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In this paper we study dynamical chiral symmetry breaking of a generic quantum field theoretical model
with global SUð2ÞL × SUð2ÞR × Uð1ÞV symmetry. By purely algebraic means we analyze the vacuum
structure for different symmetry breaking schemes and show explicitly how the ensuing nontrivial flavor
vacuum condensate, originally introduced in connection with neutrino oscillations, characterizes the
dynamical generation of field mixing. In addition, with the help of Ward–Takahashi identities we
demonstrate the emergence of the correct number of Nambu–Goldstone modes in the physical spectrum.
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I. INTRODUCTION

Particle mixing represents one of the most exciting topics
in modern theoretical and experimental physics [1]. The
mechanismof quarkmixingwas theoretically first described
byCabibbo [2] in the 1960s and byKobayashi andMaskawa
[3] in the early 1970s. Neutrino mixing was formulated, in
parallel, by Pontecorvo [4] and by Maki, Nakagawa, and
Sakata [5].
Particle mixing can be treated from various standpoints.

The most common description is in the framework of
quantum mechanics [1,4]. More modern approaches to
mixing involve both perturbative [6] and nonperturbative
quantum field theoretical (QFT) methods [7,8]. The basic
features of a nonperturbative treatment of flavor mixing in
the QFT framework were first exploited in Ref. [9] and
consequently discussed in many subsequent papers (see
e.g., Ref. [7]). There, it was observed that field mixing is
not the same as wave-function (i.e., first-quantized) mixing
and, in fact, corrections to neutrino oscillation formula
were found in the QFT setting [10,11]. The origin of these
discrepancies can be retraced to the nontrivial nature of the
mixing transformation [12], which implies a rich structure

of the flavor vacuum, characterized by a condensate of
fermion-antifermion pairs [9]. A similar, though not iden-
tical, conclusions were also formerly reached in the context
of grand unified theories [13].
Furthermore, in Ref. [14], it was proved that the

aforesaid flavor vacuum structure naturally arises when
mixing is dynamically generated by an effective four-
fermion interaction, within a string inspired scenario. In
that context four-fermion interaction appears as a conse-
quence of string scattering with pointlike brane defects in
the structure of space-time. Since the flavor is not preserved
during such a scattering, the outgoing states exhibit a flavor
mixing. In Ref. [15], where the Nambu–Jona Lasinio model
[16] was studied, similar results were also found.
In this paper, we demonstrate that an analogous vacuum

structure inevitably appears when mixing is dynamically
generated, from an algebraic (and hence manifestly non-
perturbative) point of view. In fact, the only requirement we
enforce in our considerations is the invariance of the
Lagrangian under the global SUð2ÞL × SUð2ÞR ×Uð1ÞV
symmetry. In particular, we do not explicitly consider axial
Uð1ÞA symmetry, which may be broken from the very
beginning [17]. Our aim here is to start with the aforesaid
global symmetry and analyze symmetry-breaking schemes
that are pertinent for the dynamical generation of masses
and, in particular, field mixing. We envisage that a
particular breaking scheme is realized via spontaneous
symmetry breaking (SSB) phase transition whose pattern is
dictated by the potential-energy term in the original or
effective-action Lagrangian. In fact, the specific form of the
potential is immaterial for our description. Apart from
discussing explicit structural forms of broken-phase vacua
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we also show how the correct number of Nambu–
Goldstone (NG) bosons appear in the physical spectrum
of the full theory. It turns out that the presence of fermion-
antifermion pairs with different masses is a necessary
condition, in order to dynamically generate mixing in
the present context. The novelty of the presented approach
is the emergence, after symmetry breaking, of flavor
vacuum and ensuing Hilbert space [9], which is unitarily
inequivalent to the usually adopted Hilbert space for mass
eigenstates. It should be stressed that such unitary inequi-
valence is not a mere mathematical feature, being at the
origin of phenomenological effects, e.g., corrections to the
usual neutrino oscillation formulas [10].
In contrast to most of the works on dynamical generation

of masses and mixing [18,19], this paper is primarily
devoted to a study of general algebraic aspects of field
mixing and vacuum structure rather than to phenomeno-
logical issues. This approach allows us to identify the flavor
vacuum condensate structure, originally obtained in the
study of the generator of mixing transformations [9].
The paper is organized as follows: in Sec. II we review

