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We revisit the connection between generalized parton distributions in impact parameter space and T-odd
effects in single spin asymmetries of the semi-inclusive deep inelastic process. We show that nontrivial
relations can be established only under very specific conditions, typically realized only in models that
describe hadrons as two-body bound systems and involving a helicity-conserving coupling between the
gauge boson and the spectator system. Examples of these models are the scalar-diquark spectator model
or the quark-target model for the nucleon, and relativistic models for the pion at the lowest order in the
Fock-space expansion.
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I. INTRODUCTION

Generalized parton distributions (GPDs) and transverse
momentum dependent parton distributions (TMDs) are
fundamental nonperturbative objects that help unraveling
the quark-gluon dynamics inside hadrons. At leading twist,
there are eight independent GPDs and eight independent
TMDs, in a one to one correspondence depending on the
active parton and target polarizations. This correspondence
arises from the projection of the fully unintegrated and off
diagonal correlator, defining the generalized transverse
momentum dependent parton distributions, into two inde-
pendent subspaces of the whole space spanned by the
parton and target momentum [1–5]. Furthermore, one can
define impact-parameter dependent densities (IPDs) as the
Fourier transforms of the GPDs in impact parameter space
at zero longitudinal momentum transfer. The correlator of
IPDs has formally the same structure as the correlator for
TMDs, with the impact parameter b⊥ taking the role of the
transverse momentum k⊥ [6,7]. Beyond this formal con-
nection, in general it is not possible to establish model-
independent relations between GPDs and TMDs. Only
model calculations show nontrivial relations [3,7,8]. The
most prominent cases are the relations which describe
T-odd effects in single spin asymmetries (SSAs) via the

factorization of the effects of final state interactions (FSIs),
incorporated in a so-called “chromodynamics lensing
function,” and a spatial distortion of GPDs in impact
parameter space [9,10]. These relations have been estab-
lished for the Sivers effect and the IPD for unpolarized
partons in a transversely polarized nucleon target, using
spectator models [11,12] and a quark target model [7], and
used also in a phenomenological extraction of the Sivers
function [13]. Furthermore, they have been discussed for
the Boer-Mulders effect and a certain combination of
chiral-odd IPDs describing transversely polarized quark
in an unpolarized target, such as the nucleon [14] or the
pion [1,15,16]. However, they have been found to be
violated within three-quark model calculations for the
nucleon [17–21]. More in general, it has been argued that
even in the context of spectator models these relations are
far from being obvious if one considers Fock-state con-
tributions beyond the leading terms [7].
In this work, we demonstrate that very specific con-

ditions have to be imposed on the FSIs in order to express
T-odd TMDs in terms of an impact-parameter distortion
and a lensing function. These conditions are typically
fulfilled only in models where the target is described as
a two-body bound system and the FSIs do not change any
of the spectator’s quantum numbers and modifies only its
transverse momentum.
The work is organized as follows. In Sec. II, we

introduce the definition of the GPDs, both in momentum
and impact parameter space, and of the TMDs. We then
discuss the possible lensing relations between the average
transverse momentum related to T-odd effects and IPDs,
and the very restrictive conditions that should be imposed
on the FSIs for the validity of these relations. In Sec. III, we
derive the lensing relation for the pion target, described in
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terms of the lowest qq̄ Fock-state component. Besides the
two-body nature of the system, a key ingredient for the
validity of the relation is the assumption of a perturbative
coupling between the spectator parton and the Wilson gluon,
which gives the effects of the FSIs in a semi-inclusive deep
inelastic scattering (SIDIS) process. The relation can be
generalized by assuming an effective interaction vertex,
which is helicity conserving and may depend only on the
transverse-momentum of the exchanged gluon. In Sec. IV,
we consider the case of a proton target, and we show that
the lensing relations can not be established in a model-
independent way even in the most simple case of a proton
target described by the lowest-order Fock component of
three quarks. Section V deals with models that describe the
nucleon as a two-body system, such as the models with a
quark and a diquark spectator, and elucidates under which
conditions one can restore the lensing relations within these
models. Our conclusions are drawn in Sec. VI. In the
Appendix we show the derivation of the conditions that
should be satisfied for the lensing relation.

II. RELATIONS BETWEEN GPDS
AND T-ODD TMDS

In this section, we summarize the arguments that lead to
infer a possible nontrivial relation between T-odd TMDs
and IPDs. The quark TMDs are defined through the
following correlation function:

Φ½Γ�ðx; k⊥; SÞ ¼
1

2

Z
dz−dz⊥
ð2πÞ3 eik·z

×
D
p; Sjψ̄

�
−
z
2

�
ΓW

�
−
z
2
;
z
2

�

× ψ

�
z
2

�
jp; S

E���
zþ¼0

; ð1Þ

where p ¼ ðpþ; p−; p⊥ ¼ 0⊥Þ and S are, respectively, the
hadron-target momentum1 and spin, ψ is the quark field
operator and Γ is a generic matrix in the Dirac space. The
TMDs depend on the light cone momentum fraction,

x ¼ kþ

Pþ ; ð2Þ

and on the quark transverse momentum k⊥.
The Wilson line W connecting the two quark fields

ensures color gauge invariance and is defined as [22–26]

Wða; bÞ ¼ P exp

�
−igs

Z
γ
dζ · AðζÞ

�
;

where gs is related to the strong coupling constant,
αs ¼ g2s=ð4πÞ, and γ is a path from a to b that is determined
by the physical process under consideration (in this work,
we consider the Wilson line of a SIDIS process [22]). The
Wilson line in Eq. (1) breaks the naive time-reversal
invariance of the correlator and, as a consequence, T-odd
TMDs need to be included. At leading-twist and for spin
1=2 targets, one has two T-odd TMDs, i.e., the Sivers
function f⊥1Tðx; k2⊥Þ [27,28] and the Boer-Mulders TMD
h⊥1 ðx; k2⊥Þ [29]. The Sivers function describes the momen-
tum distribution of unpolarized quark in a transversely
polarized target and is obtained from the correlator (1) with
Γ ¼ γþ. On the other hand, the Boer-Mulders function
gives the momentum distribution of transversely polarized
quarks in an unpolarized target and is defined from the
correlator (1) with Γ ¼ iσjþγ5. In the case of spin-0 target,
only the contribution of the Boer-Mulders functions can
exist. The full list of leading-twist TMDs is shown in a
schematic way in Table I.
The IPDs are distribution functions in the mixed

momentum and coordinate space ðx; b⊥Þ, with b⊥ being
the transverse distance of the quark from the transverse
center of momentum of the target [30]. They are defined
from the following quark-quark correlator:

F ½Γ�ðx; b⊥; SÞ ¼
1

2

Z
dz−

2π
eixp

þz−hpþ;R⊥ ¼ 0⊥; Sjψ̄ðz1Þ

× ΓWðz1; z2Þψðz2Þjpþ;R⊥ ¼ 0⊥; Si;
ð3Þ

where the quark fields are evaluated at z1;2¼ð0þ;∓ z−
2
;b⊥Þ

and the hadron is in a state with longitudinal momentum pþ
at a transverse position R⊥ ¼ 0⊥ [30–32].

