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We apply the higher-order tensor renormalization group to the four-dimensional ferromagnetic Ising
model, which has been attracting interest in the context of the triviality of the scalar ϕ4

d¼4 theory.
We investigate the phase transition of this model with the higher-order tensor renormalization group
enlarging the lattice size up to 10244 with parallel computation. The results for the internal energy and the
magnetization are consistent with the weak first-order phase transition.
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I. INTRODUCTION

It is well known that the critical behavior of the Ising
model on the higher-dimensional hypercubic lattice is well
explained with the mean-field theory. In dimensions larger
than 4, the effect of the background fluctuations becomes
negligible, and the model in the critical region exactly
obeys the mean-field exponents [1,2]. At the upper critical
dimension, however, multiplicative logarithmic corrections
are added to the leading scaling behavior of the mean-field
theory. Some of these corrections were derived by the
perturbative calculation with the renormalization group
method [3]. Since the Ising model is specified by the
infinite coupling limit of the single-component scalar ϕ4

4

theory, the model in four dimensions has been attracting the
interest of particle physicists for a long time in the context
of the triviality of the scalar ϕ4

4 theory, which is related
to the scalar sector of the standard model describing
the generation of gauge boson and fermion mass through
the Higgs mechanism [4–10]. There is also a recent study
to discuss the triviality of the OðNÞϕ4

4 theory with the
higher-loop beta function [11–13].
A numerical study of the Ising model on a hypercubic

lattice serves as a nonperturbative test of the triviality [14,15];

if the leading scaling behavior is the mean-field type and
it is modified only by the multiplicative logarithmic factor,
one obtains supporting evidence for the triviality. In fact, the
numerical investigation based on theMonteCarlo simulation
has successfully caught the mean-field exponents [16–20],
but there remains some controversy over the appearance
of the logarithmic corrections [19–23]. Actually, no
Monte Carlo study has confirmed the logarithmic correction
in the scaling behavior of the specific heat, which is
ðln jtjÞ1=3, with t being the reduced temperature expected
from the perturbative renormalization group analysis. This is
mainly because the cubic root of logarithmic divergence is
too weak to detect by the finite-size scaling analysis or the
specific heat may be actually bounded [19]. Indeed, the
finite-volume effect of the four-dimensional Ising model
has been investigated fromvarious viewpoints [9]. A detailed
Monte Carlo study has found a serious finite-volume effect
due to nontrivial boundary effects in the four-dimensional
Ising model [20]. From the viewpoint of numerical calcu-
lation, it could be possible that there remain some unreveal-
ing aspects in the phase transition of this model, and it
should be worth trying different approaches other than the
Monte Carlo method.
For this purpose, we employ the tensor network scheme

to investigate the four-dimensional classical Ising model.
This scheme has various types of numerical algorithms
[24], which can be divided into two streams: a Hamiltonian
approach and a Lagrangian one. The latter enables us to
evaluate the partition functions directly via tensor network
representation. A typical algorithm is the tensor renorm-
alization group (TRG) [25], which was originally proposed
by Levin and Nave for the two-dimensional Ising model.
The TRG method has been successfully applied to the
two-dimensional field theories with the path-integral
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formulation in the particle physics [26–39]. The higher-
order TRG (HOTRG) [40] is an improvement of the TRG
with the extension to higher dimensions. One of the
attractive features in the TRG and HOTRG is that we
are allowed to directly study the thermodynamic properties;
we can systematically increase the system size by repeating
the coarse-graining steps in the algorithms. Although
earlier studies with the HOTRG are restricted to two-
and three-dimensional systems [41–55], including the
three-dimensional classical Ising model [40], the algorithm
itself is readily extended to a four-dimensional lattice. In
this paper, we employ the HOTRG method to investigate
the phase transition of the classical Ising model on the four-
dimensional hypercube. The accuracy of the HOTRG is
controlled by the bond dimension Dcut, which is varied up
to 14 in this study. To investigate the phase transition of the
model, we measure the internal energy and the magneti-
zation through the evaluation of the tensor network with
some impurity located at the center of the hypercube.
This paper is organized as follows. In Sec. II, we briefly

review the HOTRG method and explain an approach to
evaluate the internal energy and the magnetization of the
Ising model. We present numerical results in Sec. III and
discuss the properties of the phase transition. Section IV is
devoted to a summary and outlook.

