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We apply techniques from Bayesian generative statistical modeling to uncover hidden features in jet
substructure observables that discriminate between different a priori unknown underlying short distance
physical processes in multijet events. In particular, we use a mixed membership model known as latent
Dirichlet allocation to build a data-driven unsupervised top-quark tagger and tt̄ event classifier. We
compare our proposal to existing traditional and machine learning approaches to top-jet tagging. Finally,
employing a toy vector-scalar boson model as a benchmark, we demonstrate the potential for discovering
new physics signatures in multijet events in a model independent and unsupervised way.
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I. INTRODUCTION

The use of jet substructure techniques in studying large
area jets has played an important role in identifying
hadronic decays of Higgs and electroweak gauge bosons
in runs 1 and 2 of the LHC [1–4]. These techniques have
also been used efficiently to tag jets arising from top quarks
[5–15]. In the last few years, machine learning (ML) tools
have extended the application of jet substructure in tagging
jets at the LHC [16–32] through the use of neural networks
(NNs) to process and “learn” from vast amounts of training
data. Since these approaches rely on theoretical predictions
for pure signal and background training data sets [typically
through Monte Carlo (MC) generators], they (a) are
exposed to MC mismodeling of realistic events as recon-
structed from real data and detectors; (b) require exact
model knowledge of both expected signal and back-
grounds. This limits their use in searches for a priori
unknown new phenomena in LHC jet events.
There have been recent advances in unsupervised or

semisupervised ML techniques, based on NNs designed to
be able to separate signal and background events in mixed
samples, and could therefore be run directly on experi-
mental data without the need for pure MC training samples,

see e.g., Refs. [33–38] and [39–43]. They rely on catego-
rizing and comparing datasets with different expected
signal and background admixtures or identifying anoma-
lous events inside large datasets. While these approaches
ameliorate the model dependence of fully supervised ML,
they are still potentially susceptible to correlated system-
atics (i.e., detector) effects and/or subject to large look-
elsewhere effects. In addition, they generally work best
when applied on very large datasets. Consequently their
performance may suffer when looking for effects in tails of
distributions.
In this article, we outline a new technique to classify jets

and events in situwithin a single mixed event sample, using
tools developed in a branch of ML called generative
statistical modeling [44,45]. Developed primarily to iden-
tify emergent themes in collections of documents, these
models infer the hidden (or latent) structure of a document
corpus using posterior Bayesian inference based on word
and theme co-occurence [46]. Translated into the language
jet physics, one assumes that observable jet substructure
histograms (words) in events (documents) are generated by
drawing from latent distributions (themes) of varying
proportions. This allows us to construct so-called statistical
mixed membership models of jet substructure.1 Further-
more assuming that each event is a mixture of only few
latent distributions and that within each of these only few
histogram bins have high co-occurrence, such models can
be solved using techniques of latent Dirichlet allocation
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1Similar techniques have been used recently in a semisuper-
vised way to reconstruct “pure” quark and gluon jet observable
distributions from mixed event samples [47,48].
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(LDA) [49]. Finally, with a trained model at hand, one can
define robust parametric jet and event classifiers by infer-
ring on the latent distribution proportions in tested events.
In the following we first present the main ingredients of

our proposal in more detail. Then we discuss two proof of
principle implementations based on benchmark examples:
an unsupervised top-quark jet tagger and tt̄ event classifier,
as well as an unsupervised new physics (NP) search strategy
able to identify boosted neutral scalar bosons decaying to
pairs of W ’s (previously studied in Refs. [37,38,50]). We
compare them to existing conventional and ML approaches
and also outline possible further improvements and future
directions.

