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The Thirring model is an interacting fermion theory with current-current interaction. The model in 1þ 2

dimensions has applications in condensed-matter physics to describe the electronic excitations of Dirac
materials. Earlier investigations with Schwinger-Dyson equations, the functional renormalization group
and lattice simulations with staggered fermions suggest that a critical number of (reducible) flavors Nc

exists, below which chiral symmetry can be broken spontaneously. Values for Nc found in the literature
vary between 2 and 7. Recent lattice studies with chirally invariant SLAC fermions have indicated that
chiral symmetry is unbroken for all integer flavor numbers [B. H. Wellegehausen, D. Schmidt, and A.Wipf,
Phys. Rev. D 96, 094504 (2017); D. Schmidt, Three-dimensional four-Fermi theories with exact chiral
symmetry on the lattice, Ph.D. thesis, TPI, FS-University Jena, 2018, https://doi.org/10.22032/dbt.34148].
An independent simulation based on domain wall fermions seems to favor a critical flavor-number that
satisfies 1 < Nc < 2 [S. Hands, Phys. Rev. D 99, 034504 (2019)]. However, in the latter simulations
difficulties in reaching the massless limit in the broken phase (at strong coupling and after the Ls → ∞ limit
has been taken) are encountered. To find an accurate value Nc we study the Thirring model (by using an
analytic continuation of the parity even theory to arbitrary realN) forN between 0.5 and 1.1. We investigate
the chiral condensate, the spectral density of the Dirac operator, the spectrum of (would-be) Goldstone
bosons and the variation of the filling-factor and conclude that the critical flavor number is Nc ¼ 0.80ð4Þ.
Thus we see no chiral symmetry breaking in all Thirring models with 1 or more flavors of (4-component)
fermions. Besides the transition to the unphysical lattice artifact phase we find strong evidence for a hitherto
unknown phase transition that exists for N > Nc and should answer the question of where to construct a
continuum limit.

DOI: 10.1103/PhysRevD.100.054501

I. INTRODUCTION

The Thirring model [1] in 2 space-time dimensions is
integrable and in the massless limit even soluble [2,3]. The
model in 3 space-time dimensions is of interest for various
reasons, e.g., its close relationship to QED3 [4–7] or its
relevance in solid state physics, where it describes low-
energy electronic properties of materials like graphene [8,9]
or high-temperature superconductors [10,11]. In 3 dimen-
sions the model is perturbatively nonrenormalizable but can
be renormalized in the limit of large flavor numbers N
[4,12–14]. Thus it provides a simple realization [15] of the
concept of asymptotic safety [16]. In the large-N limit one
finds an unbroken Uð2NÞ symmetry for every coupling

strength. On the other hand, in the limit N ¼ 1=2 the
Thirring model is equivalent to the Gross-Neveu model.
The latter exhibits (for all N) a second order phase
transition from a symmetric gapless (massless) phase at
weak coupling to a spontaneously broken gapped (massive)
phase at sufficiently strong couplings.1 We conclude that
the Thirring model exhibits no chiral phase transition for
large N but shows a second order phase transition at
N ¼ 1=2. The question about the critical flavor number Nc

below which the Thirring model shows a chiral phase
transition has been intensively discussed in the past. While
early results obtained with functional methods or staggered
lattice fermions range from Nc ¼ 2 to Nc ¼ ∞ [5,17–27],
more recent lattice studies with chiral fermions favor
smaller values of Nc. In particular, based on simulations
with massless (chiral) fermions we argued that the Uð2NÞ-
symmetry is unbroken for all integer flavor numbers N ⪆ 1

[28]. For N ¼ 1 the effective potential for the chiral
condensate is almost flat at the origin such that we could
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1More precisely, the Thirring model with 1 irreducible
2-component Fermion flavor is the same as the Gross-Neveu
model with 1 irreducible fermion flavor.
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not completely rule out the possibility that there is SSB for
N ¼ 1. In an interesting recent work Simon Hands applied
domain-wall fermions to study the chiral condensate and
masses of the (would-be) Goldstone bosons [29]. The
results support our finding that Nc is smaller than hitherto
believed with the notable difference that he interprets his
data as an evidence for 1 < Nc < 2. In a recent explorative
functional renormalization group (FRG) study with
momentum-dependent couplings and the pseudospectral
method the critical behavior of four-fermion theories [30]
has been reconsidered. While a precise estimate for Nc

remains difficult in these elaborate FRG-studies, the new
results are compatible with the lattice studies based on
chiral fermions.
This work aims to solve the discrepancy between the

results obtained with domain-wall and SLAC fermions. For
that purpose we first performed simulations for 38 different
noninteger values of N between 0.5 and 1.1 and calculated
the corresponding chiral condensates. This way we already
find strong evidence for a critical flavor number signifi-
cantly lower than 1.0. However, due to the computational
cost of the algorithm a reliable extrapolation to infinite
volume is difficult. But with the help of a careful study of
the (would-be) Goldstone spectrum and the spectral density
of the Dirac operator we could not only assure unbroken
symmetry at N ≥ 1.0 but also verify the proposed SSB
Uð2Þ → Uð1Þ ⊗ Uð1Þ. We conclude that indeed there is a
critical flavor number Nc ≈ 0.80 which is considerably
smaller than 1.0. A similarly accurate value for Nc comes
from studying the susceptibility of the four Fermi term in
the Lagrangian which signals—besides the well-known
transition to the artificial lattice phase—a new interaction
driven phase transition for all models with flavor numbers
N ≥ Nt ¼ 0.78ð4Þ. We argue that Nt should be identified
with Nc. There is evidence that the new transition is of
second order and can be used to construct a continuum limit
of the lattice Thirring models. Interestingly, this new
transition seems unrelated to any change of symmetry.
To summarize: All results of our simulations with SLAC

fermions consistently show that chiral symmetry is not
broken in all massless Thirring models with N ¼ 1; 2; 3;…
four-component fermions.
The paper is organized as follows: In the first section we

recall relevant properties of the (reducible) Thirring model.
For more details we refer to our earlier and much more
detailed work [28], in which we investigated Thirring
models with irreducible 2-component spinor-fields and
with reducible 4-component fields. In the present work
we focus on the reducible and parity-even case considered
in other works on the Thirring model in 3 dimensions. In
the next two sections we present our lattice results for the
chiral condensate and the spectral density—from which we
extract a first estimate of the critical flavor number. Then
we discuss the correlation matrix for interpolating operators
for the scalar and pseudoscalar mesons. The simulation

results for the meson spectra support the proposed sym-
metry breaking pattern of chiral symmetry. In the following
section we present our simulation results for the expect-
ation value of the interaction term ∝ ðψ̄ΓμψÞ2 and the
corresponding susceptibility. The expectation value is
related to the mean filling factor of the fermions.
In the Appendix A we prove some useful properties of

the spectral density and fermion Green function which
follow from parity invariance of the reducible theory.
Appendixes B and C contain some technical details
concerning numerical differentiation and our simulations.