II. HOTRG WITH IMPURITY

The partition function of the four-dimensional ferromag-
netic Ising model is given by

ZN ¼
X

fσ¼�1g

�Y

hiji
Tσiσj

��Y

i

Vσi

�
; ð1Þ

with Tσiσj ¼ eβσiσj , Vσi ¼ eβhσi , where σi is the two-state
classical spin variable on the lattice site i, hiji specifies the
sum over all the nearest-neighboring spin pairs, β is the
inverse temperature 1=T, and h is the external magnetic
field. The subscript N is the size of a system. Based on the
eigenvalue decomposition T ¼ UΛUT, one defines the
eight-rank local tensor located on each lattice site as

T ð0Þ
i;xx0yy0zz0tt0

¼
X

σi

WσixWσix0WσiyWσiy0WσizWσiz0WσitWσit0Vσi ; ð2Þ

where W ¼ U
ffiffiffiffi
Λ

p
. The indices of these tensors are called

bond indices. Now, we obtain the tensor network repre-
sentation of Eq. (1) as

ZN ¼ Tr
YN

i¼1

T ð0Þ
i ; ð3Þ

where we assume the periodic boundary condition and the
right-hand side means all the bond indices are contracted so

as to restore the model defined on the four-dimensional
hypercube. One way to evaluate Eq. (3) is the HOTRG with
the use of the higher-order singular value decomposition
[40]. In the HOTRG procedure, the nearest two local
tensors along the x, y, z, and t directions are mapped to
the coarse-grained one sequentially. Hence, the lattice size
is reduced by a factor of 2 after each step of coarse graining.
After repeating n steps of coarse graining, one obtains the
partition function with the system size of N ¼ 2n; that is,

ZN ≈ TrT ðnÞ
i¼1: ð4Þ

The right-hand side is again the sum over all the bond
indices so as to restore the structure of the four-dimensional
lattice model with the periodic boundary condition, and this
is easily done by defining the trace of the coarse-grained
tensor as

TrT ðnÞ
i¼1 ¼

X

x;y;z;t

T ðnÞ
1;xxyyzztt: ð5Þ

There are two ways to evaluate the expectation values
such as the internal energy and the magnetization. One is
the numerical differentiation with respect to β and h. The
other is the direct evaluation of the expectation value using
the corresponding tensor network representation. For in-
stance, we can obtain the internal energy through the
evaluation of the nearest-neighbor local energy term
hσiσji with the HOTRG method as follows. We first define
the additional local tensor as

Sð0Þ
i;xx0yy0zz0tt0

¼
X

σi

σiWσixWσix0WσiyWσiy0WσizWσiz0WσitWσit0Vσi : ð6Þ

With the use of this local tensor, the tensor network
representation for the local energy is given by

hσiσji ¼ Tr

�
Sð0Þ
i Sð0Þ

j

Y

k≠i;j
T ð0Þ

k

�
=ZN; ð7Þ

where Sð0Þ
i;j represent the tensors on the lattice sites i and j,

respectively, and T ð0Þ
k is for the rest of theN − 2 sites. Since

the numerator looks as if it contains two impurities, we

call Sð0Þ
i an impure tensor and T ð0Þ

k a pure tensor. The
denominator is evaluated by the plain HOTRG method. To
coarse grain the impure tensor network of Eq. (7), we
assume the local energy term is fixed at the center of the
lattice (i ¼ 1, j ¼ 2 ¼ 1þ ŷ, with ŷ being the unit vector
in the y direction) during the HOTRG calculation. In the
first step, we define the coarse-grained impure tensor

Sð1Þ
1 by contracting two initial impurities. For simplicity,

we give the corresponding expression in the two-
dimensional case;
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Sð1Þ
1;xx0yy0 ¼

