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We present an implementation and numerical study of the Standard Model couplings, masses, and
vacuum expectation value (VEV), using the pure MS renormalization scheme based on dimensional
regularization. Here, the MS Lagrangian parameters are treated as the fundamental inputs, and the VEV is
defined as the minimum of the Landau gauge effective potential, so that tadpole diagrams vanish, resulting
in improved convergence of perturbation theory. State-of-the-art calculations relating the MS inputs to on-
shell observables are implemented in a consistent way within a public computer code library, SMDR

(standard model in dimensional regularization), which can be run interactively or called by other programs.
Included here for the first time are the full two-loop contributions to the Fermi constant within this scheme
and studies of the minimization condition for the VEVat three-loop order with four-loop QCD effects. We
also implement and study the scale dependence of all known multiloop contributions to the physical masses
of the Higgs boson, the W and Z bosons, and the top quark, the fine structure constant and weak mixing
angle, and the renormalization group equations and threshold matching relations for the gauge couplings,
fermion masses, and Yukawa couplings.
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I. INTRODUCTION

With the discovery of the Higgs boson, the Standard
Model is technically complete. This is despite indications
that it will have to be extended to accommodate dark matter
and to solve issues such as the hierarchy problem, the
strong CP problem, and the cosmological constant prob-
lems. At this writing, the LHC continues to strengthen
lower bounds on the masses of new particles in hypotheti-
cal ultraviolet completions such as supersymmetry. It is
therefore plausible that we should view the Standard Model
as a valid, complete effective field theory up to the tera-
electron-volt (TeV) scale and perhaps well beyond, with
nonrenormalizable terms in the Lagrangian correspond-
ingly highly suppressed. This paper is concerned with the
ongoing program of determining, as accurately as possible,
the relations between the renormalizable Lagrangian
parameters that define the theory and the observables
and on-shell quantities that are more directly connected
to experimental results. This is part of a larger goal of
improving our understanding of the Standard Model at the
level of accuracy required to test it with future experiments.

A convenient method of handling the ultraviolet diver-
gences of the Standard Model is provided by dimensional
regularization [1–5] followed by renormalization by modi-
fied minimal subtraction, MS [6,7]. To describe the effects
of electroweak symmetry breaking induced by the Higgs
vacuum expectation value (VEV), there are at least two
distinct ways to proceed. Consider the Higgs potential

VðϕÞ ¼ Λþm2H†H þ λðH†HÞ2; ð1:1Þ
where H is the canonically normalized complex Higgs
doublet field. First, one may choose to organize perturba-
tion theory by expanding the electrically neutral component
of H around a tree-level VEV vtree=

ffiffiffi
2

p
, defined by

vtree ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

q
: ð1:2Þ

This is used in many works, because it has the advantage
that vtree is manifestly independent of the choice of gauge
fixing. However, it has the disadvantage that Higgs tadpole
loop diagrams do not vanish and must be included order by
order in perturbation theory. This comes with a parametri-
cally slower convergence of perturbation theory, as the
tadpole contributions to other calculated quantities will
include powers of 1=λ due to their zero-momentum Higgs
propagators.
We choose instead to expand the Higgs field around a

loop-corrected VEV v, which is defined to be the minimum
of the full effective potential [8–10] in the Landau gauge.
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For the Standard Model (and indeed for a general renor-
malizable field theory), the effective potential has now been
obtained at two-loop [11,12] and three-loop [13,14] orders,
with the four-loop contributions known [15] at leading
order in QCD. The choice of Landau gauge is made
because other gauge-fixing choices lead to unpleasant
technical problems including kinetic mixing between the
longitudinal components of the vector and the Goldstone
scalar degrees of freedom.1 The disadvantage of defining
the VEV in this way is that calculations that make use of it
are then restricted to the Landau gauge. But the advantage
of this choice is that the sum of all Higgs tadpole diagrams
(including the tree-level tadpole) automatically vanishes,
and there are no corresponding 1=λn contributions in
perturbation theory.
Another issue to be dealt with is that the minimization

condition for the effective potential requires resummation
of Goldstone boson contributions, as explained in [17,18],
in order to avoid spurious imaginary parts and infrared
divergences at higher loop orders. (For further perspectives
and developments on this issue, see Refs. [19–25].) The
end result can be written as a relation between the tree-level
and loop-corrected VEVs,

v2tree ¼ v2 þ 1

λ

X∞
n¼1

1

ð16π2ÞnΔn; ð1:3Þ

with n-loop order contributions Δn that are free of spurious
imaginary parts and infrared divergences and do not depend
at all on the Goldstone boson squared mass. (The 1=λ in
this equation is the source of the tadpole effects noted
above if one chooses to expand in terms of vtree rather than
v.) The full three-loop contributions were given in [14] in
terms of two-loop and three-loop basis integrals that can be
efficiently evaluated numerically using the computer code
3VIL [26],2 and the four-loop contribution was obtained at
leading order in QCD in [15]. However, a numerical
illustration of these effects was deferred. One of the
purposes of the present paper is to remedy this by providing
a numerical study of the three-loop and four-loop effects.
We also have a broader purpose here: to bring together in

a coherent form, implemented as a public computer code,
results obtained in recent years relating pole masses and
other observables to the Lagrangian parameters in the
tadpole-free pure MS scheme. The new code, called
SMDR for standard model in dimensional regularization,

is a software library written in C with functions callable
from user C or C++ programs. It uses the MS input
parameters that define3 the Standard Model theory at a
given renormalization scale Q:

v; λ; g3; g; g0; yt; yb; yc; ys; yd; yu; yτ; yμ; ye;Δα
ð5Þ
hadðMZÞ:

ð1:4Þ
All of these, except the last, are defined as running
parameters in the nondecoupled (high-energy) Standard
Model, with gauge group SUð3Þc × SUð2ÞL ×Uð1ÞY with
gauge couplings g3, g, and g0, respectively, and six active
quarks. Note that the running MS Higgs squared mass
parameterm2 need not be included among these, because it
is not independent, being determined in terms of λ, v, and
the other parameters by the effective potential minimization
condition Eq. (1.3). Also, the hadronic light-quark con-
tribution to the fine-structure constant is given by a

parameter Δαð5ÞhadðMZÞ. In principle this is not independent
of the others in Eq. (1.4), but in practice it must (at least, at
present) be treated as an independent input because it
depends on nonperturbative physics. The code then pro-
vides computations of the following “on-shell” output
quantities:

heavy particle polemasses∶Mt;Mh;MZ;MW;

running light quarkmasses∶mbðmbÞ; mcðmcÞ;
msð2 GeVÞ; mdð2 GeVÞ; muð2 GeVÞ;

lepton polemasses∶Mτ;Mμ;Me;

five-quarkQCDcoupling∶ αð5ÞS ðMZÞ;
Fermi constant∶GF ¼ 1.1663787 � � � × 10−5 GeV−2;

fine structure constant∶ α0 ¼ 1=137.035999139 � � �
and Δαð5ÞhadðMZÞ; ð1:5Þ

which can be viewed as dual to the MS inputs. (Even
though GF and α0 are extremely accurately known from
experiment, as indicated, they are considered as outputs
from the point of view of the pure MS renormalization
scheme.) However, note that MW is actually extra, in the
sense that the other parameters in Eq. (1.5) are already
sufficient to fix the MS quantities in Eq. (1.4); therefore, the
computation of MW provides a consistency check on the

Standard Model. The quantity Δαð5ÞhadðMZÞ appears in both
lists (1.4) and (1.5), due to its nonperturbative nature; it
always is obtained from experiment rather than fits to other
quantities. The SMDR code also computes the weak mixing

1The full two-loop effective potential has recently been
obtained in a large class of more general gauge-fixing schemes
in Ref. [16], but it is quite unwieldy, and extending it to the
three-loop order is a daunting challenge.

23VIL computes three-loop vacuum basis integrals numerically
using the differential equations method, except in special cases
for which they can be computed analytically, including the cases
found in Refs. [27–47]. See Ref. [48] for an alternative evaluation
of three-loop vacuum integrals based on dispersion relations.

3Cabibbo-Kobayashi-Maskawa mixing and neutrino mass and
mixing effects are neglected in the present version. Including
them would have a negligible effect on the quantities in Eq. (1.5),
compared to other sources of uncertainty.
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angle as defined by the Particle Data Group’s Review of
Particle Properties (RPP) [49] (which, unlike the present
paper, uses a scheme with the top quark decoupled but the
massive W boson active, corresponding to a nonrenorma-
lizable effective theory even when the Lagrangian cou-
plings of negative mass dimension are neglected), but this is
again extra, since it is not needed in order to fix the MS
quantities.
The relationship between the Sommerfeld fine-structure

constant α0 appearing in Eq. (1.5) and the couplings g and
g0 in Eq. (1.4) can be expressed as (see, e.g., Refs. [50–53])

α0 ¼
g2ðMZÞg02ðMZÞ

4π½g2ðMZÞ þ g02ðMZÞ�
× ½1 − Δαð5ÞhadðMZÞ − ΔαLOpert − ΔαHOpert�; ð1:6Þ

where the sum of one-loop contributions from t, W, τ, μ, e
(but not b, c, s, d, u) are

ΔαLOpert ¼
α0
4π

�
202

27
þ 14 lnðMW=MZÞ−

32

9
lnðMt=MZÞ

−
8

3
lnðMτ=MZÞ−

8

3
lnðMμ=MZÞ−

8

3
lnðMe=MZÞ

�
;

ð1:7Þ
and the higher-order perturbative contribution ΔαHOpert has
been given as an interpolating formula in Eqs. (19)–(21) of
Ref. [53]. For the running αMSðQÞ in the decoupled theories
used for the renormalization group (RG) running belowMZ
[with the numbers of active (quarks, charged leptons) equal
to (5, 3) or (4, 3) or (4, 2) or (3, 2)], we use the results
obtained in [54], as discussed in the next section.
The pole masses Mt, Mh, MZ, MW , Mτ, Mμ, and Me are

each defined in terms of the complex pole in the renor-
malized propagator,

spole ¼ M2 − iΓM: ð1:8Þ
For the top-quark pole mass, the pure QCD contributions
were obtained at one-loop, two-loop, three-loop, and four-
loop orders in Refs. [55–59], respectively. The non-QCD
contributions toMt at one-loop and two-loop orders had also
been obtained in other schemes and approximations. At one-
loop order they were found in Refs. [60–62], and mixed
electroweak-QCD two-loop contributions were obtained in
[63–65]. Further two-loop contributions in the gaugeless
limit (in which the electroweak bosonmasses are taken to be
small compared to the top-quark mass) were found in
Refs. [66–69]. Finally, the full two-loop results forMt were
provided in the tree-levelVEVscheme inRef. [70] and in the
tadpole-free scheme used in the present paper in [71].
For the Higgs boson mass, we use our calculation in

Ref. [72], which contains all two-loop contributions and the
leading (in the limit g2, g02, λ ≪ g23, y

2
t ) three-loop con-

tributions in the tadpole-free pure MS scheme. Earlier

works on Mh at the two-loop level in other schemes and
approximations include Ref. [73] which included the mixed
QCD/electroweak contributions to Mh, Ref. [74] which
used the gaugeless limit approximation at two-loop order,
and the full two-loop approximation given as an interpolat-
ing formula in a hybrid MS /on-shell scheme in Ref. [75].
For theW and Z boson pole masses, we use the full two-

loop calculations using the tadpole-free pure MS scheme
given in Refs. [76,77], respectively. Previous two-loop
calculations of the vector boson pole masses in other
schemes (expanding around vtree rather than v) appeared
in Refs. [53,62,70,78]. It is important to note that for the
vector bosons V ¼ W and Z, the values usually quoted,
including by the RPP, are not the pole masses but the
variable-width Breit-Wigner masses. These can be related
to the pole masses by [79–82]

