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The in-medium dynamics of heavy particles are governed by transport coefficients. The heavy quark
momentum diffusion coefficient, κ, is an object of special interest in the literature, but one which has proven
notoriously difficult to estimate, despite the fact that it has been computed by weak-coupling methods at
next-to-leading order accuracy, and by lattice simulations of the pure SU(3) gauge theory. Another
coefficient, γ, has been recently identified. It can be understood as the dispersive counterpart of κ. Little is
known about γ. Both κ and γ are, however, of foremost importance in heavy quarkonium physics as they
entirely determine the in and out of equilibrium dynamics of quarkonium in a medium, if the evolution of
the density matrix is Markovian, and the motion, quantum Brownian; the medium could be a strongly or
weakly coupled plasma. In this paper, using the relation between κ, γ and the quarkonium in-medium width
and mass shift respectively, we evaluate the two coefficients from existing 2þ 1 flavor lattice QCD data.
The resulting range for κ is consistent with earlier determinations, the one for γ is the first nonperturbative
determination of this quantity.
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I. INTRODUCTION

Heavy quarkonium has long been theorized to serve as a
probe of the medium formed in heavy-ion collisions with
the purpose to detect a new state of matter, the quark gluon
plasma (QGP) [1]. In turn, the study of the QGP offers a
unique window on the Universe at an early time.
In this paper, we focus on the out of equilibrium

dynamics of heavy quarkonium in the medium. Our aims
are twofold. Making use of recent results [2,3], we further
elaborate on the out of equilibrium dynamics under the
assumptions that the evolution of the quarkonium density is
Markovian, and the motion, quantum Brownian. We
emphasize the relation that exists, under these conditions,
between the quarkonium dynamics and the transport
coefficient κ, describing the momentum diffusion of a
heavy quark in a medium, and γ, the dispersive counterpart

of κ. Finally, exploiting this relation, and under the
conditions of its validity, we provide a method for
extracting the coefficients κ and γ from existing 2þ 1
flavor lattice QCD data. A recent work on the extraction of
heavy-quark transport coefficients is Ref. [4].
The remainder of the paper is structured as follows. In

Sec. II, we summarize some recent progress in the study of
the out of equilibrium dynamics of heavy particles and, in
particular, heavy quarkonium in a medium, supplying the
relevant background for the results to follow. Section III
contains the evolution equations for the heavy quarkonium
density matrix in a medium under the condition of
Markovianity and quantum Brownian motion. In this
section, we also relate the transport coefficients κ and γ
with the quarkonium in-medium width and mass shift
respectively. In Sec. IV, we use existing lattice data to
assign numerical values to both coefficients. We conclude
in Sec. V. Technical details can be found in the Appendix.

II. THEORETICAL BACKGROUND

A. Heavy quarkonia via Lindblad equation: κ and γ

A recent body of work has sought to model heavy
quarkonium evolution in the medium formed in heavy-ion
collisions using the formalism of open quantum systems
[2,3,5–11]. For a general review of open quantum systems,
we direct the reader to [12]. Quarkonium serves as the
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system, and the medium, which can be a QGP, as the
environment.
The system, quarkonium, is characterized by at least

three energy scales: the mass M of the heavy quark, the
inverse of the Bohr radius, a0, and the binding energy E.
These energy scales, quarkonium being a nonrelativistic
bound state, are hierarchically ordered: M ≫ 1=a0 ≫ E.
We identify the inverse of E with the intrinsic timescale of
the system: τS ∼ 1=E.
The environment, the medium, may be characterized by

several energy scales. We will assume just one single
energy scale, πT. We identify the inverse of πT with the
correlation time of the environment: τE ∼ 1=ðπTÞ. If the
medium is in thermal equilibrium, or locally in thermal
equilibrium, we may understand T as the temperature.
Since we do not exploit any further, possible, hierarchy
among the energy scales of the medium, we are indeed
considering that the medium may be strongly coupled. For
instance, if the medium is a strongly coupled QGP in local
thermal equilibrium, then πT is of the same order as the
Debye mass, mD ∼ gT, and of the same order as the
magnetic screening mass, mM ∼ g2T.
The evolution of the system in the environment is

characterized by a relaxation time τR. We assume that the
quarkonium is Coulombic, which applies to the charmo-
nium and bottomonium ground states. This requires that

1

a0
≫ πT; ΛQCD; ð1Þ

and that in-medium and nonperturbative corrections to the
Coulomb potential are subleading.1 Furthermore, we also
assume that

πT ≫ E: ð2Þ
Under these assumptions the relaxation time is given by the
inverse of the self-energy diagram shown in Fig. 1,

τR ∼
1

Σs
∼

1

a20ðπTÞ3
: ð3Þ

In the case of a weakly coupled medium, the relaxation
time may be enhanced by a factor 1=g2ðTÞ, g being the
QCD gauge coupling.

