Improved constraints on sterile neutrinos in the MeV to GeV mass range

D. A. Bryman $\oplus^{1,2}$ and R. Shrock \oplus^{3}
${ }^{1}$ Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
${ }^{2}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
${ }^{3}$ C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA

(Received 14 April 2019; published 16 September 2019)

Abstract

Improved upper bounds are presented on the coupling $\left|U_{e 4}\right|^{2}$ of an electron to a sterile neutrino ν_{4} from analyses of data on nuclear and particle decays, including superallowed nuclear beta decays, the ratios $R_{e / \mu}^{(\pi)}=\operatorname{BR}\left(\pi^{+} \rightarrow e^{+} \nu_{e}\right) / \mathrm{BR}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}\right), R_{e / \mu}^{(K)}, R_{e / \tau}^{\left(D_{s}\right)}$, and $B_{e 2}^{+}$decay, covering the mass range from MeV to GeV .

DOI: 10.1103/PhysRevD.100.053006

Neutrino oscillations and hence neutrino masses and lepton mixing have been established and are of great importance as physics beyond the original Standard Model (SM). Most oscillation experiments with solar, atmospheric, accelerator, and reactor (anti)neutrinos [1-10] can be explained within the minimal framework of three neutrino mass eigenstates with values of $\Delta m_{i j}^{2}=$ $m_{\nu_{i}}^{2}-m_{\nu_{j}}^{2}$ given approximately by $\Delta m_{21}^{2}=0.74 \times$ $10^{-4} \mathrm{eV}^{2}$ and $\left|\Delta m_{32}^{2}\right|=2.5 \times 10^{-3} \mathrm{eV}^{2}$, with normal mass ordering $m_{\nu_{3}}>m_{\nu_{2}}$ favored; furthermore, the lepton mixing angles θ_{23}, θ_{12}, and θ_{13} have been measured, with a tentative indication of a nonzero value of the $C P$-violating quantity $\sin \left(\delta_{C P}\right)$ (for compilations and fits, see [11-16]).

In addition to the three known neutrino mass eigenstates, there could be others, which would necessarily be primarily electroweak singlets (sterile) [17] (see, e.g., [18]). Indeed, sterile neutrinos are present in many ultraviolet (UV) extensions of the SM. Whether sterile neutrinos exist in nature is one of the most outstanding questions in particle physics, and therefore, improved constraints on their couplings are of fundamental and far-reaching importance. Taking account of the possibility of sterile neutrinos, the neutrino interaction eigenstates ν_{ℓ} would be given by

$$
\begin{equation*}
\nu_{\ell}=\sum_{i=1}^{3+n_{s}} U_{\ell i} \nu_{i}, \tag{1}
\end{equation*}
$$

[^0]where $\ell=e, \mu, \tau ; n_{s}$ denotes the number of sterile neutrinos; and U is the lepton mixing matrix [19].

Here we obtain improved upper limits on $\left|U_{e i}\right|^{2}$ for a sterile neutrino ν_{i} in a wide range of masses from the MeV to GeV scale and point out new experiments that would be worthwhile and could yield further improvements. For simplicity, we assume one heavy neutrino, $n_{s}=1$, with $i=4 ;$ it is straightforward to generalize to $n_{s} \geq 2$. Since a ν_{4} in this mass range decays, it is not excluded by the cosmological upper limit on the sum of effectively stable neutrinos, $\sum_{i} m_{\nu_{i}} \lesssim 0.12 \mathrm{eV}$ [20]. Such a ν_{4} is subject to a number of constraints from cosmology (e.g., [21]); however, since these depend on assumptions about the early universe, we choose here to focus on direct laboratory bounds. Constraints from the nonobservation of neutrinoless double beta decay are satisfied by assuming that ν_{4} is a Dirac neutrino [22]. Since sterile neutrinos violate the conditions for the diagonality of the weak neutral current [23,24], ν_{4} has invisible tree-level decays of the form $\nu_{4} \rightarrow \nu_{j} \bar{\nu}_{i} \nu_{i}$ where $1 \leq i, j \leq 3$ with model-dependent invisible branching ratios. Because our bounds are purely kinematic, they are complementary to bounds from searches for neutrino decays, which involve modeldependent assumptions on branching ratios into visible versus invisible final states.

We first obtain improved upper bounds on $\left|U_{e 4}\right|^{2}$ from nuclear beta decay data. The emission of a ν_{4} via lepton mixing in nuclear beta decay has several effects, including producing a kink in the Kurie plot and reducing the decay rate [25]. For the nuclear beta decays $(Z, A) \rightarrow$ $(Z+1, A)+e^{-}+\bar{\nu}_{e} \quad$ or $\quad(Z, A) \rightarrow(Z-1, A)+e^{+}+\nu_{e}$ into a set of neutrino mass eigenstates $\nu_{i} \in \nu_{e}, i=1,2$, 3 of negligibly small masses, plus a ν_{4} of non-negligible mass, the differential decay rate is

$$
\begin{align*}
\frac{d N}{d E}= & C\left[\left(1-\left|U_{e 4}\right|^{2}\right) p E\left(E_{0}-E\right)^{2}\right. \\
& +\left|U_{e 4}\right|^{2} p E\left(E_{0}-E\right)\left[\left(E_{0}-E\right)^{2}-m_{\nu_{4}}^{2}\right]^{1 / 2} \\
& \left.\times \theta\left(E_{0}-E-m_{\nu_{4}}\right)\right], \tag{2}
\end{align*}
$$

where $p \equiv|\mathbf{p}|$ and E denote the 3-momentum and (total) energy of the outgoing $e^{ \pm}, E_{0}$ denotes its maximum energy for the SM case, the Heaviside θ function is defined as $\theta(x)=1$ for $x>0$ and $\theta(x)=0$ for $x \leq 0$, and $C=G_{F}^{2}\left|V_{u d}\right|^{2} F_{F}|\mathcal{M}|^{2} /\left(2 \pi^{3}\right)$, where \mathcal{M} denotes the nuclear transition matrix element, V is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, and F_{F} is the Fermi function. Early bounds on $\left|U_{e 4}\right|^{2}$ were set from searches for kinks in Kurie plots in [25] and analyses of particle decays [26-28], and from dedicated experiments. For example, a search for kinks in the Kurie plot in ${ }^{20} \mathrm{~F}$ beta decay reported in Ref. [29] yielded an upper bound on $\left|U_{e 4}\right|^{2}$ decreasing from 5.9×10^{-3} for $m_{\nu_{4}}=$ 0.4 MeV to 1.8×10^{-3} for $m_{\nu_{4}}=2.8 \mathrm{MeV}$. (Some recent reviews of searches for sterile neutrinos include [30-35].)

