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The solution to the impact-parameter dependent Balitsky-Kovchegov equation with the collinearly
improved kernel is studied in detail. The solution does not present the phenomenon of Coulomb tails at
large impact parameters that have affected previous studies. The origin of this behavior is explored
numerically. It is found to be linked to the fact that this kernel suppresses large daughter dipoles. Solutions
based on a physics motivated form of the initial condition are used to compute predictions for structure
functions of the proton and the exclusive photoproduction and electroproduction of vector mesons.
A reasonable agreement is found when comparing to HERA and LHC data.
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I. INTRODUCTION

Evolution equations are powerful tools to study the high-
energy, equivalently, small-x limit of quantum chromody-
namics (QCD) [1–3]. The availability of quality data from
HERA [4] and the LHC [5] as well as the need for reliable
phenomenology for the proposal of new electron-ion
facilities [6,7] have given an extra impulse to the develop-
ment of these tools.
In this work, the emphasis is placed on the Balitsky-

Kovchegov (BK) evolution equation derived independently
in the operator-product-expansion formalism by Balitsky [8],
and by Kovchegov [9,10] within the color dipole approach
[11–13]. It corresponds to the large-number-of-colors limit
of the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) evolution equations [14–19]. The BK
equation describes the evolution with rapidity, Y, of the
dipole-target scattering amplitude, Nðr⃗; b⃗; YÞ, where r⃗ is the
transverse size of the dipole and b⃗ the impact parameter of
the interaction.
Soon after its introduction, the kernel of the leading order

BK equation was modified to include corrections that take
into account the running of the coupling constant [20–23].
The resulting equation, referred to as rcBK below, when
combined with appropriate initial conditions—embodying
nonperturbative properties of the hadronic targets—and
disregarding the impact-parameter dependence, produces

solutions that have been successfully used to describe a
wide variety of phenomena. In particular, the structure
function data of the proton as measured at HERA was
successfully described [24–27]. A few other applications of
these solutions are, for example, gluon production in
heavy-ion collisions [28], single particle [29] and J=ψ
production in pp and pA collisions [30], dihadron corre-
lations in p-Pb interactions [31] and even the flux of
atmospheric neutrinos [32,33].
As already mentioned, these comparisons of rcBK-based

predictions to data disregarded the impact-parameter
dependence of the dipole amplitude. The reason is that
earlier studies of solutions including the impact parameter
found that the amplitude developed a powerlike depend-
ence on b≡ jb⃗j, the so-called Coulomb tails, which
generate an unphysical growth of the cross section [34].
Nonetheless attempts were made to modify the kernel to
solve this problem, for example, by adding an ad hoc cutoff
for large sizes of the daughter dipoles [35]. The solutions
found had no more Coulomb tails, but needed an extra, so-
called soft, contribution to be able to describe HERA data
on structure functions [36]. (A similar conclusion also
holds for the solutions of the impact-parameter dependent
JIMWLK equation [37].) Nonetheless, this approach did a
good job when confronted with HERA data on exclusive
vector meson production [38].
Recently, the kernel of the leading order equation has

been improved by including the resummation of all double
collinear logarithms [39] as well as two classes of single
logarithmic corrections [40]. (See also early work on this
direction in the context of the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation in [41].) Using this kernel and
disregarding the dependence on the impact parameter, it
was also possible to obtain a good description of HERA
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data on the structure function of the proton. Finally, in the
rapid communication [42], we have demonstrated that
solutions of the BK equation with the collinearly improved
kernel and an appropriate initial condition describe cor-
rectly the HERA data on structure functions and the t
dependence of the exclusive photoproduction of J=ψ at one
energy without the need of any additional ad hoc parameter
or correction.
In this contribution the studies reported in [42] are

extended to discuss in depth the behavior of the collinearly
improved kernel and of the solutions of the corresponding
BK equation, comparing them to the rcBK case. In
addition, more details on the comparison to HERA struc-
ture function data are presented, and comparison of our
predictions to relevant HERA and LHC data on exclusive
vector meson photoproduction and electroproduction is
provided. In all cases, the agreement between model and
measurements is satisfactory.
The rest of this contribution is organized as follows: In

Sec. II the formalism used throughout this work is reviewed.
In Sec. III the technical details to solve the collinearly
improved impact-parameter dependent BK equation are
addressed. In Sec. IV the origin of the suppression at large
impact parameters is discussed, the behavior of the solution
is contrasted with solutions of the rcBK case, and the shape
of the amplitude is shown at different values of rapidity,
dipole size and impact parameter. In Secs. V and VI our
predictions are confronted with structure function data
measured at HERA, and to data for cross sections of
exclusive photoproduction and electroproduction of ϕ,
J=ψ , ψð2SÞ, and ϒð1SÞ vector mesons measured both at
HERA and at the LHC, respectively. Section VII contains a
brief summary of our findings and presents our conclusions.