II. THE THIRRINGMODEL: ORDER PARAMETER
AND SPECTRAL DENSITY

The Lagrangian density of the Thirring model in three-
dimensional Euclidean space-time has the form

L¼
XN
a¼1

ψ̄aiΓμ∂μψa −
g2

2N
jμjμ; jμ ¼

XN
a¼1

ψ̄aΓμψa; ð1Þ

and contains a vector-vector interaction built from N
flavors ψ1;…;ψN . In the present work ψa (or ψ) always
denotes a 4-component reducible spinor. The Hermitian
matrices Γμ with μ ¼ 1, 2, 3 form a 4-dimensional
reducible representation of the Clifford algebra. After
introducing a Hubbard-Stratonovich auxiliary vector field
vμ, a subsequent integration over the fermion fields leads to
the partition function (see [28] for more details)

Z ¼
Z

Dvμe−SeffðvÞ; with

Seff ¼ λ

Z
d3xvμvμ − N log detðiDÞ; λ ¼ N

2g2
: ð2Þ

Here we used that the determinant for N flavors is just the
N’th power of the determinant for 1-flavor with Dirac
operator

D ¼ Γμð∂μ − ivμÞ þm: ð3Þ
We introduced a chirality-breaking fermion mass which is
needed to control our lattice Monte-Carlo simulations in the
chirally broken phase. The eigenvalues of iD come in pairs
(λþ im, −λþ im) such that the fermion determinant is real
and positive,

detðiDÞ ¼ ðdetD†DÞ12 ≥ 0: ð4Þ

This means that the effective action in (2) is real or that the
(massive or massless) Thirring model with N reducible
flavors has no sign problem. Hence in the well-known
auxiliary field formulation the model can be simulated by
Monte-Carlo methods on a space-time lattice. At this point
we observe that N is just a parameter that can be varied
continuously. In the present work we will focus on N ⪅ 1
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and thus consider lattice models which continuously
extrapolate to N ¼ 1.0 from below. The so defined models
have no parity anomaly for any real N.
The massless Thirring model with N reducible flavors is

invariant under the discreteZ2 parity transformation as well
as global Uð2NÞ chiral transformations. These symmetries,
together with the discrete C and T symmetries, are well
explained in [21]. A technical problem here is that on a
finite lattice the condensates vanish in the massless case
exactly for every vector field configuration and a careful
extrapolation to vanishing fermion mass is difficult.
For performance reasons, we simulate the theory in a

2-component irreducible representation of the Clifford
algebra. A convenient reducible representation is

Γμ ¼ σ3 ⊗ γμ; Γ4 ¼ σ2 ⊗ σ0;

Γ5 ¼ σ1 ⊗ σ0 and Γ45 ≡ iΓ4Γ5 ¼ σ3 ⊗ σ0; ð5Þ

and the corresponding Dirac operator (3) reads

D ¼
�
=Dþm 0

0 −=Dþm

�
; =D ¼ γμð∂μ − ivμÞ: ð6Þ

At this point we change the fermionic variables,

ψa → Γ45ψa; ψ̄a → ψ̄a; a ¼ 1;…; N; ð7Þ

such that the Dirac operator =D (acting on two-component
irreducible spinors) enters D with the same sign,2 i.e., that
D in (6) is replaced by

D ¼
�
=Dþm 0

0 =D −m

�
; =D ¼ γμð∂μ − ivμÞ: ð8Þ

The effective action in (2) takes the form

SeffðvÞ ¼ λ

Z
d3xvμvμ − N ln detðm2 − =D2Þ: ð9Þ

As order parameter for chiral symmetry we use the chiral
condensate

Σ ¼ i
2N

X
a

hψ̄aΣ45ψai; ð10Þ

where the insertion Σ45 originates from the change of
variables in (7). Using translational invariance it can be
written as

Σ ¼ 1

V
1

Z

Z
Dvμ tr

�
m

m2 − =D2

�
e−SeffðvÞ: ð11Þ

We see here that only the Dirac operator =D of one
irreducible flavor—introduced in (6)—enters the expres-
sion for the partition function and chiral condensate of N
reducible flavors. Note that the condensate is real and
positive, Σ ¼ jΣj. In terms of the spectral density ρv of
the irreducible Dirac-operator in a fixed auxiliary field,
defined by

trfði=DÞ ¼
Z

∞

−∞
dEfðEÞρvðEÞ; ð12Þ

the condensate (11) can be written as

Σ ¼ 2m
V

Z
∞

0

dE
E2 þm2

ρ̄ðEÞ; ð13Þ

where the non-negative expectation value ρ̄ðEÞ is calcu-
lated with the effective action,

ρ̄ðEÞ ¼ 1

Z

Z
Dvμe−SeffðvÞρvðEÞ ¼ ρ̄ð−EÞ: ð14Þ

The last relation follows from charge conjugation
symmetry which implies ρv ¼ ρ−v and is explained
in Appendix A. In the limit m → 0 Eq. (13) gives rise
to a variant of the celebrated Banks-Casher relation [31].
It relates the low end of the spectral density of the
irreducible operator i=D to the chiral condensate of the
reducible models. In passing we note that—because of
parity-symmetry—the would-be order parameter of parity
∝ hψ̄aψai is identically zero for all reducible models. This
means that there is no spontaneous breaking of parity.
Finally, we must emphasize that varying the number of

reducible flavors N continuously between 1
2
and 1 as

described above is not equivalent to varying the number
of irreducible flavorsNir between 1 and 2. There are several
reasons for this difference: First and rather technically, the
Nir ¼ 1 model suffers from a severe sign problem and can
only be simulated in an interesting dual formulation [28], in
contrast to the reducible model with N ¼ 1

2
, which has no

sign problem. Second and more important, for Nir ¼ 1 the
Z2 parity symmetry can be broken (by the anomaly and/
or spontaneously) while parity is never broken for the
reducible systems.
In the Thirring models with Nir ¼ 2 and N ¼ 1 the

global U(2) chiral symmetry can be broken to Uð1Þ × Uð1Þ
in which case we should see two massless Goldstone
bosons in the particle spectrum. Finally we note, that the
interpolating models with N ∉ N=2 probably do not
describe local quantum field theories. But this problem
will not invalidate the reasoning in the present work.

