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There is a broad theoretical consensus on the idea that ordinary neutrinos have a Majorana mass, but we
have no clear prediction about its value, and direct experimental measurements of this quantity are rather
challenging. In this work, we argue that the current cosmological measurements allow us to obtain precise
information on the effective Majorana mass, i.e., the electronic-type mass of ordinary neutrinos. We show
that the numerical results that we obtain can be accurately reproduced, and hence tested, by a
straightforward analytical procedure. We then discuss the stability of the assumptions at the basis of
our analysis and the implications of our findings for neutrinoless double beta decay.
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I. INTRODUCTION

There is compelling evidence from oscillation pheno-
mena [1–5] that ordinary neutrinos are not massless.
However, we do not have empirical knowledge of the
absolute values of these masses. Nor do we know whether
these are of Dirac type—as for all charged fermions—or of
Majorana type.
A Majorana nature for the neutrino mass is considered

quite natural from the theoretical point of view [6–9].
This hypothesis could be experimentally tested via the
observation of neutrinoless double beta decay (0νββ), the
transition ðA; ZÞ → ðA; Z þ 2Þ þ 2e− where a nucleus
increases its charge by two units, emitting two electrons
but no neutrinos [10].
The rate of 0νββ depends quadratically upon a combi-

nation of the neutrino massesmi, the mixing matrixUei and
the Majorana phases, which is called the “effective
Majorana mass” and, within the three-ordinary-neutrino
framework, is defined as

mββ ≡
����
X

i¼1;2;3

mijU2
eijeiξi

����: ð1Þ

A key issue is therefore to understand what is the actual
value of mββ.
The theory of fermion masses is not yet sufficiently

developed to give definitive answers. For instance, it has
been argued that a plausible value for mββ could be of the
order of m · θnC, where θC ≃ 13° is the Cabibbo mixing

angle, m≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
≃ 50 meV and n ¼ 1; 2 [11,12]. Still,

these indications only offer an “educated guess” pointing
towards the Oð1 meVÞ scale and might be correct within a
factor of a few, which practically means that we do not
know mββ reliably. Principled models, on the other hand,
such as SOð10Þ theories, offer more convincing explan-
ations for light Majorana neutrino masses. However, these
motivations have been extensively investigated [13–20],
but they remain far from being unique and we lack clear
criteria on how to assess them.
In this situation, it seems reasonable to fully exploit the

information coming from the experimental observations in
order to try to quantify mββ. Neutrino oscillations are a
powerful tool in this regard, and the mixing angles and mass
splittings are currently measured quite precisely [21–23]. In
particular, the interpretation of the oscillation phenomena is
beginning to prefer the so-called normal hierarchy (NH) over
the inverted hierarchy (IH) for the neutrino mass spectrum,
now at a level greater than 3σ (see the Appendix). However,
neutrino oscillations only measure the differences between
the neutrino mass eigenstates m2

i −m2
j and not the absolute

masses.
The most relevant information on absolute masses to

date comes from cosmological measurements. It is fair to
state that a cautious approach is highly advisable while
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dealing with the results from cosmological surveys, due to
the crucial role of the theoretical assumptions in building
the specific model. On the other hand, this cannot provide
an excuse in order to ignore a whole category of results.
Cosmology is able to probe the value of the sum of the
active neutrinos that, consistently with the hypothesis of
three light neutrinos, is defined as Σ≡m1 þm2 þm3.
Very stringent upper limits Σ < 180 meV at the 2σ C.L.
have been obtained by many independent analyses [24–32].
In a previous work, we showed the importance of the

combination of the results of post-2015 Planck observa-
tions and “small scale” cosmology measurements for 0νββ
[33]. Here, we demonstrate how to obtain detailed infor-
mation on mββ. We first describe a direct Monte Carlo
procedure to derive the likelihood of mββ from that of Σ
in Sec. II. In Sec. III, we test the results we obtain by means

of an analytical calculation. Finally, in Sec. IV, we critically
discuss the assumptions underlying the present analysis
and examine the implications of the predictions we obtain
for 0νββ. The main results of this work are summarized in
Figs. 1 and 2, that are discussed in Secs. II and III.

