ≲ 10−2 (e.g., [48]).
As mentioned above, the test of relative agreement of F t

values obtained from the set of 14 superallowed nuclear
beta decays in [63,64] is independent of GF;app since this
divides out in the ratios of the F t values. However,
depending on mν4 , jUe4j2, and jUμ4j2, the result would
generically be that the value of jVudj obtained from these
nuclear beta decays would not be equal to the true value,
because of both the reduction of the rates for the various
nuclear beta decays and the fact that the value of GF;app

used in Eq. (2.1) would be different from the true value. In
turn, this would generically lead to a spurious apparent
violation of the first-row CKM unitarity test. Whether the
apparent value of jVudj would be larger or smaller than the
true value would depend on the values of mν4 , jUe4j2, and
jUμ4j2 and thus on the relative effects of massive neutrino
emission in muon decay and in the nuclear beta decays used
to obtain jVudj.
Since the determination of jVudj from the superallowed

nuclear beta decays depends on the input value of GF;app

from muon decay, an apparent violation of the first-row

CKM unitarity relation Σ ¼ 1 could indicate the presence
of effects of new physics beyond the Standard Model
(BSM) in muon decay. Although our discussion above has
focused on the effect of the possible emission of neutrino(s)
of non-neglible masses and couplings in muon decay, we
note that there could also be exotic muon decays in BSM
scenarios that would appear observationally to be the same
as μþ → ν̄μeþνe, i.e., μþ → eþ þmissing neutrals, where
the additional neutral particles are weakly interacting. An
explicit example studied in the context of supersymmetric
extensions of the SM was the decay μþ → eþγ̃ γ̃, where γ̃
denotes the photino [137]. An analogous decay involving
hadrons was Kþ → πþγ̃ γ̃ [138], which would appear
observationally as Kþ → πþ þmissing neutrals and hence
would be experimentally indistinguishable from the SM
decay Kþ → πþνν̄ [139]. (In modern notation, these
decays would be denoted as μþ → eþχ̃0χ̃0 and Kþ →
πþχ̃0χ̃0, where χ̃0 is a neutralino.) As was noted in
[137], the existence of the decay μþ → eþγ̃ γ̃ by itself
would lead to an apparent value of GF;app larger than the
true value, opposite to the effect of massive neutrino
emission. Another possibility for an exotic μ decay is
μ → eþ x, where x is a neutral, light, weakly interacting
boson; upper limits on this were given in [140,141].
Another example of this type of additional exotic μ decay
was studied in a model with dynamical electroweak
symmetry breaking [142], in which the μþ → eþ transition
would be mediated by a neutral virtual massive generation-
changing vector boson, which then would produce a final-
state ν̄μνe pair (see also [143]).

B. Limit on exotic μ decay modes

If there are no light sterile neutrinos relevant for μ decay,
but there are additional exotic muon decays such as in the
examples above, then, since the experimentally extracted
value of GF;app would be larger than the true GF, the
resultant apparent value of jVudj obtained from the super-
allowed nuclear beta decays, denoted jV 0

udj, would be
smaller than the true value. In turn, this would yield an
apparent spurious violation of CKM unitarity in which the
apparent value of Σ would be less than unity. Since an
exotic BSM decay channel would increase Γμ relative to the
SM value Γμ;SM, while emission of heavy neutrino(s) would
decrease Γμ relative to Γμ;SM, it is possible, in principle, for
both of these non-SM effects to be present and to tend to
cancel each other, yielding a resultant Γμ close to Γμ;SM.
However, in the absence of any symmetry reason, such a
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cancellation may be regarded as unlikely. Accordingly, in
our analyses, we will treat each of these two cases
individually.
If one considers the possibility that no heavy sterile

(anti)neutrinos are emitted in μ decay but instead, there
is an exotic extra decay channel (indicated with subscript
ext) with rate Γμ;ext, then the total decay rate would be
Γμ ¼ Γμ;SM þ Γμ;ext. Let us denote Γμ;SM ≡G2