M2
V;Breit-Wigner ¼ M2

V þ Γ2
V: ð1:9Þ

Thus, the Z- andW-boson pole masses defined by Eq. (1.8)
are, respectively, approximately 34.1 MeV and 27.1 MeV
smaller than the Breit-Wigner masses that are usually
quoted.
The charged lepton pole masses are computed at two-

loop order in QED, by converting the corresponding QCD
formulas given in Ref. [56] and including small effects
from nonzero lighter fermion masses from Ref. [83].
The running light-quark masses in Eq. (1.5) are defined

in appropriate SUð3Þc ×Uð1ÞEM effective field theories in
which the heavier particles have been decoupled. Although
it is possible to evaluate the QCD contributions to the
bottom-quark and charm-quark pole masses, this is dep-
recated, because there is no semblance of convergence of
the perturbative series relating the pole masses to the
running masses for bottom and charm (and obviously
for the lighter quarks as well); see Ref. [59]. Therefore
we use running MS masses for all lighter quarks. Thus
mbðmbÞ is defined as anMS running mass in the five-quark,
three-lepton QCDþ QED effective theory, while mcðmcÞ
is similarly defined in the four-quark, two-lepton theory,
and msð2 GeVÞ, mdð2 GeVÞ, muð2 GeVÞ are defined in
the three-quark, two-lepton theory. We follow the RPP
Ref. [49] in choosing to evaluate the last three at, somewhat
arbitrarily, Q ¼ 2 GeV, in order to avoid larger QCD
effects at smaller Q.
To obtain the five-quark, three-lepton QCDþ QED

effective field theory, we simultaneously decouple the
heavier Standard Model particles t, h, Z, W at a com-
mon matching scale, which can be chosen at will, but
should presumably be in the range from about MW to Mt.
Because W and Z are decoupled from it, this low-energy
effective theory is a renormalizable gauge theory supple-
mented by interactions with couplings of negative mass
dimension (including the Fermi four-fermion interactions).
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The decouplings of the bottom quark, tau lepton, and charm
quark are then performed individually.
In one mode of operation, the SMDR code takes the MS

input parameters of Eq. (1.4) provided by the user and
outputs the on-shell quantities in Eq. (1.5). Alternatively, in
a dual mode of operation, the SMDR code instead takes user
input for the on-shell quantities in Eq. (1.5) (except for
MW) and determines as outputs the MS quantities in

Eq. (1.4) and then MW , by doing a fit. The SMDR code
also implements all known contributions to the running and
decoupling of the gauge and Yukawa couplings.
In the numerical studies below, we employ a benchmark

model point, chosen to yield the central values of the
quantities in Eq. (1.5) (other than MW , as noted above), as
given in the 2019 update of the 2018 edition of the Review
of Particle Properties in Ref. [49]:

Mt ¼ 173.1 GeV; Mh ¼ 125.1 GeV; MZ;Breit-Wigner ¼ 91.1876 GeV;

GF ¼ 1.1663787 × 10−5 GeV2; α0 ¼ 1=137.035999139; αð5ÞS ðMZÞ ¼ 0.1181;

mbðmbÞ ¼ 4.18 GeV; mcðmcÞ ¼ 1.27 GeV; msð2 GeVÞ ¼ 0.093 GeV;

mdð2 GeVÞ ¼ 0.00467 GeV; muð2 GeVÞ ¼ 0.00216 GeV;

Mτ ¼ 1.77686 GeV;

Mμ ¼ 0.1056583745 GeV; Me ¼ 0.000510998946 GeV;

Δαð5ÞhadðMZÞ ¼ 0.02764: ð1:10Þ
The MS input quantities that do this are found (with default scale choices for evaluations in SMDR) to be

Q0 ¼ 173.1 GeV;

vðQ0Þ ¼ 246.60109 GeV; λðQ0Þ ¼ 0.12603842;

g3ðQ0Þ ¼ 1.1636241; g2ðQ0Þ ¼ 0.64765961; g0ðQ0Þ ¼ 0.35853877;

ytðQ0Þ ¼ 0.93480082; ybðQ0Þ ¼ 0.015480097; yτðQ0Þ ¼ 0.0099944422;

ycðQ0Þ ¼ 0.0033820038; ysðQ0Þ ¼ 0.00029094484; yμðQ0Þ ¼ 0.00058837986;

ydðQ0Þ ¼ 1.4609792 × 10−5; yuðQ0Þ ¼ 6.7227779 × 10−6;

yeðQ0Þ ¼ 2.7929820 × 10−6: ð1:11Þ

This set of values obviously includes more significant
digits than justified by the experimental and theoretical
uncertainties; this is for the sake of reproducibility and
checking when changes are made to the code, or to the
default choices of matching or evaluation scales. Equa-
tion (1.11) will be referred to below as the reference model
point, and a sample input file included with the SMDR

distribution provides for automatic loading of these param-
eters. As future versions of the RPP with new experimental
results become available, corresponding new versions of
the reference model file will be included in new SMDR

distributions; they can also be constructed easily by using
functions provided. All of the figures appearing below are
made using short programs (included with the SMDR

distribution) that employ the SMDR library functions, in
order to illustrate how the latter should be used.

