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In three dimensions, it is known that field theories possessing extended (p, ) anti-de Sitter (AdS)
supersymmetry with " = p + ¢ > 3 can be realized in (2,0) AdS superspace. Here we present a formalism
to reduce every field theory with (2,0) AdS supersymmetry to N' =1 AdS superspace. As nontrivial
examples, we consider supersymmetric nonlinear sigma models formulated in terms of A = 2 chiral and
linear supermultiplets. The (2,0) — (1,0) AdS reduction technique is then applied to the off-shell massless
higher-spin supermultiplets in (2,0) AdS superspace constructed in [1]. As a result, for each superspin value
§, integer (§ = s) or half-integer (§ = s + %), with s = 1,2, ..., we obtain two off-shell formulations for a
massless A/ = 1 superspin-§ multiplet in AdS;. These models prove to be related to each other by a
superfield Legendre transformation in the flat superspace limit, but the duality is not lifted to the AdS case.
Two out of the four series of N' = 1 supersymmetric higher-spin models thus derived are new. The
constructed massless V' = 1 supersymmetric higher-spin actions in AdS; are used to formulate (i) higher-
spin supercurrent multiplets in A/ = 1 AdS superspace, and (ii) new topologically massive higher-spin off-
shell supermultiplets. Examples of N = 1 higher-spin supercurrents are given for models of a complex
scalar supermultiplet. We also present two new off-shell formulations for a massive N' = 1 gravitino

supermultiplet in AdS;.

DOI: 10.1103/PhysRevD.100.045010

I. INTRODUCTION

In three spacetime dimensions, the AdS group is a
product of two simple groups,

SO(2.2) = (SL(2,R) x SL(2,R))/Z,.  (L.1)

and so are its supersymmetric extensions OSp(p|2;R) x
OSp(g|2;R)." This implies that A/-extended AdS super-
gravity exists in several incarnations [2], which are known
as the (p, ¢) AdS supergravity theories, where the integers
p > ¢ >0 are such that N' = p + g. The so-called (p, q)
AdS superspace [3]

_ OSp(p[2;R) x OSp(q2; R)
Glra) — SL(2,R) x SO(p) x SO(q)

AdS (1.2)
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may be interpreted as a maximally symmetric solution of
(p.q) AdS supergravity.” Within the off-shell formulation
for N -extended conformal supergravity which was first
sketched in [4] and then fully developed in [5], AdS<3‘ p.q)
originates as a maximally symmetric supergeometry with
covariantly constant torsion and curvature generated by a
symmetric torsion S = §//, with the structure-group
indices I, J taking values from 1 to N. It turns out that
S™ is nonsingular and can be brought to the form

p q=N-p

—N—
SV = Sdiag(F1, ... +1.-1, ... -1),  (1.3)

for some positive parameter S of unit dimension. For p =
N >4 and g = 0, there exist more general AdS super-
spaces [3] than the conformally flat ones defined by (1.2).

In the extended N = p + ¢ >3 case, general (p,q)
supersymmetric field theories in AdS; can be realized in
(2,0) AdS superspace, AdS3)5) [3,6].° Such realizations
are often useful for applications, for instance, in order to
study the target space geometry of supersymmetric

’In the case of N =1 AdS supersymmetry, both notations
(1,0) and N = 1 are used in the literature. We will often use the
notation AdS3? for "= 1 AdS superspace.

3General aspects of (2,0) supersymmetric field theory in AdS;
were studied in [7].
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nonlinear o-models in AdS; [6]. It is worth elaborating on
the 6-model story in some more detail. For the ' = 3 and
N = 4 choices, manifestly (p, ¢) supersymmetric formu-
lations have been constructed [3] for the most general
nonlinear s-models in AdS; (these formulations make use
of the curved superspace techniques developed in [5]). This
manifestly supersymmetric setting is very powerful since it
allows one to generate arbitrary nonlinear o-models with
(p,q) AdS supersymmetry. However, it also has a draw-
back that the hyperkihler geometry of the o-model target
space is hidden. In order to uncover this geometry, the
formulation of the nonlinear s-model in (2,0) AdS super-
space becomes truly indispensable [6].*

This work is somewhat similar in spirit to [6,13];
however, our goals are quite different. Specifically, we
develop a formalism to reduce every field theory with (2,0)
AdS supersymmetry to A =1 AdS superspace. This
formalism is then applied to carry out the (2,0) — (1,0)
AdS reduction of the off-shell massless higher-spin super-
multiplets in AdS 3, ) constructed in [1]. There are at least
two motivations for pursuing such an application. First,
certain theoretical arguments imply that there exist more
general off-shell massless higher-spin N’ = 1 supermultip-
lets in AdS; than those described in [14]. Second, N = 1
supermultiplets of conserved higher-spin currents have
never been constructed in AdS; (except for the super-
conformal multiplets of conserved currents in Minkowski
superspace [15] which can readily be lifted to AdS;). Both
issues will be addressed below. In particular, we will derive
new off-shell higher-spin A/ = 1 supermultiplets in AdSs,
which will be used to construct new topologically massive
higher-spin supermultiplets.

The table of contents reflects the structure of the paper.
Our notation and conventions follow [5].

IL (2.0) - (1,0) AdS SUPERSPACE REDUCTION

The aim of this section is to elaborate on the details of the
procedure for reducing the field theories in (2,0) AdS
superspace to N/ = 1 AdS superspace. Explicit examples of
such a reduction are given by considering supersymmetric
nonlinear o-models.

*Analogous results exist in four dimensions. The most general
N = 2 supersymmetric -model in AdS, was constructed [8,9]
using a formulation in terms of A = 1 covariantly chiral super-
fields, as an extension of the earlier analysis in the super-Poincaré
case [10,11]. One of the main virtues of the ' = 1 formulation
[8,9] is its geometric character; however the second supersym-
metry is hidden. General off-shell N' =2 supersymmetric o-
models in AdS,; were actually formulated a few years earlier [12]
in N’ =2 AdS superspace. The latter approach makes N = 2
supersymmetry manifest, but the hyperkihler geometry of the o-
model target space is hidden. The two ¢-model formulations are
related via the N' = 2 — N = 1 AdS superspace reduction [13].

A. Geometry of (2,0) AdS superspace:
Complex basis

We begin by briefly reviewing the key results concerning
(2,0) AdS superspace; see [60,7] for the details. There are
two ways to describe the geometry of (2,0) AdS super-
space, which correspond to making use of either a real or a
complex basis for the spinor covariant derivatives. We first
consider the formulation in the complex basis.

The covariant derivatives of (2,0) AdS superspace are

Dy = (Dy. Dy D*) = E4+ Q4 +i® 4,

0

EA:EAMaZ—M’ (21)

where zM = (x™, 0", 0,) are local superspace coordinates,
and J is the generator of the R-symmetry group, U(1),. The
generator J is defined to act on the covariant derivatives as
follows:
[J,D,] = Dy, [J,DY=-D* [J,D,]=0. (2.2)
The Lorentz connection, €4, can be written in several
equivalent forms, which are

1 1
QA :EQAbchC - —QAbe :EgAﬁyMﬂ}/

(2.3)
The relations between the Lorentz generators with two
vector indices (M, = —My,), one vector index (M,)
and two spinor indices (M,; = My,) are given in the
Appendix A.

The covariant derivatives of (2,0) AdS superspace obey
the following graded commutation relations:
{Da’ Dﬂ} =0,

{Da. Dy} =0, (2.4a)

{Da, T)/j} = _21(Daﬂ - 28Maﬁ) - 4i£aﬁ5‘]’ (24b)

[Da’ Dﬂ] = (}/a)/}ySDy’ [,Duv T)/i] = (J/a)/}}/S,DJ/7 (2'4C)

[D,, D] = —48*M ,,. (2.4d)
Here the parameter S is related to the AdS scalar curvature
as R = —24852.

There exists a universal formalism to determine iso-
metries of curved superspace backgrounds in diverse
dimensions [16,17]. This formalism was used in [7] to
compute the isometries of (2,0) AdS superspace (as well as
supersymmetric backgrounds in off-shell A/ =2 super-
gravity theories [18]). The isometries of (2,0) AdS super-
space are generated by the Killing supervector fields CAE 4,
which are defined to solve the master equation
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1
C+=1M,, +it].Dy| =0, 2.5a
2 A

where

(=D =D, + Dy + D, =" (2.5b)
and 7 and /% are some real U(1), and Lorentz superfield
parameters, respectively. It follows from Eq. (2.5) that the
parameters ,, 7 and /.4 are uniquely expressed in terms of

the vector parameter (5 as follows:

i~ i
él(l = gpﬂélﬂa’ T = EDaé‘u? la} = Z(D((lé’ﬂ) - SC(lﬂ)‘

(2.6)
The vector parameter {4 satisfies the equation
D((zé’/}y) =0. (27)
This implies the standard Killing equation,
Dagb + Dbga =0. (28)
One may also prove the following relations:
Dyt = =Dl =48¢,, D,p =0, Dalgy) = 0.
(2.9)

The Killing supervector fields prove to generate the super-
group OSp(2[2; R) x Sp(2, R), the isometry group of (2,0)
AdS superspace. Rigid supersymmetric field theories in
(2,0) AdS superspace are required to be invariant under the
isometry transformations. An infinitesimal isometry trans-
formation acts on a tensor superfield U (with suppressed
indices) by the rule

1
5.U = (g 5 1My + iTJ) U. (2.10)

B. Geometry of (2,0) AdS superspace:
Real basis

Instead of dealing with the complex basis for the (2,0)
AdS spinor covariant derivatives, Eq. (2.1), it is more
convenient to switch to a real basis in order to carry out
reduction to A" = 1 AdS superspace AdS???. Following [3],
such a basis is introduced by replacing the complex opera-

tors D, and D, with V/, = (Vé V%,) defined as follows:

1 _ 1
D, = —Z(Vé —iV3), D,=-——(Vi+iVa).

N N (2.11)

In a similar way we introduce real coordinates, zM =

(x™, 67), to parametrize (2,0) AdS superspace. Defining
V,=D,, the algebra of (2,0) AdS covariant derivatives
(2.4) turns into’

(VL VI} = 287V, — 487 SM 45 + deope™ ST, (2.12a)

[Va’ V;] = S(}/a)ﬁrvj [Vav Vb] - _4S2Mab~ (2'12b)

VA

The action of the U(1), generator on the spinor covariant
derivatives is given by
[J, VL] = —ig;; V. (2.13)

As may be seen from (2.12), the graded commutation
relations for the operators V, and V; have the following

properties:
(1) These (zanti)commutation relations do not
involve Vg,

(Vi Vi) =2V, — 4iSM,5.  (2.14a)

1 1
[V, V/_}] = S(Va)ﬁyv% V. V] = —4S5°M -

(2.14b)

(2) Relations (2.14) are identical to the algebra of the
covariant derivatives of AdS3?, see (2.4).

We thus see that AdS3? is naturally embedded in (2,0) AdS

superspace as a subspace. The real Grassmann variables of

(2,0) AdS superspace, &) = (¢/,65), may be chosen in

such a way that AdS3? corresponds to the surface defined
by 65 = 0. We also note that no U(1), curvature is present

in the algebra of A" =1 AdS covariant derivatives. These
properties make possible a consistent (2,0) — (1,0) AdS
superspace reduction.

Now we will recast the fundamental properties of the
(2,0) AdS Killing supervector fields in the real representa-
tion (2.11). The isometries of (2,0) AdS superspace are
described in terms of those first-order operators

(= =0V, +0V),  T=12 (2.15)
which solve the equation
1 bc :
CA S Mye +12]. V4| =0, (2.15b)

for some real parameters 7 and [*? = —["*_ Equation (2.15b)
is equivalent to

5, . . .

