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In this work, we analyze quantum decoherence in neutrino oscillations considering the open quantum
system framework and oscillations through matter for three-neutrino families. Taking the Deep Under-
ground Neutrino Experiment as a case study, we performed sensitivity analyses for two neutrino flux
configurations, finding sensitivity limits for the decoherence parameters. We also offer a physical
interpretation for a new peak which arises at the νe appearance probability with decoherence.
The sensitivity limits found for the decoherence parameters are Γ21 ≤ 1.2 × 10−23 GeV and Γ32 ≤
7.7 × 10−25 GeV at 90% C.L.
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I. INTRODUCTION

Even though the standard three-neutrino oscillation
paradigm is well established and several oscillation param-
eters have been already measured with certain precision [1],
the quest for establishing the violation of the charge parity
(CP) symmetry in the leptonic sector, the octant preference
or the maximality of the atmospheric mixing angle, and the
neutrino mass ordering is still ongoing. In order to fulfill
such goals and also to reach a greater precision in the
measurement of all the neutrino oscillation parameters,
future experiments such as the Deep Underground Neutrino
Experiment (DUNE) [2–6] are being developed. DUNE
is a long-baseline neutrino experiment where the neutri-
nos produced at Fermilab are detected at the Sanford
Underground Research Laboratory, therefore after traveling
∼1300 km. DUNE is designed to study the νμ and νe (and
also ν̄μ and ν̄e) oscillations through Earth’s crust matter, and
it is expected to provide a measurement of the neutrino
mass hierarchy. DUNE is also sensitive to the Dirac phase
present in the lepton mixing matrix, which parameterizes
the possibility that neutrinos violate the CP symmetry.

In order to perform these major discoveries and the precise
measurement of the atmospheric mixing angle, DUNE will
have to reach a novel control of systematics and very large
statistics. Such features can be used not only to achieve the
main goals for the standard oscillation program, but, more
importantly, can also be useful to probe new physics
effects, such as decoherence.
There are several works [7–17] showing how decoherence

can emerge in models considering interactions between a
neutrino subsystem and an environment in the open quantum
system [18] framework, and some of these works present
analyses of possible constraints for the decoherence para-
meters [9,15,17]. Nevertheless, there are other experiments
which could be considered and might be suitable to make a
full three-neutrino family analysis. Aswill be shown later on,
the decoherence effect arises in the oscillation probabilities
through damping terms depending on the baseline, sug-
gesting that a long-baseline experiment such as DUNE is an
excellent candidate to bound all the decoherence parameters
for three-neutrino families. Although it is speculated that the
quantum decoherence effect could be generated by quantum
gravity [19], in this work we will use a phenomenological
approach. We do not use any microscopical model which
describes the source of such effects, and, therefore, such a
hypothesis or other possible origins of decoherence will not
be discussed. It is also important to point out that in this work
wewill study only the decoherence effects which arise in the
framework of open quantum systems; we will not address
decoherence effects from wave packet separation (see, for
example, Refs. [20,21]), which are already present within
usual quantum mechanics.
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This work is organized in the following way. We review
how one can study neutrino oscillations considering a
coupling with the environment in the quantum open system
framework in Sec. II, presenting also the form of the
oscillation probabilities with decoherence in three families.
In Sec. III, we offer a physical interpretation of a new peak
that arises in the oscillation probabilities with decoherence.
In Sec. IV, we perform sensitivity analyses and present the
sensitivity regions found for the decoherence parameters.
Since the optimized flux configuration at DUNE already
covers a broad range of neutrino energies, DUNE is
sensitive to the decoherence parameters. We also consider
a high-energy flux configuration to reach the high-energy
peak induced by decoherence in the appearance channel,
which is the “smoking gun” for decoherence, providing
increased sensitivity to the decoherence parameter Γ32.

II. FORMALISM

When the coupling between the neutrino subsystem and
the environment is considered, the time evolution of the
subsystem density operator ρ is given by the Lindblad
master equation [11]:

d
dt

ρðtÞ ¼ Lρ ¼ −i½H; ρ� þ 1

2

XN2−1

k¼1

ð½Vk; ρV
†
k� þ ½Vkρ; V

†
k�Þ;

ð1Þ
where H is the subsystem’s Hamiltonian, Vk are the
operators responsible for the interactions between the
subsystem and the environment, and N is the dimension
of the Hilbert space of the subsystem. The sum that runs
from k ¼ 1 to ðN2 − 1Þ denotes an expansion on SUðNÞ
generators, with the element k ¼ 0 decoupled from the
evolution due to constraints on the operators Vk which are
briefly mentioned below. The non-Hamiltonian term can be
written as