2If =D would have a different sign for the two irreducible
flavors, then Euclidean correlators could violate positivity
constraints.
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III. CHIRAL CONDENSATE

We performed simulations with chiral SLAC-fermions
on lattices L × ðL − 1Þ2 in the range L ¼ 6…24. To control
and stabilize our simulations, we chose a mass proportional
to the inverse lattice size,

m ¼ m0

L
; ð15Þ

with small dimensionless parameter m0. Note that for any
fixed value ofm0 one recovers the massless Thirring model
in the infinite volume limit L → ∞.
Figure 1 shows the surface plot of the chiral condensate

for λ ¼ 0.25…0.60 and N ¼ 0.5…1.1 on a 16 × 152 lattice
with m0 ¼ 0.1. For N ¼ 0.5 there exists a broken phase
with nonzero chiral condensate Σ. With increasing flavor
number the chiral condensate falls off very quickly.
For small λ the condensate vanishes due to the (annoying
but well-known) large lattice artifacts in the strong coupling
regime, [24,28].
In order to determine the critical flavor number, we

investigate the maximum Σmax of the λ-dependent chiral
condensate Σ for different flavor numbers N and lattice
sizes L. The maximum of the condensate is well-motivated
since it clearly signals the breaking of chiral symmetry.
The obtained results fully comply with those obtained with
the alternative method based on the susceptibility of the
interaction term in a later section.
Figure 2 shows the dependence of Σmax on the mass

parameter m0 for three different lattice volumes and for
N ¼ 0.70. For a fixedm0 (with Comptonwave-lengthmuch
smaller than the lattice size) the chiral condensate increases
with increasing lattice volume. Performing the infinite
volume limit—which includes the m → 0 limit for every
m0 > 0—we conclude that for N ¼ 0.7 chiral symmetry is
spontaneously broken. Actually, in most of our simulations
we choosem0 ¼ 0.1, which is a good compromise between

good chiral properties, simulation performance and small
finite volume effects. The results for the maximal conden-
sate Σmax as function of N (for m0 ¼ 0.1) is depicted in
Fig. 3. For a fixed lattice volume, the condensate increases
with decreasing flavor number. For a fixed N ⪅ 0.8 the
maximal condensate increases with increasing lattice vol-
ume and we conclude that chiral symmetry is broken for
these N. We compared with the results obtained with m0 ¼
0.04 and obtained a comparable outcome. But for this
smaller mass finite size effects are less suppressed. The
region above N ¼ 0.8 is magnified in Fig. 4. Above
N ¼ 0.95 the condensate decreases with increasing volume
andone concludes that chiral symmetry remains unbroken in
this regime. Unfortunately, the lattices are not sufficiently

0.5
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0.8

0.9
1.0

1.1

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

0.00
0.05
0.10
0.15
0.20
0.25

FIG. 1. Expectation value of the chiral condensate Σ as function
of the coupling λ and the number N of 4-component spinors on a
16 × 152 lattice with m0 ¼ 0.1.

FIG. 3. Maximal chiral condensate Σmax as function of N for
m0 ¼ 0.1 on lattices with different sizes. Also shown are fits of
the critical behavior according to Eq. (17) and parameters from
Table II.

FIG. 2. Maximal chiral condensate Σmax for different lattices
volumes and N ¼ 0.70 as function of the mass-parameter
m0 ¼ mL.
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large to permit a reliable extrapolation to infinite volume for
all values ofN under consideration. That was only achieved
for the flavor numbers below 0.75 and above 1.00. Three
examples are depicted in Fig. 5. Sincewe introduced amass,
we expect a finite size scaling law of the form [32]

ΣmaxðLÞ ¼ ae−bL þ Σmaxð∞Þ ð16Þ

for which the optimal fit-parameters in the fits depicted
in Fig. 5 are listed in Table I.3 In the broken phasewith small
N (e.g., 0.75) this extrapolation works well. Also for
N ¼ 1.0 the exponential function (16) fits the data well
and points to a vanishing condensate in the infinite volume
limit. For values ofN in between the data becomes basically
flat due to large finite size effects—in some cases they
are even nonmonotonic—which renders an extrapolation
unreliable.
However, for every finite volume we find that the

maximal chiral condensate exhibits a turning point around
N ≈ 0.8 where the chiral condensate is bending upwards,
see Fig. 3. This bending is caused by finite size effects and
the explicit breaking of chiral symmetry by the fermion
mass term. The data points to the left of this turning point
are well-described by the scaling law

ΣmaxðNÞ ¼ aðNc − NÞβ ð17Þ

with parameters a, Nc, β given in Table II. In particular we
can read off the critical flavor number and conclude, that
there is no spontaneous symmetry breaking above

Nc ¼ 0.80ð4Þ: ð18Þ

In the following sections we will substantiate the result (18)
with other methods. Note that our lattice volumes are not
large enough to extract a reliable value for the critical
exponent β. But since our main focus is on the critical
flavor number, which does not suffer from finite size
effects, we did not further increase the lattice volume to
obtain a more accurate value for β. The critical exponent β
has been calculated previously with the functional renorm-
alization group (FRG), with Dyson-Schwinger equations
(DSE) and with Monte-Carlo simulation with staggered
fermions (MC). We compiled some results with references
in Table III. We see that the predictions for the critical
exponent β depend much on the nonperturbative method
in use. But the quoted values cannot be easily compared
among themselves and with our results in Table II.
For example, with staggered fermions one may simulate

FIG. 4. Maximal chiral condensate Σmax as function of N above
the critical flavor number and for m0 ¼ 0.1 on lattices with
different sizes.

FIG. 5. Maximum of the condensate (normalized to the smallest
lattice) as function of the lattice size L for three different values
of N.

TABLE I. Fit parameter for the infinite volume extrapolation of
the maximal chiral condensate for three values of N.

N a b Σmaxð∞Þ
0.75 −5.9ð1Þ 0.10(2) 4.21(4)
0.9 −1.0ð3Þ 0.20(9) 1.29(6)
1.0 1(1) 0.03(4) 0(1)

TABLE II. Fit parameters for fitting the critical behavior.

L N a β NcðLÞ
8 [0.50, 0.75] 0.245(4) 0.6(1) 0.82(4)
12 [0.50, 0.80] 0.266(3) 0.31(2) 0.815(3)
16 [0.50, 0.79] 0.276(4) 0.23(2) 0.801(4)

3In all the following fits, L ¼ 14 was excluded from fitting
because there were some incurable problems with the thermal-
ization. Also, Σð∞Þ was constrained to be positive, since the
exact condensate has this property.
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another universality class. We intend to find a better value
of β with chiral fermions on larger lattices in the future.
For the smaller mass parameter m0 ¼ 0.04 we obtain

qualitatively the same data. However, the ill-conditioned
fermion determinant forbids a more detailed study for this
(and smaller) masses.