The antisymmetric tensors £/ and g, are normalized as
el =¢,=1

=é&p =1
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V(Iléé = —8(1/;8”’[ + S(S”Z:{,/; + %5”1(,/;, (2.16a)
Vils = 2P (7)) ap- (2.16b)
Vi = —4iSe ¢, (2.16¢)
Vils, = 8iSeq L. (2.16d)
and
Vily = lap = —lpas (2.17a)
Vil = =G (v (2.17b)
V.,r=0, (2.17¢)
Vb =482 (8hee —s5e). (2.17d)

Some nontrivial implications of the above equations which
will be important for our subsequent consideration are

V{agﬁﬂ =0, Vfalﬁy) =0, (2188_)
Vf{zgé) = 286116{1/}, VY(IC;) =0, (218]:))
i
gl =Vt = 128 Vi = Eeuvar (2.18¢)
1 vl #J
T= _ZSIJV - (2.18d)

Equation (2.17) implies that {, is a Killing vector field,

V., +V, ¢, =0, (2.19)

while (2.17b) is a Killing spinor equation. The real
parameter 7 is constrained by
(V2)2z = (V1)27 = 8iSr,

V=0,  (2.20)

C. Reduction from (2,0) to A" =1 AdS superspace
Given a tensor superfield U(x,6;) on (2,0) AdS

superspace, its N =1 projection (or bar-projection) is
defined by

Ul =U(x, 91)|92:0 (2.21)
in a special coordinate system to be specified below. By
definition, U| depends on the real coordinates z¥ =
(x™, 0*), with 6# := ¢, which will be used to parametrize
N = 1 AdS superspace AdS??. For the (2,0) AdS covariant
derivative

0 1
VA:(Va,V(II _E.A 8M+ QA MbL+ICDAJ
(2.22)
its bar-projection is defined as
B 0 1
Vil = E4M .t S QU My i@ (2.23)

We use the freedom to perform general coordinate, local
Lorentz and U(1) transformations to choose the following
gauge condition:

V.=V, Va| = Vg, (2.24)
where
0 1
vA - (va’ va) = EA dz aM +3 wAbCMbC (225)

denotes the set of covariant derivatives for AdS3?, which
obey the following graded commutation relations:
{Va, Vﬁ} - 21Vaﬂ -

4iSM, (2.26a)

[va’ vﬂ] = S(Ya)ﬂyvy’ [vw vb] = _482Mab' (226b)

In such a coordinate system, the operator Vé| contains no
partial derivative with respect to ,. As a consequence,
(V%,1 . 'V%,kU)| =V, ---V, Ul for any positive integer &,
where U is a tensor superfield on (2,0) AdS superspace. Let
us study how the N =1 descendants of U defined by
Us,..a = (Va, -~ V2,U)| transform under the (2,0) AdS
isometries, with k a non-negative integer.

We introduce the N' =1 projection of the (2,0) AdS
Killing supervector field (2.15)

C‘ :ébvb‘i‘fﬁVﬁ—FeﬁV%L gb = §b|,

g=0). &=0 (2.27)

We also introduce the N' = 1 projections of the Lorentz
and U(1), parameters in (2.15):

ﬂbc

(2.28)

€= 1.
It follows from (2.15) that the N' = 1 parameters &8 =
(&b, £P) and AP¢ obey the equation

1
|:§ + Elthhcv vA:| =0, 5 = ngB = ébvh + {:ﬂv/}’

(2.29)
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which tells us that £ is a Killing supervector field of N =
1 AdS superspace [3]. This equation is equivalent to

Viabpy =0, Vy&* = -6, (2.30a)
1

\T Ela/} + S&aps (2.30b)

Vg =0, V" = —12iS&. (2.30c)

These relations automatically follow from the (2,0) AdS
Killing equations, Egs. (2.16a)—(2.16d), upon N =1
projection. Thus (&%, &%, A%") parametrize the infinitesimal
isometries of AdS3? [3] (see also [14]).

The remaining parameters ¢* and e generate the second
supersymmetry and U(1), transformations, respectively.
Using the Killing equations (2.18), it can be shown that
they satisfy the following properties:

i

=—V
€(l 48 (l€’

1
€= —EV"G{,, (2.31a)

(iVZ +88)e =0, V.e=0. (2.31Db)
These imply that the only independent components of ¢ are
€lg—o and V,e|y_o. They correspond to the U(1)p and
second supersymmetry transformations, respectively.

Given a matter tensor superfield U, its (2,0) AdS trans-
formation law

1

turns into

5:U| = 8:U| +5.U

) (2.33a)
5:U| = (5”% + &V, + ixthM,,L,) Ul, (2.33b)

5.U| = (¢/(V2U)| + ieJU|). (2.33¢)

It follows from (2.15) and (2.33) that every AN =1

descendant U, ,, = (V%(] .- -V%,k U)| is a tensor superfield
on AdS3?,

1
8:Ug, oy = <§hvb + &V, + 21’“‘M,,c> Ug o (2.34)

For the e-transformation we get

6€Ua1“.ak = Gﬁ(V§V?21[ o V%kU)| + 1€(JV(%I o V(%AU)l

2
At

k
2 2 1
e eﬂUﬂal--»ak - 62 V&l . Va]_IVE,,V
=1

Vo U)| +igeUy, g (2.35)

where ¢ is the U(1), charge of U defined by JU = gU. In

the second term on the right, we have to push V%,l to the far
left through the (I — 1) factors of V2’s by making use of the

relation {Vé,V/%} = 4e,4S8J and taking into account the
relation

1 2 2 2
(Vf_lzvf_ll Vg, Vo

A4

2
o V&kU)| = va, Ua]‘..a,_]alﬂ...ak'
(2.36)

As the next step, the U(1), generator J should be pushed
to the right until it hits U producing on the way insertions
of V1. Then the procedure should be repeated. As a result,
the variation 6,U,, ,, is expressed in terms of the super-
fields Uy, 0,,,»Uqy..cpr " Uqy U-

So far we have been completely general and discussed
infinitely many descendants U, _,, of U. However only a

few of them are functionally independent. Indeed,
Eq. (2.12a) tells us that
(V2. V2} = 2iV,5 — 4iSM 5, (2.37)

and thus every U, _, for k > 2 can be expressed in terms
of U, U, and U, ,,. Therefore, it suffices to consider k < 2.
Let us give two examples of matter superfields on (2,0)
AdS superspace. We first consider a covariantly chiral
scalar superfield ¢, D,¢p =0, with an arbitrary U(1),
charge ¢ defined by J¢ = g¢. It transforms under the
(2,0) AdS isometries as
5 = (¢ +iqu)eb. (2.38)
When expressed in the real basis (2.11), the chirality
constraint on ¢ means
Vi = iVagp. (2.39)

As aresult, there is only one independent N' = 1 superfield
upon reduction,

0= 9l. (2.40)
We then get the following relations:

Vad| = iV,0, (2.41a)

(V22| = =V%¢p — 8igSp. (2.41b)

045010-5
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The e-transformation (2.35) is given by

5. = ie’Vyp + igeq. (2.42)

Our second example is a real linear superfield
L =L, D?L = 0. The real linearity constraint relates the
N =1 descendants of L as follows:

(V2)’L = (V1)L (2.43a)

2
VlﬂVI;I]_ =0. (2.43Db)
Thus, L is equivalent to two independent, real N =1
superfields:

W, = iVal|.

X =1, (2.44)

Here X is unconstrained, while W, obeys the constraint
(2.43b)

Vew, =0, (2.45)
which means that W, is the field strength of an N =1
vector multiplet. Since L is neutral under the R-symmetry
group U(1),, JL = 0, the second SUSY and U(1), trans-
formation laws of the N =1 descendants of L are as
follows:

5.X = 6.L| = #(V5L)| = —ic Wy, (2.46a)
. 2 . 22 2
6 W, =1(Vas.L)| = 1€ﬁ(VBV(;I]_)| — €[/, ValL|
= IV X — %easz _ieV,X. (2.46b)

D. The (2,0) AdS supersymmetric actions in AdS3?

Every rigid supersymmetric field theory in (2,0) AdS
superspace may be reduced to N'=1 AdS superspace.
Here we provide the key technical details of the reduction.

In accordance with [5-7,18], there are two ways of
constructing supersymmetric actions in (2,0) AdS super-
space: (i) either by integrating a real scalar £ over the full
(2,0) AdS superspacef’

_ 1 -
S = / ExPOPOEL = - / BreD DL,
1 -
:1—6/d3x€D2D2£|90
1 — -
- / e (RD“D2D0+iSD“Da>£90

1~ - _
- / dxe <EDHD2Da+i$DaDa)z:M, (2.47)

*The component inverse vierbein is defined as usual,
e (x) = E;™|g—¢, With e~! = det(e,™).

with E-! = Ber(E 4M); or (ii) by integrating a covariantly
chiral scalar £, over the chiral subspace of the (2,0) AdS
superspace,

1 _
S, = /d3xd296'£c = _4_1/ dxeD*L|y_y, DL, =0,
(2.48)

with & being the chiral density. The superfield Lagrangians

L and L, are neutral and charged, respectively with respect

to the group U(1)g:
JL =0, (2.49)

The two types of supersymmetric actions are related to each
other by the rule

1 -

/ d*xd*0d*0EL = / d*xd*0EL., L. = —ZD%.

(2.50)

Instead of reducing the above actions to components, in
this paper we need their reduction to ' = 1 AdS super-
space. We remind the reader that the supersymmetric action
in AdS?? makes use of a real scalar Lagrangian L. The
superspace and component forms of the action are

1

S = /d“zEL :4/d3xe(iV2+88)L|90. (2.51)
For the action (2.47) we get

S = / P xd20d20EL = —th / PRZE(V22L),  (2.52)

with E-! = Ber(E,M). The chiral action (2.48) reduces to
AdS3? as follows:

S. = / dBxd20EL, = 2i / dAPzEL|.  (2.53)

Making use of the (2,0) AdS transformation law
6L =C¢L, 6L.= (¢ —2ir)L., and the Killing equa-
tion (2.15b), it can be checked explicitly that the N' = 1
action defined by the right-hand side of (2.52), or (2.53) are
invariant under the (2,0) AdS isometry transformations.

E. Supersymmetric nonlinear sigma models

To illustrate the (2,0) — (1,0) AdS superspace reduc-
tion described above, here we discuss two interesting
examples.

Our first example is a general nonlinear o-model with
(2,0) AdS supersymmetry [6,7]. It is described by the
action

045010-6
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S= / d3xd29d29EK(¢i,g7)7)+{ / d3xd295W(¢i)+c.c},

D, =0, (2.54)

where K(¢',¢/) is the Kihler potential of a Kihler
manifold and W(¢') is a superpotential. The U(1), gen-
erator is realized on the dynamical superfields ¢’ and ¢' as

i =G ()0 + T ()0, (2.55)

where §(¢) is a holomorphic Killing vector field such that

: i - _
(oK ==-3D(h.¢). D=9, (2.56)
for some Killing potential D (¢, ¢b). The superpotential has
to obey the condition

Si(p)O;W = =2iW (2.57)
in order for the action (2.54) to be invariant under the (2,0)
AdS isometry transformations

5 = (¢ +itd)P'. (2.58)

In the real representation (2.11), the chirality condition
on ¢' turns into

Vipi = iVigi. (2.59)

It follows that upon A/ = 1 reduction, ¢’ leads to just one
superfield,

9= (2.60)

In particular, we have the following relations:
Vaipi| =iV, (2.61a)
(V2)*9'| = =V?¢' —85F'(¢). (2.61b)

Using the reduction rules (2.52) and (2.53), we obtain

S = /d3l2zE{—iK1‘}'(fﬂ, PIVDV o + SD (0. p)
+ (2iW(¢) +c.c.)}, (2.62)

where we have made use of the standard notation

. OrK(e.p)
beipiig a(pil e a(pipa[pil e 8@54 '

(2.63)

The action (2.62) is manifestly N' = 1 supersymmetric.
One may explicitly check that it is also invariant under the
second supersymmetry and R-symmetry transformations

generated by a real scalar parameter e subject to the
constraints (2.31), which are

St =ie"V,0' + €3 (). (2.64)

The family of supersymmetric o-models (2.54) includes
a special subclass which is specified by the two conditions:
(i) all ¢’s are neutral, J¢' = 0; and (ii) no superpotential is
present, W(¢) = 0. In this case no restriction on the Kihler
potential is imposed by Eq. (2.56), and the action (2.54) is
invariant under arbitrary Kéhler transformations

K — K+A+A, (2.65)
with A(¢") a holomorphic function. The corresponding
action in A/ = 1 AdS superspace is obtained from (2.62) by
setting D(¢p, @) = 0 and W(p) = 0, and thus the action is
manifestly Kéhler invariant.

Let us also consider a supersymmetric nonlinear o-model
formulated in terms of several Abelian vector multiplets
with action [7]

DL =0,

S=-2 / d3xd’0d’6EF (1), L =1L

(2.66)

where F(x') is a real analytic function of several variables,
which is defined modulo linear inhomogeneous shifts

F(x) = F(x) + bx' + ¢, (2.67)
with real parameters b; and c. The real linear scalar L’ is the
field strength of a vector multiplet. Upon reduction to
N =1 AdS superspace, [’ generates two different N = 1
superfields:

Xi=1I|, Wi =iVali|.

