
 

Lattice calculation of the pion transition form factor
with Nf = 2 + 1 Wilson quarks

Antoine Gérardin,1,2,* Harvey B. Meyer,1,3,† and Andreas Nyffeler1,‡
1Institut für Kernphysik & Clusters of Excellence PRISMA and PRISMA+,

Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
2John von Neumann Institute for Computing, DESY, Platanenallee 6, D-15738 Zeuthen, Germany

3Helmholtz Institut Mainz, D-55099 Mainz, Germany

(Received 11 April 2019; published 28 August 2019)

We present a lattice QCD calculation of the double-virtual neutral pion transition form factor, with the
goal to cover the kinematic range relevant to hadronic light-by-light scattering in the muon g − 2. Several
improvements have been made compared to our previous work. First, we take into account the effects of the
strange quark by using the Nf ¼ 2þ 1 coordinated lattice simulation gauge ensembles. Second, we have
implemented the on-shell OðaÞ improvement of the vector current to reduce the discretization effects
associated with Wilson quarks. Finally, in order to have access to a wider range of photon virtualities, we
have computed the transition form factor in a moving frame as well as in the pion rest frame. After
extrapolating the form factor to the continuum and to physical quark masses, we compare our results with
phenomenology. We extract the normalization of the form factor with a precision of 3.5% and confirm
within our uncertainty previous somewhat conflicting estimates for a low-energy constant that appears in
chiral perturbation theory for the decay π0 → γγ at the next-to-leading order. With additional input from
experiment and theory, we reproduce recent estimates for the decay width Γðπ0 → γγÞ. We also study the
asymptotic large-Q2 behavior of the transition form factor in the double-virtual case. Finally, we provide as
our main result a more precise model-independent lattice estimate of the pion-pole contribution to hadronic

light-by-light scattering in the muon g − 2: aHLbL;π
0

μ ¼ ð59.7� 3.6Þ × 10−11. Using in addition the
normalization of the form factor obtained by the PrimEx experiment, we get the lattice and data-driven

estimate aHLbL;π
0

μ ¼ ð62.3� 2.3Þ × 10−11.

DOI: 10.1103/PhysRevD.100.034520

I. INTRODUCTION

There is a long-standing discrepancy between the
Standard Model estimate of the muon anomalous magnetic
moment and its experimental determination [1]. Two new
experiments, E989 at Fermilab [2] and E34 at J-PARC [3],
plan to reduce the experimental error by a factor of 4 in the
near future. The theory error is completely dominated by
hadronic contributions: the hadronic vacuum polarization,
which enters at order α2e in the fine-structure constant αe,
and the hadronic light-by-light (HLbL) scattering at
order α3e. The former is usually obtained using dispersive
methods which rely on the eþe− → hadrons cross sections,

accessible from experiments [4,5]. Thus, a more accurate
determination essentially relies on the availability of
precise measurements. Lattice QCD is also a promising
tool and has made a lot of progress in recent years. Even if
not yet competitive with the dispersive approach, it became
a mature field where most sources of systematic uncer-
tainties have now been addressed; see e.g., Ref. [6] for a
recent review. As for the HLbL contribution, the situation is
less favorable. Until recently, all estimates for the HLbL
contribution were based on model calculations, leading to
the Glasgow consensus [7] (see also [8]), for which errors
are difficult to estimate. The single largest contribution to
aHLbLμ is given by the pion-pole contribution [9] with a
prescription for its evaluation that has been confirmed in
the recently proposed dispersive approaches to HLbL
[10,11]. Its determination relies on the knowledge of the
neutral pion transition form factor (TFF). Two groups have
also started the direct calculation of the HLbL scattering
contribution, from first principles, using lattice QCD
[12–17]. In the Mainz approach, the calculation involves
the convolution of a QED kernel function, computed
semianalytically in infinite, continuous coordinate space,
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and a QCD four-point correlation function, computed on
the lattice. The long-distance contribution is expected to be
dominated by the pion-pole contribution. However, this
region suffers from large statistical errors and is also more
affected by finite-size effects. The TFF is therefore a key
ingredient to first reduce the statistical error by constraining
the tail of the integrand at large distances and, second, to
estimate and correct for the dominant finite-size effects due
to pions.
The TFF is also interesting from a theoretical point of

view. First, in the low-energy region, it is directly related to
the Adler-Bell-Jackiw (ABJ) chiral anomaly [18,19].
Second, for large virtualities, the asymptotic behavior of
the TFF is predicted by the Brodsky-Lepage analysis and
the operator product expansion (OPE) in the single- and
double-virtual case, respectively [20–22]. Testing these
predictions is a remarkable test of QCD over a large range
of length scales.
The normalization of the TFF has been measured by the

PrimEx experiment with a precision of 1.4% [23], and this
error should be reduced by a factor of 2 by the PrimeEx-II
experiment [24,25]. At finite virtualities, experimental data
are only available in the single-virtual case and for rather
large virtualities above 0.6 GeV2 [26] but the BESIII
experiment plans to have data in the region 0.3–3 GeV2,
relevant for the muon g − 2, in the near future [27]. Finally,
no experimental data exist to date in the regime of two
virtual photons.
In our previous work [28], we have shown that lattice

QCD can provide a precise estimate of the TFF in the full
spacelike region relevant for the pion-pole contribution to
the muon (g − 2). This work is an update of our previous
lattice calculation of the neutral pion TFF [28] and includes
several major improvements. First, it is based on gauge
configurations with Nf ¼ 2þ 1 dynamical flavors, which
have been generated as part of the coordinated lattice
simulations (CLS) initiative. Second, on-shell OðaÞ-
improvement of correlation functions has been imple-
mented to reduce discretization effects when approaching
the continuum limit. Finally, in addition to the pion rest
frame, a new frame where the pion carries one unit of
momentum, typically in the range of 300–400 MeV, is
considered. This allows us to probe larger photon virtual-
ities, especially in the single-virtual case, where virtualities
as high as 1.5 GeV2 are now available. In all cases, we
probe a much wider range of virtualities than in our
previous study and have increased statistics significantly.
We also address many sources of systematic errors,
including finite-size effects, hypercubic lattice artifacts
due to the broken rotational invariance down to the
isometry group H(3) on the lattice, and disconnected
contributions.
As a benchmark of our calculation, we reproduce the

anomaly constraint in the continuum and at the physical
pion mass with a precision of 3.5%. From the pion mass

dependence of the normalization of the form factor we
extract the corresponding low-energy constant (LEC)
appearing in the chiral Lagrangian needed for the next-
to-leading order (NLO) calculation of the decay π0 → γγ in
chiral perturbation theory. We confirm previous estimates
of this and a related LEC and obtain with additional input
from theory and experiment the value Γðπ0 → γγÞ ¼
8.07ð10Þ eV in perfect agreement with recent results in
the literature [29]. The improvements of our lattice calcu-
lation allow for a model-independent determination of the
pion-pole contribution to hadronic light-by-light scattering
in the muon (g − 2), expected to be numerically dominant,
along with the η and η0 pseudoscalar mesons. Our final

lattice result reads aHLbL;π
0

μ ¼ ð59.7� 3.6Þ × 10−11 which
corresponds to a precision of 6%. With the normalization of
the form factor obtained from the measurement of the decay
width π0 → γγ by the PrimEx experiment, we get the lattice

and data-driven estimate aHLbL;π
0

μ ¼ ð62.3� 2.3Þ × 10−11

with a precision of 4%.
This paper is organized as follows. In Sec. II, we describe

our methodology to extract the pion TFF. In particular, we
explain how OðaÞ-improvement is implemented. In
Sec. III, we present our results, extrapolated to the physical
point, and discuss potential sources of systematic errors.
Then, in Sec. IV, after comparing our data with various
phenomenological models, we use our result to compute
relevant phenomenological quantities, including the pion
decay π0 → γγ and the pion-pole contribution in the
hadronic light-by-light scattering contribution to the muon
(g − 2). We conclude in Sec. V with a summary of our
work and present some possible improvements for future
calculations.