TABLE I. Tables of the leading-twist transverse momentum
distributions (TMDs) and impact parameter distributions (IPDs)
with their relation to nucleon and quark polarization (pol.) states.
For the complete definition, we refer to Refs. [6,7].

Quark pol.

U L T

Nucleon pol. U f1 h⊥1
L g1 h⊥1L
T f⊥1T g1T h1, h⊥1T

Twist-2 TMDs

Quark pol.

U L T

Nucleon pol. U H ET þ 2H̃T
L H̃
T E HT ,H̃T

Twist-2 IPDs
1We use light-front coordinates, with v� ¼ 1=

ffiffiffi
2

p ðv0 � v3Þ
and v⊥ ¼ ðv1; v2Þ for a generic four-vector v.
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The GPDs in the momentum space are defined through
the following light cone correlation function:

F½Γ�ðx; ξ; t; SÞ ¼ 1

2

Z
dz−

2π
eik·z

×
D
p0; Sjψ̄

�
−
z
2

�
ΓW

�
−
z
2
;
z
2

�

× ψ

�
z
2

�
jp; S

E
jzþ¼0;z⊥¼0⊥ ð4Þ

and depend, beside x, on the following variables:

ξ ¼ −
Δþ

2Pþ ; t ¼ Δ2; ð5Þ

where P ¼ ðpþ p0Þ=2 and Δ ¼ p0 − p. For ξ ¼ 0, the
GPD correlator (4) is related to the IPD correlator (3) by
a Fourier transform from the coordinates Δ⊥ to b⊥, and,
accordingly, we can obtain the IPD X from the following
Fourier transform of the GPD:

Xðx; b2⊥Þ ¼
Z

dΔ⊥
ð2πÞ2 e

−iΔ⊥·b⊥Xðx; ξ ¼ 0;−Δ2⊥Þ: ð6Þ

The full list of leading-twist IPDs is shown in a
schematic way in Table I. At leading-twist and for
spin 1=2 targets, the correlator (3) with Γ ¼ γþ and
transversely polarized targets can be parametrized
in terms of the derivative of the IPD E, while with
Γ ¼ iσjþγ5 and unpolarized target we access the deriva-
tive of the combination ET þ 2H̃T of chiral-odd IPDs.

In the case of spin-zero targets, the contributions from
the IPDs E and ET are absent.
The analogy between the tensor structure of the para-

metrizations of the quark TMD and IPD correlators
suggests the following correspondences for the distribu-
tions of spin 1=2 targets [6,7]:

f⊥1Tðx; k2⊥Þ ↔ −ðEðx; b2⊥ÞÞ0;
h⊥1 ðx; k2⊥Þ ↔ −ðETðx; b2⊥Þ þ 2H̃Tðx; b2⊥ÞÞ0; ð7Þ

where we used the following notation for the derivative of
the IPDs:

ðXðx; b2⊥ÞÞ0 ¼
∂

∂b2⊥Xðx; b2⊥Þ: ð8Þ

Similarly, the correspondence for spin-zero targets reads

h⊥1 ðx; k2⊥Þ ↔ −ðH̃Tðx; b2⊥ÞÞ0: ð9Þ

In order to specify the precise form of the link in Eqs. (7),
we consider the average quark transverse momentum of
an unpolarized quark in a transversely polarized target
given by

hki⊥ðxÞiUT ¼
Z

dk⊥ki⊥Φ½γþ�ðx; k⊥; S⊥Þ: ð10Þ

Following the derivation in Ref. [7], Eq. (10) can be
rewritten as

hki⊥ðxÞiUT ¼ 1

2

Z
dz−

2π
eixp

þz−
D
p; S⊥jψ̄

�
−
z
2

�
W
�
−
z
2
;
z
2

�
I i

�
z
2

�
γþψ

�
z
2

�
jp; S⊥

E����
zþ¼z⊥¼0

¼ 1

2

Z
db⊥

Z
dz−

2π
eixp

þz−hpþ;R⊥ ¼ 0⊥; S⊥jψ̄ðz1ÞWðz1; z2ÞI iðz2Þγþψðz2Þjpþ;R⊥ ¼ 0⊥; S⊥i: ð11Þ

The operator I iðzÞ encodes the contribution of the FSIs and is defined as

I iðzÞ ¼ gs
2

Z
dy−Wððz−; zþ; z⊥Þ; ðy−; zþ; z⊥ÞÞGþiðy−; zþ; z⊥ÞWððy−; zþ; z⊥Þ; ðz−; zþ; z⊥ÞÞ; ð12Þ

with Gþi being the gluon-field strength tensor.
As observed for the first time in Ref. [26], there is a connection between the transverse-momentum weighted quark

correlator in Eq. (11) and the collinear twist-3 quark-gluon-quark correlator defined as2

iΦi
Gðx; xÞ ¼

Z
dz−dy−

ð2πÞ2 eixp
þz−
D
p; S⊥jψ̄

�
−
z
2

�
W
�
−
z
2
; y

�
igGþiðyÞW

�
y;
z
2

�
ψ

�
z
2

�
jp;S⊥

E����zþ¼ z⊥¼ 0

yþ¼ y⊥¼ 0

¼ M
2
½−iϵij⊥Sj⊥FFTðx; xÞγ− þHFUðx; xÞγiγ−�: ð13Þ

2In the literature there are various slightly different forms of the parametrization of the quark-gluon-quark correlator [26,33–36]. Here
we use the version of Ref. [37].
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The decomposition contains the so-called Qiu-Sterman
matrix element FFT [38] and an analogous, chiral-odd term.3

Equation (12) has a more intuitive interpretation in the
light cone gauge, Aþ ¼ 0 [39]. In this case, theWilson lines
in the definition of I iðzÞ run along the light cone and
reduce to unity. As a result, one has

I iðzÞ ¼ gs
2
ðAi⊥ð∞−; zþ; z⊥Þ − Ai⊥ð−∞−; zþ; z⊥ÞÞ:

The gauge, however, is not completely fixed by the condition
Aþ ¼ 0. The fixing of residual gauge degrees of freedom can
be obtained using additional boundary conditions on the
gauge potential. There are three common choices,

A⊥ð∞−Þ ¼ 0; A⊥ð−∞−Þ ¼ 0;