all the ways in which the chiral-charge conservation can
explicitly be broken when a generic mass-matrix term is
added to a chirally symmetric action. In Sec. III we
formulate the Ward–Takahashi (WT) identities for three
quintessential chiral SSB schemes. This is done with the
help of the so-called Umezawa’s ε-term prescription
[20,21]. In doing so we demonstrate that in order to
generate mixing dynamically: (a) the residual Uð1ÞV ×
Uð1ÞmV symmetry, encountered on the classical level, must
be dynamically broken by flavor vacuum condensate, (b) in
this respect, SSB must happen in two sequential steps. In
Sec. IV, we use the mean field approximation (MFA) to
prove how the aforementioned vacua are algebraically
related to masses and mixing generators and we recover
flavor vacuum from Refs. [7,9,12,14]. Various remarks and
generalizations are addressed in the concluding Sec. V.
For the reader’s convenience, the paper is supplemented
with three Appendices. In Appendix A we review the
proof of WT identities with ε-term prescription, while in
Appendices B and C we discuss several technical issues
related to Sec. III.

II. EXPLICIT CHIRAL SYMMETRY
BREAKING AND FERMION MIXING

Let us consider the Lagrangian density L that is
invariant under the global chiral-flavor group G ¼
SUð2ÞL × SUð2ÞR ×Uð1ÞV . Let the fermion field be a
flavor doublet

ψ ¼
�
ψ̃1

ψ̃2

�
: ð1Þ

Under a generic chiral-group transformation g, the field ψ
transforms to ψ 0 where [22]

ψ 0 ¼ gψ ¼ exp

�
i

�
ϕþω ·

σ
2
þω5 ·

σ
2
γ5

��
ψ: ð2Þ

Here σj; j ¼ 1; 2; 3 are the Pauli matrices and ϕ;ω, ω5 are
real-valued transformation parameters of G. Noether’s
theorem implies the conserved vector and axial currents

Jμ ¼ ψ̄γμψ; ð3Þ

Jμ ¼ ψ̄γμ
σ
2
ψ; ð4Þ

Jμ5 ¼ ψ̄γμγ5
σ
2
ψ; ð5Þ

and the ensuing conserved charges

Q ¼
Z

d3xψ†ψ; ð6Þ

Q ¼
Z

d3xψ† σ
2
ψ; ð7Þ

Q5 ¼
Z

d3xψ† σ
2
γ5ψ: ð8Þ

From these we recover the Lie algebra of the chiral-flavor
group G, i.e.,

½Qi;Qj� ¼ iεijkQk; ½Qi;Q5;j� ¼ iεijkQ5;k;

½Q5;i; Q5;j� ¼ iεijkQk; ½Q;Q5;j� ¼ ½Q;Qj� ¼ 0: ð9Þ

Here i; j; k ¼ 1; 2; 3 and εijk is the Levi-Civita pseudo-
tensor.
For massless fermions the Lagrangian is invariant under

both the flavor and axial flavor transformations. The chiral
symmetry is explicitly broken when a mass term

LM ¼ −ψ̄Mψ; ð10Þ

is added to L. In fact, one can easily verify, that [22]

∂μJμ ¼ 0; ∂μJμ ¼
i
2
ψ̄½M;σ�ψ; ∂μJ

μ
5 ¼

i
2
ψ̄γ5fM;σgψ:

ð11Þ

Note, that these relations do not presuppose any specific
form of the original chirally symmetric action. We now
demonstrate how particular choices of the mass matrix M
can affect the structure of the residual (unbroken) subgroup.

(i) Let M ¼ m01 where 1 is the identity matrix, then
(11) reduces to

∂μJμ ¼ ∂μJμ ¼ 0; ∂μJ
μ
5 ¼ im0ψ̄γ5σψ; ð12Þ
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i.e., the scalar and vector currents remain conserved
and the broken-phase symmetry is H ¼ Uð2ÞV .

(ii) If M ¼ m01þm3σ3, then Noether currents satisfy

∂μJμ ¼ ∂μJ
μ
3 ¼ 0; ∂μJ

μ
1 ¼ −m3ψ̄σ2ψ;

∂μJ
μ
2 ¼ m3ψ̄σ1ψ; ∂μJ

μ
5 ≠ 0; ð13Þ

thus reducing the residual symmetry to H ¼
Uð1ÞV ×Uð1Þ3V where Uð1Þ3V represents transfor-
mations generated by Q3.