(2.68)

Here the real scalar X’ is unconstrained, while the real
spinor W}, obeys the constraint

Vewi, = 0, (2.69)

which means that W is the field strength of an N =1
vector multiplet. Reducing the action (2.66) to A" = 1 AdS
superspace gives

i o o
S=-1 / dPEg, (X){VEXV,XI + WUWY,  (2.70)

where we have introduced the target-space metric
D*F(X)
95%) = oxiaxi-

The vector multiplets in (2.70) can be dualized into scalar
ones, which gives

(2.71)
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Sdval = _%/d3ZZE{gij(X)vaXivan +g7(X)VeY;V, Y},
(2.72)

with ¢” (X) being the inverse metric. Riemannian metrics of
the type (2.71) appeared in the literature 20 years ago in the
context of N = 4 supersymmetric quantum mechanics [19]
and NV = 4 superconformal mechanics [20].

III. MASSLESS HIGHER-SPIN MODELS:
TYPE II SERIES

There exist two off-shell formulations for a massless
multiplet of half-integer superspin (s +3) in (2,0) AdS
superspace [1], with s =2,3,..., which are called the
type I and type 111 series’ by analogy with the terminology
used in [7] for the linearized off-shell formulations for
N =2 supergravity (s =1). In this section we describe the
(2,0) > (1,0) AdS superspace reduction of the type II
theory. The reduction of the type III theory will be given
in Sec. IV.

A. The type II theory

We fix an integer s > 1. In accordance with [1], the
massless type II multiplet of superspin (s + %) is described
in terms of two unconstrained real tensor superfields

11
Vésl%) = {Da(2s)» La2s-2) }- (3.1)

where Sja(Zs) = Sj(al.“azl‘) and 2(1(2&—2) = g(al...azl‘,z) are
symmetric in their spinor indices.

The dynamical superfields are defined modulo gauge
transformations of the form

619a(25) = Diay a2z

- D(a] /102.“0525) = Ga(2s) + ga(Zs)v
(3.2a)

i - _
0,84025-2) = 3 (D Apa(2s-2) + 24 Aa(2s—2))s  (3.2b)

where the gauge parameter A,»,—;) iS unconstrained
complex. Equation (3.2a) implies that the complex gauge
parameter g, is a covariantly longitudinal linear
superfield,

D(algaz...azﬁl) =0. (33)

Ga(2s) = ’D(alﬂaz...am)’
The gauge transformation of ,(»,), Eq. (3.2a), corresponds
to the superconformal gauge prepotential [21,22]. The
prepotential £,,,_5) is a compensating multiplet. In addi-
tion to (3.2b), the compensator £,(,,_5) also possesses its
own gauge freedom of the form

Dyl = 0. (3.4)

559(1(2‘9—2) = 5(1(2.9—2) + Ea(Z.y—Z)’

with the gauge parameter &, (2,_) being covariantly chiral.
Associated with 8, ,) is the real field strength

l]—a(ZS—Z) = iDﬁbﬁga(Zs—Z)» H—a(2s—2) = l]_—a(Zs—Z)’ (35)
which is a covariantly linear superfield,
Dzl]—a(Zs—Z) =0< ,Dzu—a(ZS—Z) =0. (36)

It is inert under the gauge transformation (3.4),
0l y(25-2) = 0. From (3.2b) we can read off the 1-gauge
transformation of the field strength:

1 - - -
5/1”—0:(25—2) = Z (,D/}’Dzﬂﬂa(k—ﬁ - DﬂtDzlﬂa(Zs—@)’

s T~ -
- 2s + 1 D/}Dy (9/17(1(25—2) + g/iya(ZA‘—2))
2is ~
o510 Ipratas-2)- (3.7)

The type II theory is described by the action

11 1\$ A 1 al2s = s T a(2s— B
SEH)»%) [55(l(2s>’ ga<2s—2>} = (‘ 5) / &*xd*0d*0E {gﬁ @)D DZDIJSj(l(Zs) —g([Dﬁ,Dr]Sjﬁ ra(2: 2))[775’77/ ]555/)(1(2s_2)

s , _
+ 3 (Dy, HPre=2)D% Dspa(2s-2) T 2isSHUH) DI DpDa(2s)

2s — 1
2
(s—=1)(2s—1)

- (Dﬂgﬁa(%—3)@2@787{1(23‘_3) + C.C.) - 4(2S — 1)82{1(2‘Y_2> ﬂ_(l(zs_z) }

4s

(LD, DD pa(25-2) + 2L F D g552))

(3.8)

"Type I series will be referred to as the longitudinal formulation for the gauge massless half-integer superspin multiplets in (1,1) AdS
superspace [21] and Minkowski superspace [22]. The type I series and its dual are naturally related to the off-shell formulations for
massless higher-spin A/ = 1 supermultiplets in four dimensions [23-25]. The type II and type III series have no four-dimensional

counterpart.
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It is invariant under the gauge transformations (3.2)
and (3.4).

The structure DyRPe=3D2DrR o 5 in (3.8) is not
defined for s = 1. However it comes with the factor (s — 1)
and therefore drops out from (3.8) for s = 1. The action (3.8)
for s = 1 coincides with the linearized action for (2,0) AdS
supergravity, which was originally derived in Sec. 10. 1
of [7].

B. Reduction of the gauge prepotentials to AdS3?

Let us turn to reducing the gauge prepotentials (3.1) to
N =1AdS superspace.8 Our first task is to work out such
a reduction for the superconformal gauge multiplet $,,y).
In the real representation (2.11), the longitudinal linear
constraint (3.3) takes the form

2
(o Ya,...ar.)

—iv!

() Gay...000,1)"

(3.9)

It follows that g, () has two independent 6,-components,
which are

Ga(2s) |’ Vgﬂga(Zs—l)/} | . (3 N 0)

The gauge transformation of $,,,), Eq. (3.2), allows us to
choose two gauge conditions

ga(25)| =0, Vgﬂ*ﬁa(b—l)ﬂ =0.

In this gauge we stay with the following unconstrained real
N =1 superfields:

(3.11)

2
Ha(25+1) = 1VZal ba2~~~a2:+l) R (3123)

i

Ha(as) = 7 (V2)*Dagas) |- (3.12b)

There exists a residual gauge freedom which preserves the
gauge conditions (3.11). It is described by unconstrained
real N = 1 superfields ;o) and {y(,—1) defined by

i _

ga(25)| = _ECa(Zs)’ Z.:a(Zs) = ga(2s)9 (3133)
2s +1 -
Vgﬁga(h—l)ﬂl = Tga(Zs—l)v Ca(2s—1) = ga(Zs—l)'

(3.13b)

The gauge transformation laws of the superfields (3.12) are
given by

(3.14a)
(3.14b)

5H(1(2s+1) = iv((ll él(zz...azl\.ﬂ)’
5Ha(2s) = v(aICaz...ah)'

Our next step is to reduce the compensator £, )

to N =1 AdS superspace. Making use of the

%In the super-Poincaré case, the N' = 2 — N = 1 reduction of
Da(2s) has been carried out in [26].

representation (2.11), we observe that the chirality con-
dition (3.4) reads

2 ol
V/_jé:a(Zs—Z) = IV/_jga(Zs—Z)' (315)

The gauge transformation (3.4) allows us to impose a gauge
condition

2(1(2s—2)| =0. (316)

Thus, upon reduction to N/ = 1 superspace, we have the
following real superfields

2
\Pﬂ;a(ZS—Z) = lvﬁga(2s—2) s (3173)

i
La(25—2) = (Vg)zga(%—2)|-

i (3.17b)

Here Wpj.4(2,-2) is a reducible superfield which belongs to
the representation 2 ® (2s — 1) of SL(2,R), ¥4, 4, , =
Ws.(a,...ar, »)- The condition (3.16) is preserved by the
residual gauge freedom generated by a real unconstrained
N = 1 superfield 7,(,_5) defined by

i

5a(2s—2)| = _zna(2s—2)v ’_70((2s—2) = Na(25-2)- (318)

We may now determine how the y-transformation acts on
the superfields (3.17a) and (3.17b). We obtain

5’7\Pﬂ;a(25—2) = ivﬁ’?a(zs—z), (3. 19a)

8,La(2s—2) = 0, (3.19b)

where we have used the chirality constraint (3.15) and the
expression (3.18) for the residual gauge transformation.
Next, we analyze the A-gauge transformation and reduce

the N = 2 field strength L5, to AdS?. In the real basis
for the covariant derivatives, the real linearity constraint
(3.6) is equivalent to two constraints:

(V;) : l]—a(2s—2) = (Vl)z l]—a(2s—2) )

2
VMV[;U_QQS_Z) =0.

(3.20a)

(3.20b)

These constraints imply that the resulting N = 1 compo-
nents of L, 5) are given by
(3.21)

)
|]-a(2.v—2) | ’ IV‘EH_(I(ZY—Z) ‘ ’

of which the former is unconstrained and the latter is a
constrained N = 1 superfield that proves to be a gauge-
invariant field strength, as we shall see below. The relation
between L,,_») and the prepotential 8,,_5) is given by
(3.5), which can be expressed as

i

u—a(2s—2) o) {(Vl)z + (VZ)Z}Q(I(ZS—Z)' (322)

045010-9



JESSICA HUTOMO and SERGEI M. KUZENKO

PHYS. REV. D 100, 045010 (2019)

We now compute the bar-projection of (3.22) in the gauge
(3.16) and make use of the definition (3.17b) to obtain

l]—a(ZS )| 2La(2s 2)+ (323)

Making use of (3.22) and (3.17), the bar-projection of
iV%ﬂ—a(Zs—Z) leads to the N =1 field strength

)
Wﬂ;a(2s—2) = lvﬁﬂ—a(2s—2)|

(vyVﬂ 4185 ) a(2s-2)-
(3.24)
Here W.(25—2) is areal superfield, Wp.y(2,-2) = Wﬁ;a(2s—2)

and is a descendant of the real unconstrained prepotential
W4.4(25-2) defined modulo gauge transformation (3.19). The
field strength proves to be gauge invariant under (3.19), and
it satisfies the condition

vﬁWﬁ;a(zs_z) == O, (325)

as a consequence of (3.20b) and the identity (A7b). Let us
express the gauge transformation of Ly5,_5), Eq. (3.7) in
terms of the real basis for the covariant derivatives. This
leads to

5"—0[(25—2)

2 + 1 (gﬁya(Zs 2) + gﬁya(2s— ))

+ A& (gﬁya(Zs—Z) (3 26)

- gﬁya(Zs—Z) ) } ’

In a similar way, one should also rewrite V%él]_a(zs_z) in the

real basis. This allows us to derive the gauge transforma-
tions for La(2s—2) and Wﬂ;a(Zs—Z

N

5La(2s—2) = - m vﬁyé’ﬁya(zs_z), (3.27a)
Wpars) = I(VIVy = 4iS8)C uas).  (3.27b)

We can then read off the transformation law for the
prepotential Wp.;2,_9)

6‘Pﬁ(l 25-2) (3270)

= ~Cpa(25-2) + 1V plla(25-2)

where we have also taken into account the #-gauge
freedom (3.19).
|

Applying the N = 1 reduction rule (2.52) to the type II
action (3.8), we find that it becomes a sum of two actions,

ll
(s+ [ga 2s)»

+1)
2)

a(25-2)) = S‘(‘H%) [Ha(s41)s La(2s-2)]

* St) [Ha(zs) > LP/)’;ot(2s—2)]- (328)

Explicit expressions for these A/ = 1 actions will be given
in the next subsection.

C. Massless higher-spin A =1
supermultiplets in AdS;

The gauge transformations (3.14a), (3.14b), (3.27a) and
(3.27¢) tell us that in fact we are dealing with two different
N =1 supersymmetric higher-spin gauge theories.

Given a positive integer n > 0, we say that a super-
symmetric gauge theory describes a multiplet of superspin
n/2 if it is formulated in terms of a superconformal gauge
prepotential H,(,) and possibly a compensating multiplet.
The gauge freedom of the real tensor superfield H,,) is

5§Ha(n) = i”(_l)Ln/zjv(alé‘az.”an)? (329)

with the gauge parameter {,(,—1) being real but otherwise
unconstrained.

