
 

Simple and precise factorization of the Jarlskog invariant
for neutrino oscillations in matter

Peter B. Denton1,* and Stephen J. Parke2,†
1Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

2Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

(Received 4 March 2019; revised manuscript received 20 June 2019; published 11 September 2019)

For neutrino propagation in matter, we show that the Jarlskog invariant, which controls the size of true
CP violation in neutrino oscillation appearance experiments, factorizes into three pieces: the vacuum
Jarlskog invariant times two simple two-flavor matter resonance factors that control the matter effects for
the solar and atmospheric resonances independently. If the solar effective matter potential and the
atmospheric effective Δm2 are chosen carefully for these two resonance factors, then the fractional
corrections to this factorization are an impressive 0.04% or smaller. We also show that the inverse of the
square of the Jarlskog in matter (1=Ĵ2) is a fourth order polynomial in the matter potential which guarantees
that it can be factored into two quadratics which immediately implies the functional form of our
approximate, factorized expression.
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I. INTRODUCTION

The discovery of an invariant, the Jarlskog invariant [1],
that controls the size of CP violation in both quark and
lepton sectors was a monumental step in the understanding
of flavor physics. For neutrinos, using the standard para-
metrization of the Pontecorvo-Maki-Nakagawa-Sakata
matrix [2,3], the Jarlskog invariant is given by

J ≡ s13c213s12c12s23c23 sin δ; ð1Þ

where we use the usual notation, cij ¼ cos θij, sij ¼ sin θij,
and δ is the CP-violating phase. The CP-violating part of
the vacuum neutrino oscillation probability in the appear-
ance channels, e.g., νμ → νe, is given by [4]

8J sinΔ31 sinΔ32 sinΔ21; ð2Þ

where the kinematic phases are given byΔjk ¼ Δm2
jkL=4Eν

with Δm2
jk ¼ m2

j −m2
k for an experiment of baseline L and

neutrino energy Eν.
For neutrinos propagating in matter, as in the NOvA [5],

T2K [6], DUNE [7] and T2HK(K) [8,9] experiments, the

part of the appearance oscillation probability that depends
on the intrinsic CP violation is given by

8Ĵ sin Δ̂31 sin Δ̂32 sin Δ̂21; ð3Þ

where x̂ is the matter value for the vacuum variable x. The
Jarlskog invariant in matter, Ĵ, is given by same expression
as Eq. (1), but with the mixing angles and phase replaced by
their matter values [10–12]. Both θ12 and θ13 have a strong
dependence on density of the matter and the energy of the
neutrino through the Wolfenstein matter potential [13], a,
given by

a≡ 2
ffiffiffi
2

p
GFNeEν; ð4Þ

whereGF is the Fermi constant,Ne is the number density of
electrons, and Eν is the neutrino energy in the matter
rest frame.

II. THE APPROXIMATE FACTORIZATION

While the exact expressions for the mixing angles in
matter are extremely complicated [10], it is possible to
relate the Jarlskog invariant in matter to the vacuum
Jarlskog, at the 0.04% level, as simply

J ≈ S⊙SatmĴ; ð5Þ

where
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S⊙ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ12 − c213a=Δm2

21Þ2 þ sin2 2θ12

q
;

Satm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ13 − a=Δm2

eeÞ2 þ sin2 2θ13

q
: ð6Þ

Equation (5) shows simply how to relate the quantity
measured in experiments, Ĵ, to the amount of CP violation
in the lepton sector, J. The S factors are the two-flavor
resonance factors associated with the solar and atmospheric
resonances. Like the Jarlskog invariant, these S factors
can also be written in a convention independent form,
see Eq. (23).
The precision scales like Oðs213 cos 2θ12ðΔm2

21=Δm2
eeÞÞ

and Oðs212c212ðΔm2
21=Δm2

eeÞ2Þ leading to an actual frac-
tional precision of ∼0.04% for this factorization. To achieve
this level of precision, we note that the following are
crucial:

(i) for the solar (1-2) resonance factor, S⊙, the effective
matter potential is c213a, not just a,

(ii) for the atmospheric (1-3) resonance factor, Satm,
the effective Δm2 is Δm2

ee ≡ c212Δm2
31 þ s212Δm2

32

[14,15], not Δm2
31ð2Þ.