In addition to kink searches, a powerful method to set constraints on massive neutrino emission, via lepton mixing, in nuclear beta decays is to analyze the decay rates. Since, in general, the heavy neutrino would also be emitted in μ decay, the measurement of the μ lifetime performed assuming the SM would yield an apparent (app) value of the Fermi constant, denoted $G_{F, \text { app }}$, that would be smaller than the true value, G_{F}, given at tree level by $G_{F} / \sqrt{2}=g^{2} /\left(8 m_{W}^{2}\right)$, where g is the $\mathrm{SU}(2)$ gauge coupling [26-28]. To avoid this complication, the ratios of rates of different nuclear beta decays are compared.

The integration of $d N / d E$ over E gives the kinematic rate factor f. The combination of this with the half-life for the nuclear beta decay, $t \equiv t_{1 / 2}$, yields the product $f t$. Incorporation of nuclear and radiative corrections yields the corrected $f t$ value for a given decay, denoted $\mathcal{F} t$. Conventionally, analyses of the $\mathcal{F} t$ values for the most precisely measured superallowed $0^{+} \rightarrow 0^{+}$nuclear beta decays have been used, in conjunction with the value of $G_{F, \text { app }}$ from μ decay, to infer a value of the weak mixing matrix element, $\left|V_{u d}\right|$ [36-45]. A first step in these analyses has been to establish the mutual consistency of the $\mathcal{F} t$ values for these superallowed $0^{+} \rightarrow 0^{+}$decays. Since the emission of a ν_{4} with mass of a few MeV would have a different effect on the kinematic functions and integrated rates for nuclear beta decays with different Q (energy release) values, it would upset this mutual consistency.

Hence, from this mutual agreement of $\mathcal{F} t$ values, an upper limit on $\left|U_{e 4}\right|^{2}$ can be derived for values of $m_{\nu_{4}}$ such that a ν_{4} could be emitted in some of these superallowed decays. Reference [37] obtained upper bounds on $\left|U_{e 4}\right|^{2}$ ranging from 10^{-2} down to 2×10^{-3} for $m_{\nu_{4}}$ from 0.5 to 2 MeV , while Ref. [29] obtained the

FIG. 1. The 90% C.L. upper limits on $\left|U_{e 4}\right|^{2}$ vs $m_{\nu_{4}}$ from various sources: PIBETA, pion beta decay BD1, previous limits from beta decay [29]; BD2, beta decay with the two dashed horizonal lines based on our analysis using [42] and [43]; PIENU and PIENU-H, the ratio $\frac{\mathrm{BR}\left(\pi^{+} \rightarrow e^{+} \nu_{e}\right)}{\operatorname{BR}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}\right)}$ in the kinematically allowed and forbidden regions for ν_{4} emission; Pie2, $\pi^{+} \rightarrow e^{+} \nu_{e 4}$ peak search [47]; KENU and KENU-H, the ratio $\frac{\mathrm{BR}\left(K^{+} \rightarrow e^{+} \nu_{e}\right)}{\mathrm{BR}\left(K^{+} \rightarrow \mu^{+} \nu_{\mu}\right)}$ in the kinematically allowed and forbidden regions for ν_{4} emission; $K e 2, K^{+} \rightarrow e^{+} \nu_{e 4}$ peak search [48]; Dse $2, D_{s}^{+} \rightarrow e^{+} \nu_{e 4}$; and $\mathrm{Be} 2, \mathrm{~B}^{+} \rightarrow e^{+} \nu_{e 4}$.
limits $\left|U_{e 4}\right|^{2}<1 \times 10^{-3}$ to $\left|U_{e 4}\right|^{2}<2 \times 10^{-3}$ depending nonmonotonically on $m_{\nu_{4}}$ from 1 to 7 MeV . The maximum Q value in the current set of 14 superallowed $0^{+} \rightarrow 0^{+}$beta decays used for the $\mathcal{F} t$ fit in [41,42] is 9.4 MeV (for ${ }^{74} \mathrm{Rb}$). A measure of the mutual agreement is the precision with which $\left|V_{u d}\right|^{2}$ is determined, so a reduction in the fractional uncertainty of the value of $\left|V_{u d}\right|^{2}$ results in an improved upper limit on $\left|U_{e 4}\right|^{2}$. Reference [37] obtained $\left|V_{u d}\right|=0.9740 \pm 0.001$. The recent analyses in [42] and [43] obtained $\left|V_{u d}\right|=0.97420(21)$ and $\left|V_{u d}\right|=$ $0.97370(14)$, respectively [46]. Applying these factors of improvement from [42] and [43] to the previous bounds in [37], improved upper bounds are obtained as

$$
\begin{equation*}
\left|U_{e 4}\right|^{2}<4 \times 10^{-4} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|U_{e 4}\right|^{2}<2.7 \times 10^{-4} \tag{4}
\end{equation*}
$$

for ν_{4} masses in the range $1 \mathrm{MeV} \lesssim m_{\nu_{4}}<9.4 \mathrm{MeV}$, indicated in Fig. 1 as BD2. (These and other limits presented are at the 90% confidence level.)

We next discuss upper bounds from two-body leptonic decays of charged pseudoscalar mesons (generically denoted as M^{+}) [25,26]. This method is quite powerful because the signal is a monochromatic peak in $d N / d p_{\ell}$, and for $M^{+} \rightarrow e^{+} \nu_{e}$ (denoted $M_{e 2}^{+}$) decays, the strong helicity suppression in the SM case is removed when a heavy
neutrino is emitted. The presence of a massive ν_{4} also changes the ratio of branching ratios $\mathrm{BR}\left(M^{+} \rightarrow e^{+} \nu_{e}\right) /$ $\operatorname{BR}\left(M^{+} \rightarrow \mu^{+} \nu_{\mu}\right)$ from its SM value, and this was used to set further bounds [25,26,49]. A number of dedicated experiments have been performed to search for a peak due to heavy neutrino emission and also to measure $\operatorname{BR}\left(M^{+} \rightarrow e^{+} \nu_{e}\right) / \operatorname{BR}\left(M^{+} \rightarrow \mu^{+} \nu_{\mu}\right)$ with $\pi_{\ell 2}^{+}, K_{\ell 2}^{+}$, and $B_{\ell 2}^{+}$, where $\ell=e, \mu$ [47-60].