IV. SPECTRAL DENSITY

As explained above, the chiral properties of the theory
can be extracted from the spectral density ρvðEÞ of the
massless irreducible Dirac operator introduced in (12) and
the average spectral density ρ̄ðEÞ defined in (14). If ρ̄ðEÞ in
the neighborhood of E ¼ 0 remains small with increasing
volume, then chiral symmetry is realized. On the contrary,
if it increases, then chiral symmetry is broken. Figure 6
shows the spectral density for N ¼ 0.80 on different lattice
sizes. Close to the origin, the density clearly builds up with
increasing lattice volume and one concludes that chiral
symmetry is broken. For the larger flavor numberN ¼ 1.00
we observe the opposite behavior, see Fig. 7: Close to the
origin, the density remains small for all lattice sizes. Again
we conclude that for N ¼ 1.00 chiral symmetry is
unbroken.

V. GOLDSTONE SPECTRUM

Next we investigate the meson spectrum of the N-flavor
theory. There are two scalar and two pseudoscalar mesons
with vanishing angular momentum and the corresponding
interpolating operators are OΓ ¼ 1

N

P
a ψ̄aΓψa, where Γ is

the identity matrix or one of the three matrices iΓ4, iΓ5 and
Γ45 in (5). Since all reducible flavors contribute equally to
OΓ, we may set N ¼ 1 in these bilinears. Thus we choose
the operator basis

OaðtÞ ¼
X
x

Oaðt; xÞ; a ¼ 0; 1; 2; 3; ð19Þ

which are the zero-momentum projections of

OaðxÞ ¼ ψ̄ðxÞðσa ⊗ σ0ÞψðxÞ ¼ Oaðt; xÞ; ð20Þ

and where ψ represents one of the N reducible flavors. For
example, σ1 ⊗ σ0 swaps the two irreducible spinors which
make up the reducible 4-component spinor. Note that the
expectation value of O3ðxÞ is twice the chiral condensate.
In our simulations, we measure the correlation matrix with
elements

CabðtÞ ¼ hOaðtÞObð0Þi − hOaðtÞihObð0Þi
¼

X
x;y

htrσaΔxxtrσbΔyy − trðσaΔxyσbΔyxÞi

−
X
x;y

htrσaΔxxihtrσbΔyyi; ð21Þ

where Δ is the propagator for 4-component fermions in a
fixed auxiliary field vμ,

FIG. 6. Mean spectral density ρ̄ðEÞ in (14) for N ¼ 0.80
(broken phase) for different lattice sizes. The shaded regions
indicate the uncertainties.

FIG. 7. Mean spectral density ρ̄ðEÞ in (14) for N ¼ 1.00
(symmetric phase) for different lattice sizes. The shaded regions
indicate the uncertainties.

TABLE III. Compilation of various results for the critical
exponent β from the literature. The abbreviations are explained
in the main text.

Method β Ref.

FRG 0.44 [21]
DSE 1 [19]
MC (staggered) 0.37 [27]

LENZ, WELLEGEHAUSEN, and WIPF PHYS. REV. D 100, 054501 (2019)

054501-6



Δ ¼ 1

D
¼

�Δþ 0

0 Δ−

�
; Δ� ¼ hxj 1

i=D� im
jyi: ð22Þ

The expectation values in (21) are calculated with Seff
and traces are taken in spinor and flavor space. By
exploiting parity invariance we prove in Appendix A that
the correlation matrix is diagonal. It is most conveniently
expressed in terms of the parity odd and parity even terms
in the decomposition

Δ ¼ σ0 ⊗ Aþ σ3 ⊗ B; ð23Þ

where

A ¼ i=D
m2 − =D2

; iB ¼ m
m2 − =D2

: ð24Þ

The diagonal elements of ðCabÞ—these are the eigenvalues—
read

C0ðtÞ ¼ 4
X
x;y

htrDAxxtrDAyyi

− 2
X
x;y

htrDðAxyAyx þ BxyByxÞi;

C1ðtÞ ¼ C2ðtÞ ¼ 2
X
x;y

htrDðBxyByx − AxyAyxÞi;

C3ðtÞ ¼ 4
X
x;y

ðhtrDBxxtrDByyi þ Σ2Þ

− 2
X
x;y

htrDðAxyAyx þ BxyByxÞi; ð25Þ

where x ¼ ðt; xÞ and y ¼ ð0; yÞ.
If chiral symmetry is spontaneously broken according to

Uð2Þ → Uð1Þ ⊗ Uð1Þ ð26Þ

two of the four mesons should become massless Goldstone
bosons while the other two remain massive. More precisely,
since the interpolating operators O1 and O2 correspond to
the Goldstone bosons, their correlators C1 ¼ C11 and
C2 ¼ C22 should describe massless particles.
If chiral symmetry is not broken, we expect that the

four (pseudo)scalars arrange in a singlet and a triplet of
SUð2Þ ⊂ Uð2Þ. In particular, the state belonging to the
interpolating operators O1, O2 and O3 should form a
triplet. In the corresponding subspace the correlation matrix
has eigenvalues C1, C2 and C3. Indeed, in the symmetric
phase we have Bxy ¼ 0 for m → 0 and these 3 eigenvalues
become identical,

C0ðtÞ ¼
X
x;y

h4trDAxxtrDAyy − 2trDðAxyAyxÞi;

C1ðtÞ ¼ C2ðtÞ ¼ C3ðtÞ ¼ −
X
x;y

h2trDðAxyAyxÞi: ð27Þ

In Fig. 8 we show the (pseudo)scalar spectrum in the
symmetric phase at N ¼ 1.00 for two different lattice
volumes 112 × 24 and 152 × 24 and a residual mass
m ¼ 0.004. The correlation functions C1, C2 and C3 for
both spatial volumes lie almost on top of each other—the
splitting originates from the explicit breaking by the mass
term—while C0 decays faster. The lines represent fits with
a sum of two cosh-functions for the ground and excited
state. The fitted masses are given in Table IV. For both the
ground and excited multiplet we find three almost identical
masses and a larger one. Within statistical uncertainties and
taking into account finite volume effects, the results are
compatible with two multiplets of massive mesons in the
symmetric phase.
In the broken phase at N ¼ 0.80, see Fig. 9, the

correlation functions C1 ¼ C2 and C3 differ significantly
compared to the correlators in the symmetric phase. While
the masses of C1 ¼ C2 are almost volume independent, the

FIG. 8. Meson correlation functions for N ¼ 1.00 (symmetric
phase) on a L2

s × 24 lattice and m ¼ 0.004.