(iii) Finally we consider M ¼ m01þm3σ3 þm1σ1þ
m2σ2. In this case Eq. (11) yields

∂μJμ ¼ 0; ∂μJ
μ
5 ≠ 0; ð14Þ

∂μJ
μ
1 ¼ ψ̄ðm2σ3 −m3σ2Þψ; ð15Þ

∂μJ
μ
2 ¼ −ψ̄ðm1σ3 −m3σ1Þψ; ð16Þ

∂μJ
μ
3 ¼ ψ̄ðm1σ2 −m2σ1Þψ: ð17Þ

It might seem that the residual symmetry is then
H ¼ Uð1ÞV which is associated with the charge Q.
The role of this symmetry can be understood by
considering the flavor-charges [11]

QI ≡ 1

2
QþQ3; QII ≡ 1

2
Q −Q3; ð18Þ

where the total flavor-charge is Q ¼ QI þQII.
However, let us observe that from Eqs. (15)–(17)
there is yet another conserved current, namely

Jμm ≡X3
k¼1

mkJ
μ
k; ð19Þ

and an ensuing conserved chargeQm ¼ P
3
k¼1mkQk,

where m ¼ ðm1; m2; m3Þ. For a future convenience
we denote this residual symmetry asUð1ÞV ×Uð1ÞmV .
Actually this is isomorphic to Uð1ÞV ×Uð1Þ3V , en-
countered in the case ii). However, in the following
sectionswewill see that the classical Noether’s charge
Qm is dynamically broken by the flavor vacuum
condensate, while the charge Q will still remain
conserved. Hence the only residual symmetry at
QFT level will be Uð1ÞV . This is indeed compatible
with the experimental observation that, for neutrino
oscillation, only a single charge (total flavor) is
conserved [23]. In the case of neutrinos [11,24], a
charged current term is present in the Lagrangian,
which is not invariant under the transformation
generated by Qm.

III. DYNAMICAL GENERATION OF MASSES
AND MIXING IN THE FLAVOR

VACUUM FRAMEWORK

In the previous section we reviewed how the mass
generation and mixing phenomena are characterized by
the residual symmetry. The subsequent considerations will
be done in a full QFT framework, employing the flavor
vacuum approach to mixing [9].
To proceed, let us recall [22,25] that the key signature of

SSB is the existence of some local operator(s) ϕðxÞ so that
on the vacuum jΩi.

h½Ni;ϕð0Þ�i ¼ hφið0Þi≡ vi ≠ 0; ð20Þ

where h…i≡ hΩj…jΩi. Here vi are the order parameters
and Ni represent group generators from the quotient space
G=H. In our caseNi will be given byQ andQ5 according to
the chosen SSB scheme.
By analogy with quark condensation in QCD [18,22], we

will limit our considerations to order parameters that are
condensates of fermion-antifermion pairs. To this end we
introduce the following composite operators

Φk ¼ ψ̄σkψ; Φ5
k ¼ ψ̄σkγ5ψ; σ0 ≡ 1; ð21Þ

with k ¼ 0; 1; 2; 3. For simplicity we now assume
hΦ5i ¼ 0. This hypothesis does not affect our reasoning.
Let us now look in some detail at three SSB schemes

G → H outlined in Sec. II.
(i) SSB sequence corresponding to a single mass

generation is [21,22]

SUð2ÞL × SUð2ÞR ×Uð1ÞV → SUð2ÞV × Uð1ÞV:
ð22Þ

Note that H ∼Uð2ÞV . The broken-phase symmetry
(which corresponds to dynamically generated mass
matrix M ¼ m01) is characterized by the order
parameter

hΦ0i ¼ v0 ≠ 0; hΦki ¼ 0; k ¼ 1; 2; 3: ð23Þ

One can easily check that this is invariant under
the residual group H but not under the full chiral
group G.

In order to discuss the NG modes it is convenient
employ theWTidentity (A10)within the ε-prescription
(A9), by taking Lε ¼ εΦ0. We thus find WT identity
(A10) in the form (seeRef. [21] andAppendixA for the
derivation):

iv0 ¼ lim
ε→0

ε

Z
d4yhT½Φ5

kðyÞΦ5
kð0Þ�i; ð24Þ
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where k ¼ 1; 2; 3. Because the left-hand side (LHS)
differs from zero, the Källén-Lehmann spectral
representation of RHS implies that quantity
ερðk ¼ 0; mkÞ=m2

k (ρ is spectral distribution) is non-
vanishing for ε → 0 and thus masses m2

k ∝ ε
(k ¼ 1; 2; 3) due to positive definiteness of ρ. This
is the NG theorem, which states that the expression of
Φ5

k in the physical states representation, called dynami-
cal map or Haag expansion [20,26], will contain the
gapless NG fields as linear terms [20]:

Φ5
kðxÞ ¼

ffiffiffiffiffiffiffi
Zφ5

k

q
φ5
kðxÞ þ…; k ¼ 1; 2; 3: ð25Þ

where Zφ5
k
are the wave function renormalization

factors and φ5
k are the NG fields. Note that we have

three NG fields which coincides with dimðG=HÞ.
(ii) As a second case we consider the SSB pattern

SUð2ÞL×SUð2ÞR×Uð1ÞV →Uð1ÞV×Uð1Þ3V; ð26Þ

which is responsible for the dynamical generation of
different masses. In this case the order parameters
take the form

hΦ0i ¼ v0 ≠ 0; hΦ3i ¼ v3 ≠ 0: ð27Þ

The corresponding ε-term prescription has now the
formLε¼εðΦ0þΦ3Þ. By settingN ¼ fQ1; Q2;Q5g
we obtain δ1ð2ÞΦ3 ¼ Φ2ð−Φ1Þ, and δ2

1ð2ÞΦ3 ¼ −Φ3

and hence the WT identities (A8) boil down to

iv3¼−lim
ε→0

ε

Z
d4yhT½ΦkðyÞΦkð0Þ�i; k¼1;2: ð28Þ

This gives two NGmodes. Moreover, Eq. (24) forΦ5
1

and Φ5
2 still hold, yielding another two NG fields.

Finally, when δ5;3 is applied to Φ0 þΦ3 we get

iðv3þv0Þ

¼ lim
ε→0

ε

Z
d4yhT½ðΦ5

3ðyÞþΦ5
0ðyÞÞðΦ5

3ð0ÞþΦ5
0ð0ÞÞ�i:

ð29Þ

Hence, the dynamical maps of Φ1;Φ2;Φ5
1;Φ5

2

and Φ5
3 þΦ5

0 will contain NG fields as linear terms
in their Haag expansion. The number of NG fields
is now five which coincides with dimðG=HÞ ¼
dimðGÞ − dimðUð1ÞV ×Uð1Þ3VÞ.

(iii) Finally, we consider the SSB scheme

SUð2ÞL × SUð2ÞR ×Uð1ÞV
→ Uð1ÞV ×Uð1Þ3V → Uð1ÞV; ð30Þ

which is responsible for the dynamical generation
of field mixing. In Appendix B we show that
dynamically generation of mixing cannot occur in
the breaking scheme SUð2ÞL × SUð2ÞR ×Uð1ÞV →
Uð1ÞV ×Uð1ÞmV , as it could be expected from point
(iii) in Sec. II.

Let us now introduce

Φk;m ¼ ψ̄σkψ; k ¼ 1; 2; 3; ð31Þ

wherem indicates that ψ is a doublet of fields ψ ¼ ½ψ1ψ2�T
in the mass basis. The SSB condition in this case reads

hΦ1;mi≡ v1;m ≠ 0: ð32Þ

Hence we find that a necessary condition for a dynamical
generation of field mixing within chiral symmetric systems,
is the presence of exotic pairs in the vacuum, made up by
fermions and antifermions with different masses [27]:

hψ̄ iðxÞψ jðxÞi ≠ 0; i ≠ j: ð33Þ

In other words, field mixing requires mixing at the level of
the vacuum condensate structure. This conclusion is
consistent with analogous results obtained in the context
of QFT treatment of neutrino oscillations, in which case a
flavor vacuum has the structure of a nontrivial (Perelomov-
type) condensate [7,9,12]. Moreover, this is an agreement
with Ref. [14], where, as previously mentioned, this
structure is recovered via dynamical symmetry breaking
in a specific effective model generated by string-brane
scattering. We remark that our result is basically model
independent (the only assumption made was the global
chiral symmetry), and has a nonperturbative nature. In the
next section we will see that in the mean-field approxima-
tion the vacuum condensate responsible for (32) formally
resembles the aforementioned flavor vacuum structure.
To write down the WT identity we add the ε-term

Leff
ε ðxÞ ¼ εΦ1;mðxÞ; ð34Þ

to Leff , which denotes the effective mass-fields Lagrangian
that emerges after the SSB SUð2ÞL × SUð2ÞR ×Uð1ÞV →
Uð1ÞV × Uð1Þ3V . We thus get

iv1;m ¼ −lim
ε→0

ε

Z
d4yhT½Φ2;mðyÞΦ2;mð0Þ�i: ð35Þ

This implies a new NG field, which appears linearly in the
dynamical map ofΦ2;m. Consequently, the above two-stage
SSB generates 6 NG fields.
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IV. MIXING AND BOGOLIUBOV
TRANSFORMATIONS