In the SM with only the three known neutrinos with negligibly small masses, the ratio

$$
\begin{equation*}
R_{\ell / \ell^{\prime}}^{(M)} \equiv \frac{\mathrm{BR}\left(M^{+} \rightarrow \ell^{+} \nu_{\ell}\right)}{\mathrm{BR}\left(M^{+} \rightarrow \ell^{\prime+} \nu_{\ell^{\prime}}\right)} \tag{5}
\end{equation*}
$$

is given by

$$
\begin{equation*}
R_{\ell / \ell^{\prime}, \mathrm{SM}}^{(M)}=\frac{m_{\ell}^{2}}{m_{\ell^{\prime}}^{2}}\left[\frac{1-\delta_{\ell}^{(M)}}{1-\delta_{\ell^{\prime}}^{(M)}}\right]^{2}\left(1+\delta_{\mathrm{RC}}\right) \tag{6}
\end{equation*}
$$

where $\delta_{\ell}^{(M)}=m_{\ell}^{2} / m_{M}^{2}$ and δ_{RC} is the radiative correction (RC) [61-66].

We denote the ratio of the experimental measurement of $R_{\ell / \ell^{\prime}}^{(M)}$ to the SM prediction as

$$
\begin{equation*}
\bar{R}_{\ell \mid \ell^{\prime}}^{(M)} \equiv \frac{R_{\ell \mid \ell^{\prime}}^{(M)}}{R_{\ell / \ell^{\prime}, \mathrm{SM}}^{(M)}} . \tag{7}
\end{equation*}
$$

The most precise measurement of $R_{e / \mu}^{(\pi)}$ is from the PIENU experiment at TRIUMF, with the result $R_{e / \mu}^{(\pi)}=$ $\left(1.2344 \pm 0.0023_{\text {stat }} \pm 0.0019_{\text {syst }}\right) \times 10^{-4}$ [58]. Including [67-69], the resultant PDG world average is $R_{e / \mu}^{(\pi)}=$ $(1.2327 \pm 0.0023) \times 10^{-4}$ [11], in agreement with the SM prediction with $\mathrm{RC}, R_{e / \mu}^{(\pi)}=(1.2352 \pm 0.0002) \times$ 10^{-4} [62,63,65], resulting in

$$
\begin{equation*}
\bar{R}_{e / \mu}^{(\pi)}=0.9980 \pm 0.0019 \tag{8}
\end{equation*}
$$

The ratio $R_{e / \mu}^{(K)}$ has recently been measured by the NA62 experiment at CERN [56], dominating the world average [11]

$$
\begin{equation*}
R_{e / \mu}^{(K)}=(2.488 \pm 0.009) \times 10^{-5} \tag{9}
\end{equation*}
$$

The SM prediction with $\mathrm{RC}[63,66]$ is

$$
\begin{equation*}
R_{e / \mu, \mathrm{SM}}^{(K)}=(2.477 \pm 0.001) \times 10^{-5}, \tag{10}
\end{equation*}
$$

resulting in

$$
\begin{equation*}
\bar{R}_{e / \mu}^{(K)}=1.0044 \pm 0.0037 \tag{11}
\end{equation*}
$$

With emission of a heavy neutrino ν_{4}, the ratio $R_{\ell / \ell^{\prime}, \mathrm{SM}}^{(M)}$ for general ℓ, ℓ^{\prime} changes to

$$
\begin{align*}
R_{\ell \mid \ell^{\prime}}^{(M)}= & {\left[\frac{\left[\left(1-\left|U_{\ell 4}\right|^{2}\right) \rho\left(\delta_{\ell}^{(M)}, 0\right)+\left|U_{\ell 4}\right|^{2} \rho\left(\delta_{\ell}^{(M)}, \delta_{\nu_{4}}^{(M)}\right)\right.}{\left(1-\left|U_{\ell^{\prime} 4}\right|^{2}\right) \rho\left(\delta_{\ell^{\prime}}^{(M)}, 0\right)+\left|U_{\ell^{\prime} 4}\right|^{2} \rho\left(\delta_{\ell^{\prime}}^{(M)}, \delta_{\nu_{4}}^{(M)}\right)}\right] } \\
& \times\left(1+\delta_{\mathrm{RC}}\right), \tag{12}
\end{align*}
$$

where $\delta_{\nu_{4}}^{(M)}=m_{\nu_{4}}^{2} / m_{M}^{2}$, and the kinematic function $\rho(x, y)$ is $[25,26]$

$$
\begin{equation*}
\rho(x, y)=\left[x+y-(x-y)^{2}\right][\lambda(1, x, y)]^{1 / 2} \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda(z, x, y)=x^{2}+y^{2}+z^{2}-2(x y+y z+z x) \tag{14}
\end{equation*}
$$

Thus, in the SM case, $\rho(x, 0)=x(1-x)^{2}$. Here and below, it is implicitly understood that $\rho\left(\delta_{\ell}^{(M)}, \delta_{\nu_{4}}^{(M)}\right)=0$ if $m_{\nu_{4}} \geq m_{M}-m_{\ell}$, where the decay $M^{+} \rightarrow \ell^{+} \nu_{4}$ is kinematically forbidden. We define

$$
\begin{equation*}
\bar{\rho}(x, y)=\frac{\rho(x, y)}{\rho(x, 0)}=\frac{\rho(x, y)}{x(1-x)^{2}} \tag{15}
\end{equation*}
$$

so

$$
\begin{equation*}
\bar{R}_{\ell / \ell^{\prime}}^{(M)}=\frac{1-\left|U_{\ell 4}\right|^{2}+\left|U_{\ell 4}\right|^{2} \bar{\rho}\left(\delta_{\ell}^{(M)}, \delta_{\nu_{4}}^{(M)}\right)}{1-\left|U_{\ell^{\prime} 4}\right|^{2}+\left|U_{\ell^{\prime} 4}\right|^{2} \bar{\rho}\left(\delta_{\ell^{\prime}}^{(M)}, \delta_{\nu_{4}}^{(M)}\right)} \tag{16}
\end{equation*}
$$

With no loss of generality, we order ℓ and ℓ^{\prime} such that $m_{\ell^{\prime}}>m_{\ell}$ and define the mass intervals (i) $I_{1}^{(M)}: m_{\nu_{4}}<$ $m_{M}-m_{\ell^{\prime}}$; (ii) $I_{2}^{(M)}: m_{M}-m_{\ell^{\prime}}<m_{\nu_{4}}<m_{M}-m_{\ell}$; and (iii) $I_{3}^{(M)}: m_{\nu_{4}}>m_{M}-m_{\ell}$. Thus, a ν_{4} with $m_{\nu_{4}} \in I_{1}^{(M)}$ contributes to both $M_{\ell 2}^{+}$and $M_{\ell^{\prime} 2}^{+}$decays, while if $m_{\nu_{4}} \in I_{2}^{(M)}$, then ν_{4} contributes to $M_{\ell 2}^{+}$, but not to $M_{\ell^{\prime} 2}^{+}$ decay, and if $m_{\nu_{4}} \in I_{3}^{(M)}$, then ν_{4} cannot be emitted in either $M_{\ell 2}^{+}$or $M_{\ell^{\prime} 2}^{+}$decay.