II. METHODOLOGY

A. Extraction of the transition form factor

In this section, we use the same notations as in Ref. [28]
and recall only the main equations. In Minkowski space-
time, the TFF describing the interaction between a neutral
pion with momentum p and two off-shell photons with
momenta q1 and q2 is defined via the following matrix
element:

Mμνðp; q1Þ ¼ i
Z

d4xeiq1·xhΩjTfJμðxÞJνð0Þgjπ0ðpÞi

¼ ϵμναβqα1q
β
2F π0γ�γ� ðq21; q22Þ; ð1Þ

where Jμ is the hadronic component of the electromagnetic
current, p ¼ q1 þ q2, and ϵμναβ is the fully antisymmetric
tensor with1 ϵ0123 ¼ 1. In Euclidean spacetime, the TFF is
obtained after analytical continuation. The latter is valid for

1Latin indices run from 1 to 3 and Greek indices run from
0 to 3.
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q21;2 < s0, with s0 the threshold for hadron production in the
vector channel [30,31],2 and reads

Mμν¼ðin0ÞME
μν;

ME
μν≡−

Z
dτeω1τ

Z
d3ze−iq⃗1 z⃗h0jTfJμðz⃗;τÞJνð0⃗;0ÞgjπðpÞi;

ð2Þ

where n0 denotes the number of temporal indices carried by
the two vector currents, ω1 is a real free parameter such that
q1 ¼ ðω1; q⃗1Þ, and the superscript E stands for Euclidean. It
is convenient to write Eq. (2) as

ME
μν ¼

2Eπ

Zπ

Z
∞

−∞
dτ eω1τÃμνðτÞ; ð3Þ

where Eπ is the pion energy, Zπ ¼ h0jPð0Þjπi is the overlap
of the pseudoscalar operator with the pion state,3 and ÃμνðτÞ
is related to the three-point correlation function computed
on the lattice,

ÃμνðτÞ≡ lim
tπ→þ∞

eEπðtf−t0ÞCð3Þ
μν ðτ; tπÞ: ð4Þ

The three-point correlation function is defined as

Cð3Þ
μν ðτ; tπÞ≡ a6

X
x⃗;z⃗

hJμðz⃗; tiÞJνð0⃗; tfÞP†ðx⃗; t0Þieip⃗ x⃗e−iq⃗1 z⃗;

ð5Þ

where τ ¼ ti − tf is the time separation between the two
vector currents and tπ ¼ minðtf − t0; ti − t0Þ is the minimal
time separation between the pion interpolating operator and
the two vector currents. Finally, even if not explicitly
written, the functions ÃμνðτÞ, as well as the three-point
correlation functions, depend on the photon spatial
momenta q⃗1 and q⃗2.

B. Orbits and kinematical reach

The TFF depends on the two virtualities q21 and q22.
Given that we use periodic boundary conditions in space,
the kinematical range accessible on the lattice can be
parametrized by

q21 ¼ω2
1− q⃗21

q22 ¼ ðEπ −ω1Þ2 − ðp⃗− q⃗1Þ2
with q⃗1 ¼

2π

L
n⃗; n⃗∈Z3:

ð6Þ

Let the spatial momentum p⃗ of the pion be fixed. For a
given q⃗1, the second photon momentum q⃗2 ¼ p⃗ − q⃗1 is
fully determined and the system (6) describes a single curve
in the q21; q

2
2 plane, parametrized by ω1. If we now consider

TABLE I. Parameters of the simulations: the bare coupling β ¼ 6=g20, the lattice resolution, the lattice spacing a in physical units
extracted from [32], the light and strange hopping parameters κl and κs, the pion mass mπ , the ground state vector mass, the number of
gauge configurations, and the number of sources per configuration for the three-point correlation function. Ensembles with an asterisk
are not included in the final analysis but used to control finite-size effects.

Id β L3 × T a [fm] κl κs mπ [MeV] mV [MeV] mπL #confs #src

H101 3.40 323 × 96 0.08636 0.136760 0.13675962 416(6) 844(11) 5.8 1000 10
H102 323 × 96 0.136865 0.13654934 354(5) 832(09) 5.0 1900 10
H105* 323 × 96 0.136970 0.13634079 281(4) 759(18) 3.9 2800 10
N101 483 × 128 0.136970 0.13634079 280(4) 774(08) 5.9 1600 10
C101 483 × 96 0.137030 0.13622204 224(3) 741(10) 4.7 2200 15

S400 3.46 323 × 128 0.07634 0.136984 0.13670239 349(5) 821(09) 4.3 1700 20
N401 483 × 128 0.137062 0.13654808 286(4) 793(09) 5.3 950 10

H200* 3.55 323 × 96 0.06426 0.137000 0.137000 419(6) 875(17) 4.4 2000 10
N202 483 × 128 0.137000 0.137000 411(5) 859(10) 6.4 900 5
N203 483 × 128 0.137080 0.13684028 346(5) 830(09) 5.4 1500 10
N200 483 × 128 0.137140 0.13672086 284(3) 805(13) 4.4 1700 10
D200 643 × 128 0.137200 0.13660175 200(3) 740(14) 4.2 1100 30

N300 3.70 483 × 128 0.04981 0.137000 0.137000 422(5) 897(12) 5.1 1200 5
N302 483 × 128 0.137064 0.13687218 343(5) 856(16) 4.2 1100 10
J303 643 × 192 0.137123 0.13675466 258(3) 796(09) 4.2 650 10

2In the isovector case, the threshold s0 is given by 4m2
π or the

square ρ meson mass, depending on how light the quarks are.
3Fixing the phase of the pion state via the relation

h0jAa
μðxÞjπb; p⃗i ¼ iFπpμδ

abe−ip·x, with Aa
μ ¼ ψ̄γμγ5

τa

2
ψ the iso-

vector axial current, the partially conserved axial current (PCAC)
relation implies that the overlap Zπ ¼ −

ffiffiffi
2

p
im2

πFπ=m of the
operator P ¼ ψ̄γ5

τ3ffiffi
2

p ψ is purely imaginary. Here Fπ ≃ 92 MeV
is the pion decay constant and m is the average up/down quark
mass.
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a fixed value of jq⃗1j, there is a finite number of realizations
of q⃗1, forming an orbit or a set of orbits4 on the reciprocal
cubic lattice. To this set of q⃗1-values correspond in general
several values of jq⃗2j2, each associated with a separate
curve in the ðq21; q22Þ plane. In our calculation, the three-
point function evaluations obtained for a given set of
ðjq⃗1j; jq⃗2jÞ are averaged over in order to increase the
statistical precision. The presence of hypercubic artifacts,
due to the breakdown of rotational symmetry on the lattice,
is discussed in Sec. III D 1.
In Ref. [28], we chose the pion to be at rest, and the

corresponding orbits for the ensemble N200, whose
parameters are given in Table I, are shown in the left panel
of Fig. 1. This setup is well suited to probe large virtualities
in the double-virtual case, the kinematical region where no
experimental data are available. However, because of their
large eccentricity, these orbits are limited to rather low
virtualities in the single-virtual case. Here we therefore
include a second frame where the pion has one unit of
momentum in the z-direction. In this case, we can access
larger virtualities for the single-virtual form factor, as can
be seen in the right panel of Fig. 1. In principle, even larger
virtualities could be reached by increasing the pion
momentum, but the signal-to-noise ratio would deteriorate
rapidly. Moreover, since within our computational setup the
pion interpolating operator is implemented using a sequen-
tial quark propagator, every new pion momentum p⃗
requires a new inversion of the Dirac operator, the most
expensive part of the numerical simulation.

C. Decomposition of the integrand ÃμνðτÞ
The main quantity of interest in the lattice calculation is

the function ÃμνðτÞ defined through Eq. (4) and directly

related to the three-point correlation function. Starting from
Eq. (3), which holds for all real values of ω1 such that
q21;2 < s0, we consider the analytic continuation for com-
plex values of ω1 ¼ iω̃,

ME
μν ¼

2Eπ

Zπ

Z
∞

−∞
dτ eiω̃τÃμνðτÞ: ð7Þ

Again, we do not write the dependence on the spatial
momenta explicitly: ME

μν is a function of q1 and q2 and
depends implicitly on ω̃. Relation (7) is valid as long as
ÃμνðτÞ falls off exponentially for τ → −∞.5 If Eπ <

ffiffiffiffiffi
s0

p
,

which holds in all cases considered in this paper, the
relation is guaranteed to hold for all values of ðq⃗1; q⃗2Þ. The
inversion of the Fourier transform then yields

ÃμνðτÞ ¼
Zπ

4πEπ

Z
∞

−∞
dω̃ME

μνe−iω̃τ: ð8Þ

From Eq. (1), we have Mμν ¼ qμνF π0γ�γ� , with

qμν ≡ ϵμναβqα1q
β
2 ¼ Pμνω1 þQμν; ð9Þ

where the coefficients Pμν and Qμν do not depend on ω1.
Thus, we can write

ÃμνðτÞ ¼ −iQE
μνÃ

ð1ÞðτÞ þ PE
μν
dÃð1Þ

dτ
ðτÞ; ð10Þ

with PE
μν ¼ iPμν and QE

μν ¼ ð−iÞn0Qμν and where all the
information is encoded into a single rotationally invariant
function Ãð1Þ defined through

FIG. 1. Kinematic reach in the photon virtualities (q21; q
2
2) for the ensemble N200; see Table I for its parameters. Left: Pion rest frame.