A⊥ð∞−Þ þ A⊥ð−∞−Þ ¼ 0;

known, respectively, as retarded, advanced and principal
value prescription. We work with the advanced boundary
condition A⊥ð−∞−Þ ¼ 0, but analogous results hold for the
other two prescriptions (as it should be, since all the results
must be gauge invariant). Our choice leads to the following
results:

hki⊥ðxÞiUT ¼ gs
2

Z
dz−

2π
eixp

þz−
D
p; S⊥jψ̄

�
−
z
2

�

× Ai⊥ð∞−Þγþψ
�
z
2

�
jp;S⊥

E���
zþ¼z⊥¼0

; ð14Þ

hki⊥ðxÞijTU ¼ gs
2

Z
dz−

2π
eixp

þz−
D
pjψ̄

�
−
z
2

�

× Ai⊥ð∞−Þiσjþγ5ψ
�
z
2

�
jp
E���

zþ¼z⊥¼0
: ð15Þ

One notices from Eq. (15) that the FSIs in the light cone
gauge with advanced boundary conditions (and, similarly,
with the retarded or principal value prescriptions) reduce to
the exchange of a transverse gluon at light cone infinity
between the active quark and the spectator partons.
Up to this point, the analysis is still general. In order to

obtain an expression containing an IPD, some very specific
conditions have to be imposed on the operator I iðzÞ, Using
the completeness relation, we can rewrite the first line of
Eq. (11) as

hki⊥ðxÞiUT ¼
1

2

Z
db⊥

Z
dz−

2π
eixp

þz−
XZ
X;X0

hXjI iðz2ÞjX0ihpþ;R⊥¼0⊥;S⊥jψ̄ðz1ÞWðz1;z2ÞjXiγþhX0jψðz2Þjpþ;R⊥¼0⊥;S⊥i:

ð16Þ

If we introduce the Fourier transform of the quark fields ψðz=2Þ and ϕðz
2
Þ ¼ ψ̄ð− z

2
ÞWð− z

2
; z
2
Þ, and use the light-front Fock

expansion for the intermediate states, Eq. (16) reads as

hki⊥ðxÞiUT ¼ 1

2

Z
fdk1gfdk2gfdlg

Z
dz−

2π
eixp

þz−e−i
z−
2
ðkþ

1
þkþ

2
þlþÞX

n;m

X
β;β0

Z Yn
i¼1

dqþi dq⊥;i

ð2πÞ32qþi
Ym
i¼1

dwþ
i dw⊥;i

ð2πÞ32wþ
i

× hpþ; p⊥ ¼ 0⊥; S⊥jϕðk1Þγþjfqþi ; q⊥;ign; β0ihfqþi ; q⊥;ign; β0jIiðlÞjfwþ
i ;w⊥;igm; βi

× hfwþ
i ;w⊥;igm; βjψðk2Þjpþ; p⊥ ¼ 0⊥; S⊥i; ð17Þ

where fdkg is the Lorentz invariant integration measure. In Eq. (17), the index β and β0 label the parton, color and the
helicity content of the intermediate states. As derived explicitly in the Appendix, one can obtain the factorization of the
lensing function and the IPD in Eq. (17) by requiring that the matrix elements of the operator IiðlÞ satisfy the following
relation:

hfqþi ; q⊥;ign; β0jIiðlÞjfwþ
i ;w⊥;igm; βi ¼ 2πLi

�
l⊥

1 − x

�
δn;mδββ0δðlþÞ

Yn
i¼1

ð2πÞ32qþi δðqþi − wþ
i Þδ
�
q⊥;i − w⊥;i − xi

l⊥
1 − x

�
;

ð18Þ

where xi is the light cone momentum fraction of each
spectator parton with respect to the hadron target light cone

momentum, i.e., xi ¼ wþ
i =p

þ, and should satisfy the
relation

P
i xi ¼ 1 − x. The matrix elements of the operator

IiðlÞ in Eq. (18) represent the interaction between the active
parton and the spectator system mediated by the Wilson3FFT introduced in [37] corresponds to −TF=ð2MπÞ in [38].
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gluons and correspond to the FSIs that occur in a SIDIS
process. The relation (18) imposes strict conditions that are
equivalent to requiring that:
(1) the FSIs should connect Fock states with the same

number of constituents and the same parton, helicity
and color content;

(2) the FSIs should transfer the total transverse momen-
tum l⊥=ð1 − xÞ to the whole spectator system;

(3) the FSIs can not transfer momentum in the light cone
direction to the spectator system;

(4) the FSIs should transfer a fraction xi ¼ wþ
i =p

þ of
the total transverse momentum to each constituent
of the spectator system.

The last condition is the most stringent. It is crucial to
obtain the correct transverse light-front boost that gives
the nondiagonal matrix element defining the GPD and
then the transverse distortion in impact parameter space
described by the IPD. For convenience, we can discuss
the implications of the condition 4) in the light cone
gauge with advanced boundary conditions, where the
FSIs reduce to the exchange of a transverse gluon at
light cone infinity between the active parton and the
spectator system. In this case, one can easily deduce that
the condition 4) can be realized with a perturbative
coupling between the gauge boson and the active parton
only if the spectator system is composed by a single
constituent; i.e., the hadron target is a two-body bound
system. Then, the light cone momentum fraction of the
spectator is equal to 1 − x and the constraint on the
transverse momentum transferred by the Wilson gluon
to the spectator system follows trivially from the con-
servation of the total momentum of the hadron target.
Otherwise, the condition 4) imposes to share the trans-
verse momentum carried by the Wilson gluon with each
spectator parton in a proportion equal to the longitudinal
momentum fraction xi. This can not be realized in
systems composed by more than two constituents by
assuming an interaction vertex between the gauge boson
and a single constituent.
We conclude that if and only if the above conditions are

fulfilled we can write

hki⊥ðxÞiUT ¼ −
Z

dk⊥ki⊥
ϵjk⊥k

j
⊥Sk⊥
M

f⊥1Tðx; k2⊥Þ

≈
Z

db⊥Li

�
b⊥

ð1 − xÞ
�
F ½γþ�ðx; b⊥; S⊥Þ

¼
Z

db⊥Li

�
b⊥

ð1 − xÞ
�
ϵjk⊥b

j
⊥Sk⊥
M

ðEðx; b2⊥ÞÞ0:

ð19Þ

In the next sections, we will consider explicitly a few model
calculations, and we will discuss to which extent the
conditions 1) – 4) can be satisfied.

In an analogous way, we can analyze the average quark
transverse momentum of a transversely polarized quark in
an unpolarized target given by

hki⊥ðxÞijTU ¼
Z

dk⊥ki⊥Φ½iσjþγ5�ðx; k⊥; SÞ: ð20Þ

With similar steps as before, under the conditions of
applicability of the lensing hypothesis, we obtain

hki⊥ðxÞijTU ¼ −
Z

dk⊥ki⊥
ϵkj⊥kk⊥
M

h⊥1 ðx; k2⊥Þ

≈
Z

db⊥Li

�
b⊥

ð1 − xÞ
�
F ½iσjþγ5�ðx; b⊥Þ

¼
Z

db⊥Li

�
b⊥

ð1 − xÞ
�

×
ϵkj⊥bk⊥
M

�
ETðx; b2⊥Þ þ 2H̃Tðx; b2⊥Þ

�0
: ð21Þ

Alternatively, by contracting Eqs. (19) and (21) with
−ϵil⊥Sl⊥=ð2MÞ and −ϵij⊥=ð2MÞ, respectively, we can write

f⊥ð1Þ
1T ðxÞ ¼ πFFTðx; xÞ

≈
1

4

Z
db⊥bi⊥Li

�
b⊥

ð1 − xÞ
�
Eð1Þðx; b2⊥Þ; ð22Þ

h⊥ð1Þ
1 ðxÞ ¼ πHFUðx; xÞ

≈
1

4

Z
db⊥bi⊥Li

�
b⊥

ð1 − xÞ
��

Eð1Þ
T ðx; b2⊥Þ

þ 2H̃ð1Þ
T ðx; b2⊥Þ

	
; ð23Þ

where we used the following notations:

fð1Þðx; k2⊥Þ ¼
k2⊥
2M2

fðx; k2⊥Þ; ð24Þ

X ð1Þðx; b2⊥Þ ¼ −
2

M2

∂
∂b2⊥ Xðx; b2⊥Þ

¼
Z

dΔ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ Δ2⊥
2M2

Xðx; ξ ¼ 0;−Δ2⊥Þ:

ð25Þ

For spin-zero targets, only Eqs. (21) and (23) with
ETðx; b2⊥Þ ¼ 0 and 2H̃T → H̃T . survives.
It is known that the weighted integrals of the Sivers and

Boer-Mulders functions as well as the IPDs depend on a
renormalization scale μ that we neglect in the present
discussion (see, e.g., Refs. [40,41] and references therein).
Evolution in this scale is related to the emission of multiple
partons, and therefore it is unlikely that it preserves the
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conditions of applicability of the lensing hypothesis.
Therefore, the lensing relation may at most be valid only
at initial, low scale μ0.

III. LENSING RELATION FOR THE PION

In this section, we show how the relation between the
Boer-Mulders function and the chiral-odd GPD H̃T is
realized for a spin-zero target like the pion, described as a
quark-antiquark (qq̄) bound state. In the framework of
light-front quantization and working in the gauge Aþ ¼ 0,
the leading-order contribution of the Fock-state decom-
position of a pion state with momentum p is given by

jπðpÞi ¼
X
fλig

X
fqig

Z
½Dx�2Ψqq̄ðβ; rÞδc1c2

× jλ1; q1; c1; p1ijλ2; q2; c2; p2i: ð26Þ

In Eq. (26), λi are the quarks light-front helicities, qi ¼ q; q̄
denotes the quark and antiquark flavor, ci is a color index,
and pi is the parton momentum. The function Ψqq̄ is the
light-front wave function (LFWF) of the qq̄ state and its
arguments are indicated with the collective notation

β ¼ ðfλig; fqigÞ and r ¼ fxi; k⊥;ig. The momentum coor-
dinates ki of the partons are in the so-called “hadron” frame
[42], corresponding to the reference frame where the pion
has zero transverse momentum, i.e.,

k⊥;i ¼ p⊥;i − xip⊥; xi ¼
pþ
i

pþ ¼ kþi
pþ : ð27Þ

We will refer to transverse parton momenta in the hadron
frame as intrinsic transverse momenta. The integration
measure in Eq. (26) is defined as

½Dx�N ¼ ½dx�N ½dk⊥�NffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
N
i¼1 xi

p ; ð28Þ

½dx�N ¼ δ

 
1 −

XN
i¼1

xi

!YN
i¼1

dxi; ð29Þ

½dk⊥�N ¼ 2ð2πÞ3δ
 XN

i¼1

k⊥;i

!YN
i¼1

dk⊥;i

2ð2πÞ3 : ð30Þ

The flavor and helicity structure of the parton composition
in Eq. (26) can be made explicit as [43]

jπðpÞi ¼ Tπ

Z
dx1dx2ffiffiffiffiffiffiffiffiffi
x1x2

p dk⊥;1dk⊥;2

2ð2πÞ3 δð1 − x1 − x2Þδðk⊥;2 þ k⊥;1Þ
δc1c2ffiffiffi

3
p

× fψ ð1Þð1; 2Þ½qc1†↑ ð1Þq̄c2†↓ ð2Þ − qc1†↓ ð1Þq̄c2†↑ ð2Þj0i� þ ψ ð2Þð1; 2Þ½kL;1qc1†↑ ð1Þq̄c2†↑ ð2Þ þ kR;1q
c1†
↓ ð1Þq̄c2†↓ ð2Þj0i�g;

ð31Þ

where kRðLÞ;i ¼ kx;i � iky;i and q
ci†
λ and q̄ci†λ are the creation

operators of quark and antiquark with helicity λ and color
ci, respectively. In Eq. (31), Tπ is the isospin factor which
projects on the different members of the isotriplet of the
pion and is defined as Tπ ¼

P
τq;τq̄h1=2τq1=2τq̄j1τπi with

τq;q̄;π the isospin of the quark, antiquark and pion state,
respectively. Furthermore, the light-front wave amplitudes
(LFWAs) ψ ð1Þ and ψ ð2Þ are functions of quark momenta
with arguments 1,2 representing x1, k⊥;1 and x2, k⊥;2,
respectively, and correspond to quark states with orbital
angular momentum (OAM) lz ¼ 0 and jlzj ¼ 1, respec-
tively. They are scalar functions and depend on the parton
momenta only through scalar products k⊥;i · k⊥;j. In the

light cone gaugewith advanced boundary conditions for the
transverse components of the gauge field, the LFWAs are
complex functions [24,25,44]. Using the pion state (31), we
can represent the pion GPDs and TMDs in terms of overlap
of LFWAs in a model-independent way.
The pion chiral-odd GPD is defined as

F½iσjþγ5�
π ðx;Δþ;Δ⊥Þ ¼ −

iϵkj⊥Δk⊥
Mπ

H̃T;πðx; ξ;−Δ2⊥Þ; ð32Þ

where ϵij⊥ ¼ ϵþ−ij. Introducing the following overlap of
LFWAs for the qq̄ component of the pion,

Gkð1; 10Þ ¼ Fkðx1; k⊥;1; 1 − x1;−k⊥;1kx01; k0⊥;1; 1 − x01;−k0⊥;1Þ; ð33Þ

Fkð1; 2jj10; 20Þ ¼ kk⊥;1ψ
ð2Þð1; 2Þψ ð1Þ�ð10; 20Þ − k0k⊥;1ψ

ð1Þð1; 2Þψ ð2Þ�ð10; 20Þ; ð34Þ

one finds at ξ ¼ 0
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Δk⊥
2Mπ

H̃T;πðx; 0;−Δ2⊥Þ ¼
T2
π

2ð2πÞ3
Z

dk⊥Gkðx; k⊥jjx; k⊥ þ ð1 − xÞΔ⊥Þ: ð35Þ

Note that the Wilson line in the light cone correlator defining the GPDs formally reduce to the identity in the light cone
gauge Aþ ¼ 0. We can Fourier transform the integral in Eq. (35), with the result,