II. GENERATIVE BAYESIAN MODELS
OF JET SUBSTRUCTURE

We start by considering the formation of a jet stemming
from an initial hard seed, as a sequential combination of
QCD showering (followed by fragmentation and hadroni-
zation) and possibly massive particle decays. Next we
assume that some relevant information on this intertwined
sequence of processes can be recovered by looking at the
clustering history of a jet-clustering algorithm. This is in
fact the basis for many conventional taggers of massive
jets [1,8,13].
Within this very simplified picture of jet formation and

observation we can draw interesting parallels to so-called
mixed membership models describing generation of docu-
ments in the context of text analysis [49], or genotypes in
population studies [51]. In particular, we assume that the
observable distribution bins in a clustering profile are
populated by drawing from a few latent distributions—
themes—corresponding to different contributing physical
processes. The likelihood of populating a certain distribu-
tion bin o, given a theme t can then be described by a
multinomial distribution pðojt; βÞ [a multicategory gener-
alization of the binomial distribution, where the number of
categories is given by the number of bins in the distribution
and is parametrized by a set of parameters β]. In addition,
we assume that the likelihood of a given theme contributing
to any given event (and thus jet) pðtjωÞ is also described by
some multinomial distribution (parametrized by variables
ω), where the number of categories now corresponds to the
number of themes. The ω’s themselves are drawn from a
probability distribution pðωjαÞ, reflecting the theme pro-
portions in the dataset and parametrized by the hyper-
parameter α. In this picture the themes (β) as well as theme
proportions (ω) are hidden variables reflecting the thematic
structure of the studied event sample. With a given model,
the probability that a certain event or jet distribution bin is
populated can be written as a compact expression in terms
of the latent variables. For example, the likelihood of
generating a jet represented in terms of observables j ¼
ðo1; o2;…; onÞ is just

pðjjα; βÞ ¼
Z
ω
pðωjαÞ

Y
o∈j

�X
t

pðtjωÞpðojt; βÞ
�
dω: ð1Þ

Statistical models defined in this way are generative in that
given the latent variables (themes and theme proportions)
the best model will be the one that best reproduces a set
of jets or events, i.e., has the best generative power.
Therefore, the task of finding the latent variables from a
set of training events is specifically to invert the above
expression and use the set of events to find the best fit for
the latent variables. This can in fact be done using posterior
Bayesian inference, i.e.,

pðajxÞ ∝ pðxjaÞ � pðaÞ; ð2Þ

where pðxjaÞ is the likelihood of observing x given a latent
variable a, while pðaÞ and pðajxÞ are the prior and
posterior distributions of the latent variable itself. The
main insight here is that pðωjαÞ in Eq. (1) is a conjugate
prior to the multinomial likelihood pðtjωÞ and thus forms
the multicategory generalization of the beta distribution—
the Dirichlet distribution. The model is thus called LDA
and can be solved approximately (trained) in an iterative
manner using variational inference [45,49] or Gibbs
sampling [52].
The generative model defined by Eq. (1) does not include

the conditional probabilities pðoijoi−1Þ describing the
ordering present in the (binary) clustering tree of the jet
(or correspondingly in a Markov chain Monte Carlo jet
generator). Therefore, the jet observables at each clustering
step are assumed to be “conditionally independent,” [49]
i.e., they only depend conditionally on the same latent
distributions (β, ω) of the model. This is reminiscent with
the bag-of-words assumption widely used in probabilistic
text modeling where the semantic structure relating differ-
ent words in the vocabulary is completely neglected in the
generative process for documents. While this simplifying
assumption, of neglecting the clustering order information
in jets, forbids us to use the probabilistic model (1) as a
reliable jet or event generator,2 it still comes in useful for jet
or event classification tasks. As we show below, the LDA
generative model is flexible enough to capture hidden
features in the jet-clustering history, in particular, features
produced by the decay chains of massive resonances.
Formally, a trained LDA model consists of the latent

variables inferred from the training data and the probabi-
listic generative model used in constructing Eq. (1). In
order to classify jets or events, we can perform statistical
inference on the test sample. Once the LDA model is
trained, the theme proportions [ωtðjÞ] present in each new
jet j (or event) can be estimated by maximizing the
likelihood function for j while keeping the theme

2In the same way most generative text models cannot be used
as reliable document generators.
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distributions (β) fixed. As a result, each jet is described by a
mixture of themes with corresponding weights ωtðjÞ that
can be directly used for classification. Since the extracted
mixtures satisfy