D½ρðtÞ� ¼ 1

2

XN2−1

k¼1

ð½Vk; ρV
†
k� þ ½Vkρ; V

†
k�Þ; ð2Þ

which will be referred from now on as the dissipator.
The matrixD is subjected to constraints to assure that the

operator ρðtÞ has all the properties of a density operator and
that its physical interpretation is correct. In particular, it can
be shown that the operator V must be Hermitian (Vk ¼ V†

k)
[7], to ensure that the system’s entropy increases in time.
In the case of three active neutrinos, one can expand the

elements on the Lindblad equation in Eq. (1) using the
SUð3Þ generators, the Gell-Mann matrices λi, as a basis:

H ¼ Hiλi; ρ ¼ ρjλj;

where the sum over repeated indices is implied, and Eq. (1)
can be rewritten as

d
dt

ρkðtÞλk ¼ fijkHiρjðtÞλk þDklρlλk; ð3Þ

where the fijk are structure constants completely antisym-
metric in the indices i, j, and k.
We assume Dkl as a symmetric matrix and with Dk0 ¼

D0l ¼ 0 in order to have probability conservation. We will
also impose that ½H;Vk� ¼ 0, which implies energy con-
servation in the neutrino subsystem. Other conditions forD
will come from the imposition that it satisfies the criteria for
complete positivity, which must be obeyed by a density
operator and, hence, also by the dissipator. For three-
neutrino families, these criteria are described in Ref. [7] and
references therein. Although the derivation of these con-
ditions can be found in these references, we found it
worthwhile to present them again in Appendix A for the
specific case analyzed here, namely, with energy conser-
vation in the neutrino sector.
Under such constraints, the dissipative matrix Dkl

assumes the following form:

Dkl ¼ −diagfΓ21;Γ21; 0;Γ31;Γ31;Γ32;Γ32; 0g: ð4Þ

The decoherence parameters are not independent from
each other and are related by the following equations [13]:

Γ21 ¼ 2a23 ≥ 0; ð5Þ

Γ31 ¼
1

2
ða3 þ a8Þ2 ≥ 0; ð6Þ

Γ32 ¼
1

2
ða3 − a8Þ2 ≥ 0; ð7Þ

where the ai are the coefficients of the expansion of the Vk
operators in terms of the SUð3Þ matrix basis:

Vk ¼ aknλn: ð8Þ

Since we have that a density matrix must be positive
semidefinite, which means that if λi are its eigenvalues, then
λi ≥ 0 ∀ i [22], it is clear that the dissipator in Eq. (4) with
the conditions in Eqs. (5)–(7) satisfies the needed criteria in
order to preserve its physical meaning. In Appendix B, we
discuss the validity of the dissipator in Eq. (4) and the
positivity conditions when one considers decoherence in a
vacuum or in constant density matter, highlighting the
differences between our approach and the one used in
Ref. [16]. In the following sections, we consider Γ21 and
Γ32 as the independent parameters and Γ31 given by
Eqs. (5)–(7).
Considering the DUNE baseline, matter effects have to

be taken into account. The complete Hamiltonian in the
flavor basis is then given by
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H ¼

2
664U

0
BB@

0 0 0

0
Δm2

21

2E 0

0 0
Δm2

31

2E

1
CCAU† þ

0
BB@

Â 0 0

0 0 0

0 0 0

1
CCA
3
775; ð9Þ

where theΔm2
ij ≡m2

i −m2
j are the squaredmass differences

between the mass eigenstates, E is the neutrino energy, Â ¼ffiffiffi
2

p
GFne is the matter potential, where GF is the Fermi

coupling constant and ne is the electron number density, and
U is the mixing matrix for three-neutrino families, which is
given by

U ¼

0
BB@

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

1
CCA; ð10Þ

and where cij and sij denote cosðθijÞ and sinðθijÞ, respectively.
Equation (3) will be solved in the effective mass eigenstate basis; hence, we must find the diagonal form of the

Hamiltonian:

H ¼ 1

2E

0
BB@

0 0 0

0 Δ̃21 0

0 0 Δ̃31

1
CCA; ð11Þ

where Δ̃ij are the effective squared mass differences of neutrinos in matter.
Solving the Lindblad equation, with the dissipator defined in Eq. (4), one finds

ρm̃ðxÞ ¼

0
BB@

ρ11ð0Þ ρ12ð0Þe−ðΓ21þiΔ̃21Þ�x ρ13ð0Þe−ðΓ31þiΔ̃31Þ�x

ρ21ð0Þe−ðΓ21þiΔ̃21Þx ρ22ð0Þ ρ23ð0Þe−ðΓ32þiΔ̃32Þ�x

ρ31ð0Þe−ðΓ31þiΔ̃31Þx ρ32ð0Þe−ðΓ32þiΔ̃32Þx ρ33ð0Þ

1
CCA; ð12Þ

where ρijð0Þ are the elements of the density matrix for the initial state.