If for a given $m_{\nu_{4}}$ one knows, e.g., from peak-search experiments, that $\left|U_{\ell^{\prime} 4}\right|^{2}$ is sufficiently small that the denominator of (16) can be approximated well by 1 , then an upper bound on the deviation of $\bar{R}_{\ell / \ell^{\prime}}^{(M)}$ from 1 yields an upper bound on $\left|U_{\ell 4}\right|^{2}$. Thus, one has the bound

$$
\begin{equation*}
\left|U_{\ell 4}\right|^{2}<\frac{\bar{R}_{\ell \mid \ell^{\prime}}^{(M)}-1}{\bar{\rho}\left(\delta_{\ell}^{(M)}, \delta_{\nu_{4}}^{(M)}\right)-1} \quad \text { for } m_{\nu_{4}} \in I_{2}^{(M)} \tag{17}
\end{equation*}
$$

This gives very stringent upper limits on $\left|U_{\ell 4}\right|^{2}$ because $\bar{\rho}\left(\delta_{e}^{(M}, \delta_{\nu_{4}}^{(M)}\right) \gg 1$ over much of the interval $I_{2}^{(M)}$
(see Figs. 3-5 in [26]). If $m_{\nu_{4}} \in I_{3}^{(M)}$, then (16) reduces to $\bar{R}_{\ell \mid \ell^{\prime}}^{(M)}=\left(1-\left|U_{\ell 4}\right|^{2}\right) /\left(1-\left|U_{\ell^{\prime} 4}\right|^{2}\right)$, so if $\left|U_{\ell^{\prime} 4}\right|^{2} \ll 1$ in this interval, then the upper limit is

$$
\begin{equation*}
\left|U_{\ell 4}\right|^{2}<1-\bar{R}_{\ell \mid \ell^{\prime}}^{(M)} \quad \text { for } m_{\nu_{4}} \in I_{3}^{(M)} \tag{18}
\end{equation*}
$$

We now apply this analysis to $R_{e / \mu}^{(\pi)}$, using (17) and (18) with $M^{+}=\pi^{+}, \ell=e$, and $\ell^{\prime}=\mu$. From previous $\pi_{\mu 2}^{+}$peak search experiments $[47,48,50-60]$ and the calculation of $\bar{\rho}\left(\delta_{\mu}^{(\pi)}, \delta_{\nu_{4}}^{(\pi)}\right)$, it follows that $\left|U_{\mu 4}\right|^{2}$ is sufficiently small for $m_{\nu_{4}} \in I_{2}^{(\pi)}$ that we can approximate the denominator of Eq. (16) by 1. From $\bar{R}_{e / \mu}^{(\pi)}$ in Eq. (8), using the procedure from [70], we obtain the limit $\bar{R}_{e / \mu}^{(\pi)}<1.0014$. Then, for $\nu_{4} \in I_{2}^{(\pi)}$, we find

$$
\begin{equation*}
\left|U_{\ell 4}\right|^{2}<\frac{\bar{R}_{e / \mu^{\prime}}^{(\pi)}-1}{\bar{\rho}\left(\delta_{e}^{(\pi)}, \delta_{\nu_{4}}^{(\pi)}\right)-1}<\frac{0.0014}{\bar{\rho}\left(\delta_{e}^{(\pi)}, \delta_{\nu_{4}}^{(\pi)}\right)-1} \tag{19}
\end{equation*}
$$

This bound is labeled as PIENU in Fig. 1. If $m_{\nu_{4}} \in I_{3}^{(\pi)}$, i.e., $m_{\nu_{4}}>139 \mathrm{MeV}$, then, using (18), we obtain the upper bound on $\left|U_{e 4}\right|^{2}$ given by the flat line labeled PIENU-H in Fig. 1.

We next obtain a bound on $\left|U_{e 4}\right|^{2}$ by applying the same type of analysis to $R_{e / \mu}^{(K)}$. From $K_{\mu 2}$ peak search experiments [48,51,57] and the calculation of $\bar{\rho}\left(\delta_{\mu}^{(K)}, \delta_{\nu_{4}}^{(K)}\right),\left|U_{\mu 4}\right|^{2}$ is sufficiently small that we can approximate the denominator of Eq. (16) well by 1. Using Eq. (11) for $\nu_{4} \in I_{2}^{(K)}$, we find

$$
\begin{equation*}
\left|U_{\ell 4}\right|^{2}<\frac{\bar{R}_{e \mu^{\prime}}^{(K)}-1}{\bar{\rho}\left(\delta_{e}^{(K)}, \delta_{\nu_{4}}^{(K)}\right)-1}<\frac{0.010}{\bar{\rho}\left(\delta_{e}^{(K)}, \delta_{\nu_{4}}^{(K)}\right)-1} . \tag{20}
\end{equation*}
$$

This upper limit on $\left|U_{e 4}\right|^{2}$ is labeled KENU in Fig. 1. For $m_{\nu_{4}} \in I_{3}^{(K)}$, i.e., $m_{\nu_{4}}>493 \mathrm{MeV}$, using ((18), we obtain the flat upper bound labeled KENU-H in Fig. 1.