P
tωtðjÞ ¼ 1 and here we are focusing on

only two themes (i.e., t ¼ 0, 1) it suffices to choose just one
of the weights to describe the jet. In this case, we define a
simple classifier hðjÞ ¼ ω1ðjÞ based on the proportion of
one of the themes in the jet (or event).
Alternatively, one can directly use the latent themes

pðojt1;2Þ discovered by the LDA algorithm and compute
the likelihood ratio LðjÞ ¼ pðjjt1Þ=pðjjt2Þ for every new
jet j (or event) in a test sample, and use it as the classifier.
While the likelihood ratio is known to be the optimal
classifier given exact knowledge of pure distributions [53],
it has been shown recently, that it remains optimal even for
mixed distributions of a priori unknown but different
mixture proportions [34]. Thus, LðjÞ is an optimal LDA
classifier in the limit that the extracted themes correspond
to pure distributions and the LDA model reduces to a
simple mixture model. In general however, this will not be
the case and we have checked explicitly that the inference
and LðjÞ based classifiers based on LDA perform compa-
rably. In the remainder of the paper we only present results
based on the inference classifier hðjÞ.

III. UNSUPERVISED TOP TAGGER

Our first proof of principle example is a tagger dis-
criminating between boosted hadronically decaying top
quarks and QCD jets. Working with a single mixed (tt̄ and
QCD) multijet event sample we first need to construct the
relevant jet substructure observable histograms (o). We do
this by clustering the jets in an event using the Cambridge-
Aachen (CA) [54,55] algorithm with a large radius R. We
then proceed to uncluster the jets by reversing each step in
the clustering, iteratively separating each (sub)jet into two
objects j0 → j1j2. Ordering the subjets by their invariant
mass mj1 > mj2 (and following the standard approach of
Refs. [1,3]), we define the relevant clustering observables at
each clustering step as

oj0 ¼
�
mj0 ;

mj1

mj0

;
mj2

mj1

;
minðp2

T;1; p
2
T;2Þ

m2
j0

ΔR2
1;2

�
; ð3Þ

where pT;i is the transverse momentum of a given object ji
and ΔR2

1;2 ¼ ðϕ1 − ϕ2Þ2 þ ðη1 − η2Þ2 is the so-called pla-
nar distance between j1 and j2 (ϕi and ηi being the
azimuthal angle and pseudorapidity of ji, respectively).
The declustering step is then iteratively repeated on both
j1;2. The procedure is terminated once mj0 < mmin, where
mmin is an algorithm parameter, which we choose to lie
below the lowest massive resonance state of interest. In the
case of the top tagger, we fix mmin ¼ 30 GeV ≪ mW , but
have checked that lowering this threshold by a factor of a
few does not significantly affect the results. The output of

such a procedure is a (typically a rather sparse) four-
dimensional histogram of oj which can be defined either
per jet or even per event. After mapping individual
histogram bins into words, we feed individual jets or
events as documents into an LDA implementation
using the software package Gensim [56,57], fixing the
number of themes to two (ω0;1). Further technical details
of the required binning and mapping of data onto (one-
dimensional) text vocabularies compatible with Gensim,
as well as a detailed analysis of the convergence of the
algorithm when applied on sparse jet substructure data
will be presented elsewhere [58]. Here we only focus on
the consistency and stability of the resulting trained
models. For this purpose we use the k-folding method
with k ¼ 10. This involves splitting the training data into k
different mutually exclusive blocks and then running the
training k times on event samples built from k − 1 blocks,
with the combination changing on each training run. The
performance of the tagger is tested on events or jets from
the remaining block.
In order to evaluate the performance of the tagger and

compare it to existing methods, we construct a receiver
operating characteristic (ROC) curve for our tagger. This is
the only step where one needs to rely on access to pure
samples (either MC generated or pre-tagged in some other
way using observables orthogonal to oj). In particular, we
construct the ROC curve by performing the classification
on such pure samples while continuously varying the
threshold of the theme proportion defining the classifier
hðjÞ. This is done for all k sets of results and we calculate
the median mistag rate (εb) for each signal efficiency (εs),
as well as the mean absolute deviation of the mistag rate to
evaluate the stability and consistency of the tagger.
Our training samples for the QCD dijet background and