II. REVIEW OF THE FORMALISM

A. The Balitsky-Kovchegov equation

The BK evolution equation reads [21,22]

∂Nðr⃗; b⃗; YÞ
∂Y ¼

Z
dr⃗1Kðr; r1; r2ÞðNðr⃗1; b⃗1; YÞ

þ Nðr⃗2; b⃗2; YÞ − Nðr⃗; b⃗; YÞ
− Nðr⃗1; b⃗1; YÞNðr⃗2; b⃗2; YÞÞ; ð1Þ

where r≡ jr⃗j, r1 ≡ jr⃗1j, and r2 ≡ jr⃗2j≡ jr⃗ − r⃗1j are the
sizes of the original dipole and of the two daughter dipoles,
respectively. Note that these are two-dimensional vectors
in the same plane as the impact parameter. The magnitudes
of the corresponding impact parameters are b≡ jb⃗j,
b1 ≡ jb⃗1j, b2 ≡ jb⃗2j. The kernel Kðr; r1; r2Þ is dis-
cussed below.
In this work, the solution to the BK equation is obtained

under the assumption that the scattering amplitude

Nðr⃗; b⃗; YÞ depends solely on the sizes of the dipoles and
of the impact parameter vectors. In practice, this means to
solve the equation

∂Nðr; b; YÞ
∂Y ¼

Z
dr⃗1Kðr; r1; r2ÞðNðr1; b1; YÞ

þ Nðr2; b2YÞ − Nðr; b; YÞ
− Nðr1; b1; YÞNðr2; b2; YÞÞ; ð2Þ

subjected to the condition that the angle between r⃗ and b⃗ is
fixed. We chose to fix this angle at zero, meaning that these
vectors are parallel.

B. Kernels of the Balitsky-Kovchegov equation

Several functional forms for the kernel of the BK
equation have been proposed. The ones that are mentioned
in this work are presented in the following.
The leading order kernel is given by

KLOðr; r1; r2Þ ¼
αnrs
2π

r2

r21r
2
2

; ð3Þ

where the nonrunning coupling, αnrs , is fixed to a con-
stant value.
The running coupling kernel Krcðr; r1; r2Þ reads [21]

Krcðr; r1; r2Þ ¼
Ncαsðr2Þ

2π2

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��
; ð4Þ

where Nc is the number of colors and αs is the running
coupling, which is further discussed in Sec. II C.
The running coupling kernel with a cutoff to tame the

Coulomb tails generated by the evolution in the impact
parameter is given by [36]

Kbdep
rc ðr; r1; r2Þ ¼ Krcðr; r1; r2ÞΘ

�
1

m2
− r21

�
Θ
�

1

m2
− r22

�
;

ð5Þ

where Θ is the Heaviside function and m a parameter to
limit the size of daughter dipoles.
Finally, the collinearly improved kernel is [40]

Kciðr; r1; r2Þ

¼ ᾱs
2π

r2

r21r
2
2

�
r2

minðr21; r22Þ
��ᾱsA1

KDLAð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr1rLr2r

p Þ; ð6Þ

where [41]
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KDLAðρÞ ¼
J1ð2

ffiffiffiffiffiffiffiffiffi
ᾱsρ

2
p

Þffiffiffiffiffiffiffi
ᾱsρ

p ; ð7Þ

J1 is the Bessel function (the inclusion of the Bessel
function into the BK kernel has been previously discussed
in [43]), the anomalous dimension is A1 ¼ 11=12, and

Lrir ¼ ln
�
r2i
r2

�
: ð8Þ

The sign factor in the exponent �ᾱsA1 takes the value of
the plus sign when r2 < minðr21; r22Þ and the negative sign
otherwise. For the running coupling

ᾱs ¼ αs
Nc

π
; ð9Þ

the smallest dipole prescription is used throughout the
computation according to

αs ¼ αsðrminÞ; ð10Þ

where rmin ¼ minðr1; r2; rÞ. This prescription was com-
pared to other prescriptions in [40], where it was found to
work adequately in this context. This prescription has also
been suggested as the natural option for the BK equation at
next-to-leading order (NLO) [44].