The oscillation probabilities for each channel can be
calculated from

Pνανβ ¼ Tr½ραð0ÞρβðxÞ�: ð13Þ

Using Eqs. (12) and (13), and after some algebraic
manipulation, one obtains

Pνανβ ¼ δαβ−2
X
j>k

ReðŨβjŨ�
αjŨαkŨ�

βkÞ

þ2
X
j>k

ReðŨβjŨ�
αjŨαkŨ�

βkÞe−Γjkx cos

�
Δ̃jk

2E
x

�

þ2
X
j>k

ImðŨβjŨ�
αjŨαkŨ�

βkÞe−Γjkx sin

�
Δ̃jk

2E
x

�
; ð14Þ

where Ũ is the unitary mixing matrix which diagonalizes
the Hamiltonian in the presence of matter effects. To obtain
the corresponding probability for antineutrinos, one must
repeat the procedure above, changing Â → −Â in Eq. (9)
and δCP → −δCP in Eq. (10). It is also important to point

out that we assumed the decoherence parameters Γjk as
being equal for both neutrinos and antineutrinos.
In the following sections, we present results from the

implementation of Eq. (14) in a modified version of the
GLoBES [23,24] probability engine, which was also
double checked by solving numerically the Lindblad
equation in Eq. (3).

III. EFFECTS OF DECOHERENCE ON THE
OSCILLATION PROBABILITIES

We consider the four oscillation channels, appearance
and disappearance for both neutrino and antineutrino
modes, for benchmark values of the decoherence param-
eters Γ21, Γ31, and Γ32. For the probability studies, only the
DUNE baseline (L ¼ 1300 km) and its energy range
(which extends from hundreds of MeV to tens of GeV)
are needed. The values of the standard oscillation param-
eters used along this work are given in Table I.
As we can see in Fig. 1, the decoherence parameters affect

the four oscillation channels, and for the values of the
decoherence parameters considered we can see a few differ-
ent effects on the oscillation probabilities. In Figs. 1(c)
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and 1(d), there is a small decrease in the overall oscillation
amplitude (more accentuated for the ν̄μ disappearance
probability). In Fig. 1(d), we can also see a decrease in
the ν̄μ for E≳ 10 GeV. However, the most striking differ-
encewith respect to the standard oscillation is the newpeak at
∼10 GeV for the νe appearance probability in the presence of
decoherence, which would provide a clear signature of new
physics. In the next section, we will discuss this feature in
more detail. Although the peak by itself is not a novelty, and it
was somehow studied in previous works (see, for instance,
[13,14]), here we provide a detailed physical interpretation,

and,more importantly, we suggest how this unique feature of
decoherence can be probed at DUNE.

A. A new peak at the νe appearance probability:
Physical interpretation

A peak at ∼10 GeV is present in the νe appearance
probability in the presence of decoherence. In order to
obtain a physical insight of this new feature, let us begin
by analyzing the behavior of the eigenvalues of the
Hamiltonian (λ) in Eq. (9), which can be seen in the upper
panel in Fig. 2.
As we can see in Fig. 2, there is a level crossing between

the eigenvalues referred as 2 and 3 at E ∼ 10 GeV, which
indicates a resonance at that energy for the parameters
considered. By numerically diagonalizing the Hamiltonian,
it is possible to calculate the oscillation parameters in
matter Ũαj and Δ̃jk. In particular, at the resonance energy,
and for the DUNE baseline, we obtain

Ũe1 ≃ 0;
Δ̃32

2E
x ≪ 1; ð15Þ
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FIG. 1. Oscillation probabilities using Γ21 ¼ 5.1 × 10−25 GeV and Γ32 ¼ 8.9 × 10−24 GeV (solid line) compared with the standard
case without decoherence (dashed line). The values of the oscillation parameters were set according to Table I, and Γ31 was calculated
according to Eqs. (5)–(7).

TABLE I. Values for the standard oscillation parameters from
Refs. [1,25,26].

sin2 θ12 0.321
sin2 ð2θ13Þ 0.0841
sin2 ð2θ23Þ 0.99
δCP −π=2
Δm2

21 7.56 × 10−5 eV2

Δm2
31 2.55 × 10−3 eV2
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where the first approximation can be extracted directly
from the lower panel in Fig. 2 while the second one is
obtained by replacing x ∼ 1300 km ∼ 6.5 × 1021 GeV−1

and the values calculated in upper panel in Fig. 2 for the
λi’s. From the oscillation probabilities with decoherence in
Eq. (14), the Γjk parameters appear in the form of e−Γjkx

damping factors for the terms:

IjkðαβÞ≡ 2ReðŨβjŨ�
αjŨαkŨ�

βkÞ cos
�
Δ̃jk

2E
x

�

þ 2ImðŨβjŨ�
αjŨαkŨ�

βkÞ sin
�
Δ̃jk

2E
x

�
: ð16Þ

Since IjkðαβÞ is the term of the probability where we
have the dependence on the oscillation phase through

cos ðΔ̃jk

2E xÞ and sin ðΔ̃jk

2E xÞ, which are responsible for the
quantum interference in the oscillation probabilities, we
will refer to it as the interference factor. In addition, there
are terms not affected by the decoherence parameters:

CjkðαβÞ≡ −2ReðŨβjŨ�
αjŨαkŨ�

βkÞ; ð17Þ

and the flavor conversion probability in Eq. (14) can be
written as

Pνανβ ¼ δαβ þ
X
j>k

½CjkðαβÞ þ IjkðαβÞe−Γjkx�: ð18Þ

In the case of the νe-appearance probability at DUNE,
the only contribution for both I and C at the resonance
comes from the case j ¼ 3 and k ¼ 2:

C32ðμeÞ ¼ −2ReðŨe3Ũ�
μ3Ũμ2Ũ�

e2Þ ≃ 2jŨe3j2jŨμ3j2;
I32ðμeÞ ≃ −2jŨe3j2jŨμ3j2 ≃ −C32ðμeÞ; ð19Þ

where the relations in Eq. (15) and the unitarity of the
mixing matrix were used.
The form of the interference term, which is subject to the

damping factor e−Γ32x, and as given in Eq. (19), is shown in
Fig. 3. We can see that it works as an interference factor to
the oscillation probabilities; in particular, we see that
around E ¼ 10.8 GeV, which is exactly the energy of
the resonance, we have a strong destructive interference.
For the standard oscillation probabilities (without
decoherence), such destructive interference would be
exactly canceled at the resonance E ∼ 10 GeV. In fact,
considering a constant matter density of 2.96 g=cm3

[27,28], numerically the maximum of C32ðμeÞ (upper
panel) is equal to the minimum of I32ðμeÞ (lower panel),
and both coincide at E ¼ 10.82 GeV. However, when we
have oscillations with nonzero decoherence, the term e−Γ32x

works as a damping to this interference factor, therefore
eliminating the destructive interference at E ∼ 10 GeV.
The elimination of such destructive interference enhances
the νe appearance probability, since now the destructive
interference cannot completely be canceled the resonance,
therefore creating the peak shown in Fig. 1(a). Since such a
peak constitutes a very significant effect in the oscillation
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FIG. 3. Behavior of C32ðμeÞ and the interference factor I32ðμeÞ
given by Eqs. (17) and (16), respectively.
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FIG. 2. Eigenvalues (λi, i ¼ 1, 2, 3) of the Hamiltonian in
Eq. (9). We can see an indication of a resonance region at about
E ∼ 10 GeV.
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probabilities in the presence of decoherence, being able to
reconstruct it will provide a compelling test of decoherence.
If DUNE is compatible with standard oscillations, severe
bounds to the decoherence parameters can be obtained as
long as the experiment measures a significant number of
events around E ∼ 10 GeV.
Rewriting Eqs. (18) and (19) in terms of the mixing

angles, we would have

PμeðE ¼ EresÞ ≈
1

2
sin2 θ23 sin2ð2θ̃13Þð1 − e−Γ32xÞ;

and then we expect that the effects from Γ32 on the bump
would anticorrelate with θ23. Changing Δm2

32 would dis-
place the resonance energy, and then the effect would be
stronger for lower values of Δm2

32, which would locate the
bump in probability at lower energies. However, in the
sensitivity analysis, we marginalized over the atmospheric
parameters within their current experimental range, taking
care of the correlations between the relevant parameters.

IV. RESULTS

In this section, we are going to show sensitivity analyses
considering neutrino oscillations with decoherence in
matter given by Eq. (14). We first show how each
oscillation channel is sensible to decoherence by calculat-
ing the event rates, and then we establish DUNE sensitiv-
ities to the decoherence parameters. For the sensitivity
analysis, we have considered two neutrino flux configura-
tions, as will be detailed in the following sections, to exploit
the main features of the decoherence effects discussed
previously.
In the following studies, we assume the DUNE con-

figuration as defined in the conceptual design report (CDR)
document in Ref. [3], and, in particular, we made use of the
GLoBES files from Ref. [29]. Basically, it is assumed
DUNE will be running for 3.5 yr in each mode (neutrino
and antineutrino), a fiducial mass of the far detector (liquid
argon) of 40 kt, and the default flux beam power of
1.07 MW. The channels considered in each analysis are
defined for each case. The systematical errors, energy
resolution, and efficiencies are fixed to the values in the
CDR studies.