1. Longitudinal formulation for massless
superspin-(s + 1) multiplet

One of the two A = 1 theories provides an off-shell
formulation for the massless superspin-(s + 1) multiplet. It
is formulated in terms of the real unconstrained gauge
superfields

V‘(‘S%) = {Has+1)s La@s-2) ) (3.30)

which are defined modulo gauge transformations
5Ha(25+1) = iv(alé:az.“ahﬂ), (3313)
oL = § \V/24 331b
a(2s-2) — _m C/}ya(Zs—Z)’ ( . )

where the parameter {,(,) is unconstrained real. The

gauge-invariant action is

|| — 1 N i alzs i a8
S(S*%) [H,I(ZSJr]), L(z(2s—2)] = <— 2> /d3|2ZE{— EH (2 +1)QH”(2S+1) - 3 V/,,Hﬂ (2 )VZVVHW(ZS)

is
+ Z v/inﬁya(zs_l)vpﬁHpﬁaQs—l) + (2

l)La (25— V/”J’V H/}y&l 25-2)

+ 2(25 - 1) <La(2“_2)(ivz 48) a(2s-2) — % (S - 1)V Lﬁll (25-3) V’L a(2s— 3))

1
+ S <SV/}H’H{I(2S) VJ’H},{,(ZX) -+ 5 (25 + 1)H(z(2s+l) (v 418) a( 2\+1)) }

(3.32)

045010-10



FIELD THEORIES WITH (2,0) ADS SUPERSYMMETRY IN ...

PHYS. REV. D 100, 045010 (2019)

where Q is the quadratic Casimir operator of the 3D N = 1
AdS supergroup (A9). The action (3.32) coincides with the
off-shell ' = 1 supersymmetric action for massless half-
integer superspin in AdS in the form given in [14]. This
supersymmetric gauge theory in AdS3? was described in
[14]. Its flat-superspace limit was presented earlier in [26].
In what follows, we will refer to the above theory as the
longitudinal formulation for the massless superspin-(s + %)
multiplet.

The structure VzLP*2=3IV7L o 3 in (3.32) is not
defined for s = 1. However it comes with the factor (s — 1)
and drops out from (3.32) for s = 1. The resulting action

l
S

)[H a3)» L]

T zll Vs, HP1*NPH 5, + LVP'N°Hy 5 4 2L(iV? — 4S)L
3 .
+S <v/;H/3(l(2) VVH},H’Q) + 5 Ha(3) (v2 _ 418)1_]{1(3)) }

(3.33)
|

1

is the linearized action for AV = 1 AdS supergravity. In the
flat-superspace limit, the action is equivalent to the one
given in [27].

2. Transverse formulation for massless
superspin-s multiplet
The other N' = 1 theory provides a formulation for the
massless superspin-s multiplet. It is described by the
unconstrained real superfields

Vt) = {Ha(ZS)’ \P/};a(Zs—Z)}v (334)
which are defined modulo gauge transformations of the
form

5H(1(2s)

= Vil .an) (3.35a)

MW p.a(25-2) = —Cpa2s—2) T 1V pla(25-2)» (3.35b)

where the gauge parameters (uo,-1) and 74,2 are
unconstrained real. The gauge-invariant action is given by

s 1 .
St) [Ha(Zs) ’ lPﬂ;a(Zs—2)} = (_ E) / d3|22E{§ Ha(Zs) (1V2 + 8SS)HG(25)

- iSVﬁHﬂa(zs_l)vyHya(Zs—l) - (2S - 1)Wﬁ;a(2s_2) vyHVﬂa(zs_Q)

i (25—
- 5 (2S - 1) (Wﬁ””(Z“ Z)Wﬁ;a(zx_z) +

- 21(2S - I)S\Pﬂ;a(Zs—Z) W/)’;a(ZS—Z) }’

where W, 0,_2) denotes the field strength

Wﬂ;a(Zs—Z) = _i(vyvﬁ - 4i55;)lyy;a(2s—2)’

s —

1 . .

(3.36a)

VﬁWﬂ;a(Z&—Z) - 0 (336]3)

The action (3.36) defines a new N’ = 1 supersymmetric higher-spin theory which did not appear in [14,21,26] even in the

super-Poincaré case.

The structure Wﬂ;ﬂ“(zs_3)W7’;ya(2s_3) in (3.36) is not defined for s = 1. However it comes with the factor (s — 1) and drops
out from (3.36) for s = 1. The resulting gauge-invariant action

1

1 . .
St)[Ha(Z)"Pﬂ] = —E/d?,lzZE{EHa(z) (1V2 + SS)Ha(z) - IVﬁHﬂavyH},a

— WV Hyy =S W - ZiS‘PﬁWﬁ}

(3.37)

provides an off-shell realization for a massless gravitino multiplet in AdS;. In the flat-superspace limit, this model reduces

to the one described in [26].

In the s > 1 case, the gauge freedom of the prepotential Wy.,5,_5) (3.35) allows us to impose a gauge condition

252
‘P(al;az.“azlv,]) =0 LPﬁ;a(2s—2) = E Epa, Pa,...4;...005_>
k=1

(3.38)
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for some field ¢ (2,-3). Since we gauge away the symmetric
part of Wy, 5,-2), the two gauge parameters {up,—1) and
NMa(25-2) are related. The theory is now realized in terms of
the following dynamical variables:

{Ha(25) Pa2s-3) }» (3.39)

with the gauge freedom
OH 05 = ~Vigalas...ar,) (3.40a)
OQo(25-3) = iv/ Mpa(25-3)- (3.40b)

It follows that in the flat-superspace limit, S = 0, and in the
gauge (3.38), the action (3.36) coincides with Eq. (B.25) of
[21]. The component structure of this model will be
discussed in Appendix B 1.

IV. MASSLESS HIGHER-SPIN MODELS:
TYPE III SERIES

In this section we carry out the N' = 1 AdS superspace
reduction of the type III theory [1] following the procedure
employed in Sec. III.

A. The type III theory

We fix a positive integer s > 1. In accordance with [1],
the massless type III multiplet of superspin (s —1—%) is

described in terms of two unconstrained real tensor super-
fields

(1)
V(

s+5)

{ga(h)? 2Box(Zs—Z)}’ (41)

which are symmetric in their spinor indices, 405 =

Dia...w,) a1 Byayr) = By, )
The dynamical superfields are defined modulo gauge
transformations of the form

D(alﬁaz...ak) - D(a] /10:2...0:25) = YGa(2s) =+ ._(_]a(2s)v
(4.2a)
|

51@0:(23)

(1)
S(er%) [5(1(23‘) ’ 28(1(23‘—2)]

1

1 - _
5A§Ba(2s—2) = Z (Dﬁlﬁa(2s—2) - Dﬁ/l/i(x(Zs—Z))7 (42b)

where the gauge parameter 4,(5,_;) is unconstrained com-
plex, and the longitudinal linear parameter g, is defined
as in (3.3). As in the type II case, $,y) 1s the super-
conformal gauge multiplet, while 2B,(>,_,) is a compensat-
ing multiplet. The only difference from the type II case
occurs in the gauge transformation law for the compensa-
tor 2Boz(Zs—Z)'

The compensator B,(,7) also possesses its own gauge
freedom of the form

'Z_)ﬂfa(Zs—2) =0, (43)

6{’%0{(25—2) - éa(Zs—Z) + Ea(Zs—Q)?
with the gauge parameter £, (,,_,) being covariantly chiral,
but otherwise arbitrary.

Associated with B,,,_) is the real field strength

\/(1(2‘3'—2) = iDﬂ@/}%a(ZA‘—Z)’ \/(1(2‘\'—2) = \_/{1(23'—2)’ (44)

which is inert under (4.3), 6:V,(2,-2) = 0. It is not difficult
to see that V(5,5 i covariantly linear,

Dz\/(l(Zs—2) =0< Z_)2\/0:(23'—2) =0. (45)

It varies under the A-gauge transformation as

1 - - -
0 Vas-2) = s (DPD?Apa(25-2) + DPD*Apa5-2))-
1
2s + 1
2
2s +1

Dﬁf)]f (g/iy(l(Zs—Z) - g/ﬁ’ya(l\‘—2))

Dﬂygﬂya(23—2)’ (46)

Modulo normalization, there exists a unique action being
invariant under the gauge transformations (4.2) and (4.3). It
is given by

1\ _ (1 -
(— 5) / d3xd26d29E{§53'“<2“‘>Dﬁ1>21>/;5,1<2s>

TR ([Dﬂ’ Dy]bﬁya(Zs—Z)) [DB’ T)p}gﬁpa(%—ﬂ

16
1

2s — 1
2

<\/a(25_2)Dﬁy5ﬂya(Zs—2)

+

O | —

2

+ Z (Dﬁygﬁya(%_z))D(sﬂgépa(Zs—Z) + isba(zs)pﬂ@/fba(h)
1
+5 Wa(zs_z)Va(Zs—Z))

(s = 1)(2s = 1)(DBPrE=ID2DIB, o 0,3) + c.c.) + 25(25 — 1)823“(2‘?‘2)\/(,(%_2)}. (4.7)
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Although the structure DB/ =ID2DIB, 3 in (4.7)
is not defined for s = 1, it comes with the factor (s — 1) and
drops out from (4.7) for the s = 1 case. In this case the
action coincides with the type III supergravity action in
(2,0) AdS superspace, which was originally derived in
Sec. 10.2 of [7].

B. Reduction of the gauge prepotentials to AdS3?

The reduction of the superconformal gauge multiplet
u(s) 0 AdS*? has been carried out in the previous
section. We saw that in the gauge (3.11), $q(2y) is described
by the two unconstrained real superfields H,,.) and
H (2 defined according to (3.12), with their gauge trans-

formation laws given by Egs. (3.14a) and (3.14b), respec-
tively. Now it remains to reduce the prepotential LBy, p,_») to
N =1 AdS superspace, following the same approach as
outlined in the type II series. The gauge transformation
(4.3) allows us to choose a gauge condition

?Ba(Zs—Z)| =0. (48)

The compensator £B,(,,_) is then equivalent to the follow-
ing real N' = 1 superfields, which we define as follows:

2
T/i;(z(l\‘—2) = lvﬁ’ma(%—Z) |’ (498')

i

Va(Zs—Z) = Z (Vg)Q%a(ZS—Z) | (49b)

The residual gauge freedom, which preserves the gauge

condition (4.8) is described by a real unconstrained N = 1

superfield 774(,_2) defined by

i _

5a(2s—2)| = _Ena(Zs—Z)’ Na(25—2) = Na(2s-2)- (4.10)

As a result, we may determine how (4.9a) and (4.9b) vary
under z-transformation

8y L pia(2s—2) = IVplla(25-2)- (4.11a)

517Va(2s—2) - O (411b)

Next, we analyze the A-gauge transformation and reduce
the field strength V(> to AdS*?. In the real basis for the
covariant derivatives, the real linearity constraint (4.5) turns
into

(Vg)z\/a(Zs—Z) = (Vl>2\/a(25—2) s (4 128‘)

VIVAV,(352) = 0. (4.12b)

This tells us that V,5,_5) is equivalent to two real N=1
superfields

2
y IVB\/DC(ZS—Z) | (4 13)

\/a(Zs—2)

The relation between the field strength V) and the
prepotential B,5,_5) is given by (4.4), which can be
expressed as

i
\/a(2s—2) = _E {(Vl)z + (VZ)Z}%a(Zs—2)' (414)

We now compute the bar-projection of (4.14) in the gauge
(4.8) and make use of the definition (4.9b) to obtain

\/a(2s—2)| = _zva(Zs—Z)- (415)
The bar-projection of iV%\/a(zs_z) leads to the N = 1 field-
strength

)
Qﬂ;a(2s—2) = IVEVQ(25_2)|

— —1(V7Vﬂ - 4i85/}y)Ty;a(2S_2>, (416)
which is a real superfield, Qg.,2,_2) = Qﬂ;a(%_z), and is a
descendant of the real unconstrained prepotential Y s.,(2,2)
defined modulo gauge transformation (4.11). One may

check that the field strength is invariant under (4.11) and
obeys the condition

V/}Q/};a(Zs—2) =0. (4 17)

Let us express the gauge transformation of V., ),

Eq. (4.6) in terms of the real basis for the covariant
derivatives. This leads to

1
2s + 1
+ VP (gpa25-2) + Tppas—2)) }-

6\/(1(25—2) = {Vlﬁvgy(gﬁya(Zs—Z) - g/fya(Zs—Z))

(4.18)

One should also express its corollary V%é\/{,m_z) in the real

basis for the covariant derivatives. We determine the gauge
transformations law for Vo, o) and Qg.,0,_5) to be

1
5V(l(2s_2> = 2_S vﬁ€/f{1(2s—2) s (4 1 921)

1 .
5Qﬁ;a(2s—2) m (Vyvﬁvé - 4lsvééﬁy)§5ya(23—2)'

(4.19b)

From (4.19b) we read off the transformation law for the
prepotential Yp.;0, o)
i

- 2s +1 (vy§7ﬂ11(23—2> + (Q’S + l)vﬂﬂa(Zs—2))7

(4.20)

5T[1;(1(2s—2)
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where we have also taken into account the #-gauge free-
dom (4.11).