One can also apply these methods to two-body leptonic decays of heavy-quark hadrons. We first consider $D_{s}^{+} \rightarrow$ $\ell^{+} \nu_{\ell}$ decays [71], using (17) and (18) with $M^{+}=D_{s}^{+}$, $\ell=e$, and $\ell^{\prime}=\tau$. Experimental data from CLEO, BABAR, Belle, and BES have determined $\operatorname{BR}\left(D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=$ $(5.49 \pm 0.17) \times 10^{-3} \quad$ and $\quad \operatorname{BR}\left(D_{s}^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=(5.48 \pm$ $0.23) \times 10^{-2}$ [72-76]. Furthermore, searches by CLEO [72], BABAR [73], and Belle [74] have yielded the limit $\operatorname{BR}\left(D_{s}^{+} \rightarrow e^{+} \nu_{e}\right)<0.83 \times 10^{-4}$. Hence, $R_{e / \tau}^{\left(D_{s}\right)}<1.6 \times 10^{-3}$. For $R_{e / \tau}^{\left(D_{s}\right)}$, using the results of [62], we calculate $1+\delta_{\mathrm{RC}}=0.948$. Substituting this in Eq. (6) with $M=D_{s}, \ell=e, \ell^{\prime}=\tau$, we find

$$
\begin{equation*}
R_{e / \tau, \mathrm{SM}}^{\left(D_{s}\right)}=2.29 \times 10^{-6} \tag{21}
\end{equation*}
$$

Therefore, $\bar{R}_{e / \tau}^{\left(D_{s}\right)}<7.0 \times 10^{2}$. For $R_{e / \tau}^{\left(D_{s}\right)}$, the interval $I_{2}^{\left(D_{s}\right)}$ is $191 \mathrm{MeV}<m_{\nu_{4}}<1.457 \mathrm{GeV}$. Actually, we restrict $m_{\nu_{4}}$ to a lower-mass subset of this interval because for sufficiently great $m_{\nu_{4}}$, even though the $D_{s}^{+} \rightarrow e^{+} \nu_{4}$ decay is kinematically allowed to occur, the momentum p_{e} (in the D_{s} rest frame) would be below the minimal value set by experimental cuts in the BES III event reconstruction. With $p_{e, \text { cut }} \simeq 0.8 \mathrm{GeV}$ [77], this means that $m_{\nu_{4}}$ must be less than 0.85 GeV for the event to be accepted. Thus, we consider $0.191 \mathrm{GeV}<m_{\nu_{4}}<0.85 \mathrm{GeV}$. Substituting the experimental limit on $\bar{R}_{e / \tau}^{\left(D_{s}\right)}$ in the special case of (16) with $M=D_{s}, \ell=e, \ell^{\prime}=\tau$ and using the fact that $\left|U_{\tau 4}\right|^{2} \ll 1$ for this $m_{\nu_{4}}$ mass range [11], we obtain a resultant limit from (17). For $m_{\nu_{4}}=0.191 \mathrm{GeV}, \quad \bar{\rho}\left(\delta_{e}^{\left(D_{s}\right)}, \delta_{\nu_{4}}^{\left(D_{s}\right)}\right)=$ 1.37×10^{5}, increasing to $\bar{\rho}\left(\delta_{e}^{\left(D_{s}\right)}, \delta_{\nu_{4}}^{\left(D_{s}\right)}\right)=1.83 \times 10^{6}$ for $m_{\nu_{4}}=0.85 \mathrm{GeV}$. We thus obtain the upper bound on $\left|U_{e 4}\right|^{2}$ labeled $D_{s e 2}$ in Fig. 1.

A dedicated peak-search experiment to search for the heavy-neutrino decay $D_{s}^{+} \rightarrow e^{+} \nu_{4}$ would be worthwhile and could improve the upper bound on $\left|U_{e 4}\right|^{2}$. Similarly, a search for leptonic D decays like $D^{+} \rightarrow e^{+} \nu_{4}$ would be valuable and will be discussed elsewhere. The very large values of $\bar{\rho}\left(\delta_{e}^{\left(D_{s}\right)}, \delta_{\nu_{4}}^{\left(D_{s}\right)}\right)$ and $\bar{\rho}\left(\delta_{e}^{(D)}, \delta_{\nu_{4}}^{(D)}\right)$ over a large portion of the kinematically allowed ranges of $m_{\nu_{4}}$ in $D_{s}^{+} \rightarrow e^{+} \nu_{4}$ and $D \rightarrow e^{+} \nu_{4}$ mean that there would be quite strong kinematic enhancement of the heavy neutrino decay relative to the corresponding $\left(D_{s}^{+}\right)_{e 2}$ and $D_{e 2}^{+}$decays. In particular, these searches could be performed by the BES III experiment, which recently reported results from a data sample of $3.19 \mathrm{fb}^{-1}$ and expects to collect considerably higher statistics.

Finally, we consider $B^{+} \rightarrow \ell^{+} \nu_{\ell}$ decays. There is an upper limit $\mathrm{BR}\left(B^{+} \rightarrow e^{+} \nu_{e}\right)<0.98 \times 10^{-6}$ from Belle [78] and $B A B A R[79]$. For the other two leptonic decay modes, $\operatorname{BR}\left(B^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=\left(6.46 \pm 2.22_{\text {stat }} \pm 1.60_{\text {syst }}\right) \times 10^{-7}$ from Belle [80], with a recent update $\operatorname{BR}\left(B^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=(5.3 \pm$ $\left.2.0_{\text {stat }} \pm 0.9_{\text {syst }}\right) \times 10^{-7} \quad[81,82]$, and $\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=$ $(1.09 \pm 0.24) \times 10^{-4}$ from BABAR [83] and Belle [84,85]. The measured values of $\operatorname{BR}\left(B^{+} \rightarrow \mu^{+} \nu_{\mu}\right)$ are in agreement with the SM prediction $\mathrm{BR}\left(B^{+} \rightarrow \mu^{+} \nu_{\mu}\right)_{\mathrm{SM}}=$ $(3.80 \pm 0.31) \times 10^{-7}$ [80]. The measured value of $\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)$ is also in agreement with the SM prediction $\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)_{\mathrm{SM}}=\left(0.75_{-0.05}^{+0.10}\right) \times 10^{-4}[85,86]$.