FΓ̂μ;SM and
the branching ratio of the exotic decay mode as
BRμ;ext ¼ Γμ;ext=Γμ. Experimentalists would then extract
the apparent value GF;app as

G2
F;appΓ̂μ;SM ¼ Γμ ¼ G2

FΓ̂μ;SM þ Γμ;ext; ð8:17Þ

so

G2
F;app

G2
F

¼ 1þ Γμ;ext

Γμ;SM
¼ 1þ Γμ;ext

Γμ − Γμ;ext

¼ 1þ BRμ;ext

1 − BRμ;ext
: ð8:18Þ

Assuming that the BSM physics responsible for the addi-
tional contribution, Γμ;ext, to μ decay does not affect nuclear
beta decays, then the resultant apparent value of jV 0

udj2
obtained from the superallowed nuclear beta decays would
be given by G2

F;appjV 0
udj2 ¼ G2

FjVudj2, i.e.,

jV 0
udj2 ¼

jVudj2
1þ BRμ;ext

: ð8:19Þ

For our present analysis, let us further assume that the BSM
physics leading to this value would not affect the decays
used to determine jVusj and jVubj. The apparent value of Σ,
denoted Σapp, would then be

Σapp ¼ jV 0
udj2 þ jVusj2 þ jVubj2

¼ −BRμ;extjV 0
udj2 þ jVudj2 þ jVusj2 þ jVubj2

¼ −BRμ;extjV 0
udj2 þ Σ: ð8:20Þ

Assuming CKM unitarity, i.e., Σ ¼ 1, we then have

BRμ;ext ¼
1 − Σapp

jV 0
udj2

: ð8:21Þ

Presuming that this is responsible for Σapp being less than
unity and using the experimentally determined value and
uncertainty in Eq. (4.1),

BRμ;ext < 1.3 × 10−3: ð8:22Þ

IX. CONSTRAINTS FROM
LEPTONIC τ DECAYS

As with nuclear beta decay and the two-body leptonic
decays of pseudoscalar mesons, semihadronic τ decays
have the simplifying property of only involving a single
leptonic charged-current vertex in their amplitudes, so one
may define an effective mass mτ;eff ¼ ½Pi jUτ;ij2m2

νi �1=2.
The best upper limit mντ;eff < 18.2 MeV (95% C.L.) [144]
comes from semihadronic τ decays.
As in the case of μ decay, one can analyze leptonic τ

decays in the presence of possible sterile neutral emission;
see Table II in [39] and also Ref. [135]. We denote the
τ → ντeν̄e mode as τ → e and the τ → ντμν̄μ as τ → μ for
short and define a reduced, dimensionless decay rate Γ̄τ→l
via the equation

Γτ→l ¼ G2
Fm

5
τ

192π3
ð1þ δαÞΓ̄τ→l ð9:1Þ

where we have used the fact that the leading-order
correction, δα, is mass-independent. In the Standard
Model with neutrinos of negligible masses,

Γτ→l;SM ¼ fðaðτÞl ; 0; 0Þ: ð9:2Þ

Using aðτÞe ¼ 0.827 × 10−7 and aðτÞμ ¼ 3.536 × 10−3 in

Eq. (8.5), one has fðaðτÞe ; 0; 0Þ ¼ 1 − ð0.662 × 10−6Þ and

fðaðτÞμ ; 0; 0Þ ¼ 0.9726.
With massive (anti)neutrino emission, we calculate

Γ̄τ→l ¼ ð1 − jUl4j2Þð1 − jUτ4j2ÞfðaðτÞl ; 0; 0Þ þ ð1 − jUl4j2ÞjUτ4j2fðaðτÞl ; 0; aðτÞν4 Þ
þ jUl4j2ð1 − jUτ4j2ÞfðaðτÞl ; aðτÞν4 ; 0Þ þ jUl4j2jUτ4j2fðaðτÞl ; aðτÞν4 ; a