Z
dk⊥Gkðx; k⊥jjx; k⊥ þ ð1 − xÞΔ⊥Þ ¼

Z
dk⊥

Z
dA⊥dB⊥e−iA⊥·k⊥þiB⊥·ðk⊥þð1−xÞΔ⊥ÞGkðx;A⊥jjx;B⊥Þ

¼
Z

dB⊥eið1−xÞB⊥·Δ⊥Gkðx;B⊥jjx;B⊥Þ: ð36Þ

Using this expression, Eq. (35) can easily be transformed into the impact parameter b⊥ space to obtain the pion chiral-
odd IPD,

ibk⊥
Mπ

ðH̃T;πðx;b2⊥ÞÞ0 ¼
Z

dΔ⊥
ð2πÞ2e

−ib⊥·Δ⊥
�
Δk⊥
2Mπ

HT;πðx;0;−Δ2⊥Þ
�

¼ T2
π

2ð2πÞ3
Z

dΔ⊥
ð2πÞ2e

−ib⊥·Δ⊥
Z

dB⊥eið1−xÞB⊥·Δ⊥Gkðx;B⊥jjx;B⊥Þ¼
T2
π

2ð2πÞ5ð1−xÞ2G
k

�
x;

b⊥
1−x

����
����x; b⊥

1−x

�
:

ð37Þ

The same Dirac structure giving the GPD H̃T;π in
Eq. (35) enters the correlator that defines the Boer-
Mulders TMD, i.e.,

Φ½iσjþγ5�
π ¼ −

ϵkj⊥kk⊥
Mπ

h⊥1;πðx; k2⊥Þ: ð38Þ

The tensor structures in Eqs. (32) and (38) have opposite
behavior under time reversal, which reveals the T-even and
T-odd nature of H̃T;π and h⊥1;π , respectively. This crucial
difference reflects on the fact that the Boer-Mulders
function would be zero without the contribution of the
Wilson line. In the light cone gauge, the contribution along
the light cone direction vanishes, and there remains a
residual contribution from the transverse link at ξ− ¼ ∞−.
As outlined in Sec. II, in the calculation of the average

transverse momentum of the Boer-Mulders effect the
Wilson line reduces to the exchange of one Wilson gluon
between the active quark and the spectator system [see
Eq. (15)]. If we describe the pion as a bound qq̄ system, the
corresponding cut diagram can be represented as in Fig. 1,
where the blob indicates an effective coupling between the
antiquark and the Wilson gluon. We will assume that the
coupling is perturbative and consider only the tree level
graph. In this framework, the LFWA overlap representation
of the Boer-Mulders function has been derived in Ref. [45]
and reads

kk⊥h⊥1;πðx; k2⊥Þ ¼
2αs
ð2πÞ4

4

3
T2
πMπ

×
Z

dq⊥
q2⊥

Gkðx; k⊥jjx; k⊥ − q⊥Þ; ð39Þ

where q⊥ is the transverse momentum of the Wilson gluon
(we recall that qþ ¼ 0 in the eikonal approximation in the
light cone gauge). We note that Eq. (39) involves the same
overlap of LFWAs as in Eq. (35) for the case of the GPD
H̃T;π . With the formal identification of

−q⊥ ¼ ð1 − xÞΔ⊥; ð40Þ

the Gk functions in Eqs. (35) and (39) have the same
momentum dependence. This is crucial to recover the
lensing function relation. Using Eq. (39), we can now
calculate the average transverse momentum of the Boer-
Mulders effect,

FIG. 1. Cut diagram contributing to the average transverse
momentum of T-odd effects in single-spin asymmetries of a
SIDIS process, in the Aþ ¼ 0 gauge and for a pion target in the
qq̄ configuration.
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hki⊥ijTU ¼ −
Z

dk⊥ki⊥
ϵkj⊥kk⊥
Mπ

h⊥1;π ¼ −
2αs
ð2πÞ4

4

3
T2
π

Z
dq⊥
q2⊥

Z
dk⊥ki⊥ϵ

kj
⊥Gkðx; k⊥jjx; k⊥ − q⊥Þ

¼ −
2αs
ð2πÞ4

4

3
T2
π

Z
dq⊥
q2⊥

Z
dk⊥ki⊥ϵ

kj
⊥
Z

dA⊥dB⊥e−iA⊥·k⊥eiB⊥·ðk⊥−q⊥ÞGkðx;A⊥jjx;B⊥Þ

¼ −i
4

3
4παsð1 − xÞ3

Z
dB⊥

Z
dq⊥
q2⊥

ϵkj⊥Bk⊥
Mπ

qi⊥e−iB⊥·q⊥ðH̃T;πðx;B2⊥ð1 − xÞ2ÞÞ0; ð41Þ

where we used the following relation:

Z
dk⊥ki⊥

Z
dA⊥dB⊥e−iA⊥·k⊥eiB⊥·ðk⊥−q⊥ÞGkðx;A⊥jjx;B⊥Þ ¼

qi⊥
2

Z
dB⊥e−iB⊥·q⊥Gkðx;B⊥kx;B⊥Þ

¼ iqi⊥ð1− xÞ3 ð2πÞ
5

MπT2
π

Z
dB⊥Bk⊥ðH̃T;πðx;B2⊥ð1− xÞ2ÞÞÞ0e−iB⊥·q⊥ :

With the variable change B⊥ → b⊥=ð1 − xÞ in Eq. (41),
we then find

hki⊥ijTU¼
Z

db⊥
ϵkj⊥bk⊥
Mπ

Li

�
b⊥

ð1−xÞ
�
ðH̃T;πðx;b2⊥ÞÞ0; ð42Þ

where we introduced the lensing function [11],

Li

�
b⊥

ð1 − xÞ
�

¼ −i
4

3
αs4π

Z
dq⊥
q2⊥

qi⊥e
−i b⊥ ·q⊥

ð1−xÞ

¼ −
8

3
αs4π

2
bi⊥
b2⊥

ð1 − xÞ: ð43Þ

A few comments are in order. This result relies on the
assumption that the coupling between the Wilson gluon
and the spectator parton is perturbative; i.e., it is
described by the tree-level QCD vertex. The coupling,
at leading power of 1=Q ≃ 1=pþ, conserves the helicity of
the spectator parton. Therefore, the helicity flip of the
active quark must be compensated by a change of the
OAM carried by the partons in the initial and final states.
This situation is equivalent to the GPD case, where the
active and spectator quarks do not change the helicity and
the helicity flip of the target must be compensated by a
transfer of OAM between the partons in the initial and
final states.
Due to the two-body nature of the problem (qq̄ system)

the role of the transverse momentum of the gluon q⊥ is the
same as the external transverse momentum Δ⊥ in the GPD
case. This can be traced back to the fact that the parton
distributions should be invariant by light-front transverse
boosts and depend on the intrinsic transverse-momentum
coordinates of the partons. In the case of the average

transverse-momentum of the Boer-Mulders effect, there is
no change of the transverse momentum of the pion between
the initial and final state. However, the quark and antiquark
have a different intrinsic transverse momentum in the initial
and final states due to the gluon exchange. In the GPD case,
the momentum transferred to the pion is absorbed by the
active quark, while the transverse-momentum of the spec-
tator quark does not change in the initial and final states. In
terms of the intrinsic transverse momentum coordinates
(27) in the hadron-in and hadron-out frame of the initial and
final hadrons, respectively, both the active and spectator
quarks experience a transfer of transverse momentum.
Therefore, one can make the formal identification of
Eq. (40) in the momentum dependence of the LFWAs
describing the contribution of the internal parton dynamics,
and the effect of the FSIs can be factorized in the lensing
function. In the next section, we will see that in the case of a
three body system this correspondence can not be estab-
lished, and, as a consequence, the lensing-function relation
breaks down.
If we do not assume a perturbative coupling between the