II. RENORMALIZATION GROUP RUNNING
AND DECOUPLING

The MS renormalization group equations for the
Standard Model used in this paper, and by default in

the SMDR code, are the state-of-the-art ones. These include
the two-loop [84–88] and three-loop [89–97] order
contributions for all parameters, including the gauge
couplings, the fermion Yukawa couplings, the Higgs
self-coupling λ, VEV v, and negative squared mass m2.
In addition, for the strong coupling, the contributions to
the beta function at four-loop order in the limit g2,
g02 ≪ g23, y

2
t , λ [98–102] and pure QCD five-loop order

[103,104] are included. Similarly, the higher-order QCD
contributions to the beta functions of the quark Yukawa
couplings are included, using results found at four-loop
order in Refs. [105,106] and at five-loop order in
Ref. [107]. Finally, the leading QCD four-loop contribu-
tion to the beta function of the Higgs self-coupling λ is
included from Refs. [15,108].
Using the reference model of Eq. (1.11) as inputs, the

renormalization group running of the couplings are illus-
trated in Figure 1 for the range 102 GeV < Q < 1019 GeV.
The left panel shows the inverse gauge couplings
1=α3 ¼ 4π=g23, 1=α2 ¼ 4π=g2, and [in a grand unified
theory (GUT) normalization] 1=α1 ¼ ð3=5Þ4π=g02, while
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the right panel shows the Yukawa couplings for all of the
Standard Model charged fermions.
For lower scales, we use the results given in Ref. [54] to

simultaneously decouple the top quark, Higgs boson, Z
boson, and W boson at a common matching scale, so that
the low-energy effective field theory is renormalizable
and has gauge group SUð3Þc ×Uð1ÞEM. The common
matching scale is, in principle, arbitrary; by default the
SMDR code uses Q ¼ MZ for the matching but this can be
modified at run-time by the user. The matching results
include the two-loop matching found in [54] for the

electromagnetic MS coupling αðQÞ in the theory with five
quarks and three leptons, as well as the matching relation for
the five-quark QCD coupling αSðQÞ at one-loop [109,110],
two-loop [111,112], three-loop [113,114], and four-loop
[115,116] orders together with the complete Yukawa
and electroweak two-loop contributions obtained first in
Ref. [117] (and verified and written in a different way
compatible with the present paper in Ref. [54]). The pure
QCD corrections to the quark mass matching relations were
given at three-loop order in Refs. [113,114] and four-loop
order in Ref. [118].

FIG. 1. Renormalization group running of the MS inverse gauge couplings 1=α3, 1=α2, and 1=α1 in a grand unified theory
normalization (left panel) and charged fermion Yukawa couplings (right panel), as functions of the renormalization scale Q. The input
parameters are given by the reference model point defined in Eq. (1.11) at Q0 ¼ 173.1 GeV.

FIG. 2. Renormalization group running of the MS QCD and QED gauge couplings αS and α (left panel) and fermion masses (right
panel), as functions of the renormalization scale Q. The beta functions used are five-loop order in QCD and three-loop order in QED,
with active fermion contents as follows: five-quark, three-lepton for mbðmbÞ ≤ Q ≤ 91.1876 GeV; four-quark, three-lepton for
Mτ ≤ Q ≤ mbðmbÞ; four-quark, two-lepton for mcðmcÞ ≤ Q ≤ Mτ; and three-quark, two-lepton for Q ≤ mcðmcÞ. The matchings at
Q ¼ mbðmbÞ and Mτ and mcðmcÞ are done at four-loop order for the QCD coupling, two-loop order for the QED coupling, and the
fermion mass matchings include effects at three-loop order in QCD and two-loop order in QED. The input parameters are defined by the
reference model point given in Eq. (1.11), with t, h, Z, W simultaneously decoupled at Q ¼ 91.1876 GeV.
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For the QCD parts of the matching relations and beta
functions, complete results had been calculated and incor-
porated long ago into the RunDec and CRunDec [119–121]
codes. In addition, the two-loop mixed QCD/electroweak
and pure electroweak contributions to the matching of the
runningb, c, s,d,u and τ, μ, e fermionmasseswere obtained
in Refs. [69,70,122–124] and [54]. They are implemented in
SMDR using the formulas provided in Ref. [54] consistent
with the conventions of the present paper.
The running and decoupling of the QCD and QED gauge

couplings and running fermion masses are shown in Fig. 2
for the sequence of effective theories with five quarks and
three charged leptons [for mbðmbÞ ≤ Q ≤ MZ], with four
quarks and three charged leptons [for Mτ ≤ Q ≤ mbðmbÞ],
with four quarks and two charged leptons [for mcðmcÞ ≤
Q ≤ Mτ], and with three quarks and two charged leptons
[for Q ≤ mcðmcÞ]. The boundaries between these effective
theories are somewhat arbitrary and correspond to the
default points within the SMDR code, which can be adjusted
by the user. At each of the matching points Q ¼ mbðmbÞ
and Mτ and mcðmcÞ, the parameters are actually discon-
tinuous due to the matching mentioned above due to
changing effective theories, but this cannot be discerned
with the resolution of the plots.

III. MINIMIZATION OF THE EFFECTIVE
POTENTIAL AND THE VACUUM

EXPECTATION VALUE

We first consider a numerical illustration of the mini-
mization condition for the effective potential, Eq. (1.3),

which can be used to trade m2 for v, when all of the other
MS parameters are taken to be known inputs. The quantities
Δn have been given up to three-loop order in Ref. [14] and
the four-loop order contribution at leading order in QCD is
found in Ref. [15].
In Fig. 3, we start with the MS quantities taken to be their

benchmark reference point values defined at Q ¼ Q0 ¼
173.1 in Eq. (1.11). From Eq. (1.3), the value of m2 at Q0

for the reference model is then found to be (again including
more significant digits than justified by the uncertainties)

m2ðQ0Þ ¼ −ð92.878850 GeVÞ2: ð3:1Þ

At other renormalization group scales Q, we determine
m2ðQÞ in two different ways. For the first way, we
renormalization-group run all of the other parameters to
Q, where m2ðQÞmin is then determined by again applying
Eq. (1.3). The results are shown in the left panel of
Figure 3, in various approximations (as labeled) for the
minimization condition. The second way is to directly RG
run m2ðQÞrun starting with Eq. (3.1) as its boundary
condition. Note that here, the renormalization group run-
ning of m2ðQÞrun is obtained by treating it as an indepen-
dent parameter in the high-energy Lagrangian. In the
right panel, we show the ratio of m2ðQÞmin=m

2ðQÞrun
as a function of Q. This provides a scale-invariance check
yielding a lower bound on the error, because in the
idealized case of calculations to all orders in perturbation
theory, the ratio should be exactly 1. We find that in the case
of the full three-loop plus QCD four-loop approximation,

FIG. 3. The MS Higgs squared mass parameter, as a function of the renormalization scale Q, for the reference model point defined at
Q0 ¼ 173.1 GeV in Eq. (1.11). The other input parameters, including the VEV vðQÞ, are obtained from the reference model by evolving
them using their RG equations to the scale Q, where the Landau gauge effective potential is then required to be minimized to determine
m2ðQÞmin. In the left panel, results are shown for the one-loop, two-loop, two-loop plus leading three-loop, full three-loop, and three-
loop plus QCD four-loop approximations to the effective potential minimization condition. The right panel shows the results for
m2ðQÞmin=m

2ðQÞrun, wherem2ðQÞmin is determined as in the left panel, andm2ðQÞrun is obtained directly by renormalization running its
input value from the reference scale Q0 ¼ 173.1 GeV.