X

α;x1;x01;x2;x
0
2

Uð1Þ
xx1⊗x2S

ð0Þ
1;x1x01yα

Sð0Þ
2;x2x02αy

0U
ð1Þ
x0x0

1
⊗x0

2
; ð8Þ

where Uð1Þ is a block-spin transformation determined
within the original algorithm of the HOTRG [40]. In the

following steps, Sðnþ1Þ
1 is defined by the combination of

SðnÞ
1 and T ðnÞ

2 . We again show the corresponding formula in
the two-dimensional case for simplicity;

Sðnþ1Þ
1;xx0yy0 ¼

X

α;x1;x01;x2;x
0
2

Uðnþ1Þ
xx1⊗x2S

ðnÞ
1;x1x01yα

T ðnÞ
2;x2x02αy

0U
ðnþ1Þ
x0x0

1
⊗x0

2
: ð9Þ

Finally, the local energy is approximately given by

hσiσji ≈
TrSðnÞ

1

TrT ðnÞ
1

: ð10Þ

The meaning of the trace is the same as in Eq. (5). Since the
original model has the translational invariance, hσiσji × d,
where d is the dimensionality, should give the absolute
value of internal energy.
The one-point function hσii to measure the magnetiza-

tion is also evaluated in the same way. In this case, we are
allowed to apply the four-dimensional counterpart of
Eq. (9) from the first coarse-graining step because the
initial expression of hσii has the form

hσii ¼ Tr

�
Sð0Þ
i

Y

k≠i
T ð0Þ

k

�
=ZN; ð11Þ

where Sð0Þ
i is located only on the lattice site i (i ¼ 1) and k

runs the rest of the N − 1 sites. After sufficient iterations,
hσii is evaluated by

hσii ≈
TrSðnÞ

1

TrT ðnÞ
1

: ð12Þ

Thanks to the translational invariance, hσii directly corre-
sponds to the spatial average of the Ising spin. Note that
Eqs. (10) and (12) have the same expression, but they are
evaluated by different coarse-graining procedures.
In Ref. [40], computational costs and memory space

requirements in two- and three-dimensional HOTRG are
given. Computational costs are OðD7

cutÞ and OðD11
cutÞ, and

memory space requirements are OðD4
cutÞ and OðD6

cutÞ,
respectively. In straightforward expansion of the HOTRG
algorithm in Ref. [40] to four dimensions, the computational
cost is OðD15

cutÞ, and the memory space requirement
is OðD8

cutÞ. In our implementation, the computational
cost in each process is OðD13

cutÞ, and the memory space
requirement in each process is OðD7

cutÞ. A key idea of
this implementation is as follows. In some of steps in
coarse-graining procedure, two local tensors are considered,
and contraction is executed. In such steps, we distribute

elements of the two local tensors to each process according
to one of eight indices of each local tensor. Such indices are
chosen from ones which are not contracted during the
considered step. Then, D2

cut processes are used, and the
computational cost is reduced toOðD13

cutÞ fromOðD15
cutÞ. On

the two local tensors, one of eight indices is specified from
process numbers in parallel computing. Thus, the memory
space requirement in each process is OðD7

cutÞ. Our imple-
mentation is basically based on an algorithm described in a
paper which is in preparation by T. Y. and S. Sakurai to be
shown in another place. We have carried out a detailed
measurement of the internal energy and the magnetization
withDcut ¼ 13, employing the fine resolution of the temper-
ature ΔT ¼ 6.25 × 10−6 around the transition temperature.
We have repeated the calculation withDcut ¼ 14 to confirm
the qualitative features obtained with Dcut ¼ 13. But in this
case, the temperature resolution remains coarser as ΔT ¼
3.0 × 10−5 due to the computational cost. In the following,
we focus on the results with Dcut ¼ 13.
As found in Sec. III, all the measured physical quantities

seem to lose the volume dependence beyond n ≈ 30, so the
lattice size of N ¼ 240 ¼ 10244 is large enough to be taken
as the thermodynamic limit.