the (hadronic) tt̄ signal both consist of ∼84; 000 13 TeV
pp collision events, where the final state particles are
clustered into R ¼ 1.5 CA jets with pT in the range
[350, 450] GeV. The samples are generated using
aMC@NLO 2.6.1 [59] interfaced with Pythia 8.2 [60]
for showering and hadronization, while jet clustering is
performed using FastJet 3.2.0 [61]. Note that no grooming
is performed on the jets. We have also checked explicitly
that applying jet (sub)cluster energy smearing consistent
with the parametric fast detector simulation of ATLAS
implemented in Delphes 3.4.1 [62] has no significant effect
on our results.
We train the top tagger on four test cases: supervised, and

unsupervised mixed samples with S=B ¼ 1, 1=9, 1=99. In
the supervised case we collapse the pure samples into
single documents such that they are processed by the
algorithm in a single block, essentially providing the
labeling of the data required in supervised algorithms.
For the different S=B ratios each jet or event is represented
by a single document. However, we inform the tagger to
search for certain S=B ratios by setting the hyperparameters
of the Dirichlet distribution accordingly, i.e., α ¼ ½0.5; 0.5�,
[0.9, 0.1], and [0.99, 0.01]. Note that these may not be the
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optimal choices, but they are based on the intuition from
the values of S=B and give a useful parametrization to
demonstrate the performance of the algorithm. We also
stress that Oð1Þ variations in α have only a small effect on
the performance of the algorithm provided that the hier-
archy in the elements of α approximately reflect the S=B
ratio, and that the elements are smaller than one. More
details on the dependence of the algorithm on these
hyperparameters, and how to determine their optimal
values without prior knowledge of the S=B ratios, will
be presented elsewhere [58].
In Fig. 1 (upper panel) we plot the ROC curves for our

top-jet taggers, where separate documents are represented
by individual jets, and compare these to various supervised

taggers in the literature [8,22,23]. We see that the taggers
perform well and with relatively small variance, with the
supervised tagger performing the best. An interesting
observation is that at high background rejection rates
[1=ϵb ≫ O (few)] the taggers trained on smaller S=B per-
form slightly better than the tagger trained on the S=B ¼ 1
sample, although the differences are comparable to the
estimated uncertainties. This is essentially because the
algorithm is designed to discern features in the jet sub-
structure, which are subsequently used to tag jets and
events. In the supervised and S=B ¼ 1 case the algorithm
discovers features in top jets both near mj0 ∼mt and
mj0 ∼mW (see the right plot in Fig. 2), while in the lower
S=B cases the algorithm is only able to identifymj0 ∼mt as
relevant. On the other hand, lower mj0 regions generically
feature more prominently in QCD jets (see left plot in
Fig. 2). Thus, while a very accurate determination of the
features near mj0 ∼mW in the supervised case helps the
performance of the tagging algorithm, the worse resolution
in the unsupervised S=B ¼ 1 case leads to worse tagging
performance compared to lower S=B examples. We see that
the performance of the unsupervised taggers is comparable
to the original Johns Hopkins (JH) top tagger [8], although
it falls short in comparison to the others. We note that
the observables we use mostly match those used in the
JH top tagger, hence the similar performance is indeed
encouraging.
In Fig. 1 (lower panel) we plot the ROC curves for our tt̄

event classifiers, where a single document now contains all
jets within the selected pT region in an event, and again
compare these to the top-jet taggers in the literature. To
make the comparison with other taggers fair, we rescale
those results by defining an event tagging efficiency ðϵeÞ in
terms of the jet tagging efficiency ðϵjÞ and the fraction of

FIG. 1. (Upper plot) ROC curves for the LDA top-jet taggers
compared to the DeepTop tagger [22,23] (colored triangles) for
events with fat jets satisfying pT ∈ ½350; 450� GeV. The purple
star represents the default JH top tagger [8] reference point.
(Lower plot) ROC curves for the tt̄ LDA event classifiers
compared to the classifiers from the DeepTop (colored triangles)
and the JH top tagger (purple star). In both plots the shaded
bands represent the mean-average deviation extracted from
the k-folding procedure. See text for details.