It is well known [22] that the manifold of degenerate
ground states in the broken phase–ordered-phase vacuum
manifold, is isomorphic to the quotient space G=H. We
might, thus employ Perelomov group-related coherent
states (CS) [28] to find an explicit representation of the
ensuing vacuum manifold and to carry out quantization via
coherent-state functional integrals [29]. The form of the
interaction part of the Lagrangian would be then reflected
in the way the renormalized parameters and fields in the CS
run with the renormalization scale. This complicated
model-dependent task can often be conveniently bypassed
by the mean-field approximation (MFA). In the MFA, only
quadratic operators in the Lagrangian are considered to be
relevant for the description of the phase transition [22,30].
In the present case the symmetric-phase quasi-fields

ψ̃1; ψ̃2 are massless and have a simple mode expansion

ψ̃ jðxÞ ¼
1ffiffiffiffi
V

p
X
k;r

ðũrk;je−ijkjtα̃rk;j þ ṽr−k;je
ijkjtβ̃r†−k;jÞeik·x;

ð36Þ

where j ¼ 1; 2 and ũrk;j; ṽ
r
−k;j are massless spinors. In (36)

we employed the box regularization, i.e., we enclosed
our system in a box of volume V. Operators α̃rk;j and β̃rk;j
annihilate the corresponding (fiducial) vacuum j0i—
symmetric-phase mean-field vacuum. By assuming the
validity of MFA we can employ existing techniques and
results involving Bogoliubov transformations [20,22] to
discuss the structure of vacuum manifolds in our three SSB
schemes.

(i) As shown, e.g., in Refs. [12,22,30], the MFA
vacuum for fields with dynamically generated mass
can be expressed, in terms of j0i, as [31]

j0im ¼
Y
i¼1;2

Y
k;r

ðcosΘk − ηr sinΘkα̃
r†
k;iβ̃

r†
−k;iÞj0i

¼ BðmÞj0i; ð37Þ

with Θk ¼ 1
2
cot−1 ðjkj=mÞ and ηr ¼ ð−1Þr. Here m

is the physical mass and

BðmÞ ¼ B1ðmÞB2ðmÞ; ð38Þ

where B1ðmÞ and B2ðmÞ are generators of
Bogoliubov transformations, i.e.,

BjðmÞ ¼ exp

�X
k;r

Θkη
rðα̃rk;jβ̃r−k;j − β̃r†−k;jα̃

r†
k;jÞ

�
;

ð39Þ

with j ¼ 1; 2. Above j0im together with (23) yield,
in the large volume limit, the order parameter

v0 ¼ 2

Z
d3k sin 2Θk: ð40Þ

(ii) Dynamical generation of different masses follows
from a simple generalization of (37). In fact, it is
easy to check that the mass vacuum has the form

j0i1;2 ¼
Y
j¼1;2

Y
k;r

ðcosΘk;j − ηr sinΘk;jα̃
r†
k;jβ̃

r†
−k;jÞj0i

¼ Bðm1; m2Þj0i: ð41Þ

Here Θk;j ¼ 1
2
cot−1ðjkj=mjÞ, j ¼ 1; 2. Generator

Bðm1; m2Þ factorizes again to the product of two
Bogoliubov transformations:

Bðm1; m2Þ ¼ B1ðm1ÞB2ðm2Þ: ð42Þ

The ladder operators of massive fields can now be
defined as (cf. e.g., Ref. [12])

αrk;j ¼ cosΘk;jα̃
r
k;j þ ηr sinΘk;jβ̃

r†
−k;j; ð43Þ

βr−k;j ¼ cosΘk;jβ̃
r
−k;j − ηr sinΘk;jα̃

r†
k;j; ð44Þ

with j ¼ 1; 2. In terms of these, we can expand the
massive fields, as

ψ jðxÞ ¼
1ffiffiffiffi
V

p
X
k;r

ðurk;je−iωk;jtαrk;j þ vr−k;je
iωk;jtβr†−k;jÞ

× eik·x; ð45Þ

where j ¼ 1; 2 and ωk;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

j

q
. The order

parameters (27) are now

v0 ¼
X
j¼1;2

Z
d3k sin 2Θk;j; ð46Þ

v3 ¼
Z

d3k sin 2Θk;1 −
Z

d3k sin 2Θk;2: ð47Þ

(iii) The broken-phase MFA vacuum for the dynamical
mixing generation has to be constructed on the mass
vacuum of case (ii), according to Eq. (30). As known
(cf., e.g., Ref. [7]), the relation between flavor and
mass vacua can be written in the form:

j0ie;μ ¼ G−1
θ ð0Þj0i1;2; ð48Þ

with the generator
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GθðtÞ ¼ exp