We focus on data from a $B_{\ell 2}^{+}$peak search experiment by Belle [59]. In general [25],

$$
\begin{equation*}
\frac{\operatorname{BR}\left(M^{+} \rightarrow \ell^{+} \nu_{4}\right)}{\operatorname{BR}\left(M^{+} \rightarrow \ell^{+} \nu_{\ell}\right)_{\mathrm{SM}}}=\frac{\left|U_{\ell 4}\right|^{2} \bar{\rho}\left(\delta_{\ell}^{(M)}, \delta_{\nu_{4}}^{(M)}\right)}{1-\left|U_{\ell 4}\right|^{2}} \tag{22}
\end{equation*}
$$

For $m_{\nu_{4}}$ in the range from 0.1 GeV to 1.4 GeV , the Belle experiment obtained an upper limit on $\mathrm{BR}\left(B^{+} \rightarrow e^{+} \nu_{4}\right)$ of 2.5×10^{-6}, while in the interval of $m_{\nu_{4}}$ from 1.4 GeV to 1.8 GeV , this upper limit increased to 7×10^{-6}. In the range of $m_{\nu_{4}}$ from 0.1 to 1.3 GeV , the Belle experiment obtained (nonmonotonic) upper limits on $\operatorname{BR}\left(B^{+} \rightarrow \mu^{+} \nu_{4}\right)$ of approximately $2-4 \times 10^{-6}$, and in the interval of $m_{\nu_{4}}$ from 1.3 GeV to 1.8 GeV , it obtained upper limits varying from 2×10^{-6} to 1.1×10^{-5}. Substituting the $\mathrm{BR}\left(B^{+} \rightarrow e^{+} \nu_{4}\right)$ limits in Eq. (22) with $M=B$ and $\ell=e$, we obtain the upper limits on $\left|U_{e 4}\right|^{2}$ shown as the curve $B_{e 2}$ in Fig. 1 [87]. From the $\operatorname{BR}\left(B^{+} \rightarrow e^{+} \nu_{4}\right)$ limits we infer upper limits on $\left|U_{\mu 4}\right|^{2}$ that decrease from 0.83 to 3.4×10^{-2} as $m_{\nu_{4}}$ increases from 0.1 GeV to 1.2 GeV . Further peak searches for $B^{+} \rightarrow \ell^{+} \nu_{4}$ with $\ell=e, \mu$ at Belle II would be worthwhile as a higher-statistics extension of [59].

We briefly remark on other constraints on a Dirac ν_{4} in the mass range considered here. From the results of $[23,88]$, it follows that there is a negligibly small contribution to decays such as $\mu \rightarrow e \gamma$ and $\mu \rightarrow e e \bar{e}$. Similarly, there is no conflict with bounds on neutrino magnetic moments [11,89], and contributions to invisible Higgs decays [90] are well below the current upper limit of $\mathrm{BR}(H \rightarrow$ invis $)<$ 19\% [91].

In this work, improved upper limits on $\left|U_{e 4}\right|^{2}$ have been presented covering most of the range from $m_{\nu_{4}} \simeq 1 \mathrm{MeV}$ to
$m_{\nu_{4}} \simeq 1 \mathrm{GeV}$, representing the best available laboratory bounds for a Dirac neutrino ν_{4} that do not make modeldependent assumptions concerning visible neutrino decay modes. Over parts of this range, the bounds obtained are competitive with those that assume specific visible ν_{4} decays. For example, for $m_{\nu_{4}}=30 \mathrm{MeV}$, our upper bound is $\left|U_{e 4}\right|^{2}<0.8 \times 10^{-6}$, while the best bound for this value of $m_{\nu_{4}}$ from experiments searching for neutrino decays is $\left|U_{e 4}\right|^{2}<1 \times 10^{-6}$ [92]. New peak search experiments to search for $D_{s}^{+} \rightarrow e^{+} \nu_{4}$ and $D^{+} \rightarrow e^{+} \nu_{4}$ as well as a continued search for $B^{+} \rightarrow e^{+} \nu_{4}$ and continued searches for $\pi^{+} \rightarrow e^{+} \nu_{4}$ [47] and $K^{+} \rightarrow e^{+} \nu_{4}$ [48] would be valuable; these could improve the bounds further. Other constraints on sterile neutrinos, such as from $\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$ decay, and a detailed report of the results presented here will be published elsewhere.