C. Treatment of the coupling constant

In this work the running coupling is computed in the
variable-number-of-flavors scheme, implemented accord-
ing to

αs;nfðr2Þ ¼
4π

β0;nf lnð 4C2

r2Λ2
nf
Þ ; ð11Þ

where nf corresponds to the number of flavors that are
active, C2 is an infrared regulator that takes into account the
approximations made for the computation of the Fourier
transform into the position space and is usually fit to data
[25]. The variable β0;nf is the leading order coefficient of
the QCD beta series and is given by relation

β0;nf ¼ 11 −
2

3
nf: ð12Þ

The value of the QCD scale parameter Λ2
nf depends on the

number of active flavors. When heavier quarks are active
(charm and beauty quarks), its value is obtained from the
relation [26]

Λnf−1 ¼ ðmfÞ
1−

β0;nf
β0;nf−1ðΛnfÞ

β0;nf
β0;nf−1 : ð13Þ

This recursive relation needs to be fixed at one point and for
this the usual choice is to take the value of the running
coupling at the scale of the mass of the Z0 boson. In this
way, Λ5 is set with the use of the experimentally measured
value of αsðMZÞ ¼ 0.1196� 0.0017, where the Z0 mass is
MZ ¼ 91.18 GeV=c2 [45]. The number of active flavors is
set depending on the transverse size of the mother dipole.
The condition that governs this relates the mass of the
heaviest quark considered to the values of the dipole size r.
This condition can be expressed as

r2 <
4C2

m2
f

: ð14Þ

Since all dipole sizes are accounted for in the BK evolution
equation, there is a need to freeze the coupling at a set value
after a certain dipole size is reached [25]. In this work, the
coupling is frozen at αsats ¼ 1 as in [39].
The value of the parameter C affects the description of

data by modifying the speed of the evolution and effec-
tively changes the slope of the structure function. The
higher value of this parameter the more the running of
the coupling is suppressed and, consequently, the slope in
the structure function F2 is less steep. Figure 1 compares
the running of αs for two values of C: the one used here,
C ¼ 9, and the one used in [39], C ¼ 2.586. The value
C ¼ 9 was set heuristically and since the solutions repro-
duce correctly the data, as shown below, it has not been
further optimized.

III. IMPACT-PARAMETER SOLUTION TO THE
BALITSKY-KOVCHEGOV EQUATION

A. Initial condition

The initial condition, already introduced in [42], depends
on the impact parameter; it is suppressed in the regions

FIG. 1. Comparison between the behavior of ᾱs computed from
Eqs. (9) and (11) with C ¼ 2.586 (red) and C ¼ 9 (blue).
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where r or b reaches large values, in order to respect the
geometric nature of the dipole-proton interaction. The shape
of its functional form is a combination of the expected
behavior in r, which is obtained from the Golec-Biernat
Wüsthoff (GBW) model [46], and the impact-parameter
dependence, which uses a Gaussian distribution to reflect the
expected profile of the proton. Such an approach has been
used in similar forms in the past; e.g., in [47–51]. The main
new ingredient with respect to the initial condition used in
the previous studies [20,35,36,38] is the explicit separation
of the contribution from the individual quark and antiquark
forming the dipole. The initial condition is given by

Nðr; b; Y ¼ 0Þ ¼ 1 − exp

�
−
1

2

Q2
s

4
r2Tðbq1 ; bq2Þ

�
; ð15Þ

where bqi are the impact parameters of the quark and
antiquark forming the dipole and

Tðbq1 ; bq2Þ ¼
�
exp

�
−

b2q1
2BG

�
þ exp

�
−

b2q2
2BG

��
: ð16Þ

As a first attempt, the angle between r⃗ and b⃗ was fixed as
shown schematically in Fig. 2. As the results obtained with
this initial condition are satisfactory, no further optimization
has been considered.
The parameters appearing in this initial condition, Q2

s
and BG, have a clear physical interpretation as the satu-
ration scale and as the variance of the Gaussian distribution
of the target in impact parameter, respectively. The value of
theQ2

s parameter is chosen to be 0.496 GeV2, such that the
F2ðx;Q2Þ data are correctly described at the rapidity of the
initial condition. The relation between x and rapidity is
Y ¼ lnðx0=xÞ, where x0 ¼ 0.008. The parameter BG is set

to 3.2258 GeV−2 in order to describe the data for exclusive
photoproduction of J=ψ off protons at a photon–proton
center-of-mass energy hWγpi ¼ 100 GeV, where as cus-
tomary x ¼ ðM2 þQ2Þ=ðW2

γp þQ2Þ is used; here, M
represents the mass of the vector meson.