�Z
d3xðψ̃†

1ðxÞψ̃2ðxÞ − ψ̃†
2ðxÞψ̃1ðxÞÞ

�
:

ð49Þ

Here, we have used the sub-index “e, μ” for the
flavor vacuum in order to stay as close as possible to
the usual notation used, for instance, in neutrino
mixing physics, see, e.g., Ref. [8]. The flavor fields
can now be written as

ψeðxÞ ¼ cos θ ψ1ðxÞ þ sin θ ψ2ðxÞ; ð50Þ

ψμðxÞ ¼ − sin θ ψ1ðxÞ þ cos θ ψ2ðxÞ: ð51Þ

The state j0ieμ, for θ ≠ 0 can be explicitly written
as [9]:

j0ie;μ ¼
Y
k

Y
r

½ð1 − sin2θV2
kÞ

− ηr sin θ cos θVkðαr†k;1βr†−k;2 þ αr†k;2β
r†
−k;1Þ

þ ηrsin2θVkUkðαr†k;1βr†−k;1 − αr†k;2β
r†
−k;2Þ

þ sin2θV2
kα

r†
k;1β

r†
−k;2α

r†
k;2β

r†
−k;1�j0i1;2; ð52Þ

where

Uk ¼ Ak

�
1þ jkj2

ðωk;1 þm1Þðωk;2 þm2Þ
�
;

Vk ¼ Ak

� jkj
ωk;1 þm1

−
jkj

ωk;2 þm2

�
; ð53Þ

with Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk;1þm1Þðωk;2þm2Þ

4ωk;1ωk;2

q
. This is exactly the

flavor vacuum [7,9,12,24].
The order parameter (32) assumes now the form

v1;m ¼ 2 sin 2θ
Z

d3k

�
m2

ωk;2
−

m1

ωk;1

�
: ð54Þ

Notice that the vacuum j0ie;μ, which is responsible for the
dynamical generation of mixing, contains an “exotic”
condensate of fermion-antifermion pairs of fields with
different masses. Because of these terms, the structure of
the above state is an entangled one, namely it cannot be
represented in terms of product states belonging to the
Hilbert spaces for ψ1 and ψ2. This is consistent with the
observation that flavor mixing and oscillations may equiv-
alently be described in terms of entanglement [32].
Let us remark that the above considerations have

implications going beyond a purely formal level. For
instance, in the context of neutrino physics, flavor
states defined as jνrk;σi≡ α†k;σj0ie;μ, lead to the oscillation
formula [10]:

Qσ→ρðtÞ≡hνrk;σjQρðtÞjνrk;σi

¼ sin22θ

�
U2

ksin
2

�
ωk;2−ωk;1

2
t

�

þV2
ksin

2

�
ωk;2þωk;1

2
t
��

; σ≠ρ¼e;μ; ð55Þ

where

QρðtÞ≡
Z

d3xψ†
ρðxÞψρðxÞ; ð56Þ

are the “physical” (non-conserved) flavor charges defined
in terms of the flavor fields [see Eqs. (50), (51)].
Equation (55) exhibits phenomenological corrections with
respect to the usual Pontecorvo formula [4], which is
recovered only in the ultrarelativistic limit.

V. CONCLUSIONS AND DISCUSSION

In this paper we have discussed three types of dynamical
symmetry-breaking schemes for a generic Lagrangian
density with G ¼ SUð2ÞL × SUð2ÞR × Uð1ÞV chiral sym-
metry: (i) G → Uð2ÞV , (ii) G → Uð1ÞV ×Uð1Þ3V and
(iii) the two-step SSB G → Uð1ÞV ×Uð1Þ3V → Uð1ÞV .
We demonstrated that these symmetry-breaking schemes
lead to: (i) a single dynamically generated mass for the
doublet field, (ii) two different dynamically generated
masses for the fields (without mixing) and (iii) dynamically
generated mixing among the two fields.
Our analysis was based on an algebraic and hence