In Fig. 1, we have plotted the fractional precision to the
approximation in Eq. (5) as a function of the matter
potential for both neutrinos and antineutrinos and find that
the expression is precise to the 0.04% level or better. We
have numerically verified that c213 is the optimal correction,
Δm2

ee is the optimal atmospheric mass splitting, and
that these results are generally independent of the mass
ordering.

Without the c213 term in S⊙, or for different values of the
solar matter potential, the precision is 2%–3% independent
of the atmosphericmass splitting used inSatm. The precision

isOðs213Þ andOðΔm2
21

Δm2
ee
Þ, see the expression in Ref. [16]. With

the c213 term the precision is better, but still at the 2% level,
although it is better in DUNE’s region of interest, down to
∼0.1% − 1%, depending onwhich atmosphericΔm2 is used
in theSatm term.When the atmospheric splitting isΔm2

ee, the
precision improves considerably down to the 0.04% level or
better for any matter potential. That is, the precision is
Oðs213 cos 2θ12ðΔm2

21=Δm2
eeÞÞ, Oðs212c212ðΔm2

21=Δm2
eeÞ2Þ,

or better for all values of the matter potential. This is all
shown in Fig. 2. Our result is the solid orange curve,
ðee; c213Þ and the result from Ref. [16] which is the
ðee; 1Þ case is the solid blue curve.
We also note that this factorization is far from obvious

from the context of angles as well. First, the θ23 and δ sector
can be factored in a straightforward fashion by the Toshev
identity [17]

sin 2θ̂23 sin δ̂ ¼ sin 2θ23 sin δ: ð7Þ

This statement is further enhanced by the fact that it is
numerically known that ˆθ23 and δ̂ do not vary much in
matter. After factoring out those two parameters, this leaves
sb13c2b13sb12cb12 ¼ Ĵ=sb23cb23 sin δ̂. This term can be further

factored into two terms where one is governed by the
atmospheric mass splitting and the other by the solar mass
splitting. For the atmospheric splitting, the factorization is
simple

sb13cb13 ≈ s13c13=Satm; ð8Þ

FIG. 1. The fractional precision in Ĵ compares our approximate
expression with the exact expression calculated from [10], or
Eqs. (15) and (16). The orange curves our approximate expres-
sion from Eqs. (5) and (6). The green curves are the analytic
approximation of the precision shown in Eq. (19). The yellow and
blue vertical lines are the solar and atmospheric resonances,
respectively. The vertical strip is the amount of matter potential
that DUNE will probe. The downward spikes occur where the
exact and approximate expressions cross. The normal mass
ordering (NO) is assumed.

FIG. 2. The figure is the same as Fig. 1 for neutrinos only. We
now vary the Δm2 that appears in Satm and the correction to the
matter potential that appears in S⊙. Our solution is shown in the
solid orange curve and is clearly the most precise in general and,
in particular, for DUNE’s region of interest. The result from [16]
is the blue solid curve.
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Eq. (8), follows directly from the zeroth order approxima-
tion of Denton-Minakata-Parke (DMP) [18].
Counterintuitively, for the solar splitting

cb13sb12cb12 ≈ c13s12c12=S⊙: ð9Þ

The extra c1̂3 is required on the left-hand side (LHS) of
Eq. (9) to give the LHS the same a → ∞ limit as the right-
hand side (RHS). There is no direct analog in DMP for
Eq. (9). Each of these approximations, Eqs. (8)–(9), are
precise at the 0.4% level. However, when combined, there
is a further cancellation and the product has a precision of
0.04%. This returns us to our primary result, Eq. (5).