Under the Coulombic assumption (1), it follows that

τR ≫ τE; ð4Þ

which is a necessary condition for the system to be insen-
sitive to the initial condition of the environment and,
therefore, to show a Markovian evolution. Moreover,
from (2) it follows that

τS ≫ τE: ð5Þ

This qualifies the regime of the quarkonium in the medium
as quantum Brownian motion [6].
In [2,3] it has been shown that under the Coulombic,

Eq. (1) or Eq. (4), and the Brownian motion assumption,
Eq. (2) or Eq. (5), the evolution equation for the density
matrix, ρ, of the heavy quark-antiquark system can be
written in the Lindblad form [13,14]:

dρ
dt

¼ −i½H; ρ� þ
X
n

�
CnρC

†
n −

1

2
fC†

nCn; ρg
�
; ð6Þ

where H is a Hermitian operator, and Cn are known as
collapse operators. These operators were computed in
[2,3]; we give the explicit expressions of ρ, H, and the
Cn in the following: Eqs. (11) and (23) to (25) in Sec. III.
The operators H and Cn turn out to depend on only two
transport coefficients, κ and γ, that encode the entire in-
medium dynamics. They are related to the real and
imaginary parts of the heavy quarkonium self-energy,
Σs, with a rigorous exposition and derivation of κ and γ
in the context of heavy quarkonium presented in Sec. III. In
[2,3] it was further recognized that κ is in fact the heavy-
quark momentum diffusion coefficient, while γ could be
understood as its dispersive counterpart. We elaborate more
on κ and its role in the in-medium dynamics of heavy
quarks in the following section.

B. Heavy quarks via Langevin equation: κ

The heavy-quark momentum diffusion coefficient κ is an
object of great interest in the literature [15–21] as it affects
the momentum distribution of heavy flavor mesons mea-
sured in several experimental facilities [22–25]. It is a key

FIG. 1. A diagrammatic representation of the leading order
color-singlet self-energy diagram, Σs, in pNRQCD. Single lines
represent quark-antiquark color-singlet propagators, double lines
quark-antiquark color-octet propagators, curly lines gluons, and
crossed circles chromoelectric dipole vertices.

1The temperature of the medium formed in a heavy-ion
collision at the LHC ranges from approximately 475 MeV down
to the freeze-out temperature giving a maximum of πT of
approximately 1.5 GeV in the initial stages of the collision. In
Sec. IV, for theϒð1SÞ state, we calculate 1=a0 ≈ 1.5 GeV. As the
medium expands rapidly in the initial stages of the thermal
evolution, it quickly cools to lower temperatures, and for the
lowest lying bottomonium states, we expect Eq. (1) to hold for all
but the earliest times. As the J=ψ has a significantly larger radius
than the ϒð1SÞ, this relation will hold at lower temperatures. In
Sec. IV for the J=ψ , we calculate 1=a0 ≈ 0.84 GeV giving a
range of validity up to temperatures of approximately 250 MeV.
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component in understanding the heavy-quark diffusion in a
thermal medium in the framework of the Langevin equa-
tions. Specifically, for a heavy quark of mass M in a
thermal medium at a temperature T, with M ≫ T, the
momentum of the heavy quark changes little over the
characteristic timescale of the plasma due to random
interactions with the medium constituents [15]. This slow
evolution due to uncorrelated interactions with the medium
is described by the Langevin equations:

dpi

dt
¼ −ηDpi þ ξiðtÞ; hξiðtÞξjðt0Þi ¼ κδijδðt − t0Þ;

ð7Þ

where pi is the momentum of the heavy quark, ηD is the
drag coefficient, and ξi encodes the random, uncorrelated
interactions of the quark with the medium. Demanding that
the system approaches thermal equilibrium entails an
Einstein relation between the drag coefficient and the
heavy-quark momentum diffusion coefficient, i.e., ηD ¼
κ=ð2MTÞ. We thus see that the dynamics of the heavy
quark in the thermal medium are governed by a single
transport coefficient, namely the heavy-quark momentum
diffusion coefficient κ.

C. Determining κ and γ

In spite of the relevance of κ in the theoretical description
of heavy-quark diffusion in a thermal medium, its calcu-
lation has proven arduous and a precise determination
elusive; for recent reviews see [26–29]. Calculations of κ
require a number of assumptions on the dynamics and
initial conditions of the medium along with its evolution
and interaction with the heavy quark. Comparison with data
would then allow for a discrimination among different
assumptions and models. Large experimental uncertainties
combined with subtle interactions among different assump-
tions have complicated the attempts to fix κ reliably. The
heavy-quark momentum diffusion coefficient may be also
determined by means of lattice simulations. While the
extraction from the spectral function of current-current
correlators has turned out to be very difficult [30], more
recently, κ has been related to the spectral function of the
chromoelectric field correlator hgEa;iðt; 0ÞgEa;ið0; 0Þi, ρel,
in thermal QCD [16,18]. For definitions and details, see the
Appendix. The relation reads