II. DISTRIBUTION OF mββ FROM DATA

In a frequentist approach, one would assume each value
of mββ lying below the current experimental bound to be
equally allowed. In the case of NH, this would imply the
impossibility of excluding that this parameter is actually
negligibly small. However, this is not necessarily the case.
In fact, it is possible to obtain useful information on mββ

independently of that coming from the direct experimental
search for 0νββ.
As an illustrative case, let us suppose that one day

cosmology will be able to measure a value of Σ, and that
its valuewill turn out to be one of the current 2σ upper limits,
i.e., 140 meV [30]. Since the mass splittings are reliably
known, the lightest neutrino mass would be set to 38 meV.
In turn, still assuming that the neutrinos have a Majorana
mass, we could conclude that mββ lies in the range
(13–39) meV. In particular, the possibility that mββ ¼ 0

would be excluded for experimental reasons.
Passing to a more realistic case, today we can dispose of

a limit Σ from cosmology, but not a measurement. Still, the
range of allowed values of mββ (for a given Σ) can only be
explored by declaring a prior distribution for some relevant
parameter—that is, by adopting a Bayesian approach.
A prediction for the possible value of mββ can by

obtained by simulating a large series of combinations of
neutrino mass parameters, starting from the information
available today. We thus developed a Monte Carlo tool that
iteratively extracts values of mββ by providing as input
randomly generated values of the mass splittings and
mixing angles, and of Σ. The former are picked around
the best-fit values of the global analysis of Ref. [21]
assuming Gaussian errors. The latter parameter is selected
within the limit reported in Ref. [30], in which the authors
obtained an almost Gaussian likelihood (see Fig. 10 in the
reference) that can be approximated by the expression

GðΣÞ ¼ 1

45.4 meV
exp

�
−
1

2

ðΣ − 41.3 meVÞ2
ð49.7 meVÞ2

�
: ð2Þ

Indeed, starting from GðΣÞ of Eq. (2), we are able to
reproduce the same limit Σ < 140 meV at the 2σ C.L.,
reported in the reference.
For each event that we simulate, the hierarchy scenario

(NH or IH) is initially selected with a preference for NH,
according to the result of the analysis of Ref. [21]. A value
for the lightest neutrino mass, mlightest, is then calculated
starting from Σ and the mass splittings [34]. When mlightest

is negative, i.e., it falls outside the physical range, the event

FIG. 1. Density plot ofmββ as a function ofmlightest as a result of
the Monte Carlo simulation. The two regions correspond to the
NH and IH cases. For each event, the mass hierarchy is chosen
according to the preference evidenced in Ref. [21]. The red, blue
and green contours are the 1σ, 2σ and 3σ C.L. intervals.

FIG. 2. Differential distributions of mββ obtained by projecting
the density plot of Fig. 1 (red line) and as a result of the analytic
procedure discussed in the text (blue line). The 1σ, 2σ and 3σ C.
L. intervals are reported.
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is rejected and a new one is generated. The allowed interval
for mββ is fixed once mlightest is known and it is comprised
within the extremes [35]

mmax
ββ ¼

X3
i¼1

jU2
eijmi; ð3aÞ

mmin
ββ ¼ maxf2jU2

eijmi −mmax
ββ ; 0gi ¼ 1; 2; 3: ð3bÞ

The value of mββ is randomly selected within this range
with flat probability. In principle, other solutions are
possible. One could adopt the most pessimistic attitude,
by setting mββ ¼ mmin

ββ or, on the contrary, the most
optimistic view, by settingmββ ¼ mmax

ββ . These two extreme
choices for the prior of mββ could be of some interest in
order to assess the chances of failure former case or success
latter case in the search for 0νββ. However, neither of them
is particularly supported by existing theoretical consider-
ations. Also, since our primary goals are to illustrate an
analysis methodology and to obtain reasonable expect-
ations on mββ, we did not consider these options. A valid
alternative, that has already been used in the literature,
is to take a randomMajorana phase uniformly distributed in
½0; 2πÞ and to construct mββ accordingly [36–38]. In this
latter case, one typically expects larger values formββ up to
∼10% since there is a larger probability that the two phases
will add constructively, rather than destructively (Fig. 3).
This situation is more conducive to the experimental
searches. However, from a theoretical point of view, it
seems easier to motivate a preference for a flat prior onmββ,
since this quantity is more directly connected to the
Majorana mass term of the Lagrangian density, and thus
we opted for this choice.
The result of the simulation is shown in Fig. 1. In total,