FIG. 2. 2D projected probability distributions (in the plane of
mj0 and mj1=mj0 ) of the two latent themes discovered in mixed
(S=B ¼ 1) QCD and tt̄ event samples with fat jets satisfying
pT ∈ ½350; 450� GeV.
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events in our pure samples with one (f1) and two (f2) jets
passing the selection cuts,3 ϵe ¼ ð2ϵj − ϵ2jÞf2 þ ϵjf1. This
means in practice that tagging an event as tt̄ requires at least
one jet in the event to be tagged as a top jet. The ROC
curves do not change significantly under this rescaling,
instead the points move along a trajectory towards higher
efficiencies approximately equal to that of the ROC curve
for jet tagging. We see again that the classifier performs
very well in all cases, performing as well as the JH top
tagger even for low S=B.
We observe that the LDA algorithm performs relatively

better when characterizing and tagging events than jets,
mainly due to the larger amount of substructure (words) in
each document. With more data per document it is easier
for the algorithm to identify co-occurrences between the
different features shared by jets in the same event. For this
reason it is also easier for the trained model to infer the
correct thematic structure from events, than from jets.
The themes discovered by the unsupervised training

algorithm contain valuable information about the substruc-
ture of the events or jets. In Fig. 2 we plot the substructure
probability distributions of the two themes discovered by
the top-jet tagger (with S=B ¼ 1) projected onto the plane
of mj0 and mj1=mj0 . We observe that while the distribution
on the left-hand side plot (the “QCD” theme) is fairly
unremarkable (mostly monotonic and smooth) and peaks
towards (mj → 0, mj1=mj0 → 1), the theme on the right-
hand side plot (the “tt̄” theme) clearly exhibits a heavily
weighted feature at both mj0 ∼mt and mj0 ∼mW , even
identifying the W subjet arising from the decay of the top
quark within the jet resulting in a mass drop of
mj1=mj0 ∼mW=mt ≃ 0.45. On the other hand, the broad
mj1=mj0 ∼ 0.2≳ 0 feature at mj0 ∼mW is expected due to
the fact that the mass drop is defined with the heaviest
daughter subjet in the numerator thus skewing the mj1=mj0
distribution away from zero.

IV. UNSUPERVISED NP SEARCH

As a second example, we consider a NP model [63,64]
containing a heavy W0 boson plus a heavy scalar ϕ. Signal
events thus consist of resonant W0 production (at
mW0 ¼ 3 TeV), followed by W0 → Wϕ decays (where
we choose mϕ ¼ 400 GeV ≪ mW0 such that both the W
and the ϕ coming fromW0 decays are boosted). Finally, the
scalar further decays as ϕ → WþW−. Using the same event
generation, jet-clustering/declustering procedure, observ-
able basis oj, and the same LDA tagging algorithm as
before, we apply our procedure to the all-hadronic final
state of this NP process in a region dominated by QCD
background. The same model has been previously studied
using the unsupervised ML approach called classification

without labels (CWoLa) [37,38]. It is based on mixed
sample classification using phase space regions with vastly
different S=B ratios processed by deep NNs. In order to
quantitatively compare our results to CWoLa, our signal
and background event samples mirror directly those in
Ref. [38]. In particular, we consider just the signal region,
2730 ≤ mjj ≤ 3189 GeV, and cut jets with pT below
400 GeV. The 30 GeV cut on the subjet invariant mass
is also applied, just as in the top tagger case. After the
selection cuts we work with ∼60; 000 events in both the
signal and background samples. We train three different
taggers; a supervised tagger, and two taggers with S=B ¼
1.1 × 10−2 and 5.8 × 10−3. The Dirichlet hyperparameters
α are chosen in the same way as in the previous section,
i.e., α ¼ ½0.5; 0.5�, [0.989, 0.011], and [0.942, 0.058].