κ ¼ T
6Nc

lim
ω→0

ρelðωÞ
ω

; ð8Þ

which constrains κ to be positive. Nc ¼ 3 is the number
of colors. Equation (8) has allowed for determinations of κ,
so far on quenched lattices in thermal QCD for temper-
atures between Tc and 2Tc, Tc being the crossover temper-
ature to the QGP [19,20]. Finally, an analytic, perturbative
estimate of κ up to next-to-leading order in the

hard-thermal-loop effective theory appears to suffer from
poor convergence [17].
In this paper, we determine κ from the thermal decay

width of a heavy quarkonium in a strongly coupled
medium [2,3]. This determination uses a different observ-
able, the quarkonium thermal width, a different set of
assumptions, Eqs. (1) (Coulombic bound state) and (2)
(quantum Brownian motion), and a different source of
data, 2 flavor lattice QCD data from [31] and 2þ 1
flavor lattice QCD data from [32]. Therefore, it is an
independent determination with different systematic
uncertainties, potentially competitive with other determi-
nations. We estimate our main sources of systematic
uncertainties in this determination of κ to be higher-
order corrections inherent in our effective field theory
approach and the systematic uncertainties inherited from
the specific lattice data used in our calculations. As
discussed in Sec. II A, for bottomonium, we expect our
hierarchy of scales in Eq. (1) to be fulfilled and these
higher-order corrections to be small.
In contrast to the theoretical understanding of the role of

κ in the dynamics of heavy quarks in a thermal medium and
the progress towards its calculation, comparatively little is
known about γ. Since γ may be understood as a correction
to the heavy quark-antiquark potential, no similar object
arises in the description of the in-medium heavy-quark
dynamics. A proper definition relates γ to the chromo-
electric field correlator in such a way that it may be
considered the dispersive counterpart of κ [2,3]. Like κ,
γ can be written in thermal QCD in terms of the chromo-
electric spectral function ρel:

γ ¼ −
1

3Nc

Z
∞

0

dω
2π

ρelðωÞ
ω

: ð9Þ

A derivation of Eq. (9) is in the Appendix. Differently from
κ, however, the coefficient γ is a function of ρelðωÞ=ω over
the whole spectrum of frequencies. Since ρelðωÞ ∼ ω3 for
large frequencies, the above integral is ultraviolet divergent
and needs to be regularized and renormalized. The large
frequencies behavior of ρelðωÞ is entirely given by the in
vacuum (T ¼ 0) contributions. These are known up to next-
to-leading order [33]. From Ref. [33] it also follows that the
thermal part of γ is finite.
Just as κ is the parameter of central importance in the

study of in-medium heavy quarks, κ and γ appear to be
the parameters of central importance in the study of the
quantum Brownian motion of Coulombic quarkonia in a
strongly coupled medium. In this paper, taking advantage
of the relation between γ and the quarkonium thermal
mass shift in a strongly coupled medium [2,3], we
determine the thermal part of γ from the 2þ 1 flavor
lattice QCD data of [32]. The procedure will be similar to
the one used to extract κ, as well as the underlying
assumptions (1) and (2).
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III. QUARKONIUM IN THE QUANTUM
BROWNIAN REGIME

In [3], a set of master equations governing the time
evolution of heavy quarkonium in a medium were derived.
The equations follow from assuming the inverse Bohr
radius of the quarkonium to be greater than the energy scale
of the medium, Eq. (1), and model the quarkonium as
evolving in the vacuum up to a time t ¼ t0, at which point
interactions with the medium begin. The equations express
the time evolution of the density matrices of the heavy
quark-antiquark color-singlet, ρs, and octet states, ρo, in
terms of the color-singlet and octet Hamiltonians, hs ¼
p2=M − CFαs=rþ � � � and ho¼p2=Mþαs=ð2NcrÞþ���,
and interaction terms with the medium, which, at order
r2 in the multipole expansion, are encoded in the self-
energy diagram shown in Fig. 1. These interactions account
for the mass shift of the heavy quark-antiquark pair induced
by the medium, its decay width induced by the medium, the
generation of quark-antiquark color-singlet states from
quark-antiquark color-octet states interacting with the
medium and the generation of quark-antiquark color-octet
states from quark-antiquark (color-singlet or octet) states
interacting with the medium. The color-singlet and octet
Hamiltonians, hs and ho, describe particles of mass M and
momentum p interacting at a distance r through a Coulomb
potential; CF ¼ ðN2

c − 1Þ=ð2NcÞ ¼ 4=3 is the Casimir of
the fundamental representation, and αs ¼ g2=ð4πÞ is the
strong coupling. The dots in our expressions of hs and ho
stand for higher-order terms that are irrelevant for the
present analysis. The effective field theory framework in
which the nonrelativistic heavy quark-antiquark dynamics
can be systematically described in terms of quark-antiquark
color-singlet and octet fields, whose interactions with the
medium are organized in powers of 1=M and r, is potential
nonrelativistic QCD (pNRQCD) [34–36]. The leading
order interaction between a heavy quark-antiquark field
and the medium is encoded in pNRQCD in a chromo-
electric dipole interaction, which appears at order r=M0 in
the effective field theory Lagrangian.
Further assuming that any energy scale in the medium is

larger than the heavy quark-antiquark binding energy,2

Eq. (2), leads to the following evolution equations [3]:

dρ
dt

¼ −i½H; ρ� þ
X
nm

hnm

�
Ln
i ρL

m
i
† −

1

2
fLm

i
†Ln

i ; ρg
�
;