one billion events have been generated. The contour lines
at different C. L. are drawn by “cutting” the distribution
on the ðmlightest∶mββÞ plane at fixed ratios of the fraction
of surviving events over the total one. The IH region is
interested by no 1; 2; 3σ contour lines since this scenario is
excluded at more than 3σ by the oscillation studies. The
tight limits on Σ push towards smaller values ofmlightest and
this in turn favors smaller values of mββ. This appears even
more clearly by projecting the plot onto the mββ axis
(Fig. 2). These results will be further discussed in the
following sections.

III. ANALYTIC TEST OF THE RESULTS

In order to test our Monte Carlo tool, we developed an
analytic procedure that allowed us to obtain a distribution
of mββ to be compared to that derived in the previous
section (see in particular Fig. 2). We focused on the NH
scenario, so that the lightest mi is now m1 [recall Eq. (1)].

As a starting point, let us consider a priori a flat
distribution for each fixed m1, namely

dLpriorðmββÞ ¼
dmββ

mmax
ββ ðm1Þ −mmin

ββ ðm1Þ
ð4Þ

where the extremes have the known expressions reported
in Eqs. (3a) and (3b). As previously stated, we assume a
uniform distribution for mββ within the allowed range. The
information on the distribution of m1 required by Eq. (4)
can be extracted from cosmology. The constraints on Σ can
be summarized by the likelihood

dLðΣjcosmÞ ¼ GðΣÞdΣ ð5Þ

where we can consider Σ as a function of m1. We use the
expression in Eq. (2) and compute the normalization by
integrating GðΣÞ down to Σ ¼ 58.5 meV, corresponding to
the case m1 ¼ 0, given the present values of the mass
splittings [21]. We thus obtain

dLðm1jcosmÞ ¼ GðΣÞ dΣ
dm1

dm1 ¼ Eðm1Þdm1: ð6Þ

The distribution of the lightest neutrino mass Eðm1Þ is
shown in Fig. 4. The curve has a maximum around m1 ¼
10 meV since the Jacobian dΣ=dm1, which is a strictly
increasing function, disfavors the values close to m1 ¼ 0,
while the likelihood extracted from Ref. [30] does the
opposite.
It is worth noticing that the propagation of the uncer-

tainties on the mass splitting values introduces a variation
in the distribution Eðm1Þ. However these are of the order of
a few parts per 10 000. Therefore, we can neglect them.

FIG. 3. Event distribution for a fixed value ofmlightest (assuming
the NH scenario). Random mass splittings and mixing angles
have been picked around the best-fit values from Ref. [21]
assuming Gaussian errors, thus fixing the allowed range for mββ.
Then, two values formββ have been extracted assuming a uniform
distribution for either mββ (red) or the Majorana phases (blue).
The Gaussian shape of the distributions at the boundaries is due to
the Gaussian errors on the oscillation parameters.
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The bidimensional distribution of mββ and m1, which is
automatically normalized, is then

dLðmββ; m1Þ ¼ dLpriorðmββÞ × dLðm1jcosmÞ
¼ Hðm1Þdmββdm1 ð7Þ

where

Hðm1Þ ¼
Eðm1Þ

mmax
ββ ðm1Þ −mmin

ββ ðm1Þ
: ð8Þ

By integrating over all the possible values ofm1, we get the
posterior distribution of mββ, which includes the informa-
tion extracted from cosmology:

dLposteriorðmββÞ≡ dLðmββjcosmÞ
¼ FðmββÞdmββ ð9Þ

where

FðmββÞ ¼
Z

mmax
1

ðmββÞ

mmin
1

ðmββÞ
Hðm1Þdm1: ð10Þ

The functions describing the extreme values of m1 given
mββ can be analytically computed, since they correspond
to solvable fourth-degree equations. The allowed region in
the ðm1∶mββÞ plane is that shown in Fig. 1, keeping in mind
that we are now considering mββ as the independent
variable.
The double integral we need to solve in order to get the

probability of a specific m�
ββ, i.e., the cumulant distribution

Lðm�
ββÞ≡ Lðmββ < m�

ββÞ, can actually be rearranged into a
one-dimensional one:

Lðm�
ββÞ ¼

Z
upperðm�

ββÞ

lowerðm�
ββÞ

Eðm1Þdm1

·
min½mmax

ββ ðm1Þ; m�
ββ� −mmin

ββ ðm1Þ
mmax

ββ ðm1Þ −mmin
ββ ðm1Þ

: ð11Þ

The upper limit of integration is

upperðm�
ββÞ ¼ mmax

1 ðm�
ββÞ ð12Þ

while we can identify two cases for the inferior one,
depending on the value of m�

ββ with respect to mmin
ββ;0 ≡

mmin
ββ ðm1 ¼ 0Þ, namely

lowerðm�
ββÞ ¼

�mmin
1 ðm�

ββÞ if m�
ββ < mmin

ββ;0;

0 if m�
ββ > mmin

ββ;0:
ð13Þ

If m�
ββ → 0, then min ½mmax

ββ ðm1Þ; m�
ββ� ¼ m�

ββ and the
numerator → 0. Instead, if m�

ββ → ∞, then min ½mmax
ββ ðm1Þ;

m�
ββ� ¼ mmax

ββ ðm1Þ, the fraction approaches 1, the inferior
integration limit becomes 0, and the integral of Eðm1Þ over
all values is indeed 1. In practice, for sufficiently high
confidence levels (corresponding to larger values of m�

ββ),
we will refer to the latter value of Eq. (13). Therefore, we
can rewrite

Lðm�
ββÞ ¼

Z
mmin

1
ðm�

ββÞ

0

Eðm1Þdm1

þ
Z

mmax
1

ðm�
ββÞ

mmin
1

ðm�
ββÞ

m�
ββ −mmin

ββ ðm1Þ
mmax

ββ ðm1Þ −mmin
ββ ðm1Þ

Eðm1Þdm1:

ð14Þ
By using Eq. (14), we can compute mββ for each given
confidence level by setting Lðm�

ββÞ ¼ C:L: and choosing
the oscillation parameters at their central (best-fit) values.
The value ofmββ shifts when we include the variation on

the mixing angles and mass splittings, since these enter
both the integration limits and the integrand of Eq. (14).
The individual contribution associated to the uncertainty of
each oscillation parameter xi can be analytically computed.
For a fixed confidence level, we get

Δm�
ββ;xi

¼ Δxi
∂Lðm�

ββÞ
∂xi

���� ∂Lðm
�
ββÞ

∂m�
ββ

����
−1

ð15Þ

evaluated in the best-fit central region. In practice, the overall
effect is numerically small and the impact is negligible for
our purposes.
In order check the consistency between the two

described procedures, we can compare the resulting differ-
ential distributions for mββ. The distribution from the
likelihood of Eq. (9) can directly be compared with that
obtained by the Monte Carlo simulation. The result,
illustrated in Fig. 2, shows a very good agreement between

FIG. 4. Distribution of the lightest neutrino mass given the
information from cosmology GðΣÞ. The decreasing trend at small
values of m1 is due to the Jacobian dΣ=dm1.
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the two procedures. This is a rather interesting conclusion:
on the one hand, we have validated the numerical results.
On the other hand, we have learned that the analytical
method described here produces accurate results.

IV. DISCUSSION

The sum of the active neutrino mass coming from
cosmology is a key ingredient of the analysis we presented.
Therefore, we would like to begin our discussion with some
considerations on the robustness of the current measure-
ment of Σ.
To this extent, a first issue to address is the possible

existence of additional light neutrinos, beyond those
envisaged by the Standard Model. The presence of new
neutral fermions was proposed a long time ago [39].
Despite the fact that the values of their masses and mixing
with the known neutrinos are a priori unknown, the
interpretation of some experiments, when taken individu-
ally, would be compatible with the existence of neutrinos
with masses of Oð1 eVÞ. These neutrinos would give rise
to observable oscillation effects. On the other hand, the
various analyses that have extensively considered the
implications of this hypothesis highlighted the difficulties
that arise, and even the inconsistencies, when compared to
the available data [40,41]. Therefore, while this could lead
to more complicated scenarios for these new neutrinos [42],
the “minimal” hypothesis of three ordinary neutrinos
considered here is not weakened.1