Performing N =1 reduction to the original type III
action (4.7), we arrive at two decoupled N = 1 actions

m)

( —
S(H_%) [Sj(l(ZS) ’ 28(1(2\‘—2)] - S?:H—%) [H{I(ZSJr])’ Tﬂ;(l(Zx—Z)]

+ S‘(‘s) [Ha(2s)’ Va(2s—2)]- (421)

We will present the exact form of these actions in the next
subsection.

C. Massless higher-spin A/ =1 supermultiplets in AdS;

Upon reduction to N/ = 1 superspace, the type III theory
leads to two N = 1 supersymmetric gauge theories.
|

1

1. Longitudinal formulation for massless
superspin-s multiplet

One of the two N =1 theories provides an off-shell
realisation for massless superspin-s multiplet described in
terms of the real unconstrained superfields

v‘(|s) = {Ha(Zs)9 V(l(ZS—Z)}v (422)

which are defined modulo gauge transformations of the
form

SHy20) = Ve Loy ) (4.23a)

1
5V‘1(2S_2> = 2_S vﬂé‘/fa(Zs—2)’ (423b)

where the gauge parameter {,,-1) is unconstrained real.
The gauge-invariant action is given by

s 1 .
S‘(‘;) [Ha(2s)’ V{1(2s—2)] = <_ 5) / d3ZZE{§ [‘Ia(z‘Y> (1V2 + 48)Ha(2x)

i
2 VyHPE OO H 51 = (25 = WVEE 2DV Hy, o)

1
+ (2S - 1) <§ Va(2s—2)(l'v2 + SSS) Va(2s—2) + (S - 1)vﬁvﬂa(zs_3)vyvya(2s—3)) }

(4.24)

Modulo an overall normalization factor, (4.24) coincides with the off-shell A" =1 supersymmetric action for
massless superspin-s multiplet in the form given in [14]. In the flat-superspace limit it reduces to the action derived

in [26].

Although the structure VzVA@2=3IVrV o 5 in (4.24) is not defined for s = 1, it comes with the factor (s — 1) and thus
drops out from (4.24) for s = 1. The resulting gauge-invariant action

1

1 . i
SiyHaz) VI = =3 / d32zE{§H“<2) (iV2 + 48)Hyo) = 5 VyHP*V! H,,

- VVPrH,, + % V(iV? + SS)V}

describes an off-shell massless gravitino multiplet in AdS;.
In the flat-superspace limit, it reduces to the gravitino
multiplet model described in [28] (see also [26]).

2. Transverse formulation for massless
superspin-(s + 1) multiplet
The other theory provides an off-shell formulation for
massless superspin-(s + 1) multiplet. It is described by the
unconstrained superfields

Vé_%) = {Ha(2s+1)’ Tﬂ;a(Zs—Z)}’ (426)

(4.25)

which are defined modulo gauge transformations of the
form

5Ha(2s+l) = iv(algaz..,azﬁl)y (4.2721)

i
5Tﬂ;a(25—2) = m (vygyﬂa(Zs—2) + (2S + l)vﬂrla(2s—2))'
(4.27b)

The gauge-invariant action is
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1

y 1 ] i a(2s
S(LT+%) [Ha(2s+l)a T[i;a(Zx—Z)] = <— 2> /d3ZZE{—2H(1(2.\+1)QH(1(2S+1) — gVﬁ[—lﬁ (2 )V2V}’Hya(2s)

i i e
+ g v[)’yH/}ya(zs_l)v/){SH/)ﬁa(Zx—l) - Z (2S - I)Qﬂ,a(Zs 2 VY5Hy5ﬂ(z(2s—2)

i sa(2s— (25— :
- g (2S - 1)(9/}’(1(2“ Z)Qﬁ;a(Zs—Z) - 2(S - I)Qﬂ;/j @ 3)Qy’ya(2s—3))

o . 1 A\ LS
+ :S(H"(z““)(v2 — 4S)H y2541) + EV[,»H/” - )VYHVU’(ZS)>

+ is(Zs - 1)8"1‘,5;0(25—2) Qﬂ;a(2s—2) } s

where Qg5 o) denotes the real field strength

Q/};a(2s—2) = _i(vyvﬂ - 4i55ﬂy)T;’;a(2s—2)v

(4.28a)

VﬁQﬁ;am_z) - 0 (428b)

This action defines a new N/ = 1 supersymmetric higher-spin theory which did not appear in [14,21,26].
The structure Qﬂ;ﬁa(25—3)§2}’3m(25_3) in (4.28a) is not defined for s = 1. However it comes with the factor (s — 1) and hence
drops out from (4.28a) for s = 1. The resulting gauge-invariant action

| i
Sig) [Ha). Tyl = _E/d“ZE{_EH

“C)QH ) — %vﬂHﬂa@)vam(z)

i i
+ g VﬂyHﬂy V”éHp(;a - Z QﬁvyéH},gﬂ

. 1
LS < HY (V2 = 4iS)Hoys) + 5V, H"?IVTH ya<2)>

i .

provides an off-shell formulation for a linearized super-
gravity multiplet in AdS;. In the flat-superspace limit, it
reduces to the linearised supergravity model proposed
in [26].

V. ANALYSIS OF THE RESULTS

Let s > 0 be a positive integer. For each superspin value,
integer (s) or half-integer (s + 1), we have constructed two
off-shell formulations which have been called longitudinal
and transverse. Now we have to explain this terminology.

Consider a field theory in AdS?? that is described in
terms of a real tensor superfield V). We assume the
action to have the form

SV g = / BPZELIVV ). (5.1)
It is natural to call V4V, a longitudinal superfield, by
analogy with a longitudinal vector field. This theory

possesses a dual formulation that is obtained by introducing
a first-order action

(4.29)

[
Sfirst—order = /d3|22E{[’(2/3;a(n)) + inJrIW/};a(n)Z/};a(n)}’

(5.2)

where X, is unconstrained and

multiplier is

the Lagrange

Wﬂ;a(n) =i’ (VVVﬂ - 4i85z>q’y;a(n), V/’Wﬂ;a(n) =0,
(53)

for some unconstrained prepotential ‘¥,,.,(,). Varying (5.2)
with respect to ¥, gives

VIV, 2y i) = WSy = 0 = Zpia(n) = 1"V Vi),
(5.4)
and then S orqer Teduces to the original action (5.1). On

the other hand, we may start from Sfg.order and integrate
2.a(n) out. This will lead to a dual action of the form
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Sl[le;a(n)] = /d32ZE£dual(Wﬂ;a(n))' (55)

This is a gauge theory since the action is invariant under
gauge transformations
o

= i”Jrl Vyna(,,) . (56)

ria(n)
The gauge-invariant field strength Wy.,(,) can be called a
transverse superfield, due to the constraint (5.3) it obeys.

It is natural to call the dual formulations (5.1) and (5.5)
as longitudinal and transverse, respectively.

Now, let us consider the transverse and longitudinal
formulations for the massless superspin-s models, which
are given by Eqs. (3.26) and (4.24), respectively. These
actions depend parametrically on S, the curvature of AdS
superspace. We denote by S(ls) [H a(25)» Ppia(25-2)lrs and

Sl(ls) [H o(25)» Va(2s-2)lps these actions in the limit S =0,
which corresponds to a flat superspace. The dynamical

systems St) [Ha(23)7 lPﬂ;oz(2s—2)]FS and S‘(‘y) [Ha(2s)’ Va(Zs—Z)]FS
prove to be related to each other by the Legendre trans-
formation described above. Thus S(ls) [H a(25)» ¥ pa(25-2)IFs

and Sl(ls) [H y(25)» Va2s-2)]rs are dual formulations of the
same theory. This duality does not survive if S is
nonvanishing.

The same feature characterizes the longitudinal and
transverse formulations for the massless superspin-
(s +%) multiplet, which are described by the actions
(3.32) and (4.28), respectively. The flat-superspace coun-
terparts of these higher-spin models, which we denote by

Sl(ls_;,_%) [Ha(2s+1) ’ La(23—2)]FS and St.%) [Ha(2s+1) ’ Tﬁ;a(2s—2)]FS’
are dual to each other. However, this duality does not survive
if we turn on a nonvanishing AdS curvature.

The above discussion can be illustrated by considering
the model for linearized gravity in AdS;. It is described by
the action

1
Saravity = g / Bxe { f)a(4) ] f)a( 25— \V/ 52) f,ﬂ(z)a(z) v f)a(2)y(2)
1 1
—|—§V"(2) YW h,0)p0) — ZV”@) YVa02)h

+882f)“(4)f)a<4>+682t)2}, 5.7

which is invariant under gauge transformations

2
65@(1(4) = v((ll{lz Ca3a4)’ 65)’] = gan)é’(l(Z)' (58)

In the flat-space limit, S = 0, the model possesses a dual
formulation in which the scalar compensator Y) is replaced

with a gauge one-form.” However, such a duality trans-
formation cannot be lifted to AdS;.

VI. NONCONFORMAL HIGHER-SPIN
SUPERCURRENTS

In the previous sections, we have shown that there exist
two different off-shell formulations for the massless higher-
spin N = 1 supermultiplets. Massless half-integer super-
spin theory can be realised in terms of the dynamical
variables (3.30) and (4.26), while the models (3.34) and
(4.22) define massless multiplet of integer superspin s, with
s > 1. These models lead to different A" = 1 higher-spin
supercurrent multiplets. Our aim in this section is to
describe the general structure of A =1 supercurrent
multiplets in AdS.

A. N =1 supercurrents: Half-integer superspin case

Our half-integer supermultiplet in the longitudinal for-
mulation (3.30) can be coupled to external sources

Sif)j;r?:)e = /d3|2ZE{iHa<2S+])Ja(2s+l) + 4La(2s_2)Sa(25—2)}'
(6.1)

The condition that the above action is invariant under
the gauge transformations (3.31) gives the conservation
equation

2s

(2s+1) (62)

vﬁ‘]ﬁa(Zs) = -

(01“250’3“'112.;)'

For the transverse theory (4.26) described by the
prepotentials {Hy(s:1), Y pa(25—2) }» We construct an action
functional of the form

o+d
b= [ e

+ 2iSTﬂ;a<2s_2) Uﬂ;a(ZS—Z)}' (63)
Requiring that the action is invariant under the gauge
transformations (4.27) leads to

2s

Vi paas) = P

U(lz"'(lz;)’ vﬁU/;’;a(Zs—2) =0.

(6.4)
From the above consideration, it follows that the most

general conservation equation in the half-integer superspin
case takes the form

There is another dual realization in which B4 turns into a
gauge one-form b4y with an additional gauge freedom.
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2s
VP paas) =

o m (v(’ll U(lzn-(zzx) - v(

aya S(l}“'(lzb\-))’

(6.5a)

vﬂUﬂ;a(zs_z) - O (65b)

B. N =1 supercurrents: Integer superspin case
In complete analogy with the half-integer superspin case,

we couple the prepotentials (4.22) in terms of which the
integer superspin-s is described, to external sources

ngﬁuce = /d3|22E{Ha<25)J(1(2S) + 2SV(I(2S—2>R(1(2S_2)}.