ð10Þ

where

ρ ¼
�
ρs 0

0 ρo

�
; ð11Þ

H ¼
�
hs 0

0 ho

�
þ rirj

2
γ̃ijðtÞ

�
1 0

0 N2
c−2

2ðN2
c−1Þ

�
; ð12Þ

L0
i ¼ ri

�
0 0

0 1

�
; ð13Þ

L1
i ¼

rj

2
ðκ̃ijðtÞ þ iγ̃ijðtÞÞ

�
0 0

0 N2
c−4

2ðN2
c−1Þ

�
; ð14Þ

L2
i ¼ ri

�
0 1

1 0

�
; ð15Þ

L3
i ¼

rj

2
ðκ̃ijðtÞ þ iγ̃ijðtÞÞ

�
0 1

N2
c−1

1 0

�
: ð16Þ

Despite the fact that hnm are the elements of a matrix,

h ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; ð17Þ

which is not positive definite, it is straightforward to show
that after a redefinition of Ln

i the eigenvectors of h
associated to negative eigenvalues, which are proportional
to L1

i − L0
i and L3

i − L2
i , can be set to zero. Hence,

according to Refs. [13,14], we can map the above evolution
equations into the Lindblad form (6). We emphasize that
the evolution equations in this form hold for a Coulombic
bound state in quantum Brownian motion in a medium. We
do not require the medium to be weakly coupled.
The tensors κ̃ijðtÞ and γ̃ijðtÞ have a field theoretical

definition:

κ̃ijðtÞ ¼ 1

2Nc

Z
t

t0

dt0hfgEa;iðt; 0Þ; gEa;jðt0; 0Þgi; ð18Þ

γ̃ijðtÞ ¼ −
i

2Nc

Z
t

t0

dt0h½gEa;iðt; 0Þ; gEa;jðt0; 0Þ�i; ð19Þ

where h� � �i stands for the in-medium average, the curly
brackets signify anticommutator, the square ones commu-
tator, and E is the chromoelectric field. In the above
expressions, the chromoelectric field has to be understood
as Ω† × ðusualEÞ ×Ω, where Ω is a Wilson line going
from −∞ to t: Ω ¼ exp ½−ig R t

−∞ dsA0ðs; 0Þ�. The Wilson
lines guarantee that the definitions of κ̃ijðtÞ and γ̃ijðtÞ are
gauge invariant. The tensors κ̃ijðtÞ and γ̃ijðtÞmay be related

2Note that, in pNRQCD, quark-antiquark pairs in a color-octet
configuration have energy p2=M, where p is a relative momen-
tum of the same order as 1=a0. Hence the typical energy of the
color-octet pair is of order E, which is the binding energy of the
color-singlet pair.
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to the real and imaginary parts of the quark-antiquark color-
singlet self-energy diagram shown in Fig. 1:

ΣsðtÞ ¼ rirj
1

2Nc

Z
t

t0

dt0hgEa;iðt; 0ÞgEa;jðt0; 0Þi

¼ rirj

2
½κ̃ijðtÞ þ iγ̃ijðtÞ�: ð20Þ

If the medium is isotropic, then κ̃ijðtÞ ¼ δijκ̃ðtÞ and
γ̃ijðtÞ ¼ δijγ̃ðtÞ, where

κ̃ðtÞ ¼ 1

6Nc

Z
t

t0

dt0hfgEa;iðt; 0Þ; gEa;iðt0; 0Þgi; ð21Þ

γ̃ðtÞ ¼ −
i

6Nc

Z
t

t0

dt0h½gEa;iðt; 0Þ; gEa;iðt0; 0Þ�i: ð22Þ

The Lindblad equation describing the time evolution of the
density matrix has then a particularly simple form [2,3], as
the Hermitian operator H is given by

H ¼
�
hs 0

0 ho

�
þ r2

2
γ̃ðtÞ

�
1 0

0 N2
c−2

2ðN2
c−1Þ

�
; ð23Þ

and the collapse operators Ci by:

C0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃ðtÞ

N2
c − 1

s
ri
�

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 1
p

0

�
; ð24Þ

C1
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2

c − 4Þκ̃ðtÞ
2ðN2

c − 1Þ

s
ri
�
0 0

0 1

�
: ð25Þ

At short times after the formation of the medium, t≳ t0,
κ̃ðtÞ scales like T4ðt − t0Þ and the thermal part of γ̃ðtÞ like
T5ðt − t0Þ2. In the opposite, large time limit, t − t0 is the
largest timescale in the problem. At this point, it is
convenient to assume that the chromoelectric correlators
appearing in (21) and (22) are, at least approximately, time
translation invariant: hEa;iðt;0ÞEa;iðt0;0Þi¼hEa;iðt−t0;0Þ×
Ea;ið0;0Þi. This is the case, for instance, at thermal
equilibrium or close to it, if the variation in time of the
temperature is slow. In the large time limit and under the
assumption of (approximate) time translation invariance
κ̃ðtÞ and γ̃ðtÞ approach the asymptotic values κ ¼ κ̃ð∞Þ and
γ ¼ γ̃ð∞Þ respectively:

κ ¼ 1

6Nc

Z
∞

0

dthfgEa;iðt; 0Þ; gEa;ið0; 0Þgi; ð26Þ

γ ¼ −
i

6Nc

Z
∞

0

dth½gEa;iðt; 0Þ; gEa;ið0; 0Þ�i: ð27Þ

The quantity κ is the heavy-quark momentum diffusion
coefficient. The above form of the heavy-quark momentum

diffusion coefficient was first derived in [16] (see also [18])
in the context of the diffusion of a heavy quark in a thermal
medium according to the Langevin equations (7). The
coefficient κ can also be written as the real part of the time
ordered correlator 1=ð6NcÞ

Rþ∞
−∞ dthTgEa;iðt;0ÞgEa;ið0;0Þi;

γ is then its imaginary part.
In the large time limit, for an isotropic medium and under

approximate time translation invariance, the color-singlet
self-energy (20) becomes

Σs ¼
r2

2
ðκ þ iγÞ: ð28Þ

This allows us to write

r2κ ¼ Σs þ Σ†
s ¼ −2Imð−iΣsÞ; ð29Þ

r2γ ¼ −iΣs þ iΣ†
s ¼ 2Reð−iΣsÞ; ð30Þ

and eventually relate κ and γ to the quarkonium in-medium
width, Γ, and the in-medium mass shift, δM. For 1S
Coulombic quarkonium states, these relations read [2,3]

Γð1SÞ ¼ 3a20κ; ð31Þ

δMð1SÞ ¼ 3

2
a20γ; ð32Þ

where 3a20 is the expectation value of r
2 on a 1S Coulombic

bound state. The Bohr radius is a0 ¼ 2=ðMCFαsÞ.
Γ and δM do not contain, by definition, in vacuum

contributions. Also κ, as defined in (26), does not contain in
vacuum contributions, reflecting the fact that energy con-
servation prohibits the decay of a heavy quark-antiquark
color singlet into a heavy quark-antiquark color octet in
vacuum. In contrast, γ, as defined in (27), does contain in
vacuum contributions. Hence, Eq. (32) relates δMð1SÞ to γ
subtracted of its vacuum (T ¼ 0) part. The coefficient γ
should be understood in this subtraction scheme in Eq. (32)
and in the next section. Now that we have explicit relations
for κ and γ in terms of a0, Γð1SÞ, and δMð1SÞ, we can
proceed to extract κ and γ from available lattice estimates of
Γð1SÞ and δMð1SÞ.

IV. RESULTS AND COMPARISONS

Equations (31) and (32) fix the ratio γ=κ to be

γ

κ
¼ 2

δMð1SÞ
Γð1SÞ ; ð33Þ

which may turn out to be useful once both δMð1SÞ and
Γð1SÞ are reliably determined, for the ratio does not depend
on the Bohr radius. The quantities δMð1SÞ and Γð1SÞ
cannot be accessed by experiments, as in heavy-ion
collisions the quarkonium decays, at a late time, in the
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vacuum. These quantities can instead by computed by
lattice QCD, with the thermal mass shift, δMð1SÞ, clearly
in a more reliable fashion than the thermal width, Γð1SÞ.
In order to determine γ and κ from δMð1SÞ and Γð1SÞ

using Eqs. (32) and (31), we need to calculate a0. Since the
system is Coulombic, we can do it by solving the self-
consistency equation

a0 ¼
2

MCFαsð1=a0Þ
; ð34Þ

where αsð1=a0Þ is the strong coupling evaluated at the scale
1=a0. For the bottom and charm masses, we take M ¼
Mb ¼ 4.78 GeV and M ¼ Mc ¼ 1.67 GeV, respectively.
These are the central values for the pole masses quoted by
the Particle Data Group [37].3 We solve for a0 using the
one-loop, 3-flavor running of αs with ΛMS ¼ 332 MeV,
also from Ref. [37]. We take the running of αs at one loop
for consistency with the fact that the radius of a 1S
Coulombic bound state is given by Eq. (34) only at leading
order. For the bottomonium ground state we obtain
a0 ¼ 0.67 GeV−1 ¼ 0.13 fm, while for the charmonium
ground state we obtain a0 ¼ 1.19 GeV−1 ¼ 0.23 fm. For
the above choice of heavy-quark masses, the ϒð1SÞ bind-
ing energy is E ¼ Mðϒð1SÞÞ − 2Mb ¼ −0.1 GeV, and the
J=ψ binding energy is E¼MðJ=ψÞ−2Mc¼−0.24GeV.4

We evaluate γ=T3 using the thermal mass shifts com-
puted for the J=ψ at T ¼ 251 MeV and for the ϒð1SÞ at
T ¼ 407 MeV and T ¼ 251 MeV in the 2þ 1 flavor
lattice simulation of Ref. [32]. After rescaling for the
mass, see Footnote 3, the mass shifts are ð−85�
29Þ MeV for the J=ψ at T ¼ 251 MeV, and ð−48�
16Þ MeV and ð−30� 12Þ MeV for the ϒð1SÞ at T ¼
407 MeV and T ¼ 251 MeV, respectively.5 The results for
γ are shown by the three first entries (black bars) of Fig. 2.
For the J=ψ , we have 1=a0 ¼ 0.84 GeV, which fulfills