B. Setup for the numerical solution to the equation

The BK evolution equation does not have an analytic
solution and therefore has to be solved numerically. The
procedure used by us in [27,52] was extended to the case of
the impact-parameter dependent BK equation [42] and the
solution is evolved in rapidity with a step of ΔY ¼ 0.01.
Fixed grids are used for r and b. They are logarithmic

grids of base 10 with 25 evenly spaced points per order of
magnitude, spanning the range from 10−7 to 104 GeV−1 for
both the r and b variables. The integration over r⃗1 is
performed in polar coordinates, where r1 is evaluated in the
same grid as r and the polar angle, denoted by θrr1, is
evaluated in a fixed grid with 21 points separated by a
constant step. The numerical integrations are performed
applying Simpson’s method.
Since the transverse dipole vectors are related as

r⃗ ¼ r⃗1 þ r⃗2, by fixing the values of r and r1 to the
predefined grid, the values of r2 are in general off
the grid. Whenever this happens, linear interpolation in
the log10 space is used to get the desired value of
Nðr2; b2; YÞ. A similar approach is used for obtaining
the value of the scattering amplitude whenever the value
of b1 or b2 is off the grid.
The values of b1 and b2 are then computed from the

relations b⃗1 ¼ b⃗þ r⃗2=2 and b⃗2 ¼ b⃗ − r⃗1=2 assuming a
fixed angle between r⃗ and b⃗. As mentioned above, this
angle is set to zero for the results presented below.
The solution to the BK equation has been implemented

independently using C++ and the Intel Fortran Compiler.
Both implementations have similar performance, with the
Fortran version being slightly faster. In a standard
personal computer, the program performs the evolution
of the dipole amplitude in one unit of rapidity, that is 100
steps for the settings described above, in a bit less than
one hour for one set of parameters.
To test the numerical stability of the selection of the

grid, the setup was modified and the scattering amplitude
was compared at Y ¼ 3, r ¼ 1=GeV and all values of b.
We have changed the step in rapidity from 0.01 to 0.02,
the number of steps in r and b per order of magnitude
from 25 to 15 and the size of the grid in the polar angle
from 21 to 16 and 31 points. Except for the change to 16
points in the grid for polar angles, all other changes
produced a difference below the per-mil level. The use of
the spare grid in polar angle produced changes almost at
one percent level. In summary, with the chosen settings a
numerical precision at the percent level, or even below it,
is expected.

FIG. 2. Schematic picture of the variables that enter the initial
condition presented in Eq. (15).
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IV. THE SOLUTION TO THE BK EQUATION

A. Behavior of the collinearly improved kernel

As was shown in [42], the solutions to the BK equation
do not exhibit Coulomb tails when using the collinearly
improved kernel. This behavior is related to the suppression
of this kernel for large values of the size of the daughter
dipoles. As an illustration, Fig. 3 shows the ratio of the
collinearly improved kernel, see Eq. (4), to the running-
coupling kernel, see Eq. (6). (The parameter C for the
running coupling in this kernel was chosen to be C ¼ 9 just
as in the collinearly improved kernel for the sake of a valid
comparison.) The ratio is computed at r ¼ 1 GeV−1 and
θrr1 ¼ π=2. Other values produce a similar picture. The
figure shows that for large sizes of the daughter dipole the
collinearly improved kernel is orders of magnitude smaller
than the running-coupling one.
To follow up in more detail the origin of this behavior the

kernels are divided into three parts. For the collinearly
improved kernel, they are

K1
ci ¼

ᾱs
2π

r2

r21r
2
2

; ð17Þ

K2
ci ¼

�
r2

minðr21; r22Þ
��ᾱsA1

; ð18Þ

K3
ci ¼ KDLAð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr1rLr2r

p Þ: ð19Þ

The first term, K1
ci, is present already at the leading order if

one considers a fixed value of the running coupling, K2
ci

takes into account the contribution from the single collinear
logarithms, and K3

ci resums double collinear logarithms to

all orders. The entire collinearly improved kernel is then
given by the multiplication of all these factors as

Kci ¼ K1
ciK

2
ciK

3
ci: ð20Þ

For the running coupling BK kernel, the separation in
three parts is as follows:

K1
rc ¼

Ncαsðr2Þ
2π2

r2

r21r
2
2

; ð21Þ

K2
rc ¼

Ncαsðr2Þ
2π2

1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�
; ð22Þ

K3
rc ¼

Ncαsðr2Þ
2π2

1

r22

�
αsðr22Þ
αsðr21Þ

− 1

�
; ð23Þ

whereas the running coupling kernel is then given by the
addition of these constituent terms as

Krc ¼ K1
rc þ K2

rc þ K3
rc: ð24Þ

The contribution of the three terms is shown in Fig. 4 at
r ¼ 1 GeV−1 and θrr1 ¼ π=2 for each of the two kernels.
The fact that the three terms are added inKrc, but multiplied
in Kci explains numerically the suppression. Even though
the first term is essentially the same for both kernels, the
additive character of Krc makes it deviate from the
collinearly improved kernel at large r1 values as shown
in Fig. 4. There, we can see that even though the kernels are
comparable in the low-r1 region, at large r1 values, the K2

rc

and K3
rc terms become dominant, whereas in the collinearly

improved kernel, the K1
ci term suppresses the total value.