ACKNOWLEDGEMENTS

We thank J. Benitez, J. Hardy, V. Luth, W. Marciano, M. Ramsey-Musolf, C. Yuan, and G. Zhao for useful discussions. This work was supported in part by the Natural Sciences and Engineering Research Council and TRIUMF through a contribution from the National Research Council of Canada (D. B.) and by the U.S. National Science Foundation Grant No. NSF-PHY-16-1620628 (R. S.).
[1] R. Davis, D. S. Harmer, and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).
[2] A. I. Abazov (SAGE Collaboration), Phys. Rev. Lett. 67, 3332 (1991); J. N. Abdurashitov et al. (SAGE Collaboration), Phys. Lett. B 328, 234 (1994); P. Anselmann et al. (GALLEX Collaboration), Phys. Lett. B 285, 376 (1992); Phys. Lett. B 327, 377 (1994).
[3] Y. Fukuda et al. (Kamiokande Collaboration), Phys. Rev. Lett. 77, 1683 (1996).
[4] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998).
[5] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011301 (2002).
[6] K. Eguchi et al. (KamLAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003).
[7] M. H. Ahn et al. (K2K Collaboration), Phys. Rev. Lett. 90, 041801 (2003).
[8] C. Arpesella et al. (Borexino Collaboration), Phys. Rev. Lett. 101, 091302 (2008).
[9] Y. Abe et al. (Double Chooz Collaboration), Phys. Rev. Lett. 108, 131801 (2012); F. P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 108, 171803 (2012); J. K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012).
[10] P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 107, 181802 (2011); K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 112, 061802 (2014); P. Adamson et al. (NOvA Collaboration), Phys. Rev. Lett. 116, 151806 (2016).
[11] M. Tanabashi et al. (Particle Data Group and PDG Collaboration), Phys. Rev. D 98, 030001 (2018), online at http://pdg.lbl.gov.
[12] See http://www.nu-fit.org.
[13] See proceedings at Neutrino 2018, Heidelberg, https://www .mpi-hd.mpg.de/nu2018.
[14] S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, Phys. Lett. B 782, 13 (2018).
[15] M. Dentler, A. Hernández-Cabezudo, J. Kopp, P. Machado, I. Martinez-Soler, and T. Schwetz, J. High Energy Phys. 08 (2018) 010.
[16] I. Esteban, M. C. Gonzalez-Garcia, A. HernándezCabezudo, M. Maltoni, and T. Schwetz, J. High Energy Phys. 01 (2019) 106.
[17] We will use the term "sterile neutrino" both in its precise sense as an electroweak-singlet interaction eigenstate and in a commonly used approximate sense as the corresponding mainly sterile mass eigenstate(s) in this neutrino interaction eigenstate.
[18] A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. Lett. 105, 181801 (2010); 121, 221801 (2018).
[19] See, e.g., $[14,15]$ for global fits to neutrino data that allow for a possible sterile neutrino with mass $\sim O(1) \mathrm{eV}^{2}$.
[20] N. Aghanim et al. (Planck Collaboration), arXiv: 1807.06209; P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016).
[21] There is extensive literature on these constraints and on models that are designed to evade one or more of them. See, e.g., the following and references therein: S. Hannestad and G. G. Raffelt, Phys. Rev. D 72, 103514 (2005); G. Gelmini, E. Osoba, S. Palomares-Ruiz, and S. Pascoli, J. Cosmol. Astropart. Phys. 10 (2008) 029; G. Steigman, Adv. HEP 2012, 268321 (2012); J. Lesgourgues and S. Pastor, Adv. High Energy Phys. 2012, 608515 (2012); H. Ishida, M. Kusakabe, and H. Okada, Phys. Rev. D 90, 083519 (2014); M. Archidiacono, S. Hannestad, R. S. Hansen, and T. Tram, J. Cosmol. Astropart. Phys. 08 (2016) 067; K. N. Abazajian and M. Kaplinghat, Annu. Rev. Nucl. Part. Sci. 66, 401 (2016).
[22] Although Majorana neutrino masses have often been regarded in the past as more generic, many ultraviolet extensions of the SM lead to Dirac neutrinos instead. See, e.g., K. Dick, M. Lindner, M. Ratz, and D. Wright, Phys. Rev. Lett. 84, 4039 (2000); D. A. Demir, L. L. Everett, and P. Langacker, Phys. Rev. Lett. 100, 091804 (2008); Y. Grossman and D. J. Robinson, J. High Energy Phys. 01 (2011) 132; N. Memenga, W. Rodejohann, and H. Zhang, Phys. Rev. D 87, 053021 (2013); A. Aranda, C. Bonilla, S. Morisi, E. Peinado, and J. W. F. Valle, Phys. Rev. D 89, 033001 (2014); E. Ma and O. Popov, Phys. Lett. B 764, 142 (2017); A. Dasgupta, S. K. Kang, and O. Popov, arXiv:1903.12558 and references therein.
[23] B. W. Lee and R. E. Shrock, Phys. Rev. D 16, 1444 (1977). The theorem proved in this work is that the necessary and sufficient condition for the weak leptonic neutral current to be diagonal in mass eigenstates is that leptons of the same chirality and charge must have the same weak T and T_{3}.
[24] J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980).
[25] R. E. Shrock, Phys. Lett. B 96, 159 (1980).
[26] R. E. Shrock, Phys. Rev. D 24, 1232 (1981).
[27] R. E. Shrock, Phys. Rev. D 24, 1275 (1981).
[28] R. E. Shrock, in Proceedings of the 1980 VPI Conference on Weak Interactions as Probes of Unification, AIP Conf. Proc. 72, Particles and Fields Subseries No. 23 (AIP, New York, 1981), p. 368.
[29] J. Deutsch, M. LeBrun, and R. Prieels, Nucl. Phys. A518, 149 (1990).
[30] A. Kusenko, Phys. Rep. 481, 1 (2009); A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annu. Rev. Nucl. Part. Sci. 59, 191 (2009).
[31] J. C. Helo, S. Kovalenko, and I. Schmidt, Nucl. Phys. B853, 80 (2011); Phys. Rev. D 84, 053008 (2011).
[32] A. Abada, D. Das, A. M. Teixeira, A. Vicente, and C. Weiland, J. High Energy Phys. 02 (2013) 048; A. Abada, A. M. Teixeira, A. Vicente, and C. Weiland, J. High Energy Phys. 02 (2014) 091.
[33] A. de Gouvêa and A. Kobach, Phys. Rev. D 93, 033005 (2015).
[34] S. Alekhin et al., Rep. Prog. Phys. 79, 124201 (2016); M. Drewes et al., J. Cosmol. Astropart. Phys. 01 (2017) 025; K. N. Abazajian, Phys. Rep. 711-712, 1 (2017); A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, Prog. Part. Nucl. Phys. 104, 1 (2019).
[35] B. Batell, T. Han, D. McKeen, and B. Es Haghi, Phys. Rev. D 97, 075016 (2018).
[36] J. C. Hardy and I. S. Towner, Nucl. Phys. A254, 221 (1975).
[37] J. C. Hardy, I. S. Towner, V. T. Kozlowsky, E. Hagberg, and H. Schmeing, Nucl. Phys. A509, 429 (1990).
[38] A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D 70, 093006 (2004).
[39] J. C. Hardy and I. S. Towner, Phys. Rev. C 71, 055501 (2005); 79, 055502 (2009).
[40] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006).
[41] J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015).