A. Relative events with the DUNE
default flux configuration

For a particular input of the decoherence parameters,
the total number of events and the energy event spectra are
calculated for each oscillation channel. We define the
relative event rates as δRrel:

δRrel ¼
RðΓij ≠ 0Þ − RðΓ21 ¼ Γ31 ¼ Γ32 ¼ 0Þ

RðΓ21 ¼ Γ31 ¼ Γ32 ¼ 0Þ ; ð20Þ

where Γij ≠ 0 (i.e., Γ21 ≠ 0, Γ31 ≠ 0, and Γ32 ≠ 0) are
chosen in order to satisfy Eqs. (5)–(7) and R correspond to
the event rates.
Figure 4 shows the relative deviation of the number of νe,

ν̄e, νμ, and ν̄μ events with respect to the standard oscillation
case without decoherence. From the νe and ν̄e events, one
can see a low relative deviation (< 3%) at the DUNE flux
(default) maximum (∼2.5 GeV). The peak at E≳ 10 GeV
in the νe (ν̄e) events is also relatively low, being about
∼16% (∼8%), but this is expected, because, with the
default flux, events at the high energy end of the spectrum
are much smaller than in the DUNE energy peak. In the
case of νμ and ν̄μ events in Fig. 4, we can notice that, at
slightly lower energies from the DUNE flux (default)
maximum, a relative deviation of the order of ∼19% is
obtained in the case of νμ and ∼35% for ν̄μ events.
It appears to be that, with the default flux configuration,

DUNE is sensitive to decoherence, and this sensitivity is
obtained from the four oscillation channels. However, due
to the large number of muon neutrino (and antineutrino)
events (see Table II) and the relative deviation in Fig. 4, the
main sensitivity comes from νμ and ν̄μ events and some
reduced sensitivity from ν̄e events. To fully exploit the
high-energy relative deviations that appear in the νe and ν̄e
events in Fig. 4, a high-energy flux for DUNE will be
considered in the sensitivity analysis of Sec. IV C, and, as
will be shown, this will substantially improve the sensi-
tivity for testing decoherence.
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FIG. 4. Relative event rates defined in Eq. (20) setting
Γ21 ¼ 5.1 × 10−25 GeV, and Γ32 ¼ 8.9 × 10−24 GeV, for each
oscillation channel in the presence of decoherence.

TABLE II. Total number of events (signal plus background) for
each oscillation channel.

νe-app ν̄e-app νμ-disapp ν̄μ-disapp

1777.69 406.025 8206.77 4124.51
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B. DUNE sensitivity to the decoherence parameters
with the default flux configuration

In this section, we present a sensitivity analysis consid-
ering the default flux configuration from Ref. [29]. From
the previous sections, we could see that with the default
flux DUNE has a good sensitivity to the decoherence
parameters Γ21 and Γ32 in a parameter range which is not
yet constrained by other experiments. Later, we present a
second analysis considering a higher-energy flux, which
will bring a better sensitivity to Γ32, since it is the parameter
which generates the new peak at ∼10 GeV for the νe
appearance probability.
For the analysis presented in this section, we have

assumed the DUNE energy-event spectrum is given by
the standard oscillation “data” without decoherence, from
the values in Table I, and the decoherence hypothesis is
tested. The usual χ2 analysis has been performed, margi-
nalizing over the standard oscillation parameters (except for
the solar parameters that are kept fixed) adding penalties to
the χ2 function with the following standard deviations:
σðsin2 ð2θ13ÞÞ ¼ 0.0033, σðsin2 ð2θ23ÞÞ=sin2 ð2θ23Þ¼ 3%,
and σðΔm2

31Þ=Δm2
31 ¼ 3%. The δ parameter has been also

marginalized over. Because Γ21, Γ31, and Γ32 are not all
independent, to perform the χ2 analysis, we assumed two of
the three decoherence parameters as independent and
defined the other one as a dependent parameter, according
to Eqs. (5)–(7), making then confidence level curves shown
in Fig. 5.
To obtain the sensitivity regions on each individual

parameter, we marginalize over one of the two decoherence
parameters. In the upper (lower) panel in Fig. 6, the Γ32

(Γ21) Δχ2 profile is shown. From the profiles, we calculated
the sensitivity regions compiled in Table III.
It is worthwhile to compare the achievable bounds by

DUNE, obtained in this work, with current bounds coming
from other experiments. In Table IV, we present the main

bounds coming from a recent analysis of data from IceCube
[17], MINOS [15], and KamLAND [9]. Although these
bounds are not directly comparable due to different
assumptions and marginalizations, it is possible to state
that DUNE has the potential to provide a more stringent
limit to Γ21. However, for Γ32 and Γ31 the limits obtainable
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FIG. 5. Curves at 90% C.L. (dashed-dotted line) and 3σ C.L.
(dashed line) for 2 DOF for the two decoherence parameters Γ21

and Γ32, considering the default flux given by Ref. [29].
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FIG. 6. Sensitivity limits for the default flux in Ref. [29] for the
Γ32 (Γ21) upper (lower) panel. The horizontal lines define
90% C.L. and 3σ C.L.

TABLE III. Sensitivity regions for the decoherence parameters
from the χ2 analysis considering the default flux configuration
[29], as shown in Figs. 6(a) and 6(b) for 1 DOF.

Parameter 90% C.L. 3σ C.L.