III. UNDERSTANDING THE PRECISION

In order to understand why Eqs. (5) and (6) achieve such
precision and to estimate the precision in this factorization
analytically, we use the exact Naumov-Harrison-Scott
(NHS) identity [19,20],

ĴΔcm2
32Δcm2

31Δcm2
21 ¼ JΔm2

32Δm2
31Δm2

21; ð10Þ

to rewrite the approximate factorization in terms of the
exact matter eigenvalues,

Δcm2
32Δcm2

31Δcm2
21 ≈ S⊙SatmΔm2

32Δm2
31Δm2

21: ð11Þ

While the exact eigenvalues have a very complicated
analytic form [10] due to the presence of the
cosð1

3
cos−1 � � �Þ terms, we have discovered that the square

of the product of the difference of the eigenvalues in matter

(also1=Ĵ2 thanks to theNHS identity) can bewrittenwithout
any appearance of these cosð1

3
cos−1 � � �Þ factors, see Sec. IV

below. In fact, 1=Ĵ2 can bewritten as a simple polynomial of
the vacuum parameters and the matter potential. Since each

of the Δcm2’s scale with the matter potential in some way as
shown in Fig. 3, one would expect that the product of all
three, squared, would be sixth order in the matter potential.

In fact, the product of the threeΔcm2’s squared is, in fact, only
fourth order. This statement is independent of the hierar-
chical measured neutrino mass splittings. This suggests that
only two matter corrections of the form given in Eq. (6) are
needed and clearly justifies the form of Eq. (5).
Next, to understand the specific terms in Satm and S⊙, we

calculate various limits. First, consider the large matter
potential limit, a → ∞, then the eigenvalues are as follows:

cm2
3 → aþ Δm2

ees213cm2
2 → Δm2

31c
2
13ð1þOðϵ2s212c212ÞÞcm2

1 → Δm2
21c

2
12ð1þOðϵ2s212c212ÞÞ: ð12Þ

Thus the Δcm2
jk are

Δcm2
31 ≈ a ≈ Δm2

21S⊙=c213

Δcm2
32 ≈ a ≈ Δm2

eeSatm

Δcm2
21 ≈ c213

�
Δm2

31Δm2
32

Δm2
ee

�
× ð1þOðϵ2s212c212Þ þOðϵs213 cos 2θ12ÞÞ: ð13Þ

To understand why we associate Δcm2
31 ≈ Δm2

21S⊙=c213
and Δcm2

32 ≈ Δm2
eeSatm see [21]. Thus it is simple to see

that

Δcm2
32Δcm2

31Δcm2
21 ≈ S⊙SatmΔm2

32Δm2
31Δm2

21

in this limit. For this the factorization to work, it is crucial
that the limit of

Δcm2
21 ≈ c213

�
Δm2

31Δm2
32

Δm2
ee

�
:

This is where the appearance of the two essential factors,
c213 and Δm2

ee, come from for this limit. What is highly
nontrivial is that it is exactly these factors that are needed
at the solar resonance and the atmospheric resonance,
respectively.
Now consider a number of other simplifying limits: if

s213 ¼ 0 and s212 ¼ 0 then it is trivial to show the factori-
zation of Eq. (5) is exact. If s213 ≠ 0 and s212 ¼ 0 then
factional corrections to the factorization are ϵs213 whereas if
s213 ¼ 0 and s212 ≠ 0 then fractional corrections are ϵ2s212c

2
12,

see Appendix A.

FIG. 3. The dependence of the three Δcm2’s in matter for the
normal ordering. DUNE’s region of interest for antineutrinos and
neutrinos are shown in the shaded regions.
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IV. EXACT JARLSKOG INVARIANT
IN MATTER

For the general cases with s213 ≠ 0 and s212 ≠ 0, start from
the cubic characteristic equation for the eigenvalues of the

square of the neutrino masses in matter, cm2
j, which each

satisfy

ðcm2
jÞ3 − Aðcm2

jÞ2 þ Bcm2
j − C ¼ 0; ð14Þ

where A, B, and C are the sum of the eigenvalues, sum of
the products of the eigenvalues, and the triple product of the
eigenvalues,

A≡X
j

cm2
j ¼ Δm2

31 þ Δm2
21 þ a;

B≡X
j>k

cm2
j
cm2

k

¼ Δm2
31Δm2

21 þ aðΔm2
31c

2
13 þ Δm2

21ðc212 þ s213s
2
12ÞÞ;

C≡Y
j

cm2
j ¼ aΔm2

31Δm2
21c

2
13c

2
12; ð15Þ

using the convention that ðcm2
1;
cm2

2;
cm2

3Þ ¼
ð0;Δm2

21;Δm2
31Þ in vacuum.