ðτÞ
ν4 Þ: ð9:3Þ

Just as in Eq. (8.8) for μ, the term involving emission of
ν4ν̄4 is negligibly small relative to the other terms because it
involves the product of two small leptonic mixing matrix
elements squared, jUl4j2jUτ4j2, and because of the greater
kinematic suppression of the decay into ν4ν̄4 for substantial

mν4 ; one can therefore drop the final term in Eq. (9.3). The
kinematic function fðx; y; 0Þ was calculated in [39]. It is
worthwhile to inquire what can be learned from a purely
leptonic observable which can be calculated and measured
to high precision, namely
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BRτ→e

BRτ→μ
≡ RðτÞ

e=μ ð9:4Þ

and the resultant ratio

R̄ðτÞ
e=μ ¼

RðτÞ
e=μ

RðτÞ
e=μ;SM

: ð9:5Þ

We comment below on studies that also include semi-
hadronic τ decays.
Measurements of the individual branching ratios for

τ → ντeν̄e and τ → ντμν̄μ have been carried out, with the
results [13]

BRτ→ντeν̄e ¼ 0.1782� 0.0004 ð9:6Þ

and

BRτ→ντμν̄μ ¼ 0.1739� 0.0004: ð9:7Þ

Experiments have also reported measurements of the ratio

RðτÞ
e=μ; a global fit to the data yields the result [13,145]

RðτÞ
e=μ ¼ 1.024� 0.003: ð9:8Þ

This is consistent with the theoretical SM prediction

RðτÞ
e=μ;SM ≡

�
BRτ→e

BRτ→μ

�
SM

¼ fðaðτÞe ; 0; 0Þ
fðaðτÞμ ; 0; 0Þ

¼ 1.028: ð9:9Þ

The uncertainty in the theoretical prediction (9.9) is small
compared with the uncertainty in the experimental meas-
urement (9.8). Note that the leading-order radiative cor-
rection term (1þ δα) divides out in the ratio (9.9) since it is
mass-independent. Thus,

R̄ðτÞ
e=μ ¼ 0.996� 0.003: ð9:10Þ

The simplest situation applies if mν4 is sufficiently large
that all of the decays τ → ν4eν̄j and τ → ν4μν̄j, where
1 ≤ j ≤ 4, are kinematically forbidden. In this case,

RðτÞ
e=μ ¼

ð1 − jUe4j2ÞfðaðτÞe ; 0; 0Þ
ð1 − jUμ4j2ÞfðaðτÞμ ; 0; 0Þ

¼ ð1 − jUe4j2Þ
ð1 − jUμ4j2Þ

RðτÞ
e=μ;SM ðno emission of ν4Þ;

ð9:11Þ

i.e., R̄ðτÞ
e=μ ¼ ð1 − jUe4j2Þ=ð1 − jUμ4j2Þ. Requiring that R̄ðτÞ

e=μ

not deviate excessively from 1 yields an upper bound on the
magnitude of the difference jUe4j2 − jUμ4j2, although this

does not by itself provide separate upper bounds on jUe4j2
or jUμ4j2.
Let us investigate a hierarchical lepton mixing situation

in which jUl4j2 ≪ jUτ4j2 for l ¼ e, μ. This is effectively
equivalent to using the upper limits mνe;eff < 2 eV and
mνμ;eff < 0.19 MeV [13] to infer that these have a negli-

gible effect on the ratio RðτÞ
e=μ. Then

RðτÞ
e=μ ¼

ð1 − jUτ4j2ÞfðaðτÞe ; 0; 0Þ þ jUτ4j2fðaðτÞe ; aðτÞν4 ; 0Þ
ð1 − jUτ4j2ÞfðaðτÞμ ; 0; 0Þ þ jUτ4j2fðaðτÞμ ; 0; aðτÞν4 Þ

¼ RðτÞ
e=μ;SM

�ð1 − jUτ4j2Þ þ jUτ4j2f̄ðaðτÞe ; aðτÞν4 ; 0Þ
ð1 − jUτ4j2Þ þ jUτ4j2f̄ðaðτÞμ ; aðτÞν4 ; 0Þ

�
;