manifestly nonperturbative point of view. In particular,
we employed Umezawa’s ε-term prescription alongside
with WT identities for SSB to gain information about NG
bosons and ensuing set of ground states. The explicit form
of the ground states that are responsible for dynamical
generation of masses and field mixing was obtained in
MFA where they were phrased in terms of generators of
Bogoliubov transformations acting on fiducial vacuum
states.
Our key finding is that the vacuum state, responsible for

dynamical mixing generation, exhibits similar condensate
structure as the flavor vacuum defined in the context of
neutrino oscillations [7,9,12,24]. Hence, in order to gen-
erate field mixing dynamically, a nontrivial vacuum struc-
ture is required. This was reflected in Sec. IV via
appearance of a Bogoliubov transformation. Let us note
that the condition hΦ5i ¼ 0 does not affect considerably
our main results. Indeed, if hΦ5i ≠ 0 we would still need
mixed vacuum condensates, as it can be verified by means
of table in Appendix C and Eq. (20). The only difference
would be that expressions such as Eq. (52) will acquire
extra phase factors.
Let us finally add some comments. A common feature of

SSB is the appearance of topological defects [20]. The
number of such defects is related to the quench time of SSB
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in which they are formed via the Kibble–Zurek mechanism
[33]. On the other hand, type of defects in 3-D configu-
ration space is determined by a nontrivial homotopy group
πnðG=HÞ (n ¼ 0; 1; 2). By analogy with condensed matter
systems we might expect that defects formed might provide
an important observational handle on the dynamics of the
mixing-related SSB transition.
It is known [34] that Lorentz symmetry may be sponta-

neously broken by the flavor vacuum, in the sense that the
corresponding dispersion relations of states constructed as
Fock excitations of the flavor vacuum are modified as
compared to the standard Lorentz covariant ones. In this
sense, one can discuss flavormixing in a fixed frame, such as
finite temperature situations,which breakLorentz symmetry.
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APPENDIX A: WARD–TAKAHASHI IDENTITIES
AND UMEZAWA’S ε-TERM PRESCRIPTION

Here we briefly review the proof of Ward–Takahashi
identities with the Umezawa’s ε-term prescription [20]. To
this end, we consider the n-point Green’s function (possible
internal indexes are suppressed)

Gnðx1; x2;…; xnÞ ¼ hT½ϕðx1Þϕðx2Þ…ϕðxnÞ�i: ðA1Þ
By employing the fact that ϕ transforms under the influence
of group generators N1; N2;…Nn as

ϕ0ðxÞ ¼ ϕðxÞ þ δϕðxÞ; δϕðxÞ ¼
Xn
k¼1

ϵkδkϕðxÞ; ðA2Þ

with

δkϕðxÞ≡ i½Nk;ϕðxÞ�; ðA3Þ
one can show that [20]

∂
∂t hT½NðtÞϕðx1Þϕðx2Þ…ϕðxnÞ�i

¼
Xn
j¼1

δðt − tjÞhT½ϕðx1Þ…½NðtÞ;ϕðxjÞ�…ϕðxnÞ�i

þ hT½ _NðtÞϕðx1Þϕðx2Þ…ϕðxnÞ�i; ðA4Þ
with

NðtÞ≡Xn
k¼1

ϵkNkðtÞ: ðA5Þ

By employing Noether’s theorem in the form [20,22]

_NðtÞ ¼
Z

d3xδLðxÞ: ðA6Þ

we can write

∂
∂t hT½NðtÞϕðx1Þϕðx2Þ…ϕðxnÞ�i

¼ −i
Xn
j¼1

δðt − tjÞhT½ϕðx1Þ…δϕðxjÞ…ϕðxnÞ�i

þ
Z

d3xhT½δLðxÞϕðx1Þϕðx2Þ…ϕðxnÞ�i: ðA7Þ

Let us now integrate both sides of (A7) for t ∈ ð−∞;∞Þ.
This gives

i
Xn
j¼1

hT½ϕðx1Þ…δϕðxjÞ…ϕðxnÞ�i

¼
Z

d4xhT½δLðxÞϕðx1Þϕðx2Þ;…ϕðxnÞ�i; ðA8Þ

which is the form of the Ward–Takahashi identity
employed in the main text. Note that the integral of the
LHS of Eq. (A7) could not vanish if in the spectrum would
be present infinite range correlations, as those due to the
NG modes in SSB. To avoid this technical difficulty we
employ Umezawa’s ε-term prescription [20,21], i.e., we
add to L an explicit breaking term