TABLE IV. Meson masses in the symmetric phase with N ¼
1.00 and the broken phase with N ¼ 0.80 for two different spatial
lattices Ls ¼ 11 and Ls ¼ 15.

C mð11Þ mð15Þ m�ð11Þ m�ð15Þ N red. χ2

C0 0.21(2) 0.21(2) 1.27(6) 1.22(7) 1.00 0.141
C1;2 0.134(3) 0.128(2) 1.03(5) 1.02(3) 1.00 0.251
C3 0.138(2) 0.131(2) 1.08(4) 0.98(3) 1.00 0.403
C0 … … … … 0.80 …
C1;2 0.103(2) 0.095(3) 1.04(12) 0.93(17) 0.80 0.080
C3 0.109(4) 0.127(7) 0.81(7) 0.81(10) 0.80 0.080
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ground state mass of C3 shows stronger finite volume
effects. The correlation function C0 is compatible with zero
for all temporal extents t which is explained by a corre-
sponding correlation length not much bigger than the lattice
constant. Thus the simulation results are compatible with
the existence of two massless Goldstone bosons and two
massive excited states with different masses. We conclude,
that the chiral U(2) symmetry is indeed broken to Uð1Þ ⊗
Uð1Þ for N ¼ 0.80.
In an interesting recent work by Simon Hands with bulk

domain wall fermions (DWF) on a 123-lattice (and Ls up to
40) the meson correlators of the N ¼ 1 model have been
calculated as well [29]. Whereas an earlier simulation with
surface DWF on a 122 × 24 lattice (but Ls only up to 16)
showed no sign of a chiral phase transition for N ¼ 2 [33],
the new results for N ¼ 1 with DWF signal a Goldstone
spectrum expected from a Uð2Þ → Uð1Þ ⊗ Uð1Þ breaking.
This means that for 1 flavor the prediction of DWF is in
conflict with our findings.

VI. SUSCEPTIBILITY

If for N ≥ Nc the lattice artifact phase transition were the
only phase transition then one could hardly imagine how to
construct an interacting QFT in the continuum limit. And
there are convincing arguments based on different
approaches that there exists a well-defined continuum
limit, corresponding to a UV-stable fixed point of the
renormalization group (RG) [12,13,17,20,34]. To find the
continuum theory at the transition to the artifact phase at
strong bare couplings—see [28] for details—seems
unlikely since this transition only exists in a discretized
setup. However, already in the quoted work we have
spotted signals of another transition in the intermediate
coupling regime. In this section we will argue, that such a
transition indeed exists for N ≥ Nc and probably is

continuous. In our earlier work we did not further analyze
this feature, mainly since scanning the phase diagram of a
fermion theory on lattices of different sizes is rather
expensive. For the same reason we do not aim at a
detailed finite size analysis in the present work. But we
do simulations on lattices with different sizes to see the
qualitative behavior of the susceptibility related to the four-
Fermi term in the Lagrangian. Actually, the similarly
accurate number forNc is extracted by spotting the merging
of the newly discovered transition with the lattice artifact
transition.4

As tracer for the transition we will consider the second
derivative of the partition function with respect to the
coupling λ. As discussed in detail in our previous paper
[28], the partition function’s first derivative can be asso-
ciated with the lattice filling factor k as follows,

k ¼ −
λ

NV
∂ lnZðλÞ

∂λ þ c ¼ 1

4Nλ
hjμjμi þ c: ð28Þ

and thus is (up to a λ-independent additive constant c)
proportional to the expectation value of the four-Fermi
interaction term ðψ̄γμψÞ2. Roughly speaking, k is the
average fraction of lattice sites at which an interaction
takes place. From this interpretation the following proper-
ties (established in [28]) are comprehensible: The filling
factor vanishes in the weak coupling regime (large λ), it
monotonically approaches 1 when approaching the lattice
artifact phase at strong coupling and its derivative

∂λk ¼ −
1

16Nλ3
X
x

hðjμjμÞðxÞðjμjμÞð0Þic þ
c − k
λ

ð29Þ

exhibits a dip at this transition, since the susceptibility of
jμjμ—this is just the sum over the first argument of the
connected two-point function on the right-hand side—
peaks at the transition. All of these features are clearly seen
in Figs. 10 and 11.
What has not been discussed before is the fact that for not

too small N the derivative ∂λk shows a second dip
corresponding to a second peak of the susceptibility of
the 4-Fermi term at intermediate values of λ. This was
already visible at the edge of Fig. 4 in [28]. Since the direct
computation of ∂λk as 8-point function would be rather
expensive computationally, we instead use the numerical
derivative of k to calculate the susceptibility. But conven-
tional finite-difference approximations of the λ-derivative
will greatly amplify the noise present in our data. There are
many methods to regularize the differentiation process
(regression, smoothing, filtering, variation denoising).
In our analysis we used a variation denoising method

FIG. 9. Meson correlation functions for N ¼ 0.80 (broken
phase) on a L2

s × 24 lattice and m ¼ 0.004.

4We cannot be sure that the two transitions meet. But we will
see that they come close.
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(and compared it with the conventional approach). More
details can be found in Appendix B.
Examples of ∂λk at three different flavor numbers N are

depicted in Fig. 11. One recognizes two qualitatively
different behaviors. For small N (N ¼ 0.7 in Fig. 11) ∂λk
has one distinct minimum which—as discussed before—
signals the transition into the lattice artifact phase. For
sufficiently largeN (N ¼ 1.0 in Fig. 11) two distinct minima
are clearly visible. A comparison with the data presented in
Fig. 10 reveals that theminimum to the left (strong coupling)
signals the transition into the lattice artifact phase. The
second (inverted) peak at intermediate coupling has not been
discussed before and the following discussion makes clear
that it belongs to an interaction driven transition at inter-
mediate couplings. For flavor numbers near N ¼ 0.8 the
two minima merge and the artifact phase transition line
comes close to or meets the line of interaction driven-phase
transitions.