Wilson gluon and the antiquark spectator, we may have an
effective vertex that depends on the momenta of the gluon
and of the antiquark. The coupling with the Wilson gluon
may occur with or without flip of the helicity of the
antiquark. In the first case, the lensing relation can not
hold, as it will be discussed in Sec. V. If the helicity flip is
not allowed, the lensing relation can still be spoiled by the
dependence of the vertex on the momentum of the
antiquark. By introducing an effective vertex with a general
parametrization Λðk2⊥; q2⊥; k⊥ · q⊥Þγþ, the average trans-
verse momentum of the Boer-Mulders effect in Eq. (41)
becomes

PASQUINI, RODINI, and BACCHETTA PHYS. REV. D 100, 054039 (2019)

054039-8



hki⊥ijTU ¼ −
2αs
ð2πÞ4

4

3
T2
π

Z
dk⊥ki⊥ϵ

kj
⊥
Z

dq⊥
q2⊥

Gkðx; k⊥jjx; k⊥ − q⊥ÞΛðk2⊥; q2⊥; k⊥ · q⊥Þ

¼ −
2αs
ð2πÞ4

4

3
T2
π

�Z
dB⊥dA⊥

Z
dq⊥
q2⊥

e−iB⊥·q⊥ q
i⊥
2
ϵkj⊥Gkðx;B⊥ − A⊥jjx;B⊥ÞΛ̃ðA2⊥; q2⊥;A⊥ · q⊥Þ

þ i
2

Z
dB⊥dA⊥

Z
dq⊥
q2⊥

e−iðB⊥þA⊥Þ·q⊥2 ϵkj⊥

× ∂A⊥;i



Gk

�
x;A⊥

����x;B⊥ þ A⊥
2

�
Λ̃
��

B⊥ − A⊥
2

�
2

; q2⊥;
B⊥ · q⊥ − A⊥ · q⊥

2

���
: ð44Þ

In Eq. (44), it is impossible to factorise a term like
Gðx;B⊥jjx;B⊥Þ and recognize the definition of the IPD, as
done in Eq. (41). However, if the effective vertex depends
only on q⊥, then the lensing relation (42) still holds, with
the following new definition of the lensing function:

Li

�
b⊥

ð1 − xÞ
�

¼ −i
4

3
αs4π

Z
dq⊥
q2⊥

qi⊥Λðq2⊥Þe−i
b⊥ ·q⊥
ð1−xÞ : ð45Þ

IV. LENSING RELATION FOR THE PROTON

In this section we discuss the validity of the lensing
relations in Eq. (7) for the proton system. For illustration,

we will consider in detail the relation between the
Sivers TMD and the IPD E. However, the same arguments
can be applied for the relation involving the Boer-
Mulders TMD and the combination ET þ 2H̃T of chiral-
odd IPDs.
We limit ourselves to analyzing the general structure

of the LFWA overlap representation of the GPDs and the
Sivers function, since the explicit dependence on the LFWAs
is not relevant for our purposes. We refer to [17,19] for
the full calculation. We introduce the LFWAs overlap
FTðx1;k⊥;1;x2;k⊥;2;x3;k⊥;3jjx01;k0⊥;1;x

0
2;k

0⊥;2;x
0
3;k

0⊥;3Þ and
define the function GT as

GTðx1; k⊥;1; x2; k⊥;2kx01; k0⊥;1; x
0
2; k

0⊥;2Þ
¼ FTðx1; k⊥;1; x2; k⊥;2; 1 − x1 − x2;−k⊥;1 − k⊥;2kx01; k0⊥;1; x

0
2; k

0⊥;2; 1 − x01 − x02;−k0⊥;1 − k0⊥;2Þ; ð46Þ

where the arguments on the right-hand side of k refer to the momentum dependence of the complex conjugate LFWF of the
proton in the final state, and the arguments on the left-hand side give the momentum dependence of the LFWF of the proton
in the initial state.
The GPD E in the limit of ξ ¼ 0 is obtained from the quark-quark correlator (4) with Γ ¼ γþ and transversely polarized

proton. The incoming and outgoing quark momenta are related by p0
i ¼ piði ≠ jÞ for the spectator quarks and p0

j ¼ pj þ Δ
for the active quark that takes the momentum transfer to the proton. The intrinsic momenta are then obtained via the
transverse-boost in Eq. (27) and are related as

x0i ¼ xi; k0⊥;i ¼ k⊥;i − xiΔ⊥; for i ≠ j; ð47Þ

x0j ¼ xj; k0⊥;j ¼ k⊥;j þ ð1 − xjÞΔ⊥: ð48Þ

Using momentum conservation for the intrinsic variables, i.e.,
P

i xi ¼ 1 and
P

i k⊥;i ¼ 0⊥ ¼Pi k
0⊥;i, one finds the

following LFWF overlap representation [19]:

iϵij⊥Δ
j
⊥SiT

M
Eðx; ξ ¼ 0;−Δ2⊥Þ ¼

1

4ð2πÞ6
Z

dk⊥
Z

x

0

dy
Z

dt⊥GTðx; k⊥; y; t⊥jjx; k⊥ þ ð1 − xÞΔ⊥; y; t⊥ − yΔ⊥Þ: ð49Þ

The results for the IPD distribution are then obtained taking the Fourier transform of Eq. (49) with respect to b⊥ and
expressing GT in terms of its Fourier integral. One finds
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−
ϵij⊥b

j
⊥SiT
M

ðEðx; ξ ¼ 0; b2⊥ÞÞ0 ¼
1

4ð2πÞ8
1

1 − x

Z
x

0

dy
Z

dB⊥GT

�
x;
yB⊥ − b⊥
1 − x

; y;B⊥
����
����x; yB⊥ − b⊥

1 − x
; y;B⊥

�
: ð50Þ

The LFWF overlap representation of the Sivers function has been derived in Ref. [17], using the 3q component of the
nucleon state and the one-gluon exchange approximation, with a perturbative quark-gluon coupling. It is given by the same
function GT as for the GPD E, but with different arguments, i.e.,