STEPHEN P. MARTIN and DAVID G. ROBERTSON PHYS. REV. D 100, 073004 (2019)

073004-6



the deviation of the ratio from unity is less than 10−4 for the
entire range shown from 70 GeV to 220 GeV, and over
most of this range the deviation is actually much smaller.
Without including the four-loop QCD contribution, the
scale dependence is still quite good, but is a few times 10−4.
In both cases, the parametric uncertainties from experi-
mentally measured quantities would probably seem to be
larger than the theoretical uncertainties, although we
emphasize that the scale-dependence check can only give
a lower bound on the theoretical error.
In Fig. 4,weperform the inverse of the preceding analysis.

This time, we takem2ðQ0Þ as an input given by Eq. (3.1) and
determine vðQÞ as an output by solving Eq. (1.3). Of course,
at Q ¼ Q0, the result is exactly as given in Eq. (1.11). At
other Q, we obtain vðQÞmin by first running all of the other
MS quantities from Q0 to Q and then applying Eq. (1.3)
again. The results are shown in the left panel of Fig. 4. We
also obtain vðQÞrun by directly running it using its RG
equations from Q0. The ratio vðQÞmin=vðQÞrun is shown in
the right panel of Fig. 4. Again, in the best available
approximation, the scale dependence of the ratio is much
smaller than 10−4 over the entire range.

IV. THE FERMI DECAY CONSTANT

The Fermi weak decay constant is closely related to the
vacuum expectation value, withGF ¼ 1=

ffiffiffi
2

p
v2 at tree level.

Including radiative corrections, one can write

GF ¼ 1þ Δr̄ffiffiffi
2

p
v2tree

¼ 1þ Δr̃ffiffiffi
2

p
v2

: ð4:1Þ

Expressions for Δr̄ have been given at two-loop order
in the so-called gaugeless limit (g2, g02 ≪ g23, y

2
t , λ) in

Refs. [69,70], using expansions in terms of MS and on-
shell quantities, respectively, but in both cases determined
in terms of the tree-level VEV. The full two-loop version of
Δr̄ is quite lengthy, and to our knowledge has not appeared
in print, but was obtained and presented within the public
computer code mr [124]. The two-loop corrections to the
closely related quantity Δr in the MS scheme (but defined
in terms of theW boson experimental mass) have also been
discussed in Ref. [53]. We have obtained the corresponding
complete two-loop result for Δr̃ in terms of v,

Δr̃ ¼ 1

16π2
Δr̃ð1Þ þ 1

ð16π2Þ2 Δr̃
ð2Þ þ � � � : ð4:2Þ

The one-loop order part is

Δr̃ð1Þ ¼ 3

4
ðg2 þ g02Þ½AðZÞ − AðWÞ�=ðZ −WÞ

þ 3

4
½ð4g2 − 24λÞAðWÞ − g2AðhÞ�=ðh −WÞ

þ 3½y2t AðtÞ − y2bAðbÞ�=ðt − bÞ
þ 2AðτÞ=v2 − ð3g2 þ g02Þ=8
þ ð3y2t þ 3y2b þ y2τÞ=2; ð4:3Þ

where

Z ¼ ðg2 þ g02Þv2=4; W ¼ g2v2=4; h ¼ 2λv2;

ð4:4Þ

FIG. 4. The MS Higgs VEV, as a function of the renormalization scaleQ, for the reference model point defined atQ0 ¼ 173.1 GeV in
Eq. (1.11). The other input parameters, including m2ðQÞ, are obtained from the reference model by evolving them using their RG
equations to the scale Q, where the Landau gauge effective potential is minimized to obtain vðQÞmin. In the left panel, results are shown
for the one-loop, two-loop, two-loop plus leading three-loop, full three-loop, and three-loop plus QCD four-loop approximations to the
effective potential minimization condition. The right panel shows the results for vðQÞmin=vðQÞrun, where vðQÞrun is obtained directly by
renormalization running from the reference scale Q0 ¼ 173.1 GeV.
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t ¼ y2t v2=2; b ¼ y2bv
2=2; τ ¼ y2τv2=2; ð4:5Þ

are the running MS squared masses, and

AðxÞ ¼ xlnðxÞ − x ð4:6Þ

with

lnðxÞ ¼ lnðx=Q2Þ: ð4:7Þ

The two-loop part is

Δr̃ð2Þ ¼ g23y
2
t ½8ζ2 − 17 − 16AðtÞ=t − 12AðtÞ2=t2�

þ Δr̃ð2Þnon-QCD; ð4:8Þ

whereΔr̃ð2Þnon-QCD is again rather lengthy, and so is provided in
its complete form as an ancillary file Deltartilde.txt
distributed with this paper, rather than in text form here. The
ancillary file Deltartilde.txt [125] contains the
complete form of