The physical reason of this suppression can be traced
back to the fact that large daughter dipoles do not follow
the time-ordering prescription (that is, they would live
longer than the parent dipole) built in when setting up
the resummation that leads to the collinearly improved
kernel [40,53].

B. Contribution of the kernel terms to the evolution

The suppression for large sizes of the daughter dipole in
the kernel is translated as a suppression of the amplitude
at large b in the evolution. In this region only large r1;2
contribute to the total integral in Eq. (2). This is true
because a large impact parameter means that the probing
dipole is far away from the target proton and the amplitude
is therefore (at the initial condition) exponentially sup-
pressed. Only dipoles with r1 (r2) ∼2b can be oriented so
that their impact parameters b1 (b2) are small, such that
they contribute to the evolution. But, since Kci is sup-
pressed in this region, the integral will be suppressed as
well and the scattering amplitude will not grow fast at
large b.

FIG. 3. Absolute value of the ratio Kci=Krc at a fixed dipole size
r ¼ 1 GeV−1 and orientation with respect to the daughter dipole
θrr1 ¼ π=2 as a function of the daughter dipole size.
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This can be numerically studied by computing the
contribution to the evolution of the three terms in the
collinearly improved kernel. Figure 5 shows the scattering
amplitude after evolution to Y ¼ 3 using each time a kernel
formed with different constituents. It is clearly seen that
the impact parameter profile is mostly influenced by the
inclusion of the K3

ci term with the Bessel functions. This
term originates from resumming double collinear loga-
rithms. Note that also the term K2

ci, resumming single
collinear logarithms, suppresses the large b region.

C. Behavior of the solution to the BK equation

The evolution of the scattering amplitude as a function of
r for different fixed values of b is shown in the upper panels

of Fig. 6, while the lower panels of the same figure show
the evolution as a function of b for two fixed values of r.
A two-dimensional view of the amplitude at two stages of
the evolution is shown in Fig. 7. The amplitude decreases
fast for small dipole sizes as expected. The suppression of
large dipole sizes imposed in the initial condition is lifted
with evolution. Similar behavior was observed in previous
studies, e.g., [35]. Nonetheless, in the case of the collin-
early improved kernel the growth at the largest dipole sizes
is not as fast and a shoulder appears, after which the
amplitude is again suppressed. The behavior as a function
of impact parameter has been discussed above; the profile
impact parameter grows, but the development of Coulomb
tails is suppressed. Recently, a similar finding has been
reported for the case of NLO BFKL equations at large
impact parameters [54].
Finally, Fig. 8 shows Nðr; YÞ, defined as

Nðr; YÞ ¼
Z

d2b⃗Nðr; b; YÞ; ð25Þ

for different dipole sizes and for two kernels, the running
coupling and the collinearly improved. For small dipoles
the difference is larger and it grows with rapidity. At larger
dipole sizes the difference between both kernels is smaller.
Note that for the comparisons to data discussed below, the
main numerical contribution comes from the region of
relatively large dipoles. For the case of the structure
function the main contribution for virtualities between 1
and 10 GeV2 comes from dipoles of sizes on the range
around 0.1=GeV to 10=GeV, see e.g., the lower panel of
Fig. 4 in [27].
Another interesting observation is that Nðr; YÞ is related

to the σ0 parameter introduced in studies based on the rcBK
equation without impact-parameter dependence. Basically,
σ0 corresponds to the scale of Nðr; YÞ. Standard values

FIG. 5. The scattering amplitude evolved to Y ¼ 3 with
various kernels illustrates the effect of the different terms in
the evolution and demonstrates that the computation based on
the Kci kernel does not develop the Coulomb tails seen when
the Krc kernel is used.

FIG. 4. The three constituent terms of the BK kernel for the running coupling (left) and collinearly improved cases (right) at a fixed
dipole size r ¼ 1 GeV−1 and orientation with respect to the daughter dipole θrr1 ¼ π=2.

BENDOVA, CEPILA, CONTRERAS, and MATAS PHYS. REV. D 100, 054015 (2019)

054015-6



FIG. 7. Evolution of the scattering amplitude from the initial condition at Y ¼ 0 (left) to Y ¼ 10 (right).