(6.6)
For such an action to be invariant under the gauge freedom
(4.23), the sources must be conserved

vﬁjﬁa@ly_]) — V( R ) (67)

e R/ Rl /R |

Next, we turn to the transverse formulation (3.34)

characterized by the prepotentials {H (o), Wp.n(25-2)} and
construct an action functional

Sg(s))urce = /d3|22E{Ha(2X)Ja(2S) + iTﬂ;{l<2s_2)T/3;(z(2s—2)}'
(6.8)

Demanding that the action be invariant under the gauge
transformations (3.35), we derive the following conditions:

vﬂ‘]ﬂa(b—l) = iTa(Zs—1)7 vﬂTﬁ;a(2s—2) =0. (69)
From the above consideration, the most general conserva-
tion equation for the multiplet of currents in the integer
superspin case is given by

vﬂ‘]ﬁa(h—l) = v(arl Raz---am,l) + iTa(2s—1)’ (6108')

vﬂTﬂ;aQS_z) - 0 (610b)

C. From N =2 supercurrents to A’ =1 supercurrents
In our recent paper [1], we constructed the general
conservation equation for the A/ = 2 higher-spin super-

current multiplets in (2,0) AdS superspace, which takes the
form

Dﬁjﬂa(Zs—l) = D((l[ (Yaz...azs,l) + iZaz...azl\,l))' (61 1)

Here J, () denotes the higher-spin supercurrent, while the
trace supermultiplets Y, o_5) and Z,;,_5) are covariantly
linear. The explicit form of this multiplet of currents was
presented by considering simple N =2 supersymmetric

models for a chiral scalar superfield. Unlike in 4D N = 1
supergravity where every supersymmetric matter theory
can be coupled to only one of the off-shell supergravity
formulations (either old-minimal or new-minimal), here in
the (2,0) AdS case our trace multiplets require both type II
and type III compensators to couple to.

The general conservation equation (6.11) naturally gives
rise to the N =1 higher-spin supercurrent multiplets
discussed in the previous subsection. One may show that
in the real basis, (6.11) turns into

1

2
Vlﬁ‘ﬂﬁa@s-l) = V(aIYGZ"'02571) - VZal ) (6'128')
1 2
Vgﬂ‘ﬂﬂ”(zs—U = V(a] Zar"“z.m) + V(ialvazmazsfl)’ (6.12b)

The real linearity constraints on the trace supermultiplets
are equivalent to

2
(Vg)2va(23—2) - (Vl)zva(ZS—Z)’ Vlﬁv/_}va(Zs—Z) =0,
(6.13a)

2
(Vg)zza(Zs—2) = (Vl)zza(Zs—Z)’ Vlﬁvﬁza(%—Z) =0.
(6.13b)

It follows from (6.12) and (6.13) that J,(,) contains two
independent real N' = 1 supermultiplets:

Ja(Zs) = J]a(2s)|’ (6143)

g |
(ay Do) 10

‘,(1(2‘\'+1) =1V (614b)

while the independent real N' = 1 components of Yo(25-2)
and Z,,2) are defined by

2
U Pra(2s=2) = lvﬁva(Zs—Z) ,
(6.15a)

Ra(25—2) = Y0{(25—2) |’

o2
, Tpa(25-2) = 1V5Zg(25-2)|-
(6.15b)

Sa(2s—2) = Z(x(Zs—Z)

Making use of (6.13), one may readily show that

vﬁUﬁ;a(Zs—Z) = O, (6163)

V/}Tﬁ;a(ZS—Z) — O (616]3)

On the other hand, Eq. (6.12) implies that the N =1
superfields obey the following conditions:
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2s

v/}J/}{I(ZS) = m (v(al Uazmaz\.)

—V(

aja S(13»--(12A))’

(6.17a)

vﬁ.]ﬂa(2s_1) = v(alRaz"'az.‘fl) + iTa(2s—1)- (617b)
Indeed, the right-hand side of Eq. (6.17a) coincides
with (6.5a). Therefore, Eqgs. (6.16a) and (6.17a) define
the A/ = 1 higher-spin current multiplets associated with
the massless half-integer superspin formulations (3.30) and
(4.26). In a similar way, it can be observed that Egs. (6.16b)
and (6.17b) correspond to the N = 1 higher-spin super-
currents for the two integer superspin models (3.34)
and (4.22).

VII. EXAMPLES OF N =1 HIGHER-SPIN
SUPERCURRENTS

In this section we give an explicit realization of the
N =1 higher-spin supercurrent introduced earlier.

Consider a massless chiral scalar multiplet in (2,0) AdS
superspace with action [1]

S = / dBxd’0d>0EDD, D,®=0. (7.1)
The chiral superfield is charged under the R-symmetry
group U(1)g,

JO = —rd, r = const. (7.2)
This action is a special case of the supersymmetric non-
linear sigma model studied in Sec. II D with a vanishing
superpotential, W(®) = 0. Making use of (2.62), the
reduction of the action (7.1) to N’ =1 AdS superspace
is given by

S = /dan{—iV“(Z)Va(p +4rSpp}, (7.3)

where we have denoted ¢ := ®|. This action is manifestly
N =1 supersymmetric. It also possesses hidden second
supersymmetry and U(1), invariance. These transforma-
tions are
S = i€V, — ierg, 5:.p = 1"V ,p +ierp, (7.4)
where € is given in terms or € according to (2.31), and the
real parameter € is constrained by (2.31b). It can be seen
that ¢ and @ obey the equations of motion
(iV2 +4rS)p =0, (iV2 +4rS)p = 0. (7.5)
When studying higher-spin supercurrents in the (2,0)
and (1,0) AdS superspaces, it is advantageous to make use
of a condensed notation employed in [1]. We introduce

auxiliary real variables {* € R? and associate with any
tensor superfield U, the following index-free field:
U(m) (é,) = é,a] . .é"lm Ual Qo (76)
which is a homogeneous polynomial of degree m in {*.
Furthermore, we make use of the bosonic variables {* and
the corresponding partial derivatives 9/9(” to convert the
spinor and vector covariant derivatives into index-free
operators. In the case of (2,0) AdS superspace, we
introduce operators which increase the degree of homo-
geneity in {*:
D(l) = gaDav

D(]) = Calz_)a’ D(Z) = igagﬁpaﬁ'

(7.7)

We also introduce two operators that decrease the degree of
homogeneity in {*:

.0 . 0
D(—l) =D a—ga, D(—l) =D 8—2:0’. (78)

The operators associated with the real spinor covariant
derivatives, V/, may be defined in a similar way:

Vfl) = é‘avé’ V(2> = ié’“CﬂVaﬂ, (79)
0
Vf—l) = Vlaa—z:a . (710)

Analogous operators are introduced in the case of V' =1
AdS superspace. They are

v(l) ="V, v(2) = igaéjﬂvaﬂ, (7.11)

0

V(_l) = V“ 8—4‘0‘ .

(7.12)

It was shown in [1] that by using the massless equations
of motion, D?® = 0, the N/ = 2 higher-spin supercurrent
multiplet associated with the theory (7.1) is described by
the conservation equation

D_1yJdas) = D1y T(25-2)- (7.13a)

Here the real supercurrent J,,) = J_](%) is given by

s 1 2s .
\ﬂ(zs) = (—l)k{— ( )Dk2 D(l)(DDS;k_I’D(l)q?
k; 2\2k+1)" @ @

2s Dk 'Ds—k
1, JP®Pe @

while the trace multiplet T ,,_) has the form

(7.13b)
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Tog—n) = 2iS(1 = 2r)(2s + 1)(s + 1) As is seen from (7.13c), T(,_5) vanishes for r = 1/2, in
s—1 1 2 which case @ is an A/ = 2 superconformal multiplet.
x — (- 1)k< s ) The complex trace multiplet T ,,_») may be split into its
25 —2k+1 2k +1 real and imaginary parts:
X D’(CZ)GDD‘(“Z‘)"‘VI). (7.13¢)
One may check that T(,_,) is covariantly linear, Va2 = Yes2) ~ 12052 (7.142)
D0y =0, DT =0. (7.13d)  Lip
|
s—1
2k—s+1 2s _
Y25-2) = 2iS(1 = 2r)(2 1 1 —1)k DY dDsH 1o, 7.14b
(25-2) = 2iS8(1 = 2r)(2s + 1)(s + );(2k+3)(2s—2k+1)( )<2k+1> 2 PPy (7.14b)
- 1 s K GHTs—k-1
Zpsn) = —=28(1 = 2r)(2s + 1)(s + 1)(s + 2) kz_; TS T (=D, o DL, @D/~ ®. (7.14¢)

In accordance with (6.14), the supercurrent J,,) reduces to two different multiplets upon projection to N=1
superspace:

s 2s R 2s R
Ja5) =) | = ;(—I)HI{ <2k n 1>V’(‘2)V<1>¢V(2)k Ve - <2k>V’(‘2>(pV(2)"¢}, (7.15a)
o2 1 -
Sy =1V g | = 5 (D) + Day)das -

s 1 2s e B . _
= (25+ 1>Zm(‘1)k+l(2k>{V'Ezﬁ"vfz)kvuwﬂ—l)s 1v1€2>¢v(2)kv<1)¢}’ (7.15b)
k=0

of which the former corresponds to the integer superspin current and the latter half-integer superspin current.
In the case of half-integer superspin, the conservation equation (6.5) is satisfied provided we impose (7.5):

2s

Vendesn =507 VoUeeny iV Sem2).  VUpe) =0, (7.16a)
with
S(z.s—z) = Z(Zs—2)|
s—1
=-25(1-2r)2s+1)(s + 1)(s +2) kz:; %1 3) 2s—2k—|—1)< 1)k<2k2i1>v(kz)¢v52—)k—l¢, (7.16b)

1 _
U/i;(2s—2) = —7§ (Dﬂ + ,Dﬁ)v(Zs—Z) |,

. s—1 2k —s + 1 2s
= -2i8(1 =2r)(2s + 1)(s + 1);(2k+3)(2s—2k+ 1)(_1)k<2’<+ 1>

+2iS(s — k= 1)V, pVi5 2V ()90 + (= 1)s+'v;<2)(pv5)k—2v(l>¢)}. (7.16¢)
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It may also be verified that the ' = 1 supercurrent multiplet for integer superspin obeys the conditions (6.10) on-shell:

Vi as) = VayRas—2) + 1T 25-1),

2k—s+1

vﬁTﬁ;(zs_z) =0 (7173)

2s

with
R(2s—2) = V(zs—2)|
s—1
=2S(1-2r)(2s+ 1)(s+1) )
&
1 _
Ty 25-2) = — 7 (Dg + Dp)Y (25-2)l

§—

=25(1-2r)2s+1)(s+ 1

— (2k +3)(2s — 2k + 1) (_1)k<2k+ 1

>Vé‘2)(f0V“(‘2')k'](p, (7.17b)

2s
2) 1)k
Js+ ;%4—3 25—2k+1)( )<2k+1>

< V0V Ve + (1) V0V V0

+20S(s = k= 1)Z5(V4 5V 1y + (- 1)sv§2)¢v~gz—)k—2v<l)¢)}.

The above technique can also be used to construct
N =1 higher-spin supercurrents for the Abelian vector
multiplets model described by the action (2.66). We will not
elaborate on such a construction in the present work.

In four dimensions, various aspects of the higher-spin
supercurrent multiplets were studied in [29-33] in the
N =1 super-Poincaré case and in [34] for ' =1 AdS
supersymmetry. In particular, the general nonconformal
higher-spin supercurrent multiplets for A" = 1 supersym-
metric field theories in Minkowski space were proposed in
[31,32], and their AdS counterparts were formulated in
[34]. Explicit realizations of the higher-spin supercurrents
were derived in [34] for various N = 1 supersymmetric
theories in AdS,, including a model of N massive chiral
scalar superfields with an arbitrary mass matrix.

VIII. APPLICATIONS AND OPEN PROBLEMS

Let us briefly summarize the main results obtained in
this paper. In Sec. II we developed a formalism to reduce
every field theory with (2,0) AdS supersymmetry to N = 1
AdS superspace. In Secs. III and IV we applied this
reduction procedure to the off-shell massless higher-
spin supermultiplets in AdS(3;) constructed in [1]. For
each superspin value, integer (s) or half-integer (s + %), the
reduction produced two off-shell gauge formulations,
longitudinal and transverse, for massless A/ =1 super-
multiplets in AdS5. The transverse formulations for mass-
less higher-spin A/ = 1 supermultiplets in AdS; are new
gauge theories. In Sec. V, we proved that for each superspin
value the longitudinal and transverse theories are dually
equivalent only in the flat superspace limit. In Sec. VI we
formulated, for the first time, the nonconformal higher-spin
supercurrent in A' = 1 AdS superspace. In Sec. VII we

(7.17¢)

|
provided the explicit examples of these supercurrents in
simple models for a chiral scalar superfield.

There are several interesting applications of the results
obtained in this paper. In particular, the massless higher-
spin A = 1 supermultiplets in AdS3, which were derived
in Secs. IIT and IV, can be used to construct off-shell
topologically massive supermultiplets in AdS; by extend-
ing the approaches advocated in [14,22,26]. Such a massive
supermultiplet is described by a gauge-invariant action
being the sum of massless and superconformal higher-spin
actions, following the philosophy of topologically massive
theories [28,35-37].