(somewhat marginally) the hierarchy of Eq. (1) at
T ¼ 251 MeV, since π × ð251 MeVÞ ¼ 0.79 GeV. It also
fulfills the condition (2). In the case of the ϒð1SÞ, 1=a0 ¼
1.5 GeV and both conditions (1) and (2) are fulfilled at both
temperatures T ¼ 251 MeV and T ¼ 407 MeV although
at the lower temperature more clearly than at the higher
one. The two conditions (1) and (2) guarantee that the J=ψ
and ϒð1SÞ remain Coulombic also in the medium and that
their motion through the medium is a quantum Brownian
one. Because of this, we consider all three extractions of γ,
from the J=ψ (one temperature) and the ϒð1SÞ (two
temperatures), reliable, as they are consistent with our
assumptions. We take their range as an estimate of γ=T3 for
251≲ T ≲ 407 MeV:

−3.8≲ γ

T3
≲ −0.7: ð35Þ

It is particularly significant to see that the extraction of
γ=T3 from the J=ψ at T ¼ 251 MeV overlaps perfectly
with the extraction of γ=T3 from the ϒð1SÞ at the same
temperature. This shows that, as expected, γ=T3 depends
only on the temperature, while it does not depend on the
quarkonium state. Concerning the temperature dependence,
the extraction of γ=T3 from the ϒð1SÞ at T ¼ 407 MeV
could suggest that −γ=T3 tends towards smaller values at
higher temperatures. The last two entries (blue bars) of
Fig. 2 refer to γ determined from the leading order
expression of the thermal mass shift computed in
Ref. [38] and reported in Refs. [2,3]. We see that pertur-
bation theory also gives a negative value for γ, as our
nonperturbative estimate above. Moreover, there is a partial
overlap between the perturbative result at the highest
temperature, where a weak-coupling treatment is expected

FIG. 2. The first three entries (black bars) show γ=T3 as
obtained from Eq. (32) using lattice data of Ref. [32] for the
thermal mass shift of the J=ψ and of the ϒð1SÞ at two different
temperatures. The error bars account for the lattice uncertainties
only. The last two entries (blue bars) provide γ=T3 from the
perturbative, leading order, expression of the thermal mass shift
with the strong coupling computed at π times the two different
temperatures 251 and 407 MeV. We assign a 50% uncertainty to
these results. The gray band gives our final range for γ=T3,
see text.

3Since in Ref. [32] the masses Mb ¼ 4.65 GeV and Mc ¼
1.275 GeV were used, we have rescaled their values for δMð1SÞ
and Γð1SÞ by ð4.65=4.78Þ2 in the bottomonium case and by
ð1.275=1.67Þ2 in the charmonium case. Similarly, since in
Ref. [31] the mass Mb ¼ 5 GeV was used, we have rescaled
their value for Γð1SÞ by ð5=4.78Þ2. The coefficients γ and κ are
mass independent, so the choice of the mass should not affect
them. There is, however, a residual dependence due to having
truncated the expressions in the right-hand sides of Eqs. (31) and
(32) at leading order in the various expansions underlying the
effective field theory. We have checked that this residual
dependence is, indeed, well accounted for by the quoted errors.

4Defining the binding energy as the Coulombic Bohr level,
E ¼ −1=ðMa20Þ, changes the numerical value (to E ¼
−0.46 GeV for the ϒð1SÞ and E ¼ −0.42 GeV for the J=ψ),
but not the hierarchy of energy scales. Hence, the following
arguments and extractions of γ and κ, which only depend on that
hierarchy, would remain unchanged.

5Consistently with the Coulombic assumption, the J=ψ and
ϒð1SÞ in vacuum binding energies are negative and at least a
factor 2 larger than the corresponding thermal mass shifts.
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to work better, and the range given in Eq. (35). It is
possible, however, that higher-order corrections will spoil
the leading order result at the temperatures considered here,
as it is the case for the weak-coupling expression of κ.
Finally, we remark that a small and negative value of γ=T3

is also phenomenologically favored by the comparison of
the ϒð1SÞ nuclear modification factor, as computed from
the Lindblad equation (6), (23), (24), (25), with the most
recent CMS data [2,3,39].
Concerning κ, the available lattice data for the thermal

width are less precise than those available for the mass
shift. The width given in the 2þ 1 flavor lattice simulation
of Ref. [32] is preliminary and should be understood as a
lower bound rather than the width itself [40]. We combine
this lower bound with the somewhat older 2 flavor lattice
results from [31] that supply an upper bound to the thermal
width. More specifically, we take the ϒð1SÞ width at
T ¼ 407 MeV from [32] [Γð1SÞ ≈ 22.3 MeV, after rescal-
ing for the mass] as a lower bound and the highest
temperature estimate of Γð1SÞ from Fig. 5 of Ref. [31]
[Γð1SÞ=T ≈ 1.1, after rescaling for the mass, for T=Tc ≈ 2
with Tc ≈ 220 MeV] as an upper bound. We obtain

0.24≲ κ

T3
≲ 4.2: ð36Þ

The above range is the first entry (black bar) in Fig. 3. We
note that we do not plot an estimate of κ obtained from the
thermal width of the J=ψ as Ref. [31] performed measure-
ments only on bottomonium states; this leaves us with only
a lower bound from the measurement of the width of the