Then it is straightforward to show that,�Y
j>k

Δcm2
jk

�
2

¼ðA2−4BÞðB2−4ACÞþð2AB−27CÞC:

ð16Þ

This equation is a general identity for Eq. (14), independent
of the exact values of A, B, C, and is invariant under
making the same shift of all of the eigenvalues, as it must
given the LHS.
Combining Eqs. (15) and (16) one obtains the exact

expression for ðQi>jΔcm2
ijÞ2 as a fourth order polynomial

in the matter potential, a. This guarantees its factorization
in two quadratics as shown by Lodovico de Ferrari in 1540.
To our knowledge this is the only exact measurable
expression relating to neutrinos oscillating in matter with-
out the cosð1

3
cos−1 � � �Þ term.1 This means that it is, in

principle, possible to write the exact Jarlskog in matter in
the same form as Eq. (5), however since the solutions to the

quartic expression which go in to Eq. (6) are a function of a
cubic equation and are extremely complicated, the exact
solution is far from simple. By leveraging the fact that we
know that s213 and Δm2

21=Δm2
ee are small numbers, it is

possible to drastically simplify that expression to one that is
extremely compact.

V. ERROR ESTIMATE

Next, we compare the exact expression and our approxi-
mate expression and expand the difference in powers of ϵ
and s213. One can show that the correction Δðπ2Þ is well
approximated by the simple form,

�Y
i>j

Δcm2
ij

�
2

¼S2
⊙S2

atm

�Y
i>j

Δm2
ij

�
2

þΔðπ2Þ ð17Þ

whereΔðπ2Þ≈þ2ϵ2s213aðΔm2
eeÞ5

−2ϵs213 cos2θ12a
2S2

atmðΔm2
eeÞ4

−2ϵ2s212c
2
12a

3ðΔm2
ee−aÞðΔm2

eeÞ2: ð18Þ

This approximate expression for Δðπ2Þ contains the first
corrections to the factorization for each power of the matter
potential. There is no constant term (a0) because the
approximate expression is exact in vacuum, and there
are only terms up to a4 since both the exact and the
approximate expressions only have terms up to a4. An
exact expression for Δðπ2Þ can easily be obtained using
Eqs. (16) and (15), see Appendix A. The fractional
corrections are of Oðϵs213Þ or Oðϵ2s212c212Þ for each power
of a and are of order a few ×10−4.
By propagating the correction from the product ofΔcm2 ’s

squared to the correction in Ĵ via the Naumov-Harrison-
Scott identity, we find that the fractional precision in Ĵ is
approximately given by

ΔĴ
Ĵ

≈
Δðπ2Þ

2S2
⊙S2

atmð
Q

i>jΔm2
ijÞ2

ð19Þ

up to an overall sign. In Fig. 1 we plot Eq. (19) [note that
using either the exact expression for the denominator or the
approximate factorized expression given by Eq. (5) is
indistinguishable]. Also shown for comparison is the exact
fractional precision of Eqs. (5) and (6) as in Fig. 1. The
agreement between the approximate, Eq. (19), and the
exact fractional correction is excellent. We note that this
precision estimate gets the magnitude of the precision
correct as well as the general features: the precision goes to
zero for small a and peaks at the level of 0.04%. In
addition, the difference passes through zero for a ≈ Δm2

ee
for neutrinos but not for antineutrinos as reasonably
expected due to the atmospheric resonance.