LεðxÞ ¼ εΦðxÞ; ðA9Þ

where Φ is an order-parameter operator characterizing a
particular SSB scheme. At the end of calculations the limit
ε → 0 has to be taken, after the thermodynamical limit.
As an illustration we now sketch the derivation of

Eq. (24). The other relations follow in a similar way. If
we take n ¼ 1:

ihδϕð0Þi ¼
Z

d4yhT½δLðyÞϕð0Þ�i; ðA10Þ

In particular we will choose ϕ ¼ δΦ, so that:

ihδ2Φð0Þi ¼ lim
ε→0

ε

Z
d4yhT½δΦðyÞδΦð0Þ�i: ðA11Þ

If we take Nk ¼ Q5;k, Φ ¼ Φ0 and ϕ ¼ δ5;kΦ0, with k ¼
1; 2; 3 we get

ihδ25;kΦ0i ¼ lim
ε→0

ε

Z
d4yhT½δ5;kΦ0ðyÞδ5;kΦ0ð0Þ�i: ðA12Þ

Because δ5;kΦ0 ¼ −iΦ5
k and δ25;kΦ0 ¼ −Φ0, we finally

arrive at Eq. (24).
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APPENDIX B: NOTE ON SSB SCHEME
SUð2ÞL × SUð2ÞR × Uð1ÞV → Uð1ÞV × Uð1ÞmV

Let consider the SSB scheme

SUð2ÞL × SUð2ÞR ×Uð1ÞV → Uð1ÞV × Uð1ÞmV ; ðB1Þ
which would correspond to mixing generation according to
classical reasonings presented in Sec. II. This SSB scheme
is characterized by the order parameters

hΦki ¼ vk ≠ 0; k ¼ 0; 1; 2; 3: ðB2Þ
The ε-term prescription assumes now the form Lε ¼
ε
P

3
k¼0Φk. It is easy to check that Eqs. (24), (28) and

(29) have to be replaced by

iðv0 þ vkÞ ¼ lim
ε→0

ε

Z
d4yhT½ðΦ5

kðyÞ þΦ5
0ðyÞÞ

× ðΦ5
kð0Þ þΦ5

0ð0ÞÞ�i;

−iðv2 þ vjÞ ¼ lim
ε→0

ε

Z
d4yhT½ðΦ2ðyÞ −ΦjðyÞÞ

× ðΦ2ð0Þ −Φjð0ÞÞ�i;

−iðv1 þ v3Þ ¼ lim
ε→0

ε

Z
d4yhT½ðΦ1ðyÞ −Φ3ðyÞÞ

× ðΦ1ð0Þ −Φ3ð0ÞÞ�i; ðB3Þ

with k ¼ 1; 2; 3 and j ¼ 1; 3. Consequently, the NG modes
will be associated with following fields:Φ2 −Φ3,Φ1 −Φ3,
Φ5

2 þΦ5
0, Φ5

1 þΦ5
0 and Φ5

3 þΦ5
0. The number of NG

modes is thus 5 which coincides with dimðG=HÞ.
Evidently this SSB pattern cannot describe dynamical
mixing generation because it is equivalent to the case
(ii) of Sec. III.

APPENDIX C: TABLE OF
FIRST VARIATIONS

Below we list the first variations of composite
operators introduced in Sec. III which are used in the main
text:

Φ̂0 Φ̂1 Φ̂2 Φ̂3 Φ̂5
0 Φ̂5

1 Φ̂5
2 Φ̂5

3

δ0 0 0 0 0 0 0 0 0
δ1 0 0 −Φ̂3 Φ̂2

0 0 −Φ̂5
3 Φ̂5

2

δ2 0 Φ̂3
0 −Φ̂1 0 Φ̂5

3
0 −Φ̂5

1

δ3 0 −Φ̂2 Φ̂1
0 0 −Φ̂5

2 Φ̂5
1

0

δ5;0 −iΦ̂5
0 −iΦ̂5

1 −iΦ̂5
2 −iΦ̂5

3 −iΦ̂0 −iΦ̂1 −iΦ̂2 −iΦ̂3

δ5;1 −iΦ̂5
1 −iΦ̂5

0 0 0 −iΦ̂1 −iΦ̂0 0 0

δ5;2 −iΦ̂5
2 0 −iΦ̂5

0 0 −iΦ̂2 0 −iΦ̂0 0

δ5;3 −iΦ̂5
3 0 0 −iΦ̂5

0 −iΦ̂3 0 0 −iΦ̂0
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