III. NUMERICAL RESULTS

We first evaluate the free energy with the plain HOTRG
method. The convergence behavior is investigated by
defining the following quantity:

δf ¼
����
lnZNðDcutÞ − lnZNðDcut ¼ 13Þ

lnZNðDcut ¼ 13Þ
����: ð13Þ

Figure 1 shows a typical convergence behavior of lnZN in
the vicinity of the transition temperature. We observe that
δf decreases monotonically as a function of Dcut.

3 6 9 12
D

cut

10
-5

10
-4

10
-3

10
-2

δf

n = 20  (L =32)
n = 40  (L = 1024)

FIG. 1. Convergence behavior of lnZN as a function of bond
dimension Dcut at T ¼ 6.64250 in the vicinity of the transition
temperature. L is a linear extent of the lattice defined as N ¼ L4.
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We now turn to the determination of the transition
temperature. Let us assume that one has just obtained
the coarse-grained tensor T ðnÞ

1;xx0yy0zz0tt0, the coarse-graining
direction of which was the t direction. Choosing a
Dcut ×Dcut matrix as

AðnÞ
tt0 ¼

X

x;y;z

T ðnÞ
1;xxyyzztt0 ; ð14Þ

we calculate the quantity

XðnÞ ¼ ðTrAðnÞÞ2
TrðAðnÞÞ2 ; ð15Þ

which counts the number of the largest singular value of
AðnÞ. This is an indicator of the symmetry breaking [56].
We calculate XðnÞ iteratively until it converges. A typical
convergence behavior of XðnÞ is shown in Fig. 2. Notice that
we sequentially redefine AðnÞ corresponding to the direction
of coarse graining in the practical calculation. Figure 3
shows the transition temperature Tc as a function of Dcut.
The error bars, provided by the temperature resolution, are
all smaller than the corresponding symbols. Since TcðDcutÞ
is estimated by XðnÞ with sufficiently large n, typically
beyond n ¼ 30, there remains little finite-volume effect. In
this work, we have obtained TcðDcut ¼ 13Þ ¼ 6.650365ð5Þ
on the 10244 lattice. The recent Monte Carlo study [19]
obtained βc ¼ 0.1496947ð5Þ corresponding to Tc ¼
6.68026ð2Þ, which shows a slight deviation from our result
with the HOTRG up to Dcut ¼ 13. Note that the value of
Tc in Ref. [19] was obtained by the infinite-volume
extrapolation using the results on relatively small lattices
with L4 ≤ 804.
Let us move on to the evaluation of the internal energy,

which can be obtained by numerical differentiation or the
coarse graining of the impure network of Eq. (7). We have

compared both methods, varying the temperature resolu-
tion, and found that the latter successfully keeps the
numerical accuracy as the resolution becomes finer. In
the following, we show the results with the impure tensor
method. Figure 4 traces the volume dependence of the
internal energy with Dcut ¼ 13. The converging behavior
toward the thermodynamic limit is clearly observed. Since
the system size N is given by 2n, a hypercubic structure is
restored in the condition of n mod4 ¼ 0. Figure 5 shows
the internal energy as a function of temperature for various
lattice sizes withDcut ¼ 13. In the case of n ≥ 24 (L ≥ 64),
a finite jump emerges with mutual crossings of curves
between different volumes around the transition temper-
ature. These are characteristic features of the first-order
phase transition as discussed in Ref. [57]. The similar
volume dependence and a finite jump at L ≥ 64 have been
also confirmed in case of Dcut ¼ 14. The numerical value
of the finite jump ΔEðDcut ¼ 13Þ in the infinite-volume
limit is

10 20 30 40
n

1

2

3

X
T = 6.65036875
T = 6.65036250

FIG. 2. XðnÞ at the nth coarse-graining step withDcut ¼ 13. The
red line corresponds to the disordered phase, and the blue one
corresponds to the ordered one.