FIG. 6. The scattering amplitude as a solution to the BK equation with the collinearly improved kernel as a function of r for
b ¼ 10−6 GeV−1 (upper left) and b ¼ 4 GeV−1 (upper right), and as a function of b at r ¼ 0.1 GeV−1 (lower left) and at r ¼ 1 GeV−1

(lower right).
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found for this parameter are a few tens of mb, see e.g.,
Table I in [26]. Figure 8 justifies the order of magnitude of
these values from the perspective of an impact-parameter
dependent computation.

V. DEEP INELASTIC SCATTERING

A. Structure function and reduced cross section

Due to the fact that the dipole lives much longer than the
typical interaction time, the computation of the total deep-
inelastic scattering (DIS) cross section can be written as the
convolution of separate terms. One of them is the wave
function representing the probability of a virtual photon
splitting into a quark-antiquark dipole. Here formulas and
notation of [46] are used:

jΨi
Tðz; r⃗; Q2Þj2 ¼ 3αem

2π2
e2qiððz2 þ ð1 − zÞ2Þϵ2K2

1ðϵrÞ
þm2

qiK
2
0ðϵrÞÞ; ð26Þ

and

jΨi
Lðz; r⃗; Q2Þj2 ¼ 3αem

2π2
e2qið4Q2z2ð1 − zÞ2K2

0ðϵrÞÞ ð27Þ

for the transverse and longitudinal polarization of the
incoming photon, respectively, where z is the fraction of
the total longitudinal momentum of the photon carried by
the quark, K0 and K1 are the MacDonald functions, Q2 is
the virtuality of the probing photon, eqi is the fractional
charge (in units of elementary charge) of quark i, αem ¼
1=137 and

ϵ2 ¼ zð1 − zÞQ2 þm2
qi ; ð28Þ

where mqi is the mass of the considered quark, which is set
to 100 MeV=c2 for light quarks and 1.3 GeV=c2 for charm
quark and 4.5 GeV=c2 for bottom quark. Note that the
computed structure function does not depend strongly
on the value of the mass of the light quarks (as was
reported in [40]); this has been checked by also using
mu;d;s ¼ 10 MeV=c2, which did not influence the descrip-
tion of data. The total wave function then is

jΨi
T;Lðz; r⃗Þj2 ¼ jΨi

Tðz; r⃗Þj2 þ jΨi
Lðz; r⃗Þj2: ð29Þ

According to the optical theorem, one can link the
dipole-target cross section to the scattering amplitude by

dσqq̄ðr⃗; xÞ
db⃗

¼ 2Nðr⃗; b⃗; xÞ: ð30Þ

Furthermore, it is usual to shift the value of the x at
which the structure function and reduced cross section
are computed according to the photoproduction kinematic
shift [46],

x̃ ¼ x

�
1þ 4m2

qi

Q2

�
: ð31Þ

Using these ingredients, the relation for the computation
of the structure function in the dipole model framework is

F2ðx;Q2Þ ¼ Q2

4π2αem

Z X
i

dr⃗db⃗dzjΨi
T;Lðz; r⃗Þj2

dσqq̄ðr⃗; x̃Þ
db⃗

;

ð32Þ

and the reduced cross section is computed as

σredðy; x;Q2Þ ¼ F2ðx;Q2Þ − y2

1þ ð1 − yÞ2 FLðx;Q2Þ;

ð33Þ

where y ¼ Q2=ðsxÞ is the inelasticity of the process, s is the
squared of the center-of-mass energy of the collision and
FLðx;Q2Þ is given by the relation

FLðx;Q2Þ ¼ Q2

4π2αem

Z X
i

dr⃗db⃗dzjΨi
Lðz; r⃗Þj2

dσqq̄ðr⃗; x̃Þ
db⃗

:

ð34Þ

B. Comparison to HERA data

The predictive power of this model is evaluated by
confronting it with data from HERA on the F2ðx;Q2Þ
structure function [55] in Fig. 9. A closer look is given in
Fig. 10 for two values of the photon virtuality. To quantify
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FIG. 8. Growth of the dipole-target amplitude integrated over
impact parameter as a function of rapidity for solutions of the BK
equations with the running coupling and the collinearly improved
kernel.