J=ψ at T ¼ 251 MeV performed in Ref. [32]. We find this
gives a lower limit of κ=T3 ≳ 0.235� 0.208 (with purely
statistical uncertainties); we note the agreement with the
lower bound of κ=T3 ≳ 0.24 obtained from the ϒð1SÞ at
T ¼ 407 MeV. The second entry (brown bar) in Fig. 3
reports the result, 1.8≲ κ=T3 ≲ 3.4, of the lattice study
done in a pure SU(3) plasma at T ≈ 1.5Tc with Tc ≈
313 MeV in Ref. [20]. Indirect bounds can also be placed
on κ from the experimental measure of the D-meson
azimuthal anisotropy coefficient v2. In particular, measure-
ments from the ALICE [24] and STAR [25] Collaborations
can be compared with theoretical models to place bounds
on the heavy-quark spatial diffusion coefficient. Relating
the heavy-quark spatial diffusion coefficient D to the
heavy-quark momentum diffusion coefficient (κ=T3 ¼
2=DT), we find that ALICE data give 1.8≲ κ=T3 ≲ 8.4
at T ¼ Tc and STAR data give 1.0≲ κ=T3 ≲ 6.3 for
Tc ≲ T ≲ 2Tc. The third and fourth entries (green bars)
in Fig. 3 represent these two bounds, respectively.
Calculations of the nuclear modification factor RAA and
the elliptic flow v2 from phenomenological models also
place bounds on the momentum diffusion coefficient; for a
collection of recent results, see [27]. The results of this
reference give 3.1≲ κ=T3 ≲ 6.3 at T ≈ 155–160 MeV and
are the fifth entry (red bar) in Fig. 3.6 The sixth entry (blue
bar) in Fig. 3 follows from computing κ in weak-coupling
perturbation theory at T ¼ 407 MeV. In the perturbative
expression we include the complete order g4 contribution
and the order g5 term 7=ð48π2ÞCFNcg4ðmD=TÞ (this is,
truncated at order g5, what is called leading order expres-
sion in [17]); we note that the order g4 contribution alone
would give unphysical negative values of κ for realistic
couplings. The perturbative expression of κ=T3, in the
above sense, gives 2≲ κ=T3 ≲ 6 by assigning a 50% uncer-
tainty. This uncertainty may, however, be underestimated
since the complete g5 correction is known and very large
[17]. In fact it may increase the leading order result even by
an order of magnitude under some circumstances [17,19],
which obviously questions the reliability of a naive weak-
coupling expansion for κ at the considered temperatures.
All determinations of κ=T3 are consistent with each

other, and, in particular, with the range presented in
Eq. (36). This is noteworthy as these determinations are
very different, some of them do not even rely on full QCD,FIG. 3. The first entry (black bar) shows κ=T3 as obtained from

Eq. (31) using lattice data of Refs. [31,32] for the upper and lower
bounds of the thermal decay width of the ϒð1SÞ. The second
entry (brown bar) reports the (quenched) lattice estimate of
Ref. [20]. The third and fourth entries (green bars) are the
determinations based on the ALICE [24] and STAR [25]
measurements of the D-meson azimuthal anisotropy coefficient
v2, respectively. The fifth entry (red bar) is the determination
based on a range of values of the heavy-quark spatial diffusion
coefficient obtained in [27] from an analysis of phenomenologi-
cal models. The sixth entry (blue bar) is a perturbative result (see
text) with the strong coupling computed at the scale
π × ð407 MeVÞ ¼ 1.28 GeV. We assign a 50% uncertainty to it.

6We note that the phenomenological models used in the last
three extractions may be more complicated than the Langevin
equation given in Eq. (7). Furthermore, these extractions are not
based on a nonrelativistic expansion and may include into κ
dynamics that in our effective field theory framework occur as
relativistic corrections of higher order in 1=M; these corrections
scale as the square of the relative heavy-quark velocity in the
quarkonium possibly contributing to a systematic effect by up to
10% for bottomonium and 30% for charmonium when comparing
with the mass-independent extractions from the chromoelectric
correlator.
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and have been obtained at different temperatures. Indeed,
κ=T3, as well as γ=T3, does depend on the temperature. The
lattice study of [19] could suggest κ=T3 assumes lower
values at higher temperatures, which seems consistent with
studies from phenomenological models [41]. Finally, we
mention that the same relationship between the width of the
state and κ given by Eq. (31) has also been exploited in
[42], but in the opposite direction, to supply an estimate of
the quarkonium thermal width from κ.