Right: Moving frame where the pion has one unit of momentum in the z-direction p⃗ ¼ ð2π=LÞẑ.

4For instance, the vectors n⃗ ¼ ð3; 0; 0Þ and n⃗ ¼ ð2; 2; 1Þ,
which have the same norm, do not belong to the same lattice
orbit.

5For τ → þ∞, an exponential falloff is guaranteed, irrespec-
tive of the kinematics.
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Ãð1ÞðτÞ ¼ iZπ

4πEπ

Z
∞

−∞
dω̃F π0γ�γ� ðq21; q22Þe−iw̃τ: ð11Þ

In Eq. (11) it is understood that the arguments of the TFF
are given by Eq. (6) with ω1 set to iω̃. In particular, the
integral transform does not keep either virtuality fixed and
q22 even carries an imaginary part.
It is easiest to interpret the components of ÃμνðτÞ in a

spatially covariant notation using the Euclidean metric.
With ϵ⃗ and ϵ⃗0 two unit vectors, we can write

Ã0kðτÞ ¼ ðq⃗1 × p⃗ÞkÃð1ÞðτÞ; ð12aÞ

ϵ0kÃklðτÞϵl ¼−iðϵ⃗0× ϵ⃗Þ ·
�
q⃗1EπÃ

ð1ÞðτÞþ p⃗
dÃð1Þ

dτ

�
: ð12bÞ

These are the master relations expressing ÃμνðτÞ in terms of
an integral transform of the pion transition form factor. In
the pion rest frame, ÃklðτÞ measures the transform Ã1ðτÞ of
the transition form factor. At nonzero p⃗, ÃklðτÞ measures a
linear combination of Ã1ðτÞ and its temporal derivative; in
addition, the components Ã0kðτÞ are proportional to Ã1ðτÞ.
For convenience, with a pion carrying one unit of momen-
tum in the z-direction, we use the notation Ãð2ÞðτÞ to write

Ã12ðτÞ≡ −iEπpzÃ
ð2ÞðτÞ; p⃗ ¼ ð2π=LÞẑ: ð13Þ

We remark that the matrix elements Mμν, being propor-
tional to the TFF, are real. Therefore, ME

kl are real and ME
0k

are imaginary. From Eq. (3), we conclude that Ãkl are
imaginary and Ã0k are real.

6 Thus, the two scalar functions

Ãð1ÞðτÞ and Ãð2ÞðτÞ are real. For the vector meson

dominance (VMD) and the lowest meson dominance
(LMD) [33,34] models, explicit expressions for ÃμνðτÞ
are given in the Appendix A.
Finally, from Eqs. (8) and (9), we deduce the symmetry

Ãμνðτ; q⃗1; q⃗2Þ ¼ Ãνμð−τ; q⃗2; q⃗1Þe−Eπτ; ð14Þ

which corresponds to the Bose symmetry of the two photons
coupling to the pion. Here we have written explicitly the
dependence of ÃμνðτÞ on the spatial momenta. Equivalently,
we have Ãð1Þðτ; q⃗1; q⃗2Þ ¼ Ãð1Þð−τ; q⃗2; q⃗1Þe−Eπτ. The rela-
tion (14) can be checked explicitly in the case of the VMD
and LMD models using the expressions provided in
Appendix A. These symmetries are exploited in the analysis
of the numerical data.

D. Numerical integration

In the moving frame with p⃗ ¼ ð2π=LÞẑ, both functions
Ãð1ÞðτÞ and Ãð2ÞðτÞ are plotted in Fig. 2. The function
Ãð1ÞðτÞ is always positive with a cusp at τ ¼ 0, related to
the OPE at short distances, as discussed in Ref. [28]. On the
contrary, the sign of Ãð2ÞðτÞ changes at τ ¼ 0 where the
function is discontinuous. Therefore, the numerical inte-
gration is more challenging since large cancellations can
occur in applying Eq. (3) to obtain the TFF. In particular, a
naive replacement of the integral by a sum over discrete τ
(trapezoidal rule) leads to noticeable numerical errors. A
Simpson integration, however, reduces significantly this
source of error as can be seen in Fig. 3: here, the results
correspond to fictitious data where the three-point corre-
lation function is generated assuming an LMD model with
parameters obtained from a fit to the ensemble N200. When
p⃗ ¼ 0⃗, the function Ãð1ÞðτÞ is always positive and we do not

FIG. 2. The functions Ãð1ÞðτÞ and Ãð2ÞðτÞ for two different orbits with ðjq⃗1j2; jq⃗2j2Þ ¼ ð2πL Þ2ð3; 2Þ and jp⃗j ¼ 2π=L for ensemble D200,
whose parameters are given in Table I. Lattice data are in black. The blue and red lines correspond to a fit of the tail using the VMD and
LMD models, respectively, as explained in Sec. II D.

6Remember that the pion overlap factor Zπ is imaginary.
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observe any significant difference between the two inte-
gration schemes.
Due to the finite time extent of the lattice, and because

the signal deteriorates at large time separations τ, the
integration in Eq. (3) cannot be performed up to infinity.
However, the VMD model is expected to give a good
description of the data in a wide τ window, as shown in
Appendix A. Assuming a VMD parametrization, the
functions Ãð1ÞðτÞ and Ãð2ÞðτÞ, which depend on two
parameters α and MV , can be computed explicitly from
Eqs. (11), (12a), and (12b), and the results are given in
Appendix A. As in Ref. [28], we start by fitting our data
using the VMD parametrization at large τ where the
normalization of the TFF, α, is treated as a free fit
parameter. The vector meson mass MV is set to the value
extracted from the vector two-point correlation function
evaluated on the same ensembles but with higher statistics.
This fit is a global fit where all momenta and both Ãð1ÞðτÞ
and Ãð2ÞðτÞ are fitted simultaneously. Then, we integrate
over lattice data up to some cutoff τc and use the fit to
evaluate the remaining part of the integral with jτj > τc.
The value of τc ≳ 1.5 fm is chosen sufficiently large such
that the two-point vector correlation function is dominated
by the ground state. In practice, we only include points
where more than 80% of the integrand comes from lattice
data. We have also repeated the analysis with the LMD
model, and the difference between the VMD and LMD
models is used to estimate the systematic uncertainty
associated with the treatment of the tail. This systematic

error is always smaller than the statistical error. Typical fits
for our lightest ensemble, D200, are depicted in Fig. 2.

E. Lattice ensembles, correlation functions,
and OðaÞ-improvement

This work is based on a subset of the Nf ¼ 2þ 1 CLS
ensembles [35] generated using the OPENQCD suite [36].
They use OðaÞ-improved Wilson fermions, with the non-
perturbative coefficient cSW determined in Ref. [37], and
tree-level Oða2Þ-improved Lüscher-Weisz action for the
gauge field. To avoid the freezing of the topological charge
when approaching the continuum limit [36,38], CLS
ensembles use periodic boundary conditions in space
and open boundary conditions in time. The parameters
of the simulations are summarized in Table I. We use four
different lattice spacings in the range 0.050–0.086 fm and
several pion masses down to 200 MeV to perform the
continuum and chiral extrapolations. For the latter, the
ensembles considered here have been generated keeping
the average bare quark mass mav

q ¼ ð2ml þmsÞ=3 fixed
and using two degenerate light quarksmu ¼ md ¼ ml. This
chiral trajectory has the advantage of automatically keeping
the OðaÞ-improved bare coupling g̃0 constant [39]. All our
ensembles included in the final analysis satisfy mπL > 4
such that finite-size effects are expected to be small. The
scale setting was performed in Ref. [32] with a precision of
1% using a linear combination of the pion and kaon decay
constants. Statistical errors are estimated using the jack-
knife procedure, and we propagate errors associated with

FIG. 3. Numerical integration for data generated using a LMD model with lattice parameters close to N200. Blue (red) points
correspond to the transition form factor F π0γ�γ� ð−Q2

1;−Q2
2Þ calculated using Ãð1ÞðτÞ (Ãð2ÞðτÞ), respectively. The exact result is

represented by the black line. Top: Using a trapezoidal integration rule. Bottom: Using a Simpson integration rule.
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the renormalization constant of the vector current, the scale
setting, the pion mass mπ, and decay constant fπ in the
chiral extrapolations.
To reduce discretization effects and obtain a shorter

continuum extrapolation than in [28], on-shell OðaÞ-
improvement has been implemented. In addition to the
improvement of the action, it requires the implementation
of the renormalized OðaÞ-improved vector current. Two
discretizations are used, the local (l) and the point-split (c)
lattice vector currents,