Recently, new results on the Hubble constant in the local
Universe motivated the idea of rethinking the accepted
cosmological model [46]. In principle, this could have an
impact on the conclusions of our work. The new observa-
tions would be explained by the presence of some “kind” of
sterile neutrinos. These neutrinos should have some spe-
cific proprieties, namely they should self-interact via strong
interactions [47] and should have rather small masses,
subject to the stringent limits of cosmology [31]. In other
words, while the assumption that there are three active
neutrinos in cosmology could be reconsidered, we do not
have any evidence that the measurement of Σ should be
affected. These considerations can be quantified by an
example. Such a type of neutrino, with mass m0 slightly
larger than m1, had already been introduced, not only to
increase the number of effective neutrinos in cosmology,
but also to explain certain features of the observed solar
neutrino spectrum [48]. The resulting mixing U2

e0 ∼ 10−3

and mass splitting m2
0 −m2

1 ∼ 0.2Δm2
⊙ [48] would add a

contributionU2
e0ðm0 −m1Þ tomββ of the order of 10−3 meV

at most, and therefore it is completely negligible.

In summary, it seems premature to us to conclude that the
minimal set of assumptions adopted here and the reported
results should require significant corrections.
To conclude our discussion, we would like to consider

the implications of our findings for 0νββ. Possible pre-
dictions for the expected value of mββ could be of great
interest for the experimental community of 0νββ in helping
to understand the chances for a positive observation, or to
figure out how far from reach a promising target might be.
The current 0νββ experiments have already set limits of

the order of (1025–1026) yr on the decay half-life [49–53].
The corresponding upper bounds for mββ are around
100 meV, with values that actually span a large range,
mostly due to the theoretical uncertainties coming from
nuclear physics [54], which is a fundamental ingredient in
order to extract the information on the neutrino mass. At the
same time, the forthcoming generation of experiments is
setting very ambitious goals, aiming at sensitivities greater
than 1027 yr. This should allow to explore the parameter
space of mββ of the order of tens of meV [38].
Given the present and near-future experiment sensitiv-

ities, we can thus analyze the results shown in Fig. 2. The
differential distribution of mββ is peaked at 4 meV, while
the 1σ, 2σ and 3σ intervals extends up to 16, 31 and
49 meV, respectively. On the one hand, this means that we
should be able to begin to probe the parameter region of
interest in the coming years. On the other hand, this means
that we are still quite far from fully exploring the “core” of
the distribution, i.e., values ofmββ of the order of a fewmeV.
This ultimate investigation would require an extremely
challenging multiton experiment [55], but this hypothesis
should not be ruled out.
The search for 0νββ remains one of the main ways, if not

the only one, to address some major open questions in
particle physics: the conservation of the lepton number
conservation, and 3the value of the neutrino mass and its
nature!

V. SUMMARY

We developed a Monte Carlo tool to extract the infor-
mation on the effective Majorana mass starting from the
available data on the neutrino masses, coming from the
oscillation studies and from cosmology. We found that
the distribution of mββ tends toward low values of the
parameter region, with a mode at 4 meV, and a 3σ interval
extended up to almost 50 meV. We validated our results
with an analytical procedure, whose outcome perfectly
matches the numerical one. Finally, we discussed the
assumptions at the basis of our analysis and implications
of the new information for neutrinoless double beta decay.

APPENDIX: ON THE PREFERENCE FOR
THE NORMAL HIERARCHY

In the global analyses, it is customary to present
the preference for the hierarchy scenario in terms of

1Interestingly, 1 eV neutrinos could have a significant impact
on the rate of 0νββ [43–45].