[42] J. C. Hardy and I. S. Towner, arXiv:1807.01146.
[43] C. Y. Seng, M. Gorchtein, H. H. Patel, and M. RamseyMusolf, Phys. Rev. Lett. 121, 241804 (2018); C. Y. Seng, M. Gorchtein, and M. Ramsey-Musolf, Phys. Rev. D 100, 013001 (2019).
[44] See talks by J. Hardy, W. Marciano, and M. Ramsey-Musolf, Workshop on First-Row CKM Unitarity (Texas A\&M University, 2019), https://cyclotron.tamu.edu/ ckmuw2019; See also A. Czarnecki, W. J. Marciano, and A. Sirlin, arXiv:1907.06737, which appeared after our present work had been submitted for publication.
[45] Since in the presence of massive neutrinos, $G_{F, \text { app }}$ would differ from G_{F}, the value of $\left|V_{u d}\right|$, denoted $\left|V_{u d \text {,app }}\right|$, derived from these fits to $\mathcal{F} t$ values would also differ from the true value [26,28]. However, all that we use here is the relative agreement between the $\mathcal{F} t$ values, as measured by the quoted precision in the determination of $\left|V_{u d, \text { app }}\right|$, so we keep the subscript app implicit.
[46] Using their value of $\left|V_{u d}\right|$ in [42], together with $\left|V_{u s}\right|=$ $0.2243(5)$ from [11] (the $\left|V_{u b}\right|^{2}$ term makes a negligible contribution), Hardy and Towner obtain $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+$ $\left|V_{u b}\right|^{2}=0.99939(64)$, in agreement with CKM unitarity. Reference [43] notes that its value of $\left|V_{u d}\right|$ leads to tension with CKM unitarity. See also E. Blucher and W. J. Marciano, in [11].
[47] A. Aguilar-Arevalo et al. (PIENU Collaboration), Phys. Rev. D 97, 072012 (2018).
[48] C. Lazzeroni et al. (NA62 Collaboration), Phys. Lett. B 772, 712 (2017); E. Cortina Gill et al. (NA62 Collaboration), Phys. Lett. B 778, 137 (2018).
[49] D. Bryman, R. Dubois, T. Numao, B. Olaniyi, A. Olin, M. S. Dixit, J.-M. Poutissou, and J. A. Macdonald, Phys. Rev. Lett. 50, 1546 (1983).
[50] R. Abela, M. Daum, G. H. Eaton, R. Frosch, B. Jost, P.-R. Kettle, and E. Steiner, Phys. Lett. 105B, 263 (1981); R. C. Minehart, K. O. H. Ziock, R. Marshall, W. A. Stephens, M. Daum, B. Jost, and P.-R. Kettle, Phys. Rev. Lett. 52, 804 (1984).
[51] Y. Asano et al., Phys. Lett. 104B, 84 (1981); R. S. Hayano et al., Phys. Rev. Lett. 49, 1305 (1982).
[52] T. Yamazaki, in Proceedings of the Neutrino-84 Conference, Nordkirchen, Germany (World Scientific, Singapore, 1984).
[53] M. Daum, P.-R. Kettle, B. Jost, R. M. Marshall, R. C. Minehart, W. A. Stephens, and K. O. H. Ziock, Phys. Rev. D 36, 2624 (1987).
[54] D. I. Britton et al., Phys. Rev. D 46, R885 (1992).
[55] D. Bryman and T. Numao, Phys. Rev. D 53, 558 (1996).
[56] C. Lazzeroni et al. (NA62 Collaboration), Phys. Lett. B 719, 326 (2013).
[57] A. V. Artamonov et al. (BNL E949), Phys. Rev. D 91, 052001 (2015).
[58] A. Aguilar-Arevalo et al. (PIENU Collaboration), Phys. Rev. Lett. 115, 071801 (2015).
[59] C.-S. Park et al. (Belle Collaboration), Phys. Rev. D 94, 012003 (2016).
[60] A. Aguilar-Arevalo et al. arXiv:1904.03269.
[61] S. Berman, Phys. Rev. Lett. 1, 468 (1958); T. Kinoshita, Phys. Rev. Lett. 2, 477 (1959); T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).
[62] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993).
[63] V. Cirigliano and I. Rosell, Phys. Rev. Lett. 99, 231801 (2007); J. High Energy Phys. 10 (2007) 005.
[64] Sufficiently soft photons are understood to be included in the experimentally measured $M^{+} \rightarrow \ell^{+} \nu_{\ell}$ decays, which are thus often labeled as $M^{+} \rightarrow \ell^{+} \nu_{\ell}(\gamma)$.
[65] D. Bryman, W. J. Marciano, R. Tschirhart, and T. Yamanaka, Annu. Rev. Nucl. Part. Sci. 61, 331 (2011).
[66] Hadronic structure-dependent bremsstrahlung (SDB) contributions to the radiative corrections are estimated to be negligibly small for $R_{e / \mu}^{(\pi)}$ and hence are not included in the calculations of $[62,63]$. Bremsstrahlung contributions to $R_{e / \mu}^{(K)}$ are discussed in $[48,63]$.
[67] D. A. Bryman, R. Dubois, J. A. Macdonald, T. Numao, B. Olaniyi, A. Olin, J.-M. Poutissou, and M. S. Dixit, Phys. Rev. D 33, 1211 (1986).
[68] D. I. Britton et al., Phys. Rev. Lett. 68, 3000 (1992).
[69] G. Czapek et al., Phys. Rev. Lett. 70, 17 (1993).
[70] G. Feldman and R. Cousins, Phys. Rev. D 57, 3873 (1998).
[71] Charge-conjugate decays are understood to be included here and below.
[72] J. P. Alexander et al. (CLEO Collaboration), Phys. Rev. D 79, 052001 (2009).
[73] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 82, 091103(R) (2010).
[74] A. Zupanc et al. (Belle Collaboration), J. High Energy Phys. 09 (2013) 139.
[75] M. Ablikim et al. (BES III Collaboration), Phys. Rev. D 94, 072004 (2016).
[76] M. Ablikim et al. (BES III Collaboration), Phys. Rev. Lett. 122, 071802 (2019).
[77] C. Yuan and G. Zhao (BES III Collaboration) (private communication).
[78] N. Satoyama et al. (Belle Collaboration), Phys. Lett. B 647, 67 (2007).
[79] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 091101 (2009).
[80] A. Sibidanov et al. (Belle Collaboration), Phys. Rev. Lett. 121, 031801 (2018).
[81] M. Prim (Belle Collaboration), proceedings at Moriond2019 [82].
[82] Moriond-2019 Workshop, http://moriond.in2p3.fr/2019/ EW.
[83] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 88, 031102 (2013).
[84] K. Hara et al. (Belle Collaboration), Phys. Rev. Lett. 110, 131801 (2013).
[85] B. Kronenbitter et al. (Belle Collaboration), Phys. Rev. D 92, 051102 (2015).
[86] See CKMfitter website, http://ckmfitter.in2p3,fr.
[87] Here, we focus on the effect of ν_{4} in these B decays. For recent discussions of possible indications of other new physics in the B system, see, e.g., [82].
[88] W. J. Marciano and A. I. Sanda, Phys. Rev. Lett. 67, 303 (1977); S. M. Bilenky, S. T. Petcov, and B. Pontecorvo, Phys. Rev. Lett. 67, 309 (1977); B. W. Lee, S. Pakvasa, R. E. Shrock, and H. Sugawara, Phys. Rev. Lett. 38, 1230 (1977).
[89] K. Fujikawa and R. E. Shrock, Phys. Rev. Lett. 45, 963 (1980).
[90] R. E. Shrock and M. Suzuki, Phys. Lett. 110B, 250 (1982).
[91] S. Cooperstein (CMS Collaboration), in [82]; see also V. Khachatryan et al. (CMS Collaboration), J. High Energy Phys. 02 (2017) 135; Phys. Lett. B 793, 520 (2019); G. Aad (ATLAS Collaboration), Phys. Lett. B 793, 499 (2019).
[92] B. Bernardi et al., Phys. Lett. 166B, 479 (1986).

[^0]: Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