Vl;a
μ ðxÞ ¼ ψ̄ðxÞγμ

λa

2
ψðxÞ; ð15aÞ

Vc;a
μ ðxÞ ¼ 1

2

�
ψ̄ðxþ aμ̂Þð1þ γμÞU†

μðxÞ λ
a

2
ψðxÞ

− ψ̄ðxÞð1 − γμÞUμðxÞ
λa

2
ψðxþ aμ̂Þ

�
; ð15bÞ

where λa are the eight Gell-Mann matrices. With the tensor
current defined as Σa

μνðxÞ ¼ − 1
2
ψ̄ðxÞ½γμ; γν� λa2 ψðxÞ, the

improved vector current is given by

VI
μðxÞ ¼ VμðxÞ þ acVðg0Þ∂νΣμνðxÞ; ð16Þ

where the coefficient cV differs for the local and point-split
vector currents and has been determined nonperturbatively
in Ref. [40]. The point-split vector current is conserved
on the lattice and does not need to be further renormalized.
For the local vector current, the renormalization pattern
reads [41]

trðλVμÞR ¼ ZVðg̃0Þ
�
ð1þ 3b̄Vðg0Þamav

q ÞtrðλVI
μÞ

þ 1

2
bVðg0Þtrðfλ; aMqgVI

μÞ

þ fVðg0ÞtrðλaMqÞtrðVI
μÞ
�
; ð17Þ

where ZV, bV, and b̄V have been evaluated nonperturba-
tively in Ref. [40] and Mq ¼ diagðml;ml; msÞ is the bare
(subtracted) quark mass matrix. The renormalized coupling
is given by g̃20 ¼ g20ð1þ bgamav

q Þ. The coefficient fV starts
at order Oðg6Þ in perturbation theory and is neglected
here. For the electromagnetic current Jμ with up, down,
and strange quarks, it is convenient to use the isospin
decomposition

Jμ ¼ V̂3
μ þ

1ffiffiffi
3

p V̂8
μ; ð18Þ

where Va
μ ¼ ψ̄γμ

λa

2
ψ is the octet of vector currents and the

hat means that the current is both improved and renormal-
ized. In particular, Eq. (17) reduces to

V̂3
μ ¼ Z3V

3;I
μ ; ð19aÞ

V̂8
μ ¼ Z8V

8;I
μ þ Z80V

0;I
μ ; ð19bÞ

with V0;I
μ ¼ 1

2
ψ̄γμψ the flavor-singlet current and

Z3 ¼ ZV½1þ 3b̄Vamav
q þ bVaml�; ð20aÞ

Z8 ¼ ZV

�
1þ 3b̄Vamav

q þ bV
3
aðml þ 2msÞ

�
; ð20bÞ

Z80 ¼ ZV

�
1

3
bV þ fV

�
2ffiffiffi
3

p aðml −msÞ: ð20cÞ

We use PðxÞ ¼ ð1= ffiffiffi
2

p ÞðūðxÞγ5uðxÞ − d̄ðxÞγ5dðxÞÞ as an
interpolating operator for the neutral pion. The renormal-
ized and OðaÞ-improved three-point correlation function
appearing in Eq. (5), obtained with two local vector
currents, reads

hJlμðzÞJlνðyÞP†ðxÞi¼
ffiffiffi
2

p

3
Z3ðZ8þ

ffiffiffi
3

p
Z80ÞReTr½Glðx;zÞγμGlðz;yÞγνGlðy;xÞγ5�

−
ffiffiffi
2

p

6
Z3

�
ðZ8þ

ffiffiffi
3

p
Z80ÞTr½Glðy;yÞγν�−

�
Z8−

ffiffiffi
3

p

2
Z80

�
Tr½Gsðy;yÞγν�

�
Tr½Glðz;xÞγ5Glðx;zÞγμ�

−
ffiffiffi
2

p

6
Z3

�
ðZ8þ

ffiffiffi
3

p
Z80ÞTr½Glðz;zÞγμ�−

�
Z8−

ffiffiffi
3

p

2
Z80

�
Tr½Gsðz;zÞγμ�

�
Tr½Glðy;xÞγ5Glðx;yÞγν�; ð21Þ

where the first line corresponds to the connected part and
the second and third lines to the disconnected parts. We did
not explicitly write the improvement term proportional to
cV. Here, Gl and Gs denote the light and strange quark

propagators, respectively. If fV is neglected, the connected
part renormalizes proportionally to Z2

3, since Z8þ
ffiffiffi
3

p
Z80¼

Z3−2ZVfVaðms−mlÞ. Similarly, with one local and one
conserved vector currents, one finds
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hJlμðzÞJcνðyÞP†ðxÞi ¼
ffiffiffi
2

p

6
ðZ3 þ Z8 þ

ffiffiffi
3

p
Z80ÞReTr½Glðx; zÞγμGlðz; y0ÞVðyÞ

ν ðy0; y00ÞGlðy00; xÞγ5�

−
ffiffiffi
2

p

6

�
ðZ8 þ

ffiffiffi
3

p
Z80ÞTr½Glðz; zÞγμ� −

�
Z8 −

ffiffiffi
3

p

2
Z80

�
Tr½Gsðz; zÞγμ�

�

× Tr½Glðy00; xÞγ5Glðx; y0ÞVðyÞ
ν ðy0; y00Þ�

−
ffiffiffi
2

p

6
Z3½Tr½Glðy00; y0ÞVðyÞ

ν ðy0; y00Þ� − Tr½Gsðy00; y0ÞVðyÞ
ν ðy0; y00Þ��Tr½Glðz; xÞγ5Glðx; zÞγμ�; ð22Þ

where a summation over y0 and y00 is understood and
where

VðyÞ
μ ðy0; y00ÞGðy00; xÞ

¼ 1

2
ðδy0;yþaμ̂½1þ γμ�U†

μðyÞGðy; xÞ
− δy0;y½1 − γμ�UμðyÞGðyþ aμ̂; xÞÞ: ð23Þ

The lattice quark propagator is γ5-Hermitian, G† ¼ γ5Gγ5,

and the linear operator VðyÞ
μ is anti–γ5-Hermitian, VðyÞ†

μ ¼
−γ5V

ðyÞ
μ γ5.

The three-point correlation function is computed using
the same technique as in Ref. [28]. A point source is created
on the time slice y0 with a random value of y⃗ and a
sequential propagator is computed at x0, for two values of
the pion spatial momenta p⃗ ¼ 0⃗ and p⃗ ¼ ð2π=LÞẑ. With
our computational setup we obtain all values of the photon
momenta q⃗1 and q⃗2 such that q⃗1 þ q⃗2 ¼ p⃗ without any new
inversion of the Dirac operator. The number of sources per
gauge configuration is given in Table I, and the location of
y0 is discussed in Sec. III A. For all ensembles, we are
able to probe photon virtualities up to 3 GeV2 in the
double-virtual case and up to 1.5 GeV2 in the single-virtual
case. This is a major improvement compared to our
previous study, where we were limited to virtualities below
0.5 GeV2 in the single-virtual case.
In Eq. (16), we have some freedom in the choice of the

lattice derivative: different definitions differ byOðaÞ effects
and therefore contribute only to order a2 in correlation
functions. We have considered the symmetric, the back-
ward, and the forward derivatives, respectively, given by

∂s
μfðxÞ ¼

fðxþ aÞ − fðx − aÞ
2a

;

∂b
μfðxÞ ¼

fðxÞ − fðx − aÞ
a

;

∂f
μfðxÞ ¼ fðxþ aÞ − fðxÞ

a
: ð24Þ

For the vector current located at the source, we choose the
forward derivative ∂f

μfðxÞ, since a symmetric derivative
would require more inversions of the Dirac operator. For

the vector current located at the sink, we have compared the
three different discretizations. We define the ratio

ΔÃð1ÞðτÞ ¼ jÃð1Þ;lcðτÞ − Ãð1Þ;llðτÞj
δÃð1Þ;lcðτÞ ; ð25Þ

where Ãð1Þ;lcðτÞ and Ãð1Þ;llðτÞ, defined in Eq. (3), are,
respectively, computed using one or two local vector
currents and δÃð1Þ;lcðτÞ is the statistical error associated
with Ãð1Þ;lcðτÞ. In the left panel of Fig. 4, this ratio is plotted
with and without improvement, using different discretiza-
tions of the lattice derivative. After OðaÞ-improvement, the
discrepancy between both discretizations is reduced as
expected and the symmetric derivative turns out to be the
best choice.
Finally, we note that on-shell improvement of correlation

functions is not sufficient for τ ¼ OðaÞ. For τ ¼ �a, we do
not use the symmetric derivative but the forward and
backward derivatives, respectively, to avoid using the
correlation function at τ ¼ 0where Að2ÞðτÞ is discontinuous
[see right panel of Fig. 2)]. In the right panel of Fig. 4 we
plot ÃðτÞ using both discretizations [ÃllðτÞ and ÃlcðτÞ] with
and without improvement of the vector currents using the
symmetric derivative. We observe that after improvement,
with the exception of τ ¼ 0, the two discretizations are in
excellent agreement with each other.