1In principle expressions like A, B, and C in Eq. (15) are
measurable as well, and they do not contain the cosð1

3
cos−1 � � �Þ

term. In practice, measuring all three eigenvalues in the same
matter effect is extremely difficult and not likely to occur even

with future experiments. At the moment Δcm2
21 is only measured

in the sun while Δcm2
31 and Δcm2

32 are only measured in the Earth
making a direct sum or product of these quantities in Eq. (15) not
possible.
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To gain further insight, we explore the small and large
matter potential limits. First we evaluate the precision
below the solar resonance, jaj ≪ Δm2

21 cos 2θ12, and above
the atmospheric resonance, jaj ≫ jΔm2

eej. Using the
expression for Δðπ2Þ, Eq. (18), we find that in the
low (high) a limit we have that the fractional precision
scales like

lim
a→0

ΔĴ
Ĵ

≈ ϵs213
a

Δm2
21

¼ 3 × 10−4
a

Δm2
21 cos 2θ12

ð20Þ

lim
a→∞

ΔĴ
Ĵ

≈ ϵs213 cos 2θ12 − ϵ2s212c
2
12 ¼ 6 × 10−5; ð21Þ

up to overall signs. It is interesting to note that the excellent
precision at large a is due to the significant cancellation in
Eq. (21) that happens only for the NO. For the inverted
ordering there is no cancellation since ϵ < 0 and the
precision levels off at a ≳ Δm2

ee to ΔĴ=Ĵ ¼ 4 × 10−4.

VI. DISCUSSION

The Jarlskog invariant in vacuum can be written in a
convention independent2 fashion,

J ¼ ℑðUe1Uμ2U�
e2U

�
μ1Þ: ð22Þ

In addition, the Jarlskog in matter must also be convention
independent due to the Naumov-Harrison-Scott identity.
Therefore it must be the case that the approximate matter
corrections S⊙;atm can also be written in a convention
independent way. These expressions are,

S2
⊙ ¼

�
1 − ð1 − jUe3j2Þ

a
Δm2

21

�
2

þ 4jUe2j2
a

Δm2
21

;

S2
atm ¼

�
1 −

a
Δm2

ee

�
2

þ 4jUe3j2
a

Δm2
ee
; ð23Þ

which are essentially as simple as those with mixing angles
in Eq. (6). See Appendix B for alternative ways to write
these resonance factors. We can similarly write the atmos-
pheric mass splitting as

Δm2
ee ¼ Δm2

31 −
jUe2j2

1 − jUe3j2
Δm2

21; ð24Þ

where jUe3j2 ≈ 0.022 and jUe2j2 ≈ 0.31 and unitarity
implies jUe1j2 ¼ 1 − jUe2j2 − jUe3j2. It is natural to asso-
ciate the correction for the atmospheric resonance factor on
the Δm2 as the minimum separation is Δm2

ee sin 2θ13,
whereas for the solar resonance factor, since the minimum

separation is not altered at Δm2
21 sin 2θ12, it is natural to

associate the correction with the matter potential.
In light of the Naumov-Harrison-Scott identity, it is not

surprising that Ĵ=J has a form that looks like the inverse of
several matter corrections to the Δm2’s. It may not be
obvious, however, why Ĵ is well-approximated by only two
such expressions instead of all three. The reason is because

for nearly any value of a, there is always one Δcm2 that is

essentially constant, see Fig. 3. In the NO this is Δcm2
32 for

antineutrinos and Δcm2
l1 for neutrinos where l ¼ 3 below

the atmospheric resonance and l ¼ 2 above the atmos-
pheric resonance. As such having two S terms is to be
expected. This fact is further reinforced by the fact that the

exact expression for the square of the product of the Δcm2
ij

is fourth order in a, which directly proves that only two

Δcm2
ij require a matter correction. Moreover, we expect

that, when squared, that correction should be fourth order in
the matter potential, as is the case for S2

atmS2
⊙.

In addition, while the presence of the c213 term breaks an
otherwise relatively symmetric definition of S⊙ and Satm,
this can be understood using the DMP [18] expressions. In
that formalism the (1-2) sector is handled second and thus
contains a small (1-3) correction since the (1-3) sector was
handled first.
We also note that the functional form of the S functions

have shown up elsewhere in the literature [16,21–24] with
slight differences. One interesting example is the quantity
Δm2

eeSatm [using the same definition as in Eq. (6)] which
was shown [21] to be an excellent approximation for
the frequency of νe disappearance in matter, i.e., Δm2