Γ21 ≤ 1.2 × 10−23 GeV 2.1 × 10−23 GeV
Γ32 ≤ 4.7 × 10−24 GeV 8.0 × 10−24 GeV
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by DUNE would be competitive with existing ones coming
from an analysis of IceCube data [17].
In the following section, we discuss how a high-energy

neutrino flux, different from the one given by Ref. [29], can
considerably improve the sensitivity to Γ32, providing a
more suitable configuration to test decoherence at DUNE.

C. Sensitivity analysis for Γ32 with
a high-energy flux configuration

From the discussion at the event level in Sec. IVA, it is
clear that, in order to be sensitive to the peak around
10 GeV in the νe appearance channel at DUNE, it is
necessary to consider a different flux configuration. Having
reached this conclusion, we decided to perform a second
sensitivity analysis, but this time considering the high-
energy (HE) neutrino flux proposed in Ref. [30].
For the sensitivity analysis using the HE flux, we

excluded the beam contamination from νe and ν̄e, since
we do not have access to this information. Then, we
repeated the same procedure of the previous sections, first
presenting in Fig. 7 the relative deviation of the number of

νe events with respect to the standard oscillation case
without decoherence and, finally, the sensitivity results. As
already expected, with the HE flux configuration the peak
in the νe rises to ∼45%, which suggests that this channel
with such a flux configuration can bring increased sensi-
tivity to the Γ32 parameter. We showed in Sec. III that it is
the Γ32 parameter that mostly generates this new peak.
Following the same procedure of the previous section, we
performed another sensitivity analysis, and the results are
given in Figs. 8 and 9.
From Fig. 9, we obtained the sensitivity regions com-

piled in Table V, where we present only the limits for Γ32,
since the analysis presented in Sec. IV B already brings the

TABLE IV. Existing limits at 95% C.L. coming from different
analyses and data.

Experiments Assumptions on Γ’s
Previous bounds

(GeV−1)

MINOS [15] 2-fam, Γ32 or Γ31 1.1 × 10−22

KamLAND [9] 2-fam, Γ21 6.8 × 10−22

IceCube [17] Γ31 ¼ Γ32 (Γ21 ¼ 0) 4.0 × 10−24

IceCube [17] Γ31 ¼ Γ21 (Γ32 ¼ 0) 1.3 × 10−24

0 2 4 6 8 10 12 14 16 18 20
-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

δR
re

l

Erec(GeV)

FIG. 7. Relative deviations with respect to the νe appearance
events without decoherence (Γ32 ¼ 0) for the HE flux from
Ref. [30] (red line). For the event rates with decoherence, we
considered Γ21 ¼ 5.1 × 10−25 GeV, Γ31 ¼ 3.0 × 10−25 GeV,
and Γ32 ¼ 1.6 × 10−24 GeV. We also present the relative devia-
tions for the νe appearance events considering the default flux
[29] for comparison (black dashed line).
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FIG. 8. Confidence level curves in the Γ32-Γ21 plane at
90% C.L. (dark dashed-dotted line) and 3σ C.L. (dark dashed
line), considering the HE flux. The confidence level curves for the
default flux (light colors) are also shown for comparison
(see Fig. 5).
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90% C.L. and 3σ C.L.
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best sensitivity to Γ21. The sensitivity to Γ32 given in
Table V is enhanced respect to the one found in Sec. IV B,
since the HE flux from Ref. [30] is much more suitable to
pin down the new peak at E ∼ 10.8 GeV in the νe
appearance probability than the default flux [29]. DUNE
has the potential to put a stringent limit to the decoherence
parameters, which means that the peak would become
much less noticeable in a νe appearance probability plot as
long as the DUNE measured rates are more “compatible”
with standard oscillations.

V. CONCLUSION

In this work, we obtained sensitivity regions for the
decoherence parameters that affect neutrino oscillations in
three families considering two possible flux configurations
for DUNE.
In Sec. III, we showed how the new peak at the νe

appearance probability can be seen as an elimination
of a destructive interference, generating then an increase
in the transition to νe. In Sec. IV, we showed how the
decoherence parameters can be better analyzed by consid-
ering different oscillation channels and also different flux
configurations, the default flux from Ref. [29] and the HE
flux from Ref. [30].
In Sec. IV B, we presented the results for the sensitivity

analysis using the flux configuration from Ref. [29].
In 90% C.L., the sensitivity limits for the parameters
given in Table III are Γ21 ≤ 1.2 × 10−23 GeV and Γ32 ≤
4.7 × 10−24 GeV, and for 3σ C.L. the limits are Γ21 ≤
2.1 × 10−23 GeV and Γ32 ≤ 8.0 × 10−24 GeV.
As we can see, the limits on Γ21 are potentially more

stringent at DUNE, when compared with the KamLAND
experiment, by 2 orders of magnitude. On the other hand,
DUNE in its default configuration has a reduced sensitivity
for ν̄e, suggesting that the limit for Γ21 comes in most part
from the νe channel. Therefore, one might think that Γ21 for
νe and ν̄e has some chance to be different. This is the exact
scenario for a CPT-like violation such as was proposed in
Ref. [31], and a new investigation regarding such an issue
will be presented somewhere else.
Finally, in Sec. IV C, we showed how, by changing to a