III. RESULTS

A. Two-point pseudoscalar correlation function

The pion energy Eπðp⃗Þ and its overlap Zπ with our
interpolating operator are extracted from the pseudoscalar
two-point correlation function. In the limit of large source-
sink time separation, and with both source and sink far from
the boundary, the correlation function behaves as

CPPðx0; y0; p⃗Þ ¼ a3
X
x⃗

hPðx⃗; x0ÞPð0⃗; y0Þie−ip⃗ x⃗

⟶
½jx0−y0j→∞�

Z2
π

2Eπðp⃗Þ
e−Eπðp⃗Þðx0−y0Þ: ð26Þ

We want to extract Eπðp⃗Þ and Zπ in a region where the
excited-state contribution and boundary effects are both
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small. We therefore place the source far from the boundary
located at x0 ¼ 0. In Fig. 5, we show the result for the
effective mass defined by

aEeff
π ðt; p⃗Þ ¼ − log

�
CPPðx0 þ a; y0; p⃗Þ
CPPðx0; y0; p⃗Þ

�
: ð27Þ

For large source-sink time separation, we observe a plateau
up to some time where the sink starts to be close to the
boundary located at x0 ¼ T − a. In the case of open
boundary conditions in time, and including only the first
excited state, we first fit our data using the Ansatz

CPPðx0;y0;p⃗Þ¼
Z2
π

2Eπðp⃗Þ
e−Eπðp⃗Þðx0−y0Þþ Z02

π

2E0
πðp⃗Þ

e−E
0
πðp⃗Þðx0−y0Þ

þAðp⃗Þe−Eπðp⃗Þðx0−y0Þðe−E2πy0þe−E2πðT−x0ÞÞ;
ð28Þ

where E0
πðp⃗Þ and Z0

π are the energy and the overlap of the
first excited state with momentum p⃗ in the pseudoscalar
channel and the third term includes the first boundary
excited state: a finite volume two-pion state with vanishing
momentum. In the fits, we assume that E2π ¼ 2Eπð0⃗Þ.
Explicitly, denoting jBi the boundary state, the prefactor
Aðp⃗Þ is given by

FIG. 5. Effective masses given by Eq. (27) for the ensembles C101 (left panel) and D200 (right panel) with t ¼ x0 − y0. Black and
blue points correspond, respectively, to jp⃗j ¼ 0 and jp⃗j ¼ 2π=L. The red lines correspond to the effective masses obtained from the fit
using Eq. (28). The vertical lines indicate the plateau region and the dashed horizontal lines the extracted pion energy and its error.

FIG. 4. Left: Influence of the discretization of the lattice derivative used to implement OðaÞ-improvement on the function Að1ÞðτÞ.
Black points correspond to ΔÃð1ÞðτÞ before improvement. Red, blue, and green points correspond to ΔÃð1ÞðτÞ after improvement using,
respectively, the symmetric, forward, or backward derivative at the sink. Right: The function Að1ÞðτÞ for different discretizations of the
vector current. Black and blue (red and orange) points correspond to local-local and local-conserved correlation functions without (with)
improvement of the vector currents using the symmetric lattice derivative at the sink. Results correspond to the ensemble H102.
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Aðp⃗Þ ¼ h2πjBi
h0jBi

h0jPjπihπjPj2πi
2E2π2Eπ

: ð29Þ

To reduce the number of fit parameters, both momenta are
fitted simultaneously. In a second step, the data are fitted
using a single-exponential ansatz in the region where
excited state contributions are small compared to the
statistical precision, and the results are given in Table II.
We note that the pion energies are compatible with the
relativistic dispersion relation. Finally, we have checked
that the source is sufficiently far from the boundary such
that the overlaps are correctly extracted: the last term in
Eq. (28) contributes to Zπ as less than half its statistical
error. The same value of y0 is used to compute the three-
point correlation function. The statistical error on the ratio
Eπ=Zπ in Eq. (3) lies between 0.5% and 0.8%.
The chiral extrapolation of the TFF is done using the

dimensionless parameter ỹ ¼ m2
π=ð16π2f2πÞ. In order to

propagate the error onmπ and fπ , we also compute the pion
decay constant on the same gauge configurations for each
ensemble. The bare matrix element of interest is extracted
from

Rðx0; y0Þ ¼
2

iZπ
CI
APðx0; y0ÞeEπð0⃗Þðx0−y0Þ; ð30Þ

where the axial-pseudoscalar two-point correlation func-
tion is given by

CI
APðx0; y0Þ ¼ a3

X
x⃗

hAI
0ðx⃗; x0ÞPð0⃗; y0Þi: ð31Þ

The OðaÞ-improved axial current reads AI
0ðxÞ ¼ A0ðxÞþ

cA∂ðsÞ
0 PðxÞ where the improvement parameter cA has been

determined nonperturbatively in Ref. [42]. The ratio
Rðx0; y0Þ is fitted using the Ansatz

Rðx0; y0Þ ¼ Rplateau þ R1e−E
0
πð0⃗Þðx0−y0Þ

þ R2ðy0Þe−ðE2π−Eπð0⃗ÞÞðT−x0Þ: ð32Þ

From this bare matrix element, the renormalized and
OðaÞ-improved pseudoscalar decay constant is given by7

fπða; ỹÞ ¼ ZAðg̃0Þð1þ 3b̄Aamav
q þ bAamlÞRplateau; ð33Þ

where ZA is the renormalization factor of the axial current
and bA, b̄A are improvement parameters [43,44]. The
results are summarized in Table II. In practice, we correct
these results for finite-size effects (FSE) using chiral
perturbation theory (χPT) as described in Ref. [45].
These corrections are small, and we find that they correctly
account for FSE on the ensembles H105/N101, which were
generated using the same action parameters but different
lattice volumes. However, the FSE correction fails on
ensemble H200, which corresponds to our smallest volume
(L ≈ 2 fm) and was not used to extract the pion TFF.
As a consistency check, we have performed an extrapo-

lation to the physical point assuming the functional form

fπða; ỹÞ ¼ fπð0; ỹphysÞ
�
1þ l̄4ðỹ − ỹphysÞ þ 2ỹ ln

mexp
π

mπ

þ ϵfπðỹ2 − ỹ2physÞ
�
þ δfπ

�
a

aβ¼3.55

�
2

; ð34Þ

TABLE II. Ground state energies Eπðp⃗Þ for the two values of the pion momentum and overlap factors Zπ for each lattice ensemble. We
also give the PCAC mass and the pion decay constant in lattice units without finite-size effect correction.

Id iZπ aEπð0⃗Þ aEπðp⃗Þ amPCAC a
ffiffiffi
2

p
fπ

H101 0.2139(13) 0.1821(07) 0.2671(07) 0.009177(45) 0.06458(29)
H102 0.2086(19) 0.1550(09) 0.2492(09) 0.006499(51) 0.06151(27)
H105 0.2004(23) 0.1230(12) 0.2316(11) 0.003985(57) 0.05802(39)
N101 0.2011(15) 0.1224(05) 0.1792(05) 0.003990(32) 0.05832(30)
C101 0.1947(11) 0.0982(06) 0.1629(05) 0.002435(29) 0.05534(37)

S400 0.1606(16) 0.1352(08) 0.2387(09) 0.005684(27) 0.05463(21)
N401 0.1578(10) 0.1106(05) 0.1714(05) 0.003770(28) 0.05327(17)

H200 0.1160(12) 0.1365(07) 0.2382(10) 0.006863(24) 0.04805(27)
N202 0.1155(10) 0.1337(05) 0.1870(06) 0.006866(15) 0.04884(18)
N203 0.1135(08) 0.1127(04) 0.1728(05) 0.004749(17) 0.04699(16)
N200 0.1094(08) 0.0924(05) 0.1599(05) 0.003145(15) 0.04454(18)
D200 0.1044(08) 0.0650(04) 0.1173(05) 0.001554(12) 0.04259(17)

N300 0.0700(07) 0.1066(04) 0.1685(06) 0.005507(09) 0.03811(14)
N302 0.0646(08) 0.0867(05) 0.1556(09) 0.003725(10) 0.03570(22)
J303 0.0632(05) 0.0652(02) 0.1177(04) 0.002056(07) 0.03412(15)

7Within our conventions, the physical value of fπ is Fπ ¼
92.4 MeV. We distinguish between F the pion decay constant in
the chiral limit, Fπ the pion decay constant at physical pion mass,
and fπ the pion decay constant at unphysical pion mass.
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inspired from NLO χPT [46] and where we allow for a
quadratic dependence in ỹ. The four fit parameters are
fπð0; ỹphysÞ, l̄4, ϵfπ , and δfπ . Our result at the physical point
fπ¼92.1ð1.8ÞMeV and the value l̄4 ¼ 3.56ð44Þstatð80Þsyst
turns out to be in good agreement with the Flavour Lattice
Averaging Group (FLAG) average [47].