BENDOVA, CEPILA, CONTRERAS, and MATAS PHYS. REV. D 100, 054015 (2019)

054015-8



the level of agreement between data and model, Fig. 11
presents the percentage pulls associated with the structure
function, which are given by

d% ¼ 100
FBK
2 ðx;Q2Þ − FHERA

2 ðx;Q2Þ
FHERA
2 ðx;Q2Þ ð35Þ

and byD%, which denotes the average of the corresponding
values of d%. Finally, for completeness Fig. 12 shows the
comparison of the model and data for the charm component
of the proton structure function measured at HERA [55].
Overall, the agreement between prediction and data is

within a few percent over most of the phase space. For
our purposes this level of agreements is satisfactory.
First, the equation we are using does not include the full
angular dependence. Second, we have not needed to add
any ad hoc component to describe data and the values of the

parameters are reasonable from the point of view of the
physics that is being probed. Furthermore, note that the BK
equation that we are using is definitely not the last word on
the subject. The full equation at NLO has already been
computed [44], and a large effort is being done to use it for
phenomenology [53,56–59]. There are also recent develop-
ments regarding the most adequate variable to evolve the
scattering amplitude [60].

VI. PRODUCTION OF VECTOR MESONS

A. Exclusive cross section in the color-dipole approach

Similarly to the DIS process described in the previous
section, the diffractive production of a vector meson as a
result of the interaction of a virtual photon with the proton
can be treated within the color-dipole approach. In this
formalism, the exclusive cross section to produce a vector
meson V is given by

dσγ
�p→Vp

djtj
����
T;L

¼ ð1þ β2ÞðRT;L
g Þ2

16π
jAT;Lj2; ð36Þ

where AT;L is the scattering amplitude of the process. It is
given as a convolution of the overlap of photon-meson
wave functions with the dipole cross section given in
Eq. (30) (for a detailed derivation see e.g., [61,62]) and
takes the following form:

AT;Lðx;Q2; Δ⃗Þ ¼ i
Z

dr⃗
Z1

0

dz
4π

Z
db⃗jΨ�

VΨγ� jT;L

× exp ½−iðb⃗ − ð1 − zÞr⃗ÞΔ⃗� dσ
qq̄

db⃗
; ð37Þ

where the subscripts T, L denote the contribution from the
virtual photon with transverse, respectively longitudinal,
polarization, Ψγ� is the wave function of a virtual photon

FIG. 10. Close-up comparison of the structure function data from HERA [55] (blue points) to the b-dependent prediction (red line) for
Q2 ¼ 8.5 GeV2 (left) and Q2 ¼ 12 GeV2 (right).

FIG. 9. Comparison of the structure function data from
HERA [55] (solid circles) to the prediction of the impact-
parameter dependent BK equation with the collinearly im-
proved kernel (lines).
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which fluctuates into a dipole, ΨV represents the wave
function of the vector meson, and Δ⃗2 ≡ −t, the square of
the four momentum transferred in the proton vertex. Under
the assumption of large photon-proton center-of-mass
energies Wγp,

x ¼ Q2 þM2

W2
γp þQ2

; ð38Þ

where M is the mass of the given vector meson.
The wave functions of a vector meson are modeled under

the assumption that the vector meson is predominantly a qq̄
pair with the same polarization and the spin structure as the
original photon. The overlap of the photon-meson wave
functions in Eq. (37) is given as

jΨ�
VΨγ� jT ¼ êfe

NC

πzð1 − zÞ ½m
2
fK0ðϵrÞϕTðr; zÞ

− ðz2 þ ð1 − zÞ2ÞϵK1ðϵrÞ∂rϕTðr; zÞ�; ð39Þ

and

jΨ�
VΨγ� jL ¼ êfe

NC

π
2Qzð1 − zÞK0ðϵrÞ

�
MϕLðr; zÞ

þ δ
m2

f −∇2
r

Mzð1 − zÞϕLðr; zÞ
�
; ð40Þ

with êf being the effective charge of the given vector
meson, ϵ defined by Eq. (28), and the parameter δ is a

FIG. 12. The comparison of the prediction for the reduced cross
section for charm to data from HERA [55].

FIG. 11. The percentage pulls for various values of Q2 and their average value.
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switch to include (δ ¼ 1) or exclude (δ ¼ 0) the nonlocal
term in the longitudinal contribution. The scalar part ϕT;L

of the wave function is, in general, model dependent. For
our studies, we use the boosted Gaussian model [63–65] in
which the δ parameter is fixed to one. The values of the
parameters for the wave functions of all vector mesons are
fixed according to Table I in [66].
The total exclusive cross section to produce a vector

meson is given by the sum of the transverse and the
longitudinal contributions defined by Eq. (36). Moreover
two important corrections have to be applied. The deriva-
tion of the formula for the exclusive vector meson cross
section is performed under the assumption that the scatter-
ing amplitude AT;Lðx;Q2; Δ⃗Þ is purely imaginary. The real
part of the amplitude can be accounted for by the extra term
(1þ β2) in Eq. (37), where β is the ratio of real to imaginary
parts of the scattering amplitude, for details see [61]. The
other correction takes into account that there are two values
of x involved in the interaction of the dipole with the proton

and one should therefore use the off-diagonal gluon
distribution for vector meson production. This effect can
be accounted for by multiplying the scattering amplitude by
a factor RT;L

g , called the skewedness correction [67].