The numerically extracted peak positions of the suscep-
tibility for N between 0.7 and 1.0 are shown in Fig. 12. At
first glance one can see that for N < 0.76 there is only one
phase transition and for N > 0.82 there are two transitions.
More accurately, on a lattice with L ¼ 16 the two transition
lines get close or meet at the triple point at

NtðL ¼ 16Þ ¼ 0.78ð4Þ: ð30Þ

This value matches the putative critical flavor numberNc in
(18) pretty well. Our explanation of this only seemingly
surprising equality is the following: the ubiquitous lattice
artifact phase at strong coupling does not describe any
properties of the continuum Thirring model. Only in the
physical phase at weaker couplings can we hope to
construct a continuum theory when approaching a critical
point or critical line of second order transitions. For
sufficiently small N the perfect candidate for this transition
is the chirality breaking transition discussed previously.
Indeed, the line where the condensate is maximal is always
to the right of both minima of ∂λk, see Fig. 12. Hence for
N ≥ Nt the maximum is to the right of the interaction
driven phase transition line and we have seen that this
maximal condensate decreases with increasing lattice size.
The only plausible explanation is the following: for small
N ≤ Nc there is, beside the artifact transition at strong
coupling a second order chiral phase transition at inter-
mediate coupling. The solid line in Fig. 12 indicates the
position of the maximal chiral susceptibility (obtained as
numerical derivative χΣ ¼ −∂λΣ) where the chiral phase
transition on sufficiently large lattices happens. At λ ≈ 0.42
and N ¼ Nc the chiral phase transition line comes close to
the artifact transition line and ceases to exist since in the
thermodynamic limit there is no nonvanishing condensate

FIG. 11. Numerical derivatives for 3 different flavor numbers
N. Markers denote a local derivative stencil and lines a global
differentiation scheme (see Appendix B).

FIG. 10. Lattice filling factor k as function of λ and N on a
16 × 152 lattice with m0 ¼ 0.1.

FIG. 12. Extracted dip positions of ∂λk supplemented with the
locations where Σ assumes its maximum (marked by Σmax) and
the positions of evaluation for Fig. 16. The maximum of the chiral
susceptibility (marked by χΣ) which signals the chiral phase
transition is shown as solid line.
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for N ≥ Nc. Instead a (probably) second order phase
transition line emerges for N ≥ Nt ≈ Nc where the deriva-
tive ∂λk develops a singularity. The second order chiral
transition with order parameter turns into a second order
interaction-driven transition without order parameter.
The order of a phase transition is related to the

dependence of the peak susceptibility on the size of the
system. For N ¼ 1.0 this behavior of k and ∂λk is depicted
in Fig. 13 while the depth of the minima and the position of
the interaction-driven transition are shown in Figs. 14 and
15 respectively. In both figures, one can see that finite size
effects are significant for L < 14. Above that, at the artifact
transition the susceptibility ∝ ∂λk is almost independent on
the volume as expected for a first order transition. On the
other hand, at the interaction-driven transition the suscep-
tibility increases with increasing volume roughly according
to [35]

ln χmaxðLÞ ¼ a lnLþ b ð31Þ

as expected for a second order transition, where χ ∝
−∂λkþ const is the susceptibility of the 4-Fermi term,
see (29). Such a linear dependence is actually seen in the
double-logarithmic plot in Fig. 14 for lattices with L ≥ 14.
However, the data points for lattices with L ≥ 14 are too
noisy and we cannot extract reliable values for the fit
parameters a and b. The theory of finite-size scaling also
predicts that the coupling λmaxðLÞ, where χðLÞ peaks,
approaches the critical coupling in the thermodynamic
limit λc as [35]

λmaxðLÞ ¼ λcð1 − cL−1=νÞ: ð32Þ

We observe that at the interaction-driven transition this
scaling law reproduces the data reasonably well. The
extracted value

λc ¼ 0.526ð5Þ; ð33Þ

is rather stable—it does not change much if the fits are for
lattice with L ≥ 8, L ≥ 10 or L ≥ 12, see Fig. 15. But the
extracted values for ν vary considerably and cannot be
trusted. The lattices considered are just not big enough to
determine the critical exponent ν. But the aim of our very
crude finite size analysis is not to calculate critical
exponents but rather to study the order of the interac-
tion-driven transition. Our preliminary results suggest that
it is a second order transition with infinite correlation
length.
Most likely this continuous transition is not associated

with any symmetry breaking, since the term ðψ̄ΓμψÞ2 is
already part of the Thirring-Lagrangian (1). Such transi-
tions without change of symmetry are common in con-
densed matter physics and they are sometimes called

FIG. 13. Lattice filling factor k (markers) and its derivative ∂λk
(lines) for various lattice sizes at N ¼ 1.0.

FIG. 14. Depth of the minima at the lattice artifact transition
(LAT) and the interaction-driven transition (IT) at N ¼ 1.0 on a
log-log scale with fits according to Eq. (31).

FIG. 15. Position of the interaction-driven transition at N ¼ 1.0
with fits according to Eq. (32).
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isosymmetric. In solid state physics such transitions are
structural and are related to discontinuous changes of the
cell volume and cell parameters and thus indicate a first-
order transition. But continuous transitions without sym-
metry breaking are also possible in which case we prefer
the name interaction-driven transitions. For example, a
continuous transition without symmetry-breaking bilinear
fermion condensate—triggered by a four-fermion interac-
tion term—has been reported previously in SU(4)-invariant
four-fermi models in three dimensions. These models are
similar to the Thirring model considered in the present
work. Numerical simulations with staggered fermions, the
fermion bag method, hybrid Monte Carlo and quantum
Monte Carlo revealed actually an interesting phase struc-
ture [36–39]: The systems exhibit a continuous quantum
phase transition from a weakly coupled massless phase
(a gapless Dirac semimetal) to a massive (fully gapped
Mott insulator) phase without condensing any fermion
bilinear operator. It could very well be that a similar
mechanism is at work in the Thirring models, although a
bilinear condensate is not forbidden by symmetry argu-
ments as it is in the SU(4)-invariant models.
Although the transition is probably not associated with a

change of symmetry there could exist an order parameter.
The filling factor k is a possible candidate. From Fig. 13
one might conjecture that for weak coupling (to the right of
the interaction-driven transition) k approaches 0 in the
infinite volume limit. This would imply that only the phase
between the peaks describes an interacting four-Fermi
theory. Actually, we can prove that k ¼ 1 in the strong
coupling expansion, see [28], but so far we could not show
that k ¼ 0 in a weak coupling expansion.
To summarize: we conjecture that the critical number Nc

separating systems with and without chiral symmetry
breaking and the number Nt where the two phase transition
lines come close or meet should be identified.
But how can we explain that on a finite lattice the chiral