Δr̃ð2Þnon-QCD ¼
X
j

Cð2Þ
j Ið2Þj þ

X
j≤k

Cð1;1Þ
j;k Ið1Þj Ið1Þk

þ
X
j

Cð1Þ
j Ið1Þj þ Cð0Þ; ð4:9Þ

where the lists of two-loop and one-loop basis integrals
required are

Ið2Þ ¼ fζ2; Iðh;h;hÞ; Iðh; t; tÞ; Ið0; h; tÞ; Ið0; h;WÞ;
Ið0; h;ZÞ; Ið0; t;WÞ; Ið0; t;ZÞ; Ið0;W;ZÞ; Iðh;h;WÞ;
Iðh;W;WÞ; Iðh;W;ZÞ; Iðh;Z;ZÞ; Iðt; t;WÞ; Iðt; t;ZÞ;
IðW;W;WÞ; IðW;W;ZÞ; IðW;Z;ZÞg; ð4:10Þ

Ið1Þ ¼ fAðtÞ; AðhÞ; AðZÞ; AðWÞg; ð4:11Þ

with the two-loop vacuum integral function Iðx; y; zÞ as
defined as in previous papers, e.g., [26,126,127], and the

coefficients Cð2Þ
j , Cð1;1Þ

j;k , Cð1Þ
j , and Cð0Þ are rational functions

of t, h,Z,W, and v. (The v dependence is 1=v4 in each case.)
The Goldstone boson contributions in Δr̃ have been
resummed, so that, as explained in Refs. [14,17], the
Higgs squared mass appearing here is h≡ 2λv2, and not
m2 þ 3λv2. Also, note thatΔr̃ð1Þ is well defined in the formal
limitsW → Z,W → h, andb → t, despite denominators that
vanish in those limits. Furthermore, although Δr̃ð2Þ has
several individual terms with λ in the denominator, one
can check that the whole expression for Δr̃ is finite in the
limit λ → 0, unlike Δr̄. This illustrates the absence of 1=λ
effects in the tadpole-free scheme based on v; more gen-
erally, the absence of 1=λ effects provides useful checks on

calculations.We have also checked thatΔr̃ð2Þ is well defined
in the formal limitswhereZ − 4t,h −W,W − Z,h − 4Z and
h − 4W vanish, despite many of the individual coefficients
having denominators containing factors of these quantities.
Furthermore,wehavechecked thatGF ¼ ð1þ Δr̃Þ= ffiffiffi

2
p

v2 is
RG scale invariant through two-loop order, as required by its
status as a physical observable. In doing this check, we have
used the form ofΔr̃ described above, in whichG andm2 are
both completely eliminated by the Goldstone boson resum-
mation by using Eqs. (1.2) and (1.3), and then the running
withQ is computed in terms of the remaining parameters on
which Δr̃ depends, namely λ, v, yt, g3, g, and g0, using their
beta functions as well as the Q dependence of the loop
integral functions.
This numerical result for GF in terms of the MS

quantities is shown in Fig. 5 for the benchmark reference
model as a function of the scale Q at which it is computed.
The scale variation is less than 1 part in 10−4 forQ between
100 and 220 GeV. By default, the SMDR code evaluates GF
atQ ¼ Mt, and so the benchmark point there agrees exactly
with the experimental value. The results can also be
compared to those of formulas relating GF to MW given
by Degrassi, Gambino, and Giardino in Ref. [53], which is
larger by a fraction of about 0.0002 (or 0.0001), provided
that Q in our calculation is taken to be close toMt (orMZ).
This corresponds to a difference in the physical W-boson
mass of about 8 MeV (or 4 MeV), less than the current
experimental uncertainty in MW . A further reduction in the
purely theoretical sources of uncertainty in our approach

FIG. 5. The Fermi constant GF, as a function of the renorm-
alization scale Q at which it is computed from the MS input
parameters, for the reference model point defined at Q0 ¼
173.1 GeV in Eq. (1.11). The short-dashed, long-dashed, and
solid lines show the results of including the one-loop, one-
loop plus two-loop QCD, and full two-loop contributions,
respectively.
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could come about from including the leading (in g3 and yt)
three-loop contributions to GF,MZ, andMW . There appear
to be no technical obstacles to performing these calcula-
tions; when they become available, they will be included in
the SMDR code.

V. PHYSICAL MASSES OF HEAVY PARTICLES

For the case of the benchmark reference model defined in
Eq. (1.11), we show the pole masses of t and h and the
Breit-Wigner masses of W and Z in various approxima-
tions, as a function of the renormalization scale Q used for
the computation, in Fig. 6. The results shown are obtained
using SMDR, which implements the formulas found in
Refs. [71,72,76,77] for the tadpole-free pure MS scheme.
These papers make use of the TSIL software library in order
to numerically evaluate the required two-loop self-energy

basis integrals, using the differential equations method as
described in [127], and analytical special cases found in
Refs. [56,63,127–136].
In the case of the Higgs boson pole mass, the Q

dependence is seen to be of order several tens of MeV
in Fig. 6, for the best available approximation, which
includes the full two-loop and leading (in g3 and yt) three-
loop contributions. However, as we argued in Ref. [72], in
the specific case of Mh, a renormalization scale close to
Q ¼ 160 GeV should be made in order to minimize the
error from other three-loop contributions, and this choice is
used by default in SMDR.
In the case of the top-quark pole mass, in Fig. 6 we start

with the known four-loop pure QCD approximation.
Although other works often treat the top-quark pole mass
using only QCD effects, the neglect of electroweak
corrections is certainly not justified. Indeed, the four-loop