5 10 15
D

cut

6.6

6.7

6.8

6.9

7.0

7.1

T
c

FIG. 3. Transition temperature as a function of bond dimension.
Error bars are within symbols.
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FIG. 4. Internal energy at the nth coarse-graining step with
Dcut ¼ 13. The red line corresponds to the disordered phase, and
blue one corresponds to the ordered phase. The inset graph
magnifies the n dependence beyond n ¼ 20.
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ΔEðDcut ¼ 13Þ ¼ 0.0034ð5Þ;

which is obtained by the linear extrapolation toward the
transition temperature both from the low- and high-temper-
ature regions. The resolution of the temperature at the
boundary between the two phases is ΔT ¼ 6.25 × 10−6.
We also investigate the spontaneous magnetization,

which is an order parameter to detect the symmetry-
breaking phase. Figure 6 shows a typical volume depend-
ence of magnetization toward the thermodynamic limit.
We have evaluated hσii with h¼1.0×10−9 and 2.0 × 10−9

at each temperature and coarse-graining step. After taking
the infinite-volume limit, we extrapolate the value of hσii
toward the h → 0 limit. Figure 7 shows the resulting
spontaneous magnetization as a function of temperature.
The transition temperature is consistent with both estimates
by XðnÞ and the internal energy. We have observed a finite

jump in the magnetization, the numerical value of which is
obtained by the linear extrapolation toward the transition
temperature from both the low- and high-temperature
regions:

ΔmðDcut ¼ 13Þ ¼ 0.037ð2Þ:

The resolution of the temperature at the boundary between
the two phases is again ΔT ¼ 6.25 × 10−6. Note that we
have tried several choices of the external field other than
h ¼ Oð10−9Þ and confirmed that the behavior of the
magnetization is robust against the change of the magnitude
of h.

IV. SUMMARY AND OUTLOOK

We have analyzed the phase transition of the four-
dimensional ferromagnetic Ising model employing the
HOTRG on L4 ≤ 10244 lattices. The transition temperature
is successfully determined by measuring the degeneracy of
the largest singular value of the pure tensor. We have also
investigated the temperature dependence of the internal
energy and magnetization with the impure tensor method.
We have found a finite jump for the internal energy together
with mutual crossings of curves between different volumes
around the transition temperature. A finite jump is also
observed in the magnetization. These are characteristic
features of the first-order phase transition. The numerical
results obtained by the impure tensor method are consistent
with the weak first-order phase transition. The resulting
estimate for the transition temperature in the thermody-
namic limit shows a slight deviation from the recent
Monte Carlo prediction [19] obtained from the infinite-
volume extrapolation of the data on relatively small lattices
up to 804. The logarithmic correction expected by the

6.650300 6.650325 6.650350 6.650375 6.650400 6.650425
T

-0.763
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-0.761

-0.760

-0.759
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-0.757
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 E
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y
n = 22
n = 23
n = 24  (L = 64)
n = 28  (L = 128)
n = 32  (L = 256)
n = 36  (L = 512)
n = 40  (L = 1024)

FIG. 5. The internal energy as a function of temperature for
various lattice sizes with Dcut ¼ 13. TcðDcut ¼ 13Þ estimated by
XðnÞ of Eq. (15) is within the gray band.

6.650350 6.650375 6.650400
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n

FIG. 7. Spontaneous magnetization in the thermodynamic limit
with Dcut ¼ 13. Error bars, provided by extrapolation, are within
symbols. TcðDcut ¼ 13Þ estimated by XðnÞ of Eq. (15) is within
the gray band.
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FIG. 6. Magnetization at the nth coarse-graining step with
Dcut ¼ 13 and h ¼ 1.0 × 10−9. The red line corresponds to the
disordered phase, and the blue one corresponds to the
ordered phase.
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perturbative renormalization group analysis has also not
been detected in our current HOTRG study.
In future investigation, the HOTRG calculation with

Dcut > 14 should allow us to achieve a direct and essential
improvement of this study. Our impure tensor method can
be also improved by considering all the patterns of coarse
graining for the network including some impurities [58].
Another possible approach is to develop the best optimi-
zation of the Frobenius norm of impure tensor, which
would be a realistic way to improve our impure tensor
algorithm from the viewpoint of the computational cost of
the HOTRG.
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