condensate is maximal for N ≥ Nt just to the right of the
interaction-driven transition line in Fig. 12 and only
vanishes in the infinite volume limit? Without SSB there
are two sources for a non-zero condensate: the explicit
symmetry breaking by the fermion mass and fluctuations.
After (11) we have argued that any vμ-configuration adds a
non-negative number to the condensate. Near a second
order transition the fluctuations are large and on a finite
system these large fluctuations drive the condensate away
from zero. This explains, why the condensate and the chiral
susceptibility5 χΣ peak near the interaction-driven transition
line. On the other hand, near a first order transition to the
lattice artifact phase the fluctuations do not necessarily
grow and we do not expect a fluctuation driven condensate.
This is the reason, why for N ≥ Nt (in which case the

first-order and second-order lines are well-separated) the
condensate is small near the artifact transition line and does
not depend much on the volume. Then we would expect,
that the condensate just to the right of the artifact line is a
better approximation to the condensate in the thermody-
namic limit. In Fig. 16 we plotted for everyN the maximum
of the chiral condensate and its value in the proximity—
actually just to the right—of the lattice artifact transition
line.6 We see that for N < Nt the chiral condensate Σprox

follows the old fit in Fig. 3 (with the form (17) and the
parameters from Table II). This is expected since Nt ≈ Nc.
Nevertheless, it further substantiates our claim that the
condensate Σprox is a better approximation to the chiral
condensate at infinite volume as compared to the maximal
condensate since fluctuations, which drive the condensate
away from the infinite volume result, are suppressed.

VII. CONCLUSIONS

In the present work we have reanalyzed the longstanding
problem about the critical flavor number in the three-
dimensional (reducible) Thirring models. We used chiral
SLAC fermions to have full control over the chiral proper-
ties of the model. In this formulation the chiral and parity
symmetry are manifest and no fine tuning is required. We
reformulated the model such that the number of reducible
flavors N becomes a continuous parameter—offering the
possibility of determining precisely when spontaneous
symmetry breaking ceases to exist. We calculated the
maximum of the chiral condensate, the spectral density

FIG. 16. Chiral condensate in the proximity of the lattice
artifact transition Σprox compared with the maxima Σmax and
the old fit from Fig. 3 (line) for L ¼ 16.

5For N ≥ Nc there is still a peak of the susceptibility shown as
dashed line in Fig. 12.

6Just to the right means three ticks (in the fixed λ-grid) to the
right. For comparison we applied this rule to the maxima of the
condensate and the artificial phase transition line. The points
where Σprox in Fig. 16 have been measured are depicted in
Fig. 12.
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and the spectrum of scalar and pseudoscalar particles as
function of the flavor number N between 0.5 and 1.0. As a
result we find a critical flavor number

Nc ¼ 0.80ð4Þ: ð34Þ

In particular, we spotted two Goldstone bosons only for
N ≤ Nc. Since a noninteger value of N probably does not
describe a local quantum field theory (and in particular no
Thirring model), we conclude that there is no spontaneous
symmetry breaking in all reducible Thirring models.
With an elaborate and expensive scan of the suscep-

tibility related to the interaction term ðψ̄ΓμψÞ2 as function
of the coupling λ and the number of flavors N we spotted—
besides the (probably first order) ubiquitous lattice artifact
transition—a (probably second order) transition for all N
greater than

Nt ¼ 0.78ð4Þ: ð35Þ

We gave several arguments why Nc and Nt should be
identified. Thus we expect that for an arbitrary number of
flavors there exists a continuous phase transition: for every
N ≤ Nc ¼ Nt there is a transition with spontaneous break-
ing of chiral symmetry and for every N ≥ Nc there exists
a transition without spontaneous breaking of chiral
symmetry. But since Nc < 1 only the latter transition
can be used to construct continuum Thirring models with
N ¼ 1; 2; 3;….
The result (34) improves the result in [28] and results of

lattice Monte-Carlo simulations with domain wall fermions
in [29]. The latter support our claim that there is no
spontaneous symmetry breaking for N > 1. Since there
are still major technical issues to be studied in the domain
wall formulation—such as the discrepancy between the
bulk and surface formulation and the additional Ls → ∞
extrapolation—the conclusion for the N ¼ 1 case is only
preliminary. But it seems to disagree with the results in the
present analysis with SLAC fermions and in [28].
In parallel to the present work L. Dabelow, H. Gies and

B. Knorr investigated reducible Gross-Neveu-Thirring
models in three dimensions with FRG methods by admit-
ting momentum dependent vertices in the flow equation for
the scale dependent effective action [30]. Their new
estimate for Nc (obtained with their most strict criterion)
is compatible with ours.
We would like to stress that our results are not in

contradiction with those in [28,40], where a breaking of
parity symmetry in models with an odd number of
irreducible flavors has been reported. The irreducible
models are very different from the parity invariant reducible
models studied in the present work and in other more recent
publications on the three-dimensional Thirring model.
Besides the question about the precise value of Nc we

witness a convergence of recent results obtained with

sophisticated functional methods and lattice simulations
based on chiral fermions. So the question arises why earlier
attempts with staggered fermions failed to predict an
acceptable value for Nc? It has already been pointed out
in [28,29], and we would like to stress it once more, that the
failure of staggered fermions to find the correct sym-
metry (or even universality class) and phase structure of
3-dimensional four-Fermi theories away from weak cou-
pling, is probably also responsible for the mismatch
between DMF and staggered fermion results near a
conformal fixed point in 3þ 1 dimensional non-Abelian
gauge theory [41]. For strongly coupled (fermion) systems
we should be careful to implement all global internal
symmetries in any discretization.
Simulations of fermion systems are rather time consum-

ing and an elaborate finite size analysis could not be
accomplished in the present work. For example, to really
decide about the order of the interaction-driven phase
transition above Nc requires further extensive studies.
Even more demanding would it be to extract critical
exponents of interest to decide about the universality class
of the system at criticality. This would allow for a
comparison with recent results obtained with functional
methods. We hope to report on further progress in these
directions in the near future.
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APPENDIX A: PARITY

We choose the parity operation x → x̃ ¼ ðx1; x2;
L − x3Þ, where L is the extend of the box in 3-direction.
The auxiliary vector field transforms as

ṽ1;2ðxÞ ¼ v1;2ðx̃Þ; ṽ3ðxÞ ¼ −v3ðx̃Þ ðA1Þ

and a 2-component spinor field χ as

χ̃ðxÞ ¼ γ3χðx̃Þ: ðA2Þ

Now it follows at once that if χ is an eigenfunction of i=Dv
with eigenvalue λ, then χ̃ is an eigenfunction of i=Dṽ with
eigenvalue −λ.