FIG. 6. Physical masses of the Higgs boson, top quark, Z boson, and W boson, as functions of the renormalization scale Q at which
they are computed, in various approximations as labeled. The MS input parameters at Q are determined by RG evolution from the
reference model point defined at Q0 ¼ 173.1 GeV in Eq. (1.11). In the case of MW , we also show the present experimental central
(horizontal solid line) and �1σ (horizontal dashed lines) values.
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pure QCD approximation is seen to have a very large scale
dependence of about 1.7 GeV as Q is varied from 70 GeV
to 200 GeV. This shows that failing to include the
electroweak contributions at one-loop order contributes a
very large and scale-dependent error, although this is
obscured if one also neglects the corresponding non-
QCD contributions in the renormalization group running
of the parameters. Even the two-loop mixed QCD/electro-
weak and non-QCD effects are roughly of order 200 MeV
and 100 MeV, and scale dependent. By default, the SMDR

code uses a scale choice Q ¼ Mt when computing Mt, but
this can be changed by the user, as for example when
making Fig. 6.
The lower two panels of Fig. 6 show the dependences of

the Breit-Wigner MZ and MW on the scale Q at which
they are computed, based on the full two-loop calcula-
tions in Refs. [76,77]. The Q dependences are seen to be
greatly reduced by the inclusion of the two-loop contri-
butions, as expected. The reference model shown was
chosen to reproduce the experimental value of MZ, for
Q ¼ 160 GeV. The result for MW is then a prediction,
since it was not used at all in the determination of the
model parameters in Eq. (1.11). Note that the range of
values obtained in Fig. 6 is lower than the current world
average from the Review of Particle Properties in
Ref. [49], which is MW ¼ 80.379� 0.012 GeV. This
reflects the well-known observation that the predicted
central value of MW in the Standard Model is somewhat
lower than the observed range, but not by enough to draw
any firm conclusions about the validity of the minimal
Standard Model. (There is a long history of calculation of
higher-loop contributions [32,66,129,137–156] to the ρ

parameter, which gives the W boson mass in terms of the
Z boson mass and other on-shell parameters.) By default,
SMDR uses a choice Q ¼ 160 GeV when computing both
the Z and the W physical masses, but these choices can
again be modified independently by the user at run-time,
as of course was done when making Fig. 6.
The information from the Higgs boson mass Mh can be

inverted to obtain the self-coupling λ, assuming the
minimal Standard Model. This is illustrated in the left
panel of Fig. 7 where we compute λðQÞ at the renormal-
ization scale Q by requiring it to give Mh ¼ 125.10 GeV,
using various approximations for the calculation of the
latter. In the right panel, we then show the ratio of the value
λMh

obtained in this way to the value λrun obtained by RG
running it from the value in the reference model at
Q0 ¼ 173.1 GeV. This ratio is exactly 1 by construction
at Q ¼ Q0 in the approximation used to define the
reference model. In this approximation, the ratio remains
less than 1 part in 104 over the entire range shown for Q.
The parameters λðQÞ and m2ðQÞ can also be run up to very
high scales using the RG equations. These results are
shown in Fig. 8, including the central value fit as well as the
envelopes resulting from varying each of Mh, Mt, and αS
independently within their one-sigma and two-sigma
experimentally allowed ranges. As is now well known
(see e.g., Refs. [73–75,157] and references therein), in the
best-fit case withMh near 125 GeV, λðQÞ runs negative at a
scale intermediate between the weak scale and the Planck
mass, indicating that our vacuum state may be quasistable if
one makes the bold assumption that there is really no new
physics all the way up to mass scales comparable to the
scale Q where λðQÞ < 0.

FIG. 7. The MS Higgs self-coupling λ, as a function of the renormalization scale Q, for the reference model point defined at
Q0 ¼ 173.1 GeV in Eq. (1.11). The other input parameters are obtained from the reference model by evolving them using their RG
equations to the scale Q, where λðQÞ is then obtained by requiring the Higgs pole mass to be 125.10 GeV. In the left panel, results are
shown when the calculation ofMh is done in the one-loop, one-loop plus two-loop QCD, full two-loop, and two-loop plus leading three-
loop approximations. The right panel shows the results for λðQÞMh

=λðQÞrun, where λðQÞMh
is determined as in the left panel, and λðQÞrun

is obtained directly by renormalization running from the reference scale Q0 ¼ 173.1 GeV.
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VI. THE SMDR CODE

As noted above, we have collected our results and
methods in the form of a public software library written
in C, which can be used interactively or incorporated into
other software, and which is modular enough to be easily
modified and updated.4 A full description of how to use
SMDR, and some example programs, are included with the
distribution, which is available for download at [158]. For
comprehensive information, we refer the reader to the file
README.txt. In this section we give only a brief listing
of some of the more common user interface variables and
functions available. Note that these always begin with
SMDR to avoid naming conflicts with user code.

(i) The input values of Q and the MS parameters
in Eq. (1.4) are specified by global variables
SMDR_Q_in, SMDR_v_in, SMDR_lambda_in, SMDR_g3_in,
etc. These can be set or adjusted by the user at any
time, but typically remain fixed as multiple different
tasks are performed, with corresponding temporary
global variables SMDR_Q, SMDR_v, SMDR_lambda,
SMDR_g3, etc., used for renormalization group run-
ning to various other scales Q and subsequent
individual calculations.

(ii) Renormalization group running in the full, non-
decoupled theory is done with the function
SMDR_RGeval_SM(). In the decoupled QCDþ QED
theory with five quarks and three charged

leptons, the evaluation of running parameters (with
simultaneous decoupling of t, h, Z, W at a scale of
choice) is done by SMDR_RGeval_QCDQED_53(). Sim-
ilarly, evaluation of running parameters at lower
scales, including the sequential decoupling of the
bottom quark, the tau lepton, and the charm quark, is
done by SMDR_RGeval_QCDQED_43(), SMDR_RGeval_

QCDQED_42(), and SMDR_RGeval_QCDQED_32(), respec-
tively, where (5,3) and (4,3) and (4,2) and (3,2) refer
to the numbers of active quarks and leptons.

(iii) Minimization of the effective potential to find
m2ðQÞ from vðQÞ, or vice versa, are accomplished
with functions SMDR_Eval_m2() or SMDR_Eval_vev(),
respectively. These make use of the quantity
Δ ¼ P

n Δn=ð16π2Þn appearing in Eq. (1.3), which
can also be computed separately with SMDR_Eval_

vevDelta().
(iv) Evaluation of the complex pole masses of the four

heavy particles is done with functions SMDR_Eval_Mt(),
SMDR_Eval_Mh(), SMDR_Eval_MZ(), and SMDR_Eval_MW().
The last two functions also evaluate the variable-
width Breit-Wigner masses of Z and W, which are
the traditional ways of reporting those masses. In
each case, one can specify the scale Q at which the
computation is performed.