ee
in matter.
It is useful to consider the level of precision in a broader

phenomenological context. Since DUNE is striving to
reach percent level precision, it is clear that 2% precision,
such as that reached in Ref. [16] is not sufficient, thus
precision at the 0.04% level is necessary to be precise
enough for DUNE. On the other hand, there are unavoid-
able uncertainties in the oscillation probabilities due to
uncertainties in the matter density. A 1% overall uncer-
tainty in the matter density profile results in a 0.1%
fractional uncertainty in the oscillation probability.
Alternatively, by considering various density profiles avail-
able [25], the shape uncertainty can be estimated, and is
found to be only 0.01% [26]. Thus precision at the 0.04%
level is also a sufficient level of precision.
Finally, we recall the exact Toshev identity,

sin 2 ˆθ23 sin δ̂ ¼ sin 2θ23 sin δ [17]. Thus, in terms of the
mixing angles, the ratio Ĵ=J has no dependence (explicit or
otherwise) on θ23 or δ. This fact is approximately confirmed
by the fact that Satm and S⊙ have no dependence on θ23 and
δ. This brings to attention an important point on CP
violation: the quantity that describes the amount of CP
violation in the lepton sector is the Jarlskog invariant, J, not

2By convention independent, we mean regardless of how one
parametrizes the lepton mixing matrix—that is, without any
reference to the mixing angles.
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the CP-violating phase, δ, and thus it is the Jarlskog that
should be reported by experiments as a measure of the
amount of CP violation. Since DUNE will measure each
part of the vacuum Jarlskog in the atmospheric sector, θ23,
θ13, and δ and could measure θ12 using solar neutrinos as
well [27], it is, in principle, possible to completely
determine the Jarlskog in the lepton sector with a single
experiment.

VII. CONCLUSIONS

In this paper we have shown that the Jarlskog invariant
in the lepton sector is exactly equal to the Jarlskog in
matter times two matter resonance factors. While the
coefficients of a and a2 in these resonances are extremely
complicated solutions to a quartic equation, they can be
simplified immensely while still retaining precision
at the ∼0.04%, i.e., Oðs213 cos 2θ12ðΔm2

21=Δm2
eeÞÞ and

Oðs212c212ðΔm2
21=Δm2

eeÞ2Þ, a level of precision that is
both necessary and sufficient for future long-baseline
experiments.
We have also derived the exact Jarlskog invariant in

matter as a simple fourth order polynomial in the matter
potential which allows us to estimate analytically the
precision of the factorization. To achieve the high precision
given here, it is crucial to use the θ13 corrected value for the
matter potential for the solar (1-2) sector, ac213 as well as the
effective Δm2

ee instead of Δm2
31 or Δm2

32 for the atmos-
pheric (1-3) sector. This precision factorization of the
Jarlskog invariant in matter further enhances our under-
standing of neutrinos in matter relevant for the currently
running NOvA and T2K experiments and the upcoming
DUNE and T2HK(K).
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APPENDIX A: EXACT DERIVATION

First consider the case when s213 ¼ 0 with nonzero s212,
then it is easy to show that�Y

i>j
Δcm2

ij

�
2

¼ ððΔm2
21Þ2 − 2aΔm2

21 cos2θ12 þ a2Þ

× ðΔm2
31Δm2

32 − aðΔm2
31 −Δm2

21c
2
12ÞÞ2
ðA1Þ

exactly. To understand how this result relates to the
factorization given by Eq. (5), one needs the following
exact identity

ðΔm2
31−Δm2

21c
2
12Þ¼

Δm2
31Δm2

32þðΔm2
21Þ2s212c212

Δm2
ee

; ðA2Þ

where we note that Δm2
31 − Δm2

21c
2
12 ¼ ðΔm2

μμ þ Δm2
ττÞ=2

of Ref. [14]. If one drops the ðΔm2
21Þ2 terms in this identity

then one recovers the s213 ¼ 0 limit of the factorization,
Eq. (5). As we will see, all of the ϵ2s212c