ϵij⊥k
j
⊥SiT
M

f⊥1Tðx; k2⊥Þ ¼ −
αs

3ð2πÞ7
Z

dq⊥
q2⊥

Z
x

0

dy
Z

dt⊥GTðx; k⊥; y; t⊥jjx; k⊥ − q⊥; y; t⊥ þ q⊥Þ: ð51Þ

From this expression, one clearly sees that the formal identification in Eq. (40) does not apply in the case of Eqs. (49)
and (51), since (1 − x) and y are independent variables. As we will see, this is sufficient to break the lensing-function
relation in the case of the proton.
From Eq. (51), one can calculate the average transverse momentum of the Sivers effect as

hki⊥iUT ¼ −
Z

dk⊥ki⊥
ϵij⊥k

j
⊥SiT
M

f⊥1T

¼ αs
M

3ð2πÞ7
Z

dk⊥ki⊥
Z

dq⊥
q2⊥

Z
x

0

dy
Z

dt⊥GTðx; k⊥; y; t⊥jjx; k⊥ − q⊥; y; t⊥ þ q⊥Þ

¼ αs
M

3ð2πÞ7
Z

x

0

dy
Z

dA⊥dB⊥
Z

dq⊥
q2⊥

qi⊥
2
eiq⊥·A⊥GTðx;B⊥ − A⊥; y;B⊥jjx;B⊥ − A⊥; y;B⊥Þ

¼ −iαs
M

6ð1 − xÞð2πÞ6
Z

x

0

dy
Z

db⊥dB⊥
bi⊥
b2⊥

GT

�
x;
B⊥ − b⊥
1 − x

; y;B⊥
����
����x;B⊥ − b⊥

1 − x
; y;B⊥

�
: ð52Þ

Comparing this equation with Eq. (50), we immedi-
ately notice that the different dependence of the function
GT on B⊥ does not allow us to factorize the contribution
of the IPD from a lensing function. This can be traced
back to the fact that in the LFWF overlap representation
of the GPD the transverse momentum Δ⊥ appears
multiplied by both (1 − x) and y, since both the two
spectator quarks have different intrinsic transverse
momentum in the initial and final states. In other words,
the transverse boost (27) from a given frame to the hadron
frames transforms the transverse-momentum coordinates
of the two spectator quarks in a different way, depending
on their fraction xi of longitudinal momentum. Vice
versa, in the TMD case the hadron does not change
the transverse momentum in the initial and final states,
and the gluon interaction occurs between the active quark
and a single spectator quark, leaving unchanged the
intrinsic momentum of the other spectator quark.
The failure of the lensing relation is ultimately due

to the three-body structure of the nucleon LFWF and
persists more in general for any hadron system described
by more than two constituent partons. Therefore the lensing
relation is spoiled also for the pion when considering Fock-
state components beyond the leading-order qq̄ state. For
the nucleon, one may recover the lensing relation in
models where the nucleon is described as a two-body
system, such as the models with a quark and a diquark
spectator. However, one has to distinguish between differ-
ent variants of diquark-spectator models, depending on the

spin structure of the diquark and its coupling with the
Wilson gluon, as we will discuss in the following section.

V. DIQUARK SPECTATOR MODELS
FOR THE NUCLEON

The basic idea of spectator models is to evaluate the
quark-quark correlators entering the definition of the TMDs
and of the GPDs by inserting a complete set of intermediate
states and then truncating this set at tree level to a single on
shell spectator diquark state, i.e., a state with the quantum
numbers of two quarks. The diquark can be either an
isospin singlet with spin 0 (scalar diquark) or an isospin
triplet with spin 1 (axial-vector diquark). The target is then
seen as made of an off shell quark and an on shell diquark.
Spectator models differ by their specific choice of the
target-quark-diquark vertex, of the polarization four-
vectors associated with the axial-vector diquark, and of
the vertex form factor that takes into account the composite
nature of the target in an effective way. The approximation
of a diquark spectator spoils part of the richness of the
nonperturbative structure of the proton, that cannot be
captured by the vertex form factor alone. Moreover, some
models may introduce relations (like the lensing relation,
but not only) that do not hold in general and are due to
the simplifications introduced by the models themselves.
A review of model-induced relations between different
TMDs and between TMDs and GPDs can be found in
Refs. [1,8,46].
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The lensing relations hold in the scalar spectator models,
as it was first shown in Ref. [10]. The arguments which lead
to the lensing relations are essentially the same as discussed
in Sec. III for the pion, i.e., the hadron described as a two-
body system and the assumption of a perturbative helicity-
conserving coupling between the gauge boson and the
spectator system. For the axial-vector diquark model
(AVDQ), the validity of the lensing-function relations
depends on the helicity-structure of the diquark. One
way to classify AVDQ models is to distinguish between
models that allow for the presence of a longitudinal
polarization and models that admit only transverse polar-
izations for the axial-vector diquark. The first class corre-
sponds to the AVDQ models that can not satisfy the lensing
relations, in contrast to the second group.
To illustrate this, we introduce the polarization vectors of

the AVDQ (see, e.g., Ref. [12]),

εþ1ðlÞ ¼
�
0;

−lRffiffiffi
2

p
lþ

; εþ1;⊥
�
; ð53Þ

ε−1ðlÞ ¼
�
0;

−lLffiffiffi
2

p
lþ

; ε−1;⊥
�
; ð54Þ

ε0ðlÞ ¼
1

Ma

�
lþ;

l2⊥ −M2
a

2lþ
; l⊥
�
; ð55Þ

where Ma is the AVDQ mass, l≡ p − k, and

εþ1;⊥ ¼ −ðε−1;⊥Þ� ¼ −
1ffiffiffi
2

p ð1; iÞ:

Here we do not consider the (unphysical) timelike polari-
zation that is discussed in Ref. [12]. The polarization
vectors in Eqs. (53)–(55) satisfy the following relations:
εþ1ðlÞ · ε�−1ðl0Þ ¼ 0 for any value of l; l0, whereas ε�1ðlÞ ·
ε�0ðlÞ ¼ 0 and ε�1ðlÞ · ε�0ðl0Þ ≠ 0 for l ≠ l0. The interaction
between the diquark and the gluon is given by the following
coupling tensor:

i
ec

Γρ
νσ ¼ ð2lþ qÞρgνσ − ðlþ ð1þ κaÞqÞσδρν − ðl − κaqÞνδρσ;

ð56Þ

where ec and κa are, respectively, the diquark color charge
and the diquark anomalous chromomagnetic moment,
which takes into account that the diquark is not a pointlike
massive axial particle, but is an effective constituent degree
of freedom. In the calculation of the T-odd TMDs, the
indices of the coupling tensor (56) are saturated with the
gluon propagator and the AVDQ polarization vector (see
Fig. 2). The contraction of the coupling tensor with the
polarization vectors of the axial-vector diquark gives the
following interaction vertex:

Rρ ¼
X

λ1;λ2¼�1;0

εν�λ1 ðlÞεσλ2ðlþ qÞΓρ
νσ: ð57Þ

This expression can be compared with the corresponding
q̄gq̄ interaction vertex, which enters the calculation of the
Boer-Mulders function of the pion, i.e.,

Rρ ¼
X

λ1;λ2¼�1=2

v̄λ1ðlþ qÞγρvλ2ðlÞ: ð58Þ

In both cases, the vertex function has the following scaling
behavior:

Rþ≃OðpþÞ; Ri⊥≃Oð1Þ; R−≃Oð1=pþÞ: ð59Þ

However, in the case of the pion, the leading-order termRþ
in Eq. (58) is helicity conserving, whereas the leading
contribution Rþ in Eq. (57) for the axial-vector diquark
contains terms that flip the helicity of the diquark. As a
result, the following transitions are allowed for the AVDQ
interacting with the Wilson gluon:

λa ¼ �1 ↔ λa ¼ 0;�1:

In the calculations of the GPDs, the Wilson line in the light
cone gauge reduces to unity, and the spectator can not flip
the helicity between the initial and final states. We conclude
that the LFWA overlaps must be different for the average
transverse momentum of the T-odd TMD functions and for
the GPDs, hence the lensing relation cannot hold. Only if
one assumes that the longitudinal polarization for the
AVDQ is absent in the proton, the lensing relation can
be restored. This situation occurs within the quark target
model, where the non-Abelian three gluon vertex enters
the computation of the T-odd TMDs and allows only for
helicity-conserving transitions.