(v) Evaluation of the Fermi decay constant is done with
the function SMDR_Eval_GFermi(), again with the
computation performed at any specified choice ofQ.

(vi) The function SMDR_Eval_Gauge() evaluates the Som-
merfeld fine structure constant α0. It also simulta-
neously computes the RPP “MS” scheme (with only

FIG. 8. Renormalization group running of the MS Higgs potential parameters λ and
ffiffiffiffiffiffiffiffiffi
−m2

p
, as a function of the renormalization scale

Q. The black lines are the central values obtained from present experimental inputs. Also shown are the envelopes obtained by varying

Mt, Mh, and αð5ÞS ðMZÞ within one sigma (blue shaded region) and two sigma (red shaded region) of their central values. The slight
“pinch” in the envelopes in the right panel near Q ¼ 1014 GeV is due to a focusing behavior of the αS dependence of the m2ðQÞ
renormalization group equation.

4The code SMDR subsumes and replaces our earlier program
SMH, which evaluated only the Higgs pole mass and was
described in Ref. [72].
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the top quark decoupled) values α̂ðQÞ and ŝ2WðQÞ.
To the best of our knowledge, the relations of the
latter two quantities to the corresponding nonde-
coupled MS quantities are only known at two-loop
order to leading order in QCD. We have imple-
mented them in SMDR using the results of Eqs. (B.3)
and (B.4) of Ref. [50].

(vii) The light quark MS masses mbðmbÞ, mcðmcÞ,
msð2 GeVÞ, mdð2 GeVÞ, and muð2 GeVÞ are evalu-
ated using SMDR_Eval_mbmb(), SMDR_Eval_mcmc(), and
SMDR_Eval_mquarks_2 GeV().

(viii) The charged lepton physical masses can be evalu-
ated using SMDR_Eval_Mtau_pole(), SMDR_Eval_Mmuon_

pole(), and SMDR_Eval_Melectron_pole().
(ix) A function SMDR_Fit_Inputs() performs a simultaneous

fit to all of the MS quantities in Eq. (1.4), for
specified values of the on-shell observable quantities
(except forMW) in Eq. (1.5), providing the results at
a specified choice of Q.

(x) Various utility functions exist for reading parameters
from and writing to electronic files.

(xi) Our programs TSIL [126] for two-loop self-energy
integrals and 3VIL [26] for three-loop vacuum
integrals are included within the SMDR distribution,
and so need not be downloaded separately.

(xii) Interfaces for calling SMDR from external C or C++
code are included.

(xiii) A command-line program calc_all takes the MS inputs
of Eq. (1.4) and outputs all of the on-shell observ-
ables of Eq. (1.5).

(xiv) Another command-line program calc_fit takes the on-
shell observables of Eq. (1.5) as inputs, and outputs
the results of a fit to the MS inputs of Eq. (1.4), by
using the function SMDR_Fit_Inputs() mentioned
above. This was used to obtain Eq. (1.11).

As examples, the short C programs that produced all of the
data used in the figures in this paper are included within the
SMDR distribution. We also include several other command
line programs. These should serve to illustrate how to
incorporate SMDR into new programs.

VII. OUTLOOK

In this paper, we have studied the map between the MS
Lagrangian parameters of the Standard Model and the
observables to which they most closely correspond. In
doing so, we have assumed that the minimal Standard
Model is really the correct theory up to some high mass
scale, so that new physics contributions effectively decou-
ple. With the present absence of evidence at the LHC for
new physics, this is at least a tenable hypothesis and
plausibly will remain so for quite some time. We therefore
suggest that in the future the Review of Particle Properties
should provide the best-fit values of the MS Lagrangian
parameters of the Standard Model in the nondecoupled

theory, since these fundamentally define the best model that
we have to describe particle physics.
Another useful software package with rather similar aims

to SMDR but a different implementation (including expansion
around what we call vtree rather than v) is mr [124]. There is
also a very large number of works that test thewhole space of
electroweak precision observables in different ways; for an
incomplete set of recent references and reviews on this ap-
proach, see Refs. [159–168]. We emphasize that our primary
goal here, of obtaining the best fit to the MS Lagrangian
parameters, is different and complementary to that of testing
the whole space of electroweak precision observables, as we
are not considering possible non-negligible contributions
from physics beyond the Standard Model. However, one
application is to the matching to new physics models (for
example, supersymmetry) characterized by some mass scale
much larger than the electroweak scale. Thiswill necessitate a
matching between the high-energy theory and the Standard
Model as an effective field theory, including with non-
renormalizable operators. For a very incomplete sample of
recent works on this subject, see Refs. [169–184].
New theoretical refinements as well as more accurate

experimental measurements will certainly come. We have
therefore chosen a modular framework in which it should be
straightforward to incorporate such new developments into
the SMDR code. For example, we have avoided using
numerical interpolating formulas from approximate fits to
analytic formulas, instead opting to provide and use ana-
lytical calculations directly, up to the level of loop integrals
that must then be evaluated numerically. This of course
results in longer computation times, but is more transparent
and easier to update. Most of the results presented in this
paper are based on calculations that have appeared before,
but we have provided for the first time to our knowledge a
study of the impact of the three-loop contributions to the
effective potential on the relation between the loop-cor-
rected VEVand the other Lagrangian parameters. We have
also provided (in Sec. IV and an ancillary file, as well as in
the SMDR code) the full two-loop relation between the loop-
corrected VEV and the Fermi constant, as an alternative to
the relation between GF and the tree-level VEV that was
found in Refs. [69,70,124]. It is clear that significant
advances will be needed in order to match the accuracy
that can be obtained at proposed future eþe− colliders; for a
recent review, seeRef. [168]. Futurework in the tadpole-free
pure MS scheme will likely include the leading three-loop

corrections toMW ,MZ, and GF. These and Δα
ð5Þ
hadðMZÞ and

Mt are the present bottlenecks to accuracy.
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