Given a positive integer n, the conformal superspin-7
action [14,26,38] is

n/2 i"
S<scs) [Ha<n)] ==

W/ d3‘2ZEHa(n)Wa(n)(H), (81)

where W, (H) denotes the higher-spin super-Cotton
tensor. The latter is a unique descendant of H,(,, with
the properties

(8.2a)
(8.2b)
where 6;H,(, is the gauge transformation (3.29). These

properties imply the gauge invariance of (8.1). In a flat
superspace, Wy, has the form [38]

S — 0 = W(ll.“(ln — < 2> V/} V V/ Vu Hﬁ] /}

(8.3)
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The construction of W, in arbitrary conformally flat
backgrounds is described in [39].

Given a positive integer s, there are two off-shell gauge-
invariant formulations for a topologically massive superspin-s
multiplet in AdS;. The corresponding actions are

S l(ls) [H a(2s)> Va(25-2) lu] = S(S“gS [Ha@s)}
+ ﬂzs_ls‘(‘s) [Ha(2s)a Va(zs—z)],
(8.4a)

St) [Ha(ZS)’ lPﬁ;vt(zs_z) ‘/,t] - S(SSC)S [Ha<23)}
+ ﬂzs—lst) [Ha(ZS) ) qjﬂ;a(%_z)] ’
(8.4b)

The dynamical system (8.4a) was introduced in [14], while
its flat-superspace counterpart appeared earlier in [26]. The
other theory, Eq. (8.4b), is a new formulation for massive
superspin-s multiplet in AdS;.

In the Minkowski superspace limit, the dynamical
systems (8.4a) and (8.4b) are equivalent, since they are
related to each other by the superfield Legendre trans-
formation described in Sec. V. On the mass shell, dynamics
can be recast in terms of the gauge-invariant field strength
W25y Which obeys the equations [26]

DW= 0, —%Dzwa@s) = moWyny, 0=l
(8.5)

where the mass m and helicity parameter ¢ are determined
by ,u.lo It is an interesting open problem to understand
whether the AdS models (8.4a) and (8.4b) lead to equiv-
alent dynamics, modulo a redefinition of the mass param-
eter p.

There are two off-shell gauge-invariant formulations for
a topologically massive superspin-(s + %) multiplet in
AdS;. The corresponding actions are

Sl(lwr%) [Ha(2s+l )» La(2s—2) |ﬂ]

(s+3) -
= Sscs [Ha(2s+1)] + 1S‘(‘.y) [H a(2s+1)> La<2s—2)]’
(8.6a)
Sé_;,_%) [Ha(23+1) ’ T/)’;a(2s—2) |ﬂ]
(s+3) =
= Sses [Hagaern)] + #2 15@%) [H o(2541)> Lpa(25-2)]-
(8.6b)

'OEquations (8.5) describe the irreducible massive multiplet of
superhelicity x = (s 4+ §)o [40], with the N =1 superhelicity
operator being defined according to [41].

The theory defined by (8.6a) was introduced in [14], while
its flat-superspace counterpart appeared earlier in [26]. The
other model, Eq. (8.6b), is a new formulation for a massive
superspin-(s + 1) multiplet in AdS;.

In the Minkowski superspace limit, the dynamical
systems (8.6a) and (8.6b) are equivalent, since they are
related to each other by the superfield Legendre trans-
formation described in Sec. V. It is also an interesting open
problem to understand whether the models (8.6) and (8.6b)
in AdS; generate equivalent dynamics.

We now present two off-shell formulations for the massive
N =1 gravitino supermultiplet in AdS; and analyze the
corresponding equations of motion.'' The massive extension
of the longitudinal theory (4.25) is described by the action

[ i 1y iy ye
St ="5 / d3|2zE{§H PN2Hop =5 VgHV Hy

i
— VV*H 5 + 3 VV2V + (4 + 28)H H .

—2(u - 25)v2}, (8.7)

with p a real mass parameter. The massive gravitino action is
thus constructed from the massless one by adding masslike
terms. In the limit y — 0, the action reduces to (4.25).
The equations of motion for the dynamical superfields H*
and V are

2V7(aH/;)y — iVZHaﬁ — 2VaﬂV — 4ﬂHaﬂ = O, (883)

VPH,5 = (iV* + 85 — 4u)V. (8.8b)

Multiplying (8.8a) by V% and noting that [V,4, V] =0
yields

—iV2V¥H ; + 40V — 4uV’H,; =0.  (8.9)
Substituting (8.8b) into (8.9) leads to
V=0. (8.10)
Now that V = 0 on-shell, Eq. (8.8b) turns into
V“ﬁHaﬁ =0, (8.11)
while (8.8) can equivalently be written as
—-iV'V,Hy, — (2u +48)H 5 = 0. (8.12)

"The construction of the models (8.7) and (8.16) is similar to
those used to derive the off-shell formulations for massive
superspin-1 and superspin-3/2 multiplets in four dimensions
[42-52].
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Making use of the identity (A7b), it immediately follows
from (8.12) that

VeH 3 =0, (8.13)
and then (8.12) is equivalent to
1

Therefore, we have demonstrated that the model (8.7) leads
to the following conditions on the mass shell:

V=0, (8.15)

V“Haﬂ - 0 = V“ﬁHaﬂ - O, (815b)
i

—EvzHaﬁ = (ﬂ + ZS)Haﬁ (8150)

Such conditions are required to describe an irreducible
on-shell massive gravitino multiplet in 3D N =1 AdS
superspace [40].

In the transverse formulation (3.37), the action for a
massive gravitino multiplet is given by

1 i .
=-3 / d3zzE{§H“/’V2Haﬂ —iV,H’V'H,,

i
- H“ﬁVaW/} - EWaWa + (,bt + 4S)HaﬁHa/}
— i+ 28) (YW, + 2;4\1'0\1'0)}. (8.16)

In the limit # — 0, the action reduces to (3.37). One may
check that the equations of motion for this model imply that

¥, =0, (8.17a)
V“Haﬂ - 0 = V“ﬁHaﬁ - O, (817b)
- % V2H,5 = (4 + 4S)H . (8.17¢)

The actions (8.7) and (8.16) can be made into gauge-
invariant ones using the Stueckelberg construction.

In the Minkowski superspace limit, the massive models
(8.7) and (8.16) lead to the identical equations of motion
described in terms of H;:

DH 5 = 0, —%D2Ha,3 = pH,  (8.18)
In the AdS case, Egs. (8.15) and (8.17) lead to equivalent
dynamics modulo a redefinition of u. It is an interesting
open problem to understand whether there exists a duality

transformation relating these models.

There exist alternative off-shell gauge-invariant formu-
lations for massive higher-spin supermultiplets in AdS;
proposed in [14] for N = 1 AdS supersymmetry and in [1]
for (2,0) AdS supersymmetry. In the N =1 case the
corresponding action is

(n/2) _ i 32 prraln
Smassive[Ha(n)] - _m/d | zEH (n)

x (u + %W) W o (H), (8.19)
with u # 0 a real parameter. This action may be viewed as a
deformation of the superconformal model (8.1). It is
invariant under the gauge transformation (3.29) as a
consequence of the condition (8.2b) and the identity (A7c).

In the flat superspace limit, the action (8.19) leads to the

equation of motion
i
- EDZW(t(n) = MW(I(n) . (820)
Since Wy, is transverse, the equation of motion implies
that W, describes a massive higher-spin supermultiplet,
compare with (8.5). The (2,0) supersymmetric extension of
the model (8.19) is presented in [1].

It should be pointed out that there also exists an on-shell
construction of gauge-invariant Lagrangian formulations
for massive higher-spin supermultiplets in R*! and AdSs;,
which were developed in [53,54]. It is obtained by
combining the massive bosonic and fermionic higher-spin
actions [55,56], and therefore this construction is intrinsi-
cally on-shell. The formulations given in [53-56] are based
on the gauge-invariant approaches to the dynamics of
massive higher-spin fields, which were advocated by
Zinoviev [57] and Metsaev [58]. It is an interesting open
problem to understand whether there exists an off-shell
uplift of these models.

All off-shell higher-spin N = 2 supermultiplets in AdS;,
both with (2,0) and (1,1) AdS supersymmetry [1,21], are
reducible gauge theories (in the terminology of the
Batalin-Vilkovisky quantization [59]), similar to the mass-
less higher-spin supermultiplets in AdS; [25]. The
Lagrangian quantization of such theories is nontrivial. In
the four-dimensional case, the quantization of the theories
proposed in [25] was carried out in [60]. All off-shell
higher-spin A" =1 supermultiplets in AdS;, which we
have constructed in this paper, are irreducible gauge
theories that can be quantized using the Faddeev-Popov
procedure [61] as in the nonsupersymmetric case, see e.g.,
[62,63]. This opens the possibility to develop heat kernel
techniques for higher-spin theories in AdS32, as an
extension of the four-dimensional results [16,64,65].
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APPENDIX A: NOTATION, CONVENTIONS
AND N =1 ADS IDENTITIES

We summarize our notation and conventions which
follow [5]. The Minkowski metric is #,, =diag(—1,1,1).
The spinor indices are raised and lowered by the rule
(A1)

we =Py, oy = el

Here the antisymmetric SL(2, R) invariant tensors &,5 =
—¢5, and e = —£/* are normalized as e, = —1,&'> = 1.
We make use of real Dirac y-matrices, 7, := ((7,),”)

defined by

(ya)aﬁ = €ﬂy(7a)ay = (—i0'2, 03, O-l)' (Az)
They obey the algebra
YaVb = nabﬂ + Sabcyc’ (A3)
012

where the Levi-Civita tensor is normalized as &’'~ =
—&o1o = 1. Some useful relations involving y-matrices are

(r)ap(ra)” = —(8265 + 555,), (Ada)
€abc<yb)a/j<yc)y5 = 8y(a(7/a)/j)5 + 85(a(7a)ﬁ)77 (A4b)
[y ¥ oY e¥a) = 2Mabfca = 2Mactlap + 2Maallpe-  (Adc)

Given a three-vector A, it can equivalently be described as
a symmetric rank-2 spinor A,z = Ag,,

Aaﬂ = (ya)aﬂAa ’ (AS)

1
Aa == 5 (7a>aﬂAaﬁ'
The relationship between the Lorentz generators with
two vector indices (M, = —M,,), one vector index (M)
and two spinor indices (M5 = Mp,) is as follows: M, =
S €apeMP and M5 = (y*) ,sM . These generators act on a
vector V. and a spinor ¥, by the rules
MtleC = 27]C[avb], Maﬁle = 8},(0(\1,[;). (A6)
We collect some useful identities for N =1 AdS
covariant derivatives, which we denote by V,=(V,,V,).
Making use of the (anti)commutation relation (2.12a) and
(2.12b), we obtain the following identities:

1
vavl} = Eg(lﬁvz + ivaﬁ — ZiSMaﬁ, (A7a)

VIV, V, = 4iSV,, (A7b)
V3V, = -V, V? +4i8V, = 2iV,,VF +2iSV,
— 4SVPM 5., (A7c)

1
- V2V2 = 0 - 2i8V? 4 28VPM s — 28 MV M 5,
(A7d)

where V2=V?V, and O=V‘V,=-1V¥V, . An

important corollary of (A7a) and (A7c¢) is

VoV V2] =0 = [V, V2] = 0. (A8)

The left-hand side of (A7d) can be expressed in terms

of the quadratic Casimir operator of the 3D A/ =1 AdS
supergroup [14]:
1

Q= —szvz +iSV2,

[@.V,]=0. (A9)

We also note the following commutation relation:

[(V1)2(V1)2 — 4iS(V1)2, V2] = 165V, V¥ — 1652V,
— 3282V M 5 — 3257V
(A10)

Given an arbitrary superfield F and its complex con-
jugate F, the following relation holds:

V.F = ~(~1)1"V, F, (Al1)

where ¢(F) denotes the Grassmann parity of F.