V. CONCLUSION

The Lindblad equation describing the heavy quarkonium
evolution in the hot medium created at the early stages
of high-energy heavy-ion collisions requires, under some
conditions, only two parameters to describe the interaction
of the heavy quark-antiquark pair with the medium
[2,3,43]. The conditions are that the quarkonium is a
Coulombic bound state, which holds when Eq. (1) or
Eq. (4) are satisfied, and that its motion in the medium is a
quantum Brownian motion, which holds when Eq. (2) or
Eq. (5) are satisfied. The two parameters are the heavy-
quark momentum diffusion coefficient, κ, which crucially
enters also the Langevin equation describing the heavy-
quark diffusion in the medium, whose field theoretical
definition is in Eq. (26), and its dissipative counterpart,
the coefficient γ, whose field theoretical definition is in
Eq. (27). No assumption is required on the nature of the
medium.
In this paper, we have estimated γ, using its relation to

the in-medium quarkonium mass shift and the 2þ 1 flavor
lattice data of Ref. [32]. The result is given in Eq. (35).
This is the first nonperturbative determination of γ. Its
sign is consistent with the weak-coupling, leading order
thermal mass shift, which, however, is affected by large
uncertainties.
We have also computed κ, using its relation to the in-

medium quarkonium decay width and the two different sets
of lattice data [31,32]. The data are not precise enough to
pin down a narrow range of κ, nevertheless they allow us to
establish an upper and a lower limit for this transport
coefficient. They are given in Eq. (36). The range of κ is
consistent with other determinations, see Fig. 3. Once more
precise lattice data will become available, this method has
the potential to provide a competitive determination of the
heavy-quark momentum diffusion coefficient. Already
now, it gives a range for κ that is based on 2þ 1 and 2
flavor lattice data, while current lattice determinations rely
on pure SU(3) gauge theory simulations [19,20].
From the above considerations, it is clear that this work

calls for several further lattice analyses. Concerning γ, it
would be important to have a direct evaluation based on the
spectral function of the chromoelectric field correlator and
Eq. (9) in a given renormalization scheme. Concerning κ,
besides direct full QCD determinations based on Eq. (8),

this work aims also at motivating further lattice computa-
tions of the in-medium quarkonium decay width.
Finally, we remark that the logic of the present work may

be reversed and the agreement noticed between the present
determination of κ and other independent ones used to sup-
port our starting assumptions on the nature of the studied
heavy quarkonia and of their diffusion in the medium.
Indeed, our determination of κ from the in-medium decay
width and the explicit computation of the relevant energy
scales provide evidence that at least the ϒð1SÞ is a
Coulombic bound state that propagates with a quantum
Brownian motion in the medium formed, and at the
temperature attained, by present day heavy-ion colliders.
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APPENDIX: SPECTRAL FUNCTION AND γ

In this Appendix, we define the spectral function of the
chromoelectric correlator, ρel, and derive expression (9)
for γ.
We start considering the real time chromoelectric corre-

lator

hgEa;iðt; 0ÞgEa;ið0; 0Þi; ðA1Þ
where the chromoelectric fields are understood in the
convention specified after Eq. (18), i.e., with Wilson lines
attached. The Wilson lines make the correlator gauge
invariant. The medium average h� � �i is normalized by
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the partition function. In turn, we normalize the partition
function in such a way that, for vanishing coupling, it
agrees with the partition function of the Abelian theory.
This normalization differs by a factor Nc from a common
choice in the literature.
The retarded chromoelectric correlator is defined as

GRðtÞ ¼ θðtÞh½gEa;iðt; 0Þ; gEa;ið0; 0Þ�i; ðA2Þ

and its Fourier transform as

GRðωÞ ¼
Z

dteiωtGRðtÞ: ðA3Þ

Following Ref. [16], the spectral function of the chromo-
electric correlator is defined as

ρelðωÞ ¼ 2Im½iGRðωÞ�: ðA4Þ

From this definition and the definition of κ, we get Eq. (8).
Equation (8) agrees with expressions found in the literature.
In particular, it agrees with the expression of Ref. [16]
by taking into account that the spectral function of [16]
differs by 1=Nc × 1=2 × 1=3 from ours, where the first
factor comes from the different normalization in color
of the partition function, the second one from the trace
over the color matrices of the chromoelectric fields,
TrfTaTbg ¼ δab=2, and the third one from the average
over the spatial directions. It also agrees with the expression
found in [19,20,33], if one takes into account a further

factor 1=2 difference in the definition of the spectral
function.
The leading order weak-coupling expression of the in

vacuum spectral function is

ρelðωÞ ¼ g2ðN2
c − 1Þω

3

π
; ðA5Þ

which, once converted, agrees with [33]. Higher-order
corrections add powers of g2, but do not modify the
functional behavior in ω, since ω is the only scale in the
vacuum. Equation (A5) describes the large frequencies
behavior of the spectral function, as at large frequencies all
energy scales other than ω can be ignored.
From the definition of γ, given in Eq. (27), it results that

γ ¼ −
1

6Nc
iGRðω ¼ 0Þ: ðA6Þ

We can relate iGRðωÞ to its imaginary part using a
dispersion relation. If no subtraction is needed, it reads

iGRðωÞ ¼
Z

dω0

2π

ρelðω0Þ
ω0 − ω − iη

: ðA7Þ

Substituting this into Eq. (A6), we obtain Eq. (9). Note that,
since ρelðωÞ vanishes for ω ¼ 0, there is no imaginary
contribution to γ from the dispersion relation. Moreover,
since ρelðωÞ=ω is an even function in ω, we could write the
integral over the real axis as twice the integral over the
positive real axis.
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