B. Comparison to data

Using the model described in this paper, the cross
sections for exclusive photoproduction and electropro-
duction of ϕ, J=ψ , ψð2SÞ, and ϒð1SÞ vector mesons are
presented at different virtualities of the exchanged photon
and they are compared to available experimental data. The
presented results are calculated at the scales which allow
perturbative treatment of the specific parts of the model.
In Fig. 13 a comparison of our predictions for the jtj

distributions and the total cross sections with HERA H1
[68] and ZEUS [69] data for the exclusive electroproduc-
tion of the ϕ meson for several values of Q2 is shown. The
predictions give a very good description of the available
data, especially at low photon virtualities.
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The predictions for the exclusive production of the J=ψ
meson are compared with the experimental data from H1
[70,71] and ALICE [72,73] experiments in Figs. 14–16, for
several different measurements of kinematic observables.
In the left panel of Fig. 14, the comparison of the jtj
distribution of the photoproduction cross section is pre-
sented. The predictions give very good agreement with the
data at energies Wγp ¼ 55 GeV and Wγp ¼ 100 GeV. The
result for Wγp ¼ 78 GeV is slightly underestimated at low
values of jtj, however one can notice the very small
difference in the measured data with respect to the result
for Wγp ¼ 100 GeV. Since the value of Wγp from the
experimental data is a mean value estimated from a
measured energy range, the result of the model can be
considered satisfactory. The same comparison for the
electroproduction at three different values of Q2 can be

seen in the right panel of the same figure. Although our
predictions do not describe all the data points, we conclude
the agreement between the data and the model to be
qualitatively good. The same conclusion applies to the
comparison of the model predictions with the measured
Wγp dependence of the exclusive differential photoproduc-
tion and electroproduction cross sections at several fixed
values of jtj presented in Fig. 15. The agreement of the
predictions with the data is very good at low values ofWγp,
however at larger values (∼102 GeV), the predictions are
underestimated when compared to experimental photo-
production data. We have also obtained total cross section
for the J=ψ production which is presented in the left panel
of Fig. 16. The predictions for the electroproduction at
three different values of Q2 give a very good description of
the available data. The result for photoproduction gives a
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good agreement with the data at low values of Wγp,
however at high energies the result is again underestimated
when compared to data.
Also, the exclusive cross section of the ψð2SÞmeson was

calculated within the model. The experimental data are not
available for the total cross sections, but only for a ratio of
the ψð2SÞ to J=ψ cross sections, the predictions for these
ratios for photoproduction and electroproduction at Q2 ¼
16 GeV2 are calculated and compared to data from H1
[74], and ZEUS [75], respectively, in the right panel of
Fig. 16. The description of the data is not very good, yet the
large uncertainties of the experimental data do not allow us
to make any final conclusions in this case.
To complete the set of the predictions based on the BK

equation, the exclusive photoproduction of the ϒð1SÞ
meson is presented in Fig. 17. The prediction is compared
with experimental data obtained at HERA by H1 [76]
and ZEUS [77] experiments. It is also compared with the
two latest measurements—in proton-proton collisions atffiffiffi
s

p ¼ 7 TeV and
ffiffiffi
s

p ¼ 8 TeV by LHCb [78], and in
proton-lead collisions at

ffiffiffi
s

p ¼ 5.02 TeV by the CMS
experiment [79]. The description of the data is good,

although the large uncertainties prevent us from making
any strong conclusions regarding the agreement of the
predictions with the data.

VII. CONCLUSIONS

The solution of the Balitsky-Kovchegov equation with
the collinearly improved kernel and including the impact-
parameter dependence has been obtained numerically. This
solution does not show the so-called Coulomb tails that
have appeared in previous attempts to include the impact-
parameter dependence. We have shown that the suppres-
sion at large values of the impact parameter is due to the
suppression of contributions from daughter dipoles of large
sizes in the terms of the collinearly improved kernel that
deal with the resummation of double and single collinear
logarithms.
The solutions based on a physics-inspired initial condition

have been confronted with HERA and LHC data of the
structure function of the proton measured in deep-inelastic
scattering and of exclusive vector meson photoproduction
and electroproduction. The predictions described data over a
large kinematic range in scale and in energy.
The dipole scattering amplitudes computed in this work

are publicly available on the website [80] along with
instructions on how to use them.
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