1. Spectral density

The invariance under parity implies particular properties
of the spectral density defined in (12) and the fermion
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Green function Δ of the reducible Dirac operator in (8).
For example, we conclude

ρvðEÞ ¼ ρṽð−EÞ: ðA3Þ
Since the space-time integrals over v2μ and ṽ2μ are equal and
in addition only the square of =D enters the effective action,
we see that the latter is parity invariant,

SeffðvÞ ¼ SeffðṽÞ: ðA4Þ
Since the averaging over the auxiliary field is done with the
parity invariant factor e−Seff we end up with the relation (14)
which states, that the averaged spectral density ρ̄ðEÞ is an
even function of the spectral parameter.

2. Fermion Green function

The fermion Green function of the reducible system is

Δ ¼ 1

D
¼

�Δþ 0

0 Δ−

�
; Δ� ¼ 1

i=D� im
; ðA5Þ

where =D belongs to the irreducible system. The Green
function is a linear combination of σ0 and σ3, see (23) and
(24). It follows that

1

4
trFðσaΔxxÞtrFðσbΔyyÞ

¼

0
BBB@

AxxAyy 0 0 AxxByy

0 0 0 0

0 0 0 0

BxxAyy 0 0 BxxByy

1
CCCA;

where trF denotes the trace in flavor space, and in addition

1

2
trFðσaΔxyσbΔyxÞ

¼ AxyAyx

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCAþBxyByx

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

1
CCCA

þAxyByx

0
BBB@

0 0 0 1

0 0 i 0

0 −i 0 0

1 0 0 0

1
CCCAþBxyAyx

0
BBB@

0 0 0 1

0 0 −i 0

0 i 0 0

1 0 0 0

1
CCCA:

Recall, that the correlation matrix (21) involved suitable
traces over the spinor indices as well, tr ¼ trDtrF. Next we
study the transformation of the Green function under parity.
Since the eigenmodes change according to (A2) and the
eigenvalues swap signs, we have

Δ�ðx; y; vÞ ¼ −γ3Δ∓ðx̃; ỹ; ṽÞγ3; ðA6Þ

which in turn implies

AxyðvÞ ¼ −γ3Ax̃ ỹðṽÞγ3; BxyðvÞ ¼ γ3Bx̃ ỹðṽÞγ3: ðA7Þ
It follows, for example, thatX
x

trDAxxðvÞ ¼ −
X
x

trDAx̃ x̃ðṽÞ ¼ −
X
x

trDAxxðṽÞ: ðA8Þ

In the last step we used, that the two γ3 in the conjugation
(A6) chancel under the trace over Dirac indices and that
summing over all x is the same as summing over all x̃.
Averaging with the parity-invariant effective action over the
auxiliary field results into

X
x

trDhAxxi ¼ −
X
x

trDhAxxi ¼ 0: ðA9Þ

Similarly one obtains

X
x;y

htrDAxxByyi ¼ 0 ¼
X
x;y

htrDAxyByxi: ðA10Þ

It follows that the correlation matrix CðtÞ is diagonal with
eigenvalues CaðtÞ given in (25). Finally note that itrDhBxxi
is just the chiral condensate Σ.

APPENDIX B: NUMERICAL DIFFERENTIATION

While numerical differentiation of smooth data is easily
done by discrete derivative stencils, non-smooth and
particularly noisy data is hard to differentiate numerically.
This is seen in Fig. 11 where the markers show the result of
applying the stencil

∂λkðλiÞ ¼
kðλiþ1Þ − kðλi−1Þ

2δλ
þOðδλ2Þ ðB1Þ

to the rather smooth looking data of Fig. 10. Particularly, in
the interesting regime around N ¼ 0.8 such a numerical
differentiation is basically useless because of the large
noise. Another approach, which we will use in the follow-
ing, is total-variation (TV) regularized differentiation [42].
It reformulates the problem as a global optimization
problem such that the minimum of the functional

FðuÞ ¼ kIðuÞ − ðk − kðλ0ÞÞk þ αRðuÞ ðB2Þ

is assumed for an approximation u ≈ ∂λk. Here IðuÞ is an
(appropriate discrete) integration operation and k · k an
appropriate norm such that k is obtained from integrating its
derivative u. Afterwards a regulator term R can be added to
smooth the minimizing solution u.7 While one can clearly
see the smoothing behavior of this approach in Fig. 11, the

7Details of the implementation can be found in [42]. We used
the python translation from https://github.com/stur86/tvregdiff of
their MATLAB code with minor modifications.
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important information about the peak (location) is not
distorted compared to the naive scheme. We always cross-
checked that the TV result was plausible within the naive
scheme; however, we cannot assign a pointwise uncertainty
to the TV result due to the global procedure for obtaining it.

APPENDIX C: MONTE-CARLO SIMULATIONS

For performance reasons, the Monte-Carlo simulations
have been performed in the two-component irreducible
representation. In the HMC algorithm we compute the
fermion determinant by introducing p pseudofermions
ϕ;ϕ†

detðD†DÞN2 ¼detðD†
þDþÞ

Nirp
2p

∼
Z

DϕDϕ†exp

�
−
X
p

ϕ†
pr

�
D†

þDþ;
Nir

2

�
ϕp

�
;

ðC1Þ

where the function rðA; nÞ is a rational approximation of
the inverse fermion matrix

ðD†
þDþÞ−

Nir
2p ≈ r

�
D†

þDþ;
Nir

2p

�
ðC2Þ

and

rðM; kÞ ¼ a0ðkÞ þ
Xn
i¼1

αiðkÞ
M þ βiðkÞ

: ðC3Þ

The coefficients αi and βi depend on the degree n of the
approximation, on the power of the inverse fermion matrix
k and on the spectral range of M. Details on the RHMC
algorithm can be found in [43]. In this way we are able
to perform lattice simulations for any rational flavor
number. To speed up the simulations, we use different
approximations in the HMC trajectory and the metropolis
acceptance step. For most of our simulations we use p ¼ 4
pseudo-fermions and a degree of the approximation nHMC,
nacc ¼ 10, 25.
The inverse of the shifted fermion matrix in the rational

approximation is computed by a multimass conjugate
gradient (CG) solver. During the CG iterations, we have
to apply the SLAC operator to a pseudofermion field. Here,
we make use of a special property of the SLAC derivative:
It is diagonal in momentum space and we obtain

ðDþϕÞðxÞ ¼ FT−1
�X

p

i=pFT½ϕ�ðpÞ
�
ðxÞ

þ ðiγμvμðxÞ þmÞϕðxÞ ðC4Þ

where the sum is over all lattice momenta p. Instead of
using a three-dimensional (parallelized) Fourier transfor-
mation, we apply one-dimensional Fourier transformations
that are computed in parallel. Although there is commu-
nication overhead, this method is on small lattices far more
efficient than a three-dimensional Fourier transformation.
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