ð9:12Þ

where we have used the symmetry (8.11). Solving
Eq. (9.12) for jUτ4j2, we get

jUτ4j2 ¼
R̄ðτÞ
e=μ − 1

R̄ðτÞ
e=μ½1 − f̄ðaðτÞμ ; aðτÞν4 ; 0Þ� − ½1 − f̄ðaðτÞe ; aðτÞν4 ; 0Þ�

:

ð9:13Þ

With (9.10), we obtain a 95% C.L. upper bound on
jUτ4j2 that extends down to below 10−2 as mν4 increases to
1 GeV. More stringent constraints have been obtained from
semihadronic decays [42–44,146].
One can also use the measured branching ratios (9.6) and

(9.7) and the τ lifetime ττ ¼ ð2.903� 0.005Þ × 10−13 s
[13] in comparison with the decay rates calculated using
the MuLan value for GF to obtain limits on mντ;eff . The
definition of mντ;eff is more complicated here than in
nuclear beta decays and two-body leptonic decays of
pseudoscalar mesons, where only a single charged-current
vertex is involved, so mνe;eff ¼ ½Pj jUeij2m2

νj �1=2 and

mνμ;eff ¼ ½Pj jUμij2m2
νj �1=2, where the sums include all

neutrino mass eigenstates that lead to the respective out-
going charged lepton with an energy or momentum such
that it is included in the cuts used by a given experiment in
its event reconstruction. In contrast, for leptonic τ decays,
the amplitudes involve two charged-current vertices and
hence products of lepton mixing matrices. If one assumes
that the ν4 is emitted via the τ − ντ charged-current
coupling, then only the Uτj lepton mixing matrix element
is relevant in the amplitude, and one can express mντ;eff

in an analogous manner, as mντ;eff ¼ ½Pj jUτij2m2
νj �1=2.

Then, using the formulation in [147], one finds calculated
values for the branching ratios (denoted by superscript (c))

of RðcÞ
τ→e ¼ 0.17781� 0.0031 and BRðcÞ

τ→μ ¼ 0.17293�
0.00030. Then, the ratios of experimental to calculated
branching ratios are
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Sτ→e ¼ Γτ→e=Γτ→e;SM ¼ 1.022� 0.0028 ð9:14Þ

and

Sτ→μ ¼ Γτ→μ=Γτ→μ;SM ¼ 1.0056� 0.0029: ð9:15Þ

Since the measured values exceed the calculated ones, we
find the following 95% C.L. interval for the physical
regions for massive neutrino emission i.e. Sτ→e < 1 and
Sτ→μ < 1:

0.9964 < Sτ→e < 1 ð9:16Þ

and

0.9982 < Sτ→μ < 1: ð9:17Þ

Equations (9.16) and (9.17) correspond to limits mντ;eff <
38 MeV from τ → ντeν̄e and mντ;eff < 26.8 MeV from
τ → ντμν̄μ. These limits may be compared with the current
limit, mντ;eff < 18.2 MeV [144].

X. REMARKS ON SOME OTHER PARTICLE
AND NUCLEAR PHYSICS CONSTRAINTS

Sterile neutrinos with masses in the range considered
here are subject to a number of other constraints. We
begin with a remark on Kl3 decays as potential sources
of constraints on sterile neutrinos. These decays include
Kþ→π0lþνl, K0

L→πþl−ν̄l, and K0
L→π−lþνl, where

l ¼ e, μ. Since these Ke3 decays are not helicity-
suppressed, in contrast to Me2 decays, where M ¼ πþ;
Kþ, etc., there is no associated enhancement of Kl3 decays
into a massive ν4 resulting from removal of helicity
suppression, as is the case in Me2 decays. These Kl3
decays into a massive (anti)neutrino are subject to the usual
three-body phase space suppression. The maximum ν4
masses in the Ke3, ðK0

LÞe3, Kμ3, and ðK0
LÞμ3 decays are 358,

362, 253, and 252 MeV, respectively. This mass range is
already covered by the limits from peak search and
branching ratio constraints from πl2 and Kl2 experiments.
Furthermore, the calculations of the rates for Kl3 and
ðK0