FIG. 3. (Upper plot) ROC curves comparing the performance
of the LDA event classifier to CWoLa [38]. (Lower plot)
2D projected probability distributions (in the plane of mj0 and
mj1=mj0 ) of the two latent themes discovered in mixed
(S=B ¼ 1.1 × 10−2) QCD and W0 event samples with invariant
mass 2730 ≤ mjj ≤ 3189 GeV with fat jets satisfying
pT > 400 GeV.

3We have checked that the fractions of events with zero or
more than two jets passing the selection cuts are negligible.
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To evaluate the robustness of the taggers we again employ
the k-folding procedure with k ¼ 10.
In the upper plot of Fig. 3 we show the ROC curves for

our taggers and compare the results to those from CWoLa
[38]. We see that in most of the parameter space the LDA-
based tagger outperforms the CWoLa tagger, most notably
at high signal efficiencies.
In the lower plot of Fig. 3 we also show the probability

distributions of the discovered themes in the plane of mj0
and mj1=mj0 for the LDA model trained on event samples
with S=B ¼ 1.1 × 10−2. Features in the subjet mass at
mj0 ∼mW and at mj0 ∼mϕ are clearly discernible in one of
the themes (the “ϕW” theme), as well as mass drops related
to the decays of the heavy scalar and the W bosons.

V. CONCLUSIONS

We have demonstrated a new unsupervised ML tech-
nique for disentangling signal and background events in
mixed samples by identifying features in jet substructure
observables that differentiate between the two. To do so we
have mapped jet substructure distributions onto a LDA
model, a generative probabilistic model (mixed member-
ship model) widely used in Bayesian statistics approaches
to unsupervised ML. Assuming that the kinematic observ-
able distributions within jets or events are sampled from a
fixed set of (latent) themes, LDA can learn the thematic
structure that most likely generated the observed data (the
later being either in the form of reconstructed real LHC
events or unlabeled MC-generated samples). Furthermore,
we have shown that the learned structure from a two-theme
LDAmodel can be used to build unsupervised jet taggers or
event classifiers that efficiently discriminate between signal
and background in previously unseen data.
As a first example we have trained a two-theme LDA

model on MC-generated event samples consisting of
different mixtures of pp → tt̄ and QCD dijet events.
Our results show that the top-jet taggers and tt̄ event
classifiers constructed from the discovered themes have a
very good discrimination power when applied to previously
unseen pure samples, even if trained on data with S=B
ratios as low as 1%. Our results are in some cases
comparable even with fully supervised taggers in the
literature. In addition we have explored the viability of
LDA discovering NP phenomena in multijet events. Using
a benchmark NP (vector W0, scalar ϕ) model we have

studied pp → W0 → ϕW → WWW with hadronically
decaying W bosons and a (boosted) new scalar ϕ with
mass mϕ ≪ mW0 . The resulting LDA event classifiers from
training samples with S=B as low as a few per-mille, when
applied to pure samples, produce excellent signal efficien-
cies and QCD rejection rates that can outperform other
existing approaches.
Besides being a fully unsupervised ML technique, one

advantage of performing LDA on jet-clustering history
observables, is the possibility of interpreting the thematic
structure discovered by the model from the data. In both
examples presented here, the features in the probability
distributions over the kinematical observables of the two
uncovered themes match to a high degree the expected
features of the underlying hard processes—hadronic decays
of top quarks (or ϕ → WþW−) and the QCD background,
respectively, allowing for an intuitive and physical under-
standing of the high tagging performance as demonstrated
by the ROC curves.
The analysis presented here is a first exploration of what

can be achieved when applying probabilistic mixed mem-
bership models to high-energy collider data. For example,
with the addition of more jet substructure observables the
discriminating power of the LDA classifiers could be
further optimized and increased. Furthermore, relaxing
the fixed number of themes of the LDA model applied
to mixed event samples could allow us to classify multiple
backgrounds together with the signal. In future work we
will also detail how these techniques can be employed as
part of a broad search strategy for new phenomena in
multijet invariant mass spectra with the aim of performing
unsupervised data-driven searches for NP at high pT .
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