2
12 corrections come

from this identity. In principle one could absorb the second
term in this identity into the definition of Δm2

ee and remove
such corrections.
For the case when s212 ¼ 0 and nonzero s213, one can

show that without approximation that�Y
i>j

Δcm2
ij

�
2

¼ ððΔm2
eeÞ2− 2aΔm2

ee cos2θ13þa2Þ

× ðΔm2
21Δm2

32−aðc213Δm2
32− s213Δm2

21ÞÞ2:
ðA3Þ

In this limit Δm2
ee ¼ Δm2

31, so that the factorization of
Eq. (5) is recovered, if the as213Δm2

21 term is set to zero.
Finally, one can show that when s213 ≠ 0 and s212 ≠ 0, the

most general case, that�Y
i>j

Δcm2
ij

�
2

¼ ððΔm2
21Þ2 − 2aΔm2

21c
2
13 cos2θ12 þ a2c413Þ

× ððΔm2
31Δm2

32Þ2 − 2aðΔm2
31Δm2

32Þ
× ðΔm2

31 −Δm2
21c

2
12Þ cos2θ13

þ a2ðΔm2
31 −Δm2

21c
2
12Þ2Þ

þ ðs213Δm2
21Þ

�X4
n¼1

anPn

�
: ðA4Þ

where

P1 ¼ 2Δm2
21Δm2

31Δm2
32Δm2

ee ðA5Þ

P2 ¼ −2Δm2
31Δm2

32Δm2
eec213 cos 2θ12

− 4Δm2
31Δm2

32Δm2
21ðcos 2θ13 − c213s

2
12c

2
12Þ

þ ðΔm2
eeÞ2Δm2

21s
2
13 þ 2ðΔm2

21Þ3s212c212 ðA6Þ

P3 ¼ 2ðΔm2
31Δm2

32 þ ðΔm2
eeÞ2Þc213 cos 2θ12 cos 2θ13

þ 4Δm2
eeΔm2

21ðs213 þ s212c
2
12c

4
13Þ

− 2ðΔm2
21Þ2 cos 2θ12ð1þ 2s212c

2
12c

2
13Þ ðA7Þ

P4 ¼ −ðΔm2
31 þ Δm2

32Þc213 cos 2θ12 þ Δm2
21: ðA8Þ
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Note, that all the corrections to the factorization here are
proportional to s213Δm2

21. Δðπ2Þ of Eq. (18) can now be
trivially derived from Eqs. (A4) and (A2), (A5)–(A8), as
well as the higher order corrections to Δðπ2Þ.
The zeros of ðQi>jΔm̂2

ijÞ2, in the complex matter
potential plane, can also be obtained, for both the exact
expression and our approximate factorized expression.
Given the exact expressions for the zeros (which are
extremely complicated and involve solving a general
quartic equation which, in turn, involves solving a general
cubic equation) it is possible, in principle, to write an exact
expression of the form of Eqs. (5) and (6) with different
functions of the vacuum parameters in the Satm and S⊙
functions.
For the approximate expression, the zeros occur at

a ¼ ðΔm2
21=c

2
13Þe�i2θ12 and a ¼ Δm2

eee�i2θ13 : ðA9Þ

Note the appearance of both c213 andΔm2
ee in the location of

these zeros. Without these exact factors the positions of the
zeros move by 1%–2%. For the exact expression, we have
numerically calculated the location of the zeros in the

complex matter potential plane and find that the fractional
corrections to their position, compared to (A9), is

6 × 10−4 and 2 × 10−4;

for the solar and atmospheric zeros, respectively. For any
polynomial, the location of the zeros determines the
polynomial exactly, up to an overall factor, therefore the
above, again, points to the necessity of including both c213
and Δm2

ee in the factorization.

APPENDIX B: ALTERNATIVE EXPRESSIONS
FOR THE RESONANCE FACTORS

Alternatively, S⊙ can also be written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 cos 2θ12ðc213a=Δm2

21Þ þ ðc213a=Δm2
21Þ2

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − c213a=Δm2
21Þ2 þ 4s212ðc213a=Δm2

21Þ
p

and similarly
for Satm. Like the Jarlskog invariant, these S factors can
also be written in a convention independent form, see
Eq. (23). They can also be written as je2iθ12 − c213a=Δm2

21j
and similarly for Satm which shows where the complex
zeros are, see Appendix A.
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