LÞl3 decays involve more uncertainty than for πl2 and
Kl2 because the hadronic amplitudes contain form factors
whose dependence on q2 (where qλ ¼ pλ − pλ

π is the four-
momentum imparted to the outgoing l−νi or l̄þνi pair)
cannot be calculated from first principles. (For a recent
discussion of parametrizations of these form factors, see
[13].) The resultant uncertainty is only partially cancelled
in ratios such as BRððK0

LÞe3Þ=BRððK0
LÞμ3Þ, since the

ðK0
LÞe3 and ðK0

LÞμ3 involve different momenta transfers
to the outgoing lepton pairs.
Next, it may be recalled that quite restrictive upper limits

on mixings of mainly sterile heavy neutrinos have also been
obtained from time-of-flight searches [148,149] and for

neutrino decays [13,38,150–152]. A recent search of this
type is [153]. In the mass range of a few MeV, experiments
have been performed to search for the decay ν̄4 → eþe−νe
using ν̄e beams from nuclear reactors [154–156]. These
eventually obtained upper limits on jUe4j2 of 0.5 × 10−2 at
mν4 ¼ 1 MeV down to 3 × 10−4 for mν4 ¼ 4 MeV, and
then increasing to 0.6 × 10−2 for mν4 ¼ 9.5 MeV [156].
From observations of the solar neutrino flux, the Borexino
experiment has set upper bounds jUe4j2 of 10−3 to 0.4 ×
10−5 formν4 from 1.5 to 14 MeV [157]. However, since the
conditions for the diagonality of the neutral weak current
are violated in the presence of sterile neutrinos [35,36], a
sterile neutrino may decay invisibly, as ν4 → νjν̄lνl. Other
invisible neutrino decay modes occur in models in which
neutrinos couple to a light scalar or pseudoscalar (for recent
discussions and limits, see, e.g., [158–160] and references
therein). Consequently, because of their model dependence,
we do not use limits on lepton mixing from neutrino
decays here.
One can also check that a ν4 mass in the range considered

here would make a negligible contribution to decays such
as μþ → eþγ. The branching ratio for μþ → eþγ is [161]

BRðμþ → eþγÞ ¼ 3αem
32π

�
mν4

mW

�
4

jUμ4Ue4j2: ð10:1Þ

For mν4 ¼ 100 MeV, the factor multiplying jUμ4Ue4j2 is
0.52 × 10−15. Given the experimental upper limit
BRðμþ → eþγÞ < 4.2 × 10−13 [162], it is clear that this
does not yield a useful constraint on jUμ4Ue4j2.
A massive Dirac neutrino has a magnetic moment [163]

(see also [164]; recent reviews include [165,166]). Limits
on such a magnetic moment are commonly quoted for the
interaction eigenstates, although they are really properties
of the mass eigenstates. For one of the three SM neutrino
mass eigenstates νi in an active neutrino interaction
eigenstate νl, where l ¼ e, μ, τ, this is

μνi ¼
3eGFmνi

8π2
ffiffiffi
2

p
X
l

jUlij2

¼ ð3.2 × 10−19Þ
�

mνi

1 eV

��X
l

jUlij2
�
μB; ð10:2Þ

where μB ¼ e=ð2meÞ is the Bohr magneton. For
a heavy (mostly sterile) neutrino mass eigenstate with a
mass in the range considered here, the expression for
μν42 is given by Eq. (10.2) with i ¼ 4. Thus, a Dirac ν4
with a mass of 5 MeV would have μν4 ¼ ð1.6 ×
10−12Þ½Pl jUl4j2�μB [163].
The upper limits conventionally quoted for the neutrino

interaction eigenstates are of order ð10−10–10−11ÞμB from
reactor and accelerator experiments, 3 × 10−11 from the
Borexino experiment [167], and of order ð10−11–10−12ÞμB
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from limits on stellar cooling rates [13]. Since jUe1j2,
jUμ2j2, and jUτ3j2 are Oð1Þ, there is not a large difference
between the usually quoted upper limits on μνe , μνμ , μντ , and
the upper limits on μνi with i ¼ 1, 2, 3.
The situation is different for a heavy ν4 in the mass range