APPENDIX B: COMPONENT STRUCTURE OF
N =1 HIGHER-SPIN ACTIONS

In this Appendix we will discuss the component struc-
ture of the two new off-shell N'=1 supersymmetric
higher-spin theories: the transverse massless superspin-s
multiplet (3.36), and the transverse massless superspin-
(s -+ 1) multiplet (4.28a). For simplicity we will carry out
our analysis in flat Minkowski superspace. In accordance
with (2.51), the component form of an N =1 super-
symmetric action is computed by the rule

S = /d3l2zL :%/d3xD2L|9=0, L=L. (Bl)

1. Massless superspin-s action

Let us first work out the component structure of
the massless integer superspin model (3.36). In the flat-
superspace limit, the transverse action (3.36) takes the form
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1

N i
S(ls) [H(x(Qs)’ lPﬁ;a(Zs—Z)] = <_ E) / d32Z{§ Ha(2s>D2Ha(2s)

—isDyHP* VDI H 0y —

1 (D5
_ 5 (2S _ 1) <Wﬂ,(l(2A Z)Wﬁ;a(Zs—2) +

( 5§ — I)Wﬁa(Zs

Wli;ﬁ{l<zx_3>Wy;ra(25_3)) }

DyHyﬁa(Zs -2)

s—1

(B2)

As described in (3.38), it is possible to choose a gauge condition ¥ (4, .4,...q,, ) = 0, such that the above action turns into

1\* i
S(LS) [Ha(zs), Tﬁ;a(zs—z)] = <— 2> /d321{2Ha(2s)D2Ha(2S>

- iSD/}Hﬂa(zs_l)D},Hya(Zs—l) - 2(S - 1)(pa (2= aﬁVD Hﬁy&l(ZA 3)

2i (25— i(s=1)(s=2)(2s=3) (25—
. (s=1)g @ 3>|:|(/)a(25—3) - s(25 — 1) a&afﬂ‘” (2s-5) aﬁy(pﬁya(b 5)
i(s—1)(2s =3)
DP9 p2pr _4) p- B3
o (2s — 1) /3§0ﬂ Pya(25—4) ( )
I
It is invariant under the following gauge transformations: ha(as) = —H g(25)|s (B9)
5Ha(2s) = _a(alazna}..ah)ﬂ (B4a) h .S
; a(2s+1) = lm (ay M ay -(12\.+])|
O y(2s—3) = 1D —3)s B4b .
Pa(25-3) = W Npa(25-3) ( ) Ya(as—1) = 1DﬂH/3al---a2.‘,,|» (BlO)
where the gauge parameter 7,(,,_») is a real unconstrained .
superfield. Fopy) = 1 D? Hy )| (B11)

The gauge freedom (B4) can be used to impose a Wess-
Zumino gauge

(pa(2s—3)| =0, D(a] (pa2~--a2S_2)| =0. (BS)

In order to preserve these gauge conditions, the residual
gauge freedom has to be constrained by

| =0, Dzna(Zs—Z)| = 2iaﬂ(a1 ’Yaz---am,z)/ﬂ-

(B6)

D 77/7’(1 25—

These imply that there remain two independent, real
components of 7,(25_2):
5(1 25-2) *= Na(25-2 )| /1(1(23'—1) = iD((l|l1(lz"'(lzl\._])|' (B7)
In the gauge (BS5), the independent component fields of

@a(2s3) can be chosen as

2s =2
Ya(2s—4) *= _2S 1

ﬂ(pﬁal"'a2s—4 ’
=3 D% (B9
Ya(2s-3) = D) Pa(25-3)|-

We define the component fields of H,,y) as

Applying the reduction rule (B1) to the N' = 1 action
(B3), we find that it splits into bosonic and fermionic parts:

Stv) [Ha(Zs)v lPﬁ';oz(2s—2)] = Sbos + Sferm' (B12)

The bosonic action is given by

1\*
Sbos = <_ 5) /d3x{2(1 - S)Fa(ZS)Fa(2s>

1
+ 2SFa(25_l)ﬁayﬁha(2s_l)y - E (S - 1)ha<2s)|:|ha(25)

2s —1)(2s = 3
_@2s=D@5=3) oy yaosa)

2s(s—1)
- (Zg;(i)fz:)_:S) al2s=4) gr h/)’y&/la(Zs 4)
_(s=2)(2s-1)(25=3)(2s = 5)
16s(s —1)?

x Oy, y(m (2= 3ﬂ7}’ﬁ a(2s— o)} (B13)

Integrating out the auxiliary field F,,,) leads to

045010-24



FIELD THEORIES WITH (2,0) ADS SUPERSYMMETRY IN ... PHYS. REV. D 100, 045010 (2019)

1\s2s —1 ) K .
Sbos = <_ 2) 252 / dSX{h(l(z‘s)D/’la(Zs) - 565/11/1&{1(23 Z)aﬂyh/}ya(%‘—z)

25 -3
oy {Sya(zs_zl)aﬁ yamhﬁyﬁﬂa(%—ét) + 2ya(2s=4) UYa(25-4)
(s=2)(2s-5) Sia(25—6) A
Wa&y (25-6)pf "Yra(25-6) | (- (B14)
|
This action is invariant under the gauge transformations The fermionic sector of the component action is
described by the real dynamical fields A 2411)s Ya(25-1)s
Ocha(as) = OayarSaryaoy)» (B15) Ya(2s-3)» defined modulo gauge transformations of the form
25 —2 _
OYazs—t) = 5,77 P éppaarss - (BIO) Orha(as 1) = Oty ) (B17)
1
The gauge transformations for the fields /,(>5) and y,(2,-4) 01YVa(25-1) = ﬁaﬂ (0 Ayt B> (B18)
can be easily read off from the gauge transformations of the S+
superfields H,,(.zs) .and Pa(25-3)> Tespectively. Modulo an 81 Va(2s-3) = aﬂmﬁyal s s (B19)
overall normalization factor, (B14) corresponds to the
massless Fronsdal spin-s action S;m described in [14]. The gauge-invariant action is

1\51
Sferm = <_ 5) ) / d% {ha(zs)ﬂaﬂyha(k)y + 2(2S - 1>ya(2s_1)aﬂyhﬂya(2s—l) + 4(2S - l)ya(zs_z)ﬂaﬂyya(Zs—Z)y

2 a(2s— (S_l><2S_3) a(2s—
+§ (25 + 1)(s = 1)y*@ 3>6ﬁy}’ﬁya(2s—3) - W)’ @ 4>ﬁa/iyya(2s—4)y . (B20)

It may be shown that Sg.,, coincides with the Fang-Fronsdal spin-(s -+ 1) action, § F21§+1 [14].

We have thus proved that at the component level and upon elimination of the auxiliary field, the transverse theory (B3)
is equivalent to a sum of two massless models: the bosonic Fronsdal spin-s model and the fermionic Fang-Fronsdal
spin-(s + 3) model.

2. Massless superspin-(s + 1) action

We will now elaborate on the component structure of the massless half-integer superspin model in the transverse
formulation (4.28). The theory is described in terms of the real unconstrained prepotentials Hy(sy1) and Yp4(25-2). In
Minkowski superspace, the action (4.28) simplifies into

1\# i i
StJr%) [H(2s+l)?’rﬁ;a(2s—2)] = <_ E) /dSZZ{_EH @ Jrl)|:|I_Ioz(2s+1) _gDﬁHﬁ @ )DszHya(Qs)

4- 8/i /3;/(1 (25— 1)8/)51_1 pia(25-1) 4 (2S _ 1)Qﬁ;a(zx_z)875H/}y5a(2s—2)

- g (2S - 1)(913 (25— 2)Qﬁ a(2s=2) — Z(S - 1)Q pa2s= 3>Q 7’1(2‘ 3)) } ’ (B21)
with the following gauge symmetry
5Ha(2s+1) = iD(a] Caz...azsﬂ)’ (Bzza)
i
6T/J;(l(2x—2) = m (Dygyﬂ(z(Zs—2) + (2S + 1)D/)”1{1(2s—2))' (Bzzb)
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The action (B21) involves the real field strength Qg.,,_»)

Qpa(zs-2) = =ID"DpY o052, DPQpyu(as0) = 0.

(B23)

The gauge transformations (B22) allow us to impose a
Wess-Zumino gauge on the prepotentials:
Ha(2s+l)| =0, DﬁH[)’a]mazJ =0,

Tﬁ;a(Zs—2)| =0, DﬂTﬁ;a(Zs—2)| =0. (B24)

The residual gauge symmetry preserving the gauge con-
ditions (B24) is characterized by

2is
D(al§a2"'a2.r+l)| = 0’ DZC“(25)| = _S + 1 ﬂ(alcaz"'ah)ﬂ ’
(B25a)

1 v

Dghg(25-2)l = D(plla(as—2))| = _2s—+1D $opatas—2) s
(B25b)
i

Dz”]a(Zs—2)| == 25+ 1 aﬂy§,ﬁ]x()((2s—2)|' (BZSC)

As a result, there are three independent, real gauge
parameters at the component level, which we define as

K
25 +1

DﬁCﬂa(Zs—l)

(B26)
J

é:a(2s) = Z.:a(Zs) ’ /10:(23—1) = =i

’

Pa(25-2) *= Na(25-2) |

1

Let us now represent the prepotential Y., (5,_») in terms of
its irreducible components,

25—2

Tﬂ;a(Zs—Z) = Y/)’a]...az,\._z + Z gf)’akzal4..(3/{...(12»\._27 (B27)
k=1

where we have introduced the two irreducible components
of Tp.4(25—2) by the rule

Yﬁ(ll COT) = T(ﬂ;al”'ah—Z) ’

1
Za] Q3 = 25 — 1

(B28)

;
pay...aps3°

The next step is to determine the remaining independent
component fields of Hysy1) and Ypg4-2) in the Wess-
Zumino gauge (B24).

In the bosonic sector, we have the following set of fields:

ho(2542) = =D (g, Hayoctr,,.) (B29a)
Vas) = Dia, Yoy (B29b)
1
Za(25-2) = . (2s — 1)D(a]Z(,2...a2x_2)|, (B29¢)
Za(as—t) = —(25 = 1)DPZg0, gy (B29d)

Reduction of the action (B21) to components leads to the
following bosonic action:

s 1 3
Shos = (— 2) / d3x{ 1 WD 0hyo440) + 16 Dsah® ) D" hy o)

+ }1 (25 — 1)05,h% 9 9P (a Yay-ar ) — % (25 = 1)(s — 1)z*®=2 9P yaﬂhﬂyé/la(Qs—Z)

- i (2s = 1)ya<2‘Y>D)’a(2s) (5 =2)(2s - 1)35/1)’5'1“(%_2)3/3 yy[)’yu(Zs—2)

—(s=1)(2s - 1>Za(25)|:|za(25) ——(s=D(s+2)(2s-1)(25s - 3>851Zma(23_4)aﬂyzﬂya(Zs—@
+ (s = 1)(25 = 1)0p, Y12 (4 24y 15

- %% (452 = 125 + 1) 22Dz,

(s = 2) 25 = 3)(25 — )P 0

8(s—1)(2s—1)

+

+
= &=

(s +1)(2s5 — 3) 7924 F MY pyia(2s—4)

(s—2)2s+1)(2s — 3)3/3},Zﬂ7°’(23_4)<95(a1Zaz...ah4)5},

(B30)
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which proves to be invariant under gauge transformations
of the form

Ocha2512) = OayarCasarin) (B31a)
1 p
55'/’)]0’(23) = _S—f——la (algaf"ak)ﬂ - a(alazpaz'“azs)’
(B31b)
0 - obr ! o
epla(2s=2) = 2S<2S + 1) gﬂya(Zs—Z) + ; (a1 Pa-ars_»)p
(B31c)
SpZa(2s—4) = " Ppra(as—a)- (B31d)

Let us consider the fermionic sector. We find that the
independent fermionic fields are

1

ha(2s+l) = ZDZHa(Zerl) > (B32a)
i
Ya(2s-1) = §D2Ya(2s—1)|, (B32b)
i
Ya(25-3) = 53(23 - 1)Dzza(zs—3)|, (B32c)

and their gauge transformation laws are given by

5/1h0‘<25+1) = 8(0’1052/10!3"'0’2.;+2)’ <B33a)

1 3
O1Yas-1) = 5,77 @hararyp- - (B33D)
81V a(2s-3) = O Agya(as—3)- (B33c)

The above fermionic fields correspond to the dynamical
variables of the Fang-Fronsdal spin-(s + %) model. As
follows from (B33a), (B33b) and (B33c), their gauge free-
dom is equivalent to that of the massless spin-(s + %) gauge
field. Indeed, direct calculations of the component action

give the standard massless gauge-invariant spin-(s + 1)

action S¥EY.

The component structure of the obtained supermultiplets
is a three-dimensional counterpart of so-called (reducible)
higher-spin triplet systems. In AdSp an action for bosonic
higher-spin triplets was constructed in [66] and for fer-
mionic triplets in [67,68]. Our superfield construction
provides a manifestly off-shell supersymmetric generali-
zation of these systems. It might be of interest to extend it
to AdS,.
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