VI. CONCLUSIONS

In this work, we have investigated the origin of nontrivial
relations between transverse distortions in the distribution

FIG. 2. Cut diagram contributing to the average transverse-
momentum of T-odd effects in single spin asymmetries of a
SIDIS process, in the Aþ ¼ 0 gauge and for a proton target
described in a quark-diquark model.
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of quarks in impact-parameter space and analogous dis-
tortions in transverse-momentum space. The former are
encoded in impact-parameter distributions (IPDs) and
contribute to observable asymmetries in exclusive proc-
esses involving hadrons. The latter are encoded in the
T-odd Sivers and Boer-Mulders transverse-momentum
distributions (TMDs) and give rise to observable asymme-
tries in semi-inclusive processes involving hadrons.
We have identified the conditions under which it is

possible to express the Sivers and Boer-Mulders functions
as convolutions of an IPD and a lensing function, incor-
porating the effects of the FSIs between the active parton
and the rest of the hadron. These conditions, listed in
Sec. II, appear to be very specific and hold in a restricted
class of models.
To better illustrate the nature of these conditions, we

checked the validity or failure of the lensing relation in
three models: (1) a model of the pion described as a quark-
antiquark bound state, (2) a model of the proton as a bound
state of three quarks, and (3) a model of the proton as a
bound state of a quark and a spectator. The conditions of
validity of the lensing relation are more easily fulfilled in
models where the hadron is described as a two-body bound
system, as in models (1) and (3). However, they can be
violated even in these simple models, as happens in certain
versions of (3), e.g., with axial-vector spectators that admit
longitudinal polarization. Finally, the conditions are vio-
lated in model (2) and in general can not be obtained if
the hadron is described by more than two constituents
and the interaction vertex of the gauge boson occurs with a
single constituent.
In conclusion, it seems that the lensing relation is

unlikely to survive in the full complexity of nonperturbative
QCD, even approximately. Phenomenological studies of
the Sivers and Boer-Mulders function, as well as possible
lattice QCD studies, should be able to confirm the violation
of the lensing hypothesis.
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APPENDIX: DERIVATION OF THE CONDITIONS
FOR THE LENSING RELATION

In this appendix we explicitly derive the conditions 1) –
4) on the matrix elements of the FSI operator discussed in
Sec. (II). Condition 1) follows from the requirement that
the IPD we want to factorize in Eq. (17) is diagonal in the
parton Fock space. Analogously, condition 2) is necessary
to recover the correct Fourier transform of the quark
fields that enters the definition of the IPD correlator.
Conditions 3) and 4) are a consequence of momentum
conservation. The matrix element of the function IiðlÞ in
Eq. (18) connects states with total momenta given by

W⊥ ¼
Xn
i¼1

w⊥;i; Wþ ¼
Xn
i¼1

wþ
i ;

Q⊥ ¼
Xn
i¼1

q⊥;i; Qþ ¼
Xn
i¼1

qþi : ðA1Þ

By imposing total momentum conservation in each matrix
elements of Eq. (17), we have

Q⊥ ¼ W⊥ þ l⊥; Qþ ¼ Wþ ¼ ð1 − xÞpþ: ðA2Þ

Equations (A1) and (A2) are equivalent to

Xn
i¼1

q⊥;i ¼
Xn
i¼1

w⊥;i þ l⊥;

Xn
i¼1

qþi
pþ ¼

Xn
i¼1

wþ
i

pþ ¼
Xn
i¼1

xi ¼ 1 − x: ðA3Þ

Combining the two relations in Eq. (A3), we find

q⊥;i ¼ w⊥;i þ
xi

1 − x
l⊥: ðA4Þ

As final result, the conditions 1) – 4) can be recast in the
expression of Eq. (18) for the matrix element of the lensing
function. By inserting Eq. (18) in Eq. (17), we have

hki⊥ðxÞiUT ¼ 1

2

Z
fdk1gfdk2g

dl⊥
ð2πÞ2

Z
dz−

2π
eixp

þz−e−i
z−
2
ðkþ

1
þkþ

2
ÞX

n

X
β

Z Ym
i¼1

dwþ
i dw⊥;i

ð2πÞ32wþ
i

× Li

�
l⊥

1 − x

�
pþ; 0⊥; S⊥jϕðk1Þγþ

����
�
wþ
i ;w⊥;i þ xi

l⊥
1 − x

�
m
; β
�
hfwþ

i ;w⊥;igm; βjψðk2Þjpþ; 0⊥; S⊥i: ðA5Þ

We now use the invariance of the matrix elements in Eq. (A5) under transverse light-front boosts to obtain
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hki⊥ðxÞiUT ¼ 1

2

Z
fdk1gfdk2g

dl⊥
ð2πÞ2

Z
dz−

2π
eixp

þz−e−i
z−
2
ðkþ

1
þkþ

2
ÞX

n

X
β

Z Ym
i¼1

dwþ
i dw⊥;i

ð2πÞ32wþ
i

× Li

�
l⊥

1 − x

�
hpþ;−l⊥; S⊥jϕðz1Þγþjfwþ

i ;w⊥;igm; βihfwþ
i ;w⊥;igm; βjψðz2Þjpþ; 0⊥; S⊥i

¼ 1

2

Z
dl⊥
ð2πÞ2

Z
dz−

2π
eixp

þz−Li

�
l⊥

1 − x

�
hpþ;−l⊥; S⊥jϕðk1Þγþψðk2Þjpþ; 0⊥; S⊥i: ðA6Þ

Equation (A6) can be finally Fourier transformed in the impact parameter space, with the result,

hki⊥ðxÞiUT ¼ 1

2

Z
dl⊥
ð2πÞ2

Z
dz−

2π
eixp

þz−
Z

db⊥e−ib⊥l⊥Li

�
l⊥

1 − x

�
hpþ;R⊥ ¼ 0⊥; S⊥jϕðz1Þγþψðz2Þjpþ;R⊥ ¼ 0⊥; S⊥i

¼ 1

2

Z
dz−

2π
eixp

þz−
Z

db⊥Li

�
b⊥

1 − x

�
hPþ;R⊥ ¼ 0⊥; S⊥jϕðz1Þγþψðz2ÞjPþ;R⊥ ¼ 0⊥;S⊥i; ðA7Þ

where we recognize the convolution of the lensing function Lðb⊥=ð1 − xÞÞ and the correlator for unpolarized quark in a
transversely polarized target that is related the IPD ðEðx; b2⊥ÞÞ0, i.e.,

hki⊥ðxÞiUT ¼
Z

db⊥Li

�
b⊥

1 − x

�
ϵjk⊥b

j
⊥Sk⊥
M

ðEðx; b2⊥ÞÞ0: ðA8Þ
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