considered here. When considering how these limits might
apply to the ν4, however, one must take into account the
fact that there would be strong kinematic and mixing-angle
suppression or exclusion of the initial emission of the heavy
ν̄4 in the beta decays that yield the ν̄e flux from a reactor,
and a ν4 with an MeV-scale mass would be kinematically
forbidden from being emitted in the pp → Dþ eþ þ νe
reaction and the electron-capture transition eþ 7Be →
7Liþ νe in the sun, since these have maximum energy
releases of only 0.42 and 0.86 MeV, respectively. Hence,
one cannot necessarily apply the constraints on neutrino
magnetic moments from reactor antineutrino and solar
neutrino experiments to a heavy neutrino. Similarly, the
constraint from stellar cooling is not directly relevant here
because it only applies to neutrino mass eigenstates νj with
masses ≲5 keV so that a plasmon in the star would be
kinematically able to produce the ν̄jνj pair [13].
Finally, we comment on how a heavy neutrino could

affect Higgs decays. Ref. [168] pointed out that the Higgs
boson could have decays to invisible final states, and
calculated rates for several of these, including decays to
neutrinos. Currently, all of the decay branching ratios of
the Higgs are in agreement with SM predictions, but these
allow for a substantial branching ratio into invisible
modes, BRðH → invisibleÞ≲ 20% [13,169,170]. The way
in which the diagonal and nondiagonal couplings of
neutrinos to the Higgs boson are related to the couplings
Ul4 that enters in the weak charged current depends, in
general, on details of a given model.

XI. CONCLUSIONS

One of the most important outstanding questions in
nuclear and particle physics at present concerns whether
light sterile neutrinos exist. In this paper we have presented
a detailed analysis yielding new upper bounds on the
squared lepton mixing matrix elements jUe4j2 and jUμ4j2
involved in the possible emission of a mostly sterile
neutrino mass eigenstate, ν4, from analyses of a number
of nuclear and particle decays. A brief report on the upper

bounds on jUe4j2 was given in [1]. We have used recent
advances in the precision of measuredF t values for a set of
superallowed nuclear beta decays to improve the upper
limits on jUe4j2 obtained from these beta decays for a ν4
with a mass in the range of a few MeV. From analyses

of the ratios of branching ratios RðπÞ
e=μ¼BRðπþ→eþνeÞ=

BRðπþ→μþνμÞ, RðKÞ
e=μ, R

ðDsÞ
e=τ , R

ðDsÞ
μ=τ , and R

ðDÞ
e=τ , and from Be2

and Bμ2 decays, we have derived upper limits on couplings
jUe4j2 and jUμ4j2. Our bounds on jUe4j2 cover most of the
ν4 mass range from approximately 1 MeV to 1 GeV, and in
several parts of this range they are the best bounds for a
Dirac neutrino that do not make use of model-dependent
assumptions on visible neutrino decays. We have also
obtained a new upper bound on jUμ4j2 from a πμ2 peak
search experiment searching for ν4 emission via lepton
mixing and have updated existing upper bounds on jUμ4j2
in the MeV to GeV mass range. New experiments to search
for Dþ

s → eþν4 and Dþ → eþν4 are suggested. These, as
well as a continued search for Bþ → eþν4 and Bþ → μþν4
decays, would be valuable and could further improve the
bounds. In addition, we examined limits on jUe4j2 obtained
from examining pion beta decay and showed that they are
less stringent than those from superallowed beta decay in
the same ν4 mass range. As part of the analysis, we updated
constraints from CKM unitarity on sterile neutrinos. In
addition, we examined correlated constraints on lepton
mixing matrix coefficients jUe4j2, jUμ4j2 and jUτ4j2 from
analyses of leptonic decays of heavy-quark pseudoscalar
mesons, from μ decay, and from leptonic τ decays.
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