EMPIRICAL INFERENCE ON THE MAJORANA MASS OF THE … PHYS. REV. D 100, 073003 (2019)

073003-5



the difference Δχ2 ≡ χ2IH − χ2NH > 0 between the two
cases. This quantity has a different meaning than in
the case of one-dimensional parameters. In order to
determine how much the NH is preferred by the data,
we can estimate the likelihood

LðIHÞ ¼ Lcosm
IH × e−χ

2
IH

Lcosm
IH × e−χ

2
IH þ Lcosm

NH × e−χ
2
NH

¼
�
1þ Lcosm

NH × expðΔχ2=2Þ
1 − Lcosm

NH

�−1
ðA1Þ

which combines the independent information from cos-
mology, namely Lcosm

NH (Lcosm
IH ≡ 1 − Lcosm

NH ), and that from
neutrino oscillations. The analytical procedure described
in the text or, equivalently, the Monte Carlo tool, gives
Lcosm
NH ≃ 0.75. In other words, the NH is about 3 times

more probable than the IH.
The slightly different values of Δχ2 ¼ f9.5; 11.7; 9.3g

were reported in Refs. [21–23], respectively. These values
give LðIHÞ ¼ f2.9; 1.0; 3.2g × 10−3, which can be pre-
sented in the language of Gaussian distributions as
f3.0; 3.3; 3.0gσ. If the information from cosmology was
omitted, setting arbitrarily Lcosm

NH ¼ 0.5, the same results
would reduce to f2.6; 3.0; 2.6gσ.

[1] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys.
Rev. Lett. 81, 1562 (1998).

[2] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett.
89, 011301 (2002).

[3] K. Eguchi et al. (KamLAND Collaboration), Phys. Rev.
Lett. 90, 021802 (2003).

[4] D. G. Michael et al. (MINOS Collaboration), Phys. Rev.
Lett. 97, 191801 (2006).

[5] N. Agafonova et al. (OPERA Collaboration), Phys. Rev.
Lett. 115, 121802 (2015).

[6] P. Minkowski, Phys. Lett. 67B, 421 (1977).
[7] T. Yanagida,Proceedings of theWorkshop Baryon Number of

the Universe andUnified Theories, Tsukuba, Japan, edited by
O. Sawada and S. Sugamoto (Tsukuba, Japan,1979), p. 95.

[8] M. Gell-Mann, P. Ramond, and R. Slansky, Proceedings of
the Supergravity Workshop, Stony Brook, New York, USA,
edited by P. van Nieuwenhuizen and D. Z. Freedman
(North-Holland, Amsterdam, 1979), p. 315.

[9] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44,
912 (1980).

[10] W. H. Furry, Phys. Rev. 56, 1184 (1939).
[11] F. Vissani, J. High Energy Phys. 11 (1998) 025.
[12] S. Dell’Oro, S. Marcocci, and F. Vissani, J. Phys. Conf. Ser.

1056, 012059 (2018).
[13] B. Bajc, A. Melfo, G. Senjanovic, and F. Vissani, Phys. Rev.

D 73, 055001 (2006).
[14] S. Bertolini, L. Di Luzio, and M. Malinsky, Phys. Rev. D 80,

015013 (2009).
[15] A. S. Joshipura and K. M. Patel, Phys. Rev. D 83, 095002

(2011).
[16] M. Abud, F. Buccella, and D. Falcone, Phys. Rev. D 86,

073014 (2012).
[17] G. Altarelli and D. Meloni, J. High Energy Phys. 08 (2013)

021.
[18] A. Dueck and W. Rodejohann, J. High Energy Phys. 09

(2013) 024.
[19] T. Ohlsson and M. Pernow, J. High Energy Phys. 06 (2019)

085.

[20] K. Matsuda, Y. Koide, T. Fukuyama, and H. Nishiura, Phys.
Rev. D 65, 033008 (2002).

[21] F. Capozzi, E. Lisi, A. Marrone, and A. Palazzo, Prog. Part.
Nucl. Phys. 102, 48 (2018).

[22] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, and
J. W. F. Valle, Phys. Lett. B 782, 633 (2018).

[23] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-
Cabezudo, M. Maltoni, and T. Schwetz, J. High Energy
Phys. 01 (2019) 106.

[24] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 594, A13 (2016).

[25] N. Palanque-Delabrouille et al., J. Cosmol. Astropart. Phys.
11 (2015) 011.

[26] E. Di Valentino, E. Giusarma, O. Mena, A. Melchiorri, and
J. Silk, Phys. Rev. D 93, 083527 (2016).

[27] X. Zhang, Phys. Rev. D 93, 083011 (2016).
[28] A. J. Cuesta, V. Niro, and L. Verde, Phys. Dark Universe 13,

77 (2016).
[29] E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, and

K. Freese, Phys. Rev. D 94, 083522 (2016).
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