B. The transition form factor

The results for the TFF at our lightest pion mass,
corresponding to ensemble D200, are plotted in Fig. 6
for two different kinematics: the single-virtual case and the
double-virtual case with Q2

1 ¼ Q2
2. Black and blue points

correspond to the TFF obtained in the pion rest frame and
moving frame, respectively.
In the pion rest frame, results obtained using Að1ÞðτÞ are

statistically more precise when both photons carry the same
virtuality (right panel of Fig. 6). In this case ω1 ¼ mπ=2
and the full integrand in Eq. (3) is symmetric. In the single-
virtual case, ω1 takes larger values and the integral probes
further the tail of the function Ãð1ÞðτÞ, where the noise over
signal ratio increases rapidly with τ: the signal is lost for
virtualities above 0.5 GeV2. In the moving frame, the
situation is similar for Ãð1ÞðτÞ (even if the integrand is
not exactly symmetric in the double-virtual case, unless
jq⃗1j2 ≈ jq⃗2j2). For Ãð2ÞðτÞ, since the sign of the function
changes at τ ¼ 0, the situation is the opposite: results are
more precise in the single-virtual case where there are fewer
cancellations between positive and negative contributions
and we can reach higher virtualities (see right panel
of Fig. 2).
We also point out that results obtained in both frames are

fully consistent, confirming that sources of breaking the
Lorentz invariance in the lattice calculation are small. In
particular, since the two frames are affected by different

sources of finite volume effects, it is a first hint that FSE are
small. A more detailed study of FSE is done in Sec. III D 2.

C. Parametrization of F π0γ�γ� and extrapolation
to the physical point

In this section we propose a method to extract the TFF
over the whole kinematical range, and at the physical point,
based on its analytical properties. We introduce the con-
formal variables z1 and z2 defined through [48]

zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þQ2

k

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tc − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þQ2

k

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

tc − t0
p ; k ¼ 1; 2; ð35Þ

which map the branch cut, starting at tc ¼ 4m2
π , onto the

unit circle jzkj ¼ 1. Here, t0 is a free parameter representing
the virtuality mapping to zk ¼ 0. Since the TFF is analytic
for jzkj < 1, one can write

F π0γ�γ� ð−Q2
1;−Q2

2Þ ¼
X∞
n;m¼0

cnmzn1z
m
2 ; ð36Þ

where the coefficients cnm ¼ cmn are symmetric due to the
Bose symmetry. Since jzkj < 1, one can expect a fast
convergence of the sum, where only a few terms with
n;m ≤ N are needed at a given accuracy. The optimal
choice for t0, which reduces the maximum value of jzkj in
the range ½0; Q2

max�, is given by

t0 ¼ tc
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tc

q �
: ð37Þ

This maximum is reached at zk ¼ 0 and zk ¼ Q2
max. Using

the values mπ ¼ 134.9 MeV and Q2
max ¼ 4 GeV2, one

FIG. 6. Lattice results for the ensemble D200, with a pion mass of 200 MeV, using two local vector currents at the source and at the
sink. Left panel: single virtual; right panel: double virtual. Black points correspond to the results obtained in the pion rest frame while the
blue points are obtained in the pion moving frame. Error bands correspond to the global z-expansion fitting procedure described in
Sec. III C. Some noisy points, with a small contribution to the fit, are not displayed for clarity.
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finds jzmaxj ¼ 0.46 well below one. The coefficients cnm
satisfy the relation

X
n;m

jcnmj2 ¼
1

ð2iπÞ2
I

dz1
z1

I
dz2
z2

jF π0γ�γ� ð−Q2
1;−Q2

2Þj2;

ð38Þ
which ensures that the coefficients cnm are not only
bounded but also decrease to zero for sufficiently large
n, m. In practice, the TFF can be multiplied by any
analytical function PðQ2

1; Q
2
2Þ and the resulting product

expanded in powers of the zk. Some choices may improve
the convergence rate of the series expansion. At short
distances, the behavior of the TFF is predicted by the
Brodsky-Lepage behavior in the single-virtual case and by
the OPE in the double-virtual case [20–22],

F π0γ�γ� ð−Q2; 0Þ ⟶
½Q2→∞�

2Fπ

Q2
; ð39Þ

F π0γ�γ� ð−Q2;−Q2Þ ⟶
½Q2→∞�

2Fπ

3Q2
: ð40Þ

Therefore, it is convenient to consider

PðQ2
1; Q

2
2Þ ¼ 1þQ2

1 þQ2
2

M2
V

; ð41Þ

whereMV ¼ 775 MeV is the vector meson mass. With this
choice, the parametrization of the TFF at the finite value of
N decreases asymptotically as 1=Q2 in all directions in the
ðQ2

1; Q
2
2Þ plane, in accord with the Brodsky-Lepage and the

OPE behavior. This feature is one major reason for us
preferring the z-expansion over the LMDþ V model [49]
used in [28], which e.g., for constant Q2

1 ≠ 0 and Q2
2 → ∞

does not vanish, even though the corresponding integrals
for the pion-pole contribution to the hadronic light-by-light
scattering in the muon g − 2 are still convergent with the
LMDþ Vmodel (see Sec. IV D). However, at the precision
level we aim for, the proper high-energy behavior in all
directions is important. It should be noted that we do not
impose the explicit values of the coefficients on the right-
hand sides of Eqs. (39) and (40), since they receive higher-
order corrections in perturbative QCD and at higher twist;
see the discussion below.
The imaginary part of the TFF behaves as ðq2 − tcÞ3=2

near threshold (P-wave). This property is not fulfilled at
finite N but,8 as shown in Ref. [50], this constraint can be
implemented by imposing

�
dF π0γ�γ�

dzk

�
zk¼−1

¼ 0; k ¼ 1; 2; ð42Þ

which leads to the modified z-expansion

PðQ2
1; Q

2
2ÞF π0γ�γ� ð−Q2

1;−Q2
2Þ

¼
XN
n;m¼0

cnm

�
zn1 − ð−1ÞNþnþ1

n
N þ 1

zNþ1
1

�

×

�
zm2 − ð−1ÞNþmþ1

m
N þ 1

zNþ1
2

�
: ð43Þ

Finally, to take into account the discretization effects and
the dependence on the quark masses used in the simu-
lations, the coefficients cnm are allowed to vary linearly

FIG. 7. Extrapolated TFF at the physical point using the modified z-expansion (43) with N ¼ 3. The horizontal black lines correspond
to the Brodsky-Lepage and OPE predictions. The red line corresponds to the asymptotic prediction given by Eq. (69) including higher
twists and NLO corrections and assuming an asymptotic DA (see Sec. IV C). The result of Ref. [51], obtained in the dispersive
framework, is shown for comparison. The dashed black line in the double-virtual case corresponds to the prediction given by Eq. (83) in
Ref. [52]. Experimental data from CELLO and CLEO are displayed in the single-virtual case [26].