HE flux configuration, DUNE can significantly improve
the sensitivity to the Γ32 parameter, potentially pinning
down the peak which is the most compelling feature of
decoherence at DUNE. The sensitivity regions for such an

analysis (presented in Table V) are Γ32 ≤ 7.7 × 10−25 GeV
at 90% C.L. and Γ32 ≤ 1.4 × 10−24 GeV at 3σ C.L.
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APPENDIX A: CONDITIONS ON Dμν

The Lindblad equation that describes the open system’s
dynamics is given by

dρðtÞ
dt

¼ −i½H; ρðtÞ� þ 1

2

X8
j¼1

ð½Vj; ρðtÞV†
j � þ ½VjρðtÞ; V†

j �Þ;

ðA1Þ

where Vj are 3 × 3 matrices that carry out the new
dynamics. Expanding in Gell-Mann matrices in the mass
eigenbasis, where H is diagonal, we have

H ¼ h3λ3 þ h8λ8; Vj ¼
X8
i¼1

vjiλi; ρ ¼
X8
i¼1

ρiλi;

where, since Vj is Hermitian, all coefficients are real. The
energy conservation condition ½Vj;H� ¼ 0 leads to

½Vj;H� ¼
X
i

ðh3vji½λi; λ3� þ h8vji½λi; λ8�Þ

¼ 2i
X
i;k

vjiðh3fi3k þ h8fi8kÞλk ¼ 0: ðA2Þ

The only way to accomplish this with no dependence on
h3;8 is that all vji vanishes except for vj3 and vj8. Then

Vj ¼ vj3λ3 þ vj8λ8: ðA3Þ

By replacing in the Lindblad equation, we obtain

TABLE V. Sensitivities to the decoherence parameters from the
χ2 analysis considering the HE flux configuration from Ref. [30]
shown in Fig. 9 for 1 DOF.

Parameter 90% C.L. 3σ C.L.

Γ32 ≤ 7.7 × 10−25 GeV 1.4 × 10−24 GeV
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dρkðtÞ
dt

λk ¼ 2hmρnfmnkλk þ
1

2

X8
j¼1

X8
k¼1

X
l¼3;8

X
m¼3;8

ρkvjlv�jmð½λl; λkλ†m� þ ½λlλk; λ†m�Þ

¼ 2hmρnfmnkλk þ
1

2

�X
j

jvj3j2
�X

k

ρkð½λ3; λkλ†3� þ ½λ3λk; λ†3�Þ þ
1

2

�X
j

jvj8j2
�X

k

ρkð½λ8; λkλ†8� þ ½λ8λk; λ†8�Þ

þ 1

2

�X
j

vj3v�j8

�X
k

ρkð½λ3; λkλ†8� þ ½λ3λk; λ†8�Þ þ
1

2

�X
j

v�j3vj8

�X
k

ρkð½λ8; λkλ†3� þ ½λ8λk; λ†3�Þ: ðA4Þ

Performing the last sum by direct inspection, we get

Ik1 ¼ ½λ3; λkλ3� þ ½λ3λk; λ3�
¼ λ3½λk; λ3� þ ½λ3; λk�λ3
¼ 2i

�
λ3
X
l

fk3lλl þ
X
l

f3klλlλ3

�

¼ 2i
X
l

f3kl½λl; λ3� ¼ −4
X
lm

f3klfl3mλm

¼ −4λk
X
l

ðf3klÞ2
X
k

ρkIk1 ¼ −ð4; 4; 0; 1; 1; 1; 1; 0Þ:ðρkλkÞ; ðA5Þ

and with a similar procedure

Ik2 ¼ ½λ8; λkλ8� þ ½λ8λk; λ8� ¼ −4λk
X
l

ðf8klÞ2;
X
k

ρkIk2 ¼ −3ð0; 0; 0; 1; 1; 1; 1; 0Þ:ðρkλkÞ: ðA6Þ

The last two lines can be simplified, since vij are real
numbers. In this case, the last two lines can be summed up:

Ik3 ¼ ½λ3; λkλ8� þ ½λ3λk; λ8� þ ð3 ↔ 8Þ
¼ −8λk

X
l

f8klf3kl;

X
k

ρkIk3 ¼ −2
ffiffiffi
3

p
ð0; 0; 0; 1; 1;−1;−1; 0Þ:ðλkρkÞ: ðA7Þ

Defining the eight-dimensional vectors a⃗k formed by the
components vjk in the following way:

ða⃗3Þj ≡ vj3; ða⃗8Þj ≡
ffiffiffi
3

p
vj8;

we have

X
j

jvj3j2¼a23;
X
j

jvj8j2¼
a28
3
;

X
j

ðvj3v�j8Þ¼
1ffiffiffi
3

p ða⃗†3:a⃗8Þ;

and we can finally write

dρðtÞ
dt

¼−i½H;ρðtÞ�þ1

2

X
k

ρk

�
a23I

k
1þa28

Ik2
3
þ2a⃗†3:a⃗8

Ik3
2

ffiffiffi
3

p
�

ðA8Þ
and

Dmn ¼ −
1

2
diagð4a23; 4a23; 0; ða⃗3 þ a⃗8Þ2; ða⃗3 þ a⃗8Þ2;

ða⃗3 − a⃗8Þ2; ða⃗3 − a⃗8Þ2; 0Þ ðA9Þ

or

Dmn ¼ −diagðΓ21;Γ21; 0;Γ31;Γ31;Γ32;Γ32; 0Þ; ðA10Þ

where

Γ21≡2a23; Γ31≡1

2
ða⃗3þ a⃗8Þ2; Γ32≡1

2
ða⃗3− a⃗8Þ2:

ðA11Þ

For simplicity, we treated a⃗3 and a⃗8 as collinear, so they
were treated as scalars. So the conclusion is that the matrix
energy conservation in the neutrino sector requires a
diagonal format for Dmn, with a specific relation between
its terms.

APPENDIX B: DECOHERENCE
IN MATTER AND POSITIVITY

The authors of Ref. [16] claim that decoherence cannot
be defined in the effective mass basis and that (apart from
very specific cases) the forms of the dissipative matrices in
a vacuum and in matter cannot be the same. In this
Appendix, we comment that, under certain conditions,
decoherence can be defined as arising from the same
matrices in both contexts, such that it preserves a physical
interpretation where the decoherence effect acts only on the
quantum interference terms, such as was discussed in this
paper and also in Refs. [8,9].
The dissipator in Eq. (4) is obtained when it is imposed

that

½HS; Vk� ¼ 0; ðB1Þ

where HS is the Hamiltonian of the subsystem.
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Since the subsystem is different when one considers
neutrinos in a vacuum or in matter, if Vk has the same form
in both bases, then Eq. (B1) is not satisfied at the same time
in such cases. This is exactly what happens in Refs. [10,16].
As is shown in Ref. [8], this implies that the decoherence
effect and the so-called relaxation effect cannot be fully
separated. In fact, as argued in Refs. [8,9], the work in
Ref. [10] finds constraints for the relaxation effect or for
decoherence in a model-dependent approach. It is impor-
tant to point out that decoherence is an effect which acts
only on the quantum interference terms of the oscillation
probabilities, while relaxation acts only on the constant
terms, which allow flavor conversion even without mixing
between the neutrino families.
For two-neutrino families [8], we have that the param-

eterization

Ṽk ¼ ffiffiffiffiffi
γ1

p �
cos δθ − sin δθ
− sin δθ − cos δθ

�
; ðB2Þ

with δθ ¼ 2ðθ̃ − θÞ, such that θ̃ is the effective mixing
angle in matter, leaves Eq. (B1) unchanged for any matter
density.
As we can see, in a vacuum Eq. (B2) assumes the

following form:

Vk ¼ ffiffiffiffiffi
γ1

p �
1 0

0 −1

�
; ðB3Þ

since in a vacuum δθ ¼ 0.

To assure that the condition Eq. (B1) is satisfied for
neutrinos propagating in both a vacuum and in constant
density matter, it is shown in Ref. [8] that the operators Vk
must also transform when there is a change of basis.
Therefore, we must have that

Ṽk ¼ U†
TVkUT ¼ ffiffiffiffiffi

γ1
p �

1 0

0 −1

�
; ðB4Þ

whereUT ¼ U†UM, andUM is the rotation matrix between
the flavor basis and the effective mass basis, and, as we can
see, it is equal to Eq. (B3).
When Vk transform as Eq. (B4), the dissipator in Eq. (4)

(where we consider only decoherence, not relaxation) is
valid for neutrinos propagating in both a vacuum and in
matter. Since the form is the same, the conditions for
positivity are also the same for both cases, which assures
that when Eqs. (5)–(7) are obeyed the physical meanings of
the probabilities are guaranteed for oscillation both in a
vacuum and in matter. It is also important to point out that,
different from what is assumed by Ref. [16], in this work
decoherence is assumed to be dependent on the matter
density, as can be seen from Eq. (B2). More details of this
discussion can be found in Ref. [8] for the case of two
neutrinos.
It is worth noticing that, even though the calculations

presented in Ref. [8] were made for the case of two
neutrinos, the discussion of the concepts involved is very
general, and its conclusions can be extended to the three-
neutrino case.
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