8The authors thank Martin Hoferichter for pointing out this
fact to us.
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with the variable ỹ ¼ m2
π=ð16π2f2πÞ and quadratically with

the lattice spacing,

cnmðỹ; aÞ ¼ cnmðỹphys; 0Þ þ γnmðỹ − ỹphysÞ

þ δdnm

�
a

aβ¼3.55

�
2

; ð44Þ

where d ¼ 1, 2 stands for the two discretizations of the
three-point correlation function. We perform a global fit

and the results are summarized in Table III. Due to the large
set of data, the correlation matrices are ill-conditioned, and
we perform uncorrelated fits. The error on the fit param-
eters is then obtained from a jackknife procedure, using
blocking to take into account autocorrelations. The results
for N ¼ 3 are shown in Fig. 7. The chi-square by degree of
freedom is χ2=d:o:f: ¼ 1.1, and the correlation matrix of
the coefficients in the continuum and at the physical pion
mass is

corðcnmÞ ¼

0
BBBBBBBBBBBBBBBBBB@

þ1.000 −0.086 −0.370 þ0.076 −0.062 −0.044 þ0.056 þ0.415 −0.043 −0.294
−0.086 þ1.000 −0.005 þ0.018 −0.531 þ0.381 −0.157 −0.307 þ0.697 −0.569
−0.370 −0.005 þ1.000 −0.890 þ0.458 þ0.441 −0.756 −0.468 þ0.227 þ0.154

þ0.076 þ0.018 −0.890 þ1.000 −0.592 −0.484 þ0.914 þ0.196 −0.191 þ0.022

−0.062 −0.531 þ0.458 −0.592 þ1.000 −0.114 −0.571 þ0.217 −0.589 þ0.574

−0.044 þ0.381 þ0.441 −0.484 −0.114 þ1.000 −0.519 −0.705 þ0.638 −0.328
þ0.056 −0.157 −0.756 þ0.914 −0.571 −0.519 þ1.000 þ0.195 −0.300 þ0.128

þ0.415 −0.307 −0.468 þ0.196 þ0.217 −0.705 þ0.195 þ1.000 −0.516 −0.109
−0.043 þ0.697 þ0.227 −0.191 −0.589 þ0.638 −0.300 −0.516 þ1.000 −0.758
−0.294 −0.569 þ0.154 þ0.022 þ0.574 −0.328 þ0.128 −0.109 −0.758 þ1.000

1
CCCCCCCCCCCCCCCCCCA

: ð45Þ

In Appendix B, we study the systematic error associated
with the truncation of the sum in Eq. (43), and we conclude
that N ¼ 3 is already sufficient for an accuracy at the
percent level. We also checked that using PðQ2

1; Q
2
2Þ ¼ 1

leads to compatible results in the range where we
have lattice data. In the single-virtual case, our results
are in good agreement with experimental data. In the
single-virtual case and in the double-virtual case, we also
find good agreement with the results obtained in the
dispersive framework [51]; see Fig. 7. A more detailed
comparison with phenomenology is provided in the next
section.
Finally, we remark that a different fit strategy would

consist in fitting each ensemble independently and then
extrapolating each coefficient cnm to the physical point.
First, we found that the global fit procedure is more
stable. Second, the continuum and chiral extrapolation of
the individual coefficients cnm is nontrivial, as they are
correlated. Nonetheless, we provide the z-expansion on

three individual lattice ensembles in Appendix C to
allow for comparisons prior to the chiral and continuum
extrapolation.

D. Systematic errors

1. Hypercubic effects

At finite lattice spacing, the O(3) rotational symmetry is
broken down to the cubic subgroup H(3). Spatial momenta,
equivalent in the continuum, but belonging to different H
(3) orbits may be affected by different lattice artifacts.
This has been observed in previous calculations of form
factors (recently in Ref. [53] for example). As explained in
Sec. II B, in the calculation of the TFF, we have averaged
over all equivalent combinations of ðq⃗21; q⃗22Þ. In this section,
we study the validity of this approach.
Any polynomial function of the spatial momenta q⃗, and

invariant under H(3), can be expressed in terms of the three
invariants

TABLE III. Coefficients of the z-expansion, in GeV−1, defined through Eq. (43) in the continuum, at physical quark masses, for
different values ofN. We useQ2

max ¼ 4 GeV2. The chi-squares per degree of freedom are, respectively, χ2=d:o:f: ¼ 1.5, 1.2, 1.1, and for
N ¼ 3, the associated correlation matrix is given by Eq. (45).

N c00 c01 c11 c20 c21 c22 c30 c31 c32 c33

1 0.2346(65) −0.0590ð39Þ 0.074(19)
2 0.2350(61) −0.0651ð49Þ −0.284ð68Þ 0.106(33) 0.109(46) −0.29ð12Þ
3 0.2345(63) −0.0746ð52Þ −0.338ð86Þ 0.145(43) 0.008(127) −0.92ð55Þ 0.34(10) 0.25(27) −1.27ð79Þ 1.16(1.40)
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q½n� ¼ qnx þ qny þ qnz ; n ¼ 2; 4; 6: ð46Þ

Therefore, each H(3) orbit is uniquely characterized by the

values of q½2�i , q½4�i , and q½6�i with i ¼ 1, 2.
In the pion rest frame, both photons have back-to-back

spatial momenta and q⃗1 ¼ −q⃗2. The first kinematical
configuration with two orbits corresponds to jq⃗1j2 ¼
9ð2πL Þ2 with, e.g., q⃗1 ¼ 2π

L ð�3; 0; 0Þ (6 elements) and q⃗1 ¼
2π
L ð�2;�2;�1Þ (24 elements). When the pion has one unit
of momentum in the ẑ-direction, equivalent ðq21; q22Þ can
also be obtained from different values of q⃗1 not related by
H(3) symmetry but by the permutation of q1 and q2.
In Fig. 8, we show the results for the transition form

factor without averaging over equivalent momenta. We
observe that, at our level of statistical precision, we are not
yet sensitive to hypercubic artifacts.

2. Finite-size effects

Two sets of ensembles (H200/N202 and H105/N101,
listed in Table I) have been generated using the same bare
lattice parameters κ and β but with different volumes
(L=a ¼ 32 and 48). The ensembles N202 and N101
correspond to large volumes with mπL ≥ 6.5 where FSE
are expected to be negligible. The two other ensembles
satisfy mπL ≈ 4.0. The pion decay constant has been
computed on all ensembles (see Table II) with a statistical
precision below 1.0% and finite-size effects are sizable: we
observe a 2–3σ discrepancy between H200/N202, and FSE
corrections using χPT [45] failed to explain the difference.
However, for H105 and N101, the results are in perfect
agreement after FSE corrections. Since finite-size effects
strongly depend on the observable (and on the estimator),
the TFF has been computed on these two sets of ensembles.
At our level of statistical precision, we do not observe any

significant differences between different volumes, and the
results for H200, compared to N202, are shown in Fig. 9.
Since H200 is our smallest ensemble, we neglect finite-size
effects in the following and exclude the ensembles H200
from the analysis. To be conservative, we also exclude
H105.

3. Quark-disconnected contributions

The quark-disconnected contributions involve a single
quark loop which couples to the vector current. Within the
Mainz group, they have been coded [54] and computed as
part of various physics projects [55–57] on a number of
ensembles (H105, N203, N200, D200, and N302). These
contributions vanish exactly for the three ensembles at the
heaviest pion mass, where ml ¼ ms. The single-propagator
loops have been computed using two random sources of
512 hierarchical probing vectors [58] per configuration and
for all spatial momenta with jq⃗j2 ≤ 12 × ð2πL Þ2. The two-
point correlation functions between a pseudoscalar and a
vector current have been computed using stochastic sources
with U(1) noise as in Ref. [28]. We define the ratio

ΔFð−Q2
1;−Q2

2Þ ¼
F disc

π0γ�γ� ð−Q2
1;−Q2

2Þ
F conn

π0γ�γ� ð−Q2
1;−Q2

2Þ
; ð47Þ

where F conn
π0γ�γ� þ F disc

π0γ�γ� and F conn
π0γ�γ� correspond to the TFF

obtained with or without including the disconnected con-
tribution. The results are shown in the left panel of Fig. 10.
We remark that the tail of the disconnected correlator was
treated in the same manner as in the connected correlator.
As expected, the disconnected contribution increases as we
approach the physical pion mass: the CLS ensembles used
in this work were generated using a constant value of the

FIG. 8. Study of hypercubic artifacts for different values of the photon virtualities Q2
1 and Q2

2. Within our statistical accuracy, we do
not observe hypercubic effects, even at large virtualities. The results correspond to the ensemble N200. The blue and red points
correspond to the pion rest frame and moving frame, respectively.
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trace of the bare quark masses. Comparing ensembles
generated at the same pion mass but with different lattice
spacings, we do not observe significant discretization
effects. For our ensemble with the lightest pion (D200),
the TFF with and without including the disconnected
contribution is depicted in the right panel of Fig. 10: at
our level of statistical precision, the disconnected contri-
bution can be neglected. The impact of the disconnected
contribution on the pion-pole contribution to the muon
g − 2 is discussed in more detail in Sec IV D 3.

IV. PHENOMENOLOGICAL APPLICATIONS

A. Parametrizing and comparing the TFF with
phenomenological models

As in Ref. [28], we compare our results with phenom-
enological models which have been applied to the pion-
pole contribution to hadronic light-by-light scattering in the
muon g − 2. In particular, we consider the VMDmodel, the
LMD model [33,34], and the LMDþ V model [49]. These
models are parametrized by

FIG. 10. Left panel: ΔFð−Q2
1;−Q2

2Þ defined through Eq. (47) for the ensembles H105, N203, N200, D200, and N302. Ensembles at
the same lattice spacing a ¼ 0.064 fm are plotted using plain lines, whereas ensembles at different lattice spacings are plotted using
dashed lines. Right panel: TFF with and without including the disconnected contribution for our lightest pion mass ensemble D200. Red
points have been shifted slightly to the right for clarity.

FIG. 9. Transition form factor obtained using two different volumes (L ¼ 2.1 fm and L ¼ 3.1 fm for H200 and N202, respectively) at
the same bare lattice parameters κ and β.
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FVMD
π0γ�γ� ðq21; q22Þ ¼

αM4
V

ðM2
V − q21ÞðM2

V − q22Þ
; ð48aÞ

FLMD
π0γ�γ� ðq21; q22Þ ¼

αM4
V þ βðq21 þ q22Þ

ðM2
V − q21ÞðM2

V − q22Þ
; ð48bÞ

FLMDþV
π0γ�γ� ðq21; q22Þ ¼

h̃0q21q
2
2ðq21 þ q22Þ þ h̃1ðq21 þ q22Þ2 þ h̃2q21q

2
2 þ h̃5M2

V1
M2

V2
ðq21 þ q22Þ þ αM4

V1
M4

V2

ðM2
V1

− q21ÞðM2
V2

− q21ÞðM2
V1

− q22ÞðM2
V2

− q22Þ
; ð48cÞ

and we refer the reader to Ref. [28] for a more detailed
description of the models and phenomenological values of
the parameters. We just recall the main properties relevant
for this study. All models satisfy the anomaly constraint at
vanishing momenta [18,19]

F π0γ�γ� ð0; 0Þ ¼
1

4π2Fπ
; ð49Þ

by setting α ¼ αth ¼ 1=ð4π2FπÞ ¼ 0.274 GeV−1. The
VMD model does not fulfill the OPE constraint given
by Eq. (40) but rather behaves as FVMD

π0γ�γ� ð−Q2;−Q2Þ ∼
1=Q4 at large virtualities. The LMD model has the
advantage to fulfill the OPE constraint but does not satisfy
the Brodsky-Lepage (BL) behavior given by Eq. (39) since
FLMD

π0γ�γ�ð−Q2; 0Þ ∼ β=M2
V at large virtualities. Finally, the

LMDþ V model satisfies the short-distance constraints
both for Q2

1 ¼ Q2
2 → ∞ and for Q2

1 ¼ 0, Q2
2 → ∞ if one

sets h̃1 ¼ 0.
We have performed global fits using the VMD, LMD, and

LMDþ VAnsätzewhere the fit parameters are, respectively,
ðα;MVÞ, ðα; β;MVÞ, and ðα; h̃0; h̃2; h̃5;MV1

;MV2
Þ. As for

the z-expansion, each fit parameter is assumed to depend
linearly on the dimensionless variable ỹ ¼ m2

π=ð16π2f2πÞ and
quadratically on the lattice spacing a. The fits are uncorre-
lated. Since we have computed the TFF using two different
discretizations of the vector current, we actually perform a
combined fit such that any parameter has the functional form

pða; ỹÞ ¼ pð0; ỹphysÞ þ γmðỹ − ỹphysÞ þ δd

�
a

aβ¼3.55

�
2

;

d ¼ 1; 2: ð50Þ

In Ref. [28], we have shown that the VMDmodel fails to
reproduce the lattice data at large Q2 due to the wrong
asymptotic behavior in the double-virtual case. Fitting our
new data, we obtain χ2=d:o:f: ¼ 4.8. However, we obtain a
reasonable χ2 if we restrict the fit to the single-virtual TFF,
and the result at the physical point reads

αVMD ¼ 0.258ð7Þ GeV−1;

MVMD
V ¼ 836ð18Þ MeV; ð51Þ

with χ2=d:o:f: ¼ 1.2. The value of αVMD is compatible with
the theoretical prediction for the anomaly within 2σ and
MV is close to the rho meson mass. For the LMDmodel, we
fit α, β, andMV on the full kinematical range. The result of
the global fit at the physical point reads

αLMD ¼ 0.270ð6Þ GeV−1; β ¼ −26.2ð0.7Þ MeV;

MLMD
V ¼ 656ð13Þ MeV; ð52Þ

with χ2=d:o:f: ¼ 1.5. The value of αLMD is compatible with
the anomaly constraint with a statistical precision of 2%.
However, the value of β is lower, in absolute value, than
the OPE prediction at leading order βOPE ¼ −Fπ=3 ¼
−30.8 MeV. This point will be discussed in Sec. IV C:
the OPE prediction neglects higher twists and OðαsÞ
corrections which are sizable at virtualities accessible on
the lattice. In Fig. 11 we show the quality of the fit for the
ensembles N203 and N200 in the single-virtual configu-
ration. At large Q2, we observe a significant deviation
between the fit and the lattice data which explains the
relatively bad χ2. This feature was not observed in our
previous work [28] where only virtualities Q2 < 0.5 GeV2

were accessible in the single-virtual case. The fact that the
LMD model fails to describe the lattice data in the single-
virtual case is not unexpected since the model has the
wrong asymptotic behavior. This explains the discrepancy
between the TFF extrapolated to the physical point using
the LMD model and the experimental data, as shown
in Fig. 12.
Finally, for the LMDþ Vmodel we explicitly set h̃1 ¼ 0

to satisfy the OPE constraint. Furthermore, to reduce the
number of fit parameters, and inspired by quark models, we
assume a constant shift in the spectrum and set MV2

ðỹÞ ¼
mexp

ρ0 þMV1
ðỹÞ −mexp

ρ with mexp
ρ0 ¼ 1.465 GeV. All the

remaining parameters are fitted and the result reads

αLMDþV ¼ 0.261ð7Þ GeV−1; MLMDþV
V1

¼ 770ð92ÞMeV;

h̃0 ¼ −0.030ð3Þ GeV; h̃2 ¼ 0.277ð70Þ GeV3;

h̃5 ¼ −0.187ð40Þ GeV; ð53Þ

with χ2=d:o:f: ¼ 1.2. We note that the same fit would be
unstable if only lattice data obtained in the pion rest frame
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were included. The coefficient h̃0, related to the OPE
behavior, is in good agreement with the leading order OPE
prediction h̃0 ¼ −Fπ=3. The phenomenological value h̃2 ¼
0.327 GeV2 [59] can be fixed by comparing with the
higher-twist corrections in the OPE in Eq. (40) and our
result turns out to be in good agreement as well. Finally, h̃5
is consistent with the phenomenological prediction h̃5 ¼
−0.166� 0.006 GeV obtained in Ref. [49] by fitting the
LMDþ V model to the CLEO data in the single-virtual
case. At our level of precision, this model provides a good
description of our lattice data in the whole kinematical
range covered by this study. It is also perfectly compatible
with the available experimental data, as can be seen on the
left panel of Fig. 12.
Recently, a new parametrization of the pion TFF over the

whole spacelike region has been proposed in [52]. The
parametrization of the ðQ2

1; Q
2
2Þ dependence relies on a

single parameter, which can be obtained by adjusting the
model to the experimental data in the single-virtual
configuration. The model obeys by construction the leading
prediction for the asymptotic behavior at large Q2; how-
ever, it does not accurately reproduce our lattice result at
intermediate virtualities: the prediction underestimates our
result by about 20% at Q2

1 ¼ Q2
2 ¼ 0.5 GeV2 as can be

seen in Fig 7. Nonetheless, in the future this model
could perhaps be used as the factor PðQ2

1; Q
2
2Þ in the

expansion (43).

B. Normalization of the TFF, the decay width
Γðπ0 → γγÞ, and the slope of the form factor

To leading order in the fine-structure constant αe, the
decay width of π0 → γγ is given by the pion TFF as
follows: Γðπ0 → γγÞ ¼ ðπα2em3

π=4ÞF π0γ�γ� ð0; 0Þ2. From the

FIG. 12. Transition form factor extrapolated to the physical point using the three phenomenological models described in the main text.
In the single-virtual case, we also compare the results with data from the CELLO and CLEO experiments [26].

FIG. 11. Results of the global LMD and LMDþ V fits in the single-virtual case and for the ensembles N203 (left panel) and N200
(right panel). The data strongly favor the LMDþ V model, which has the correct asymptotic behavior at these kinematics, over the
LMD model.

LATTICE CALCULATION OF THE PION TRANSITION FORM … PHYS. REV. D 100, 034520 (2019)

034520-17



measurement Γðπ0 → γγÞ ¼ 7.82ð22Þ eV by the PrimEx
experiment [23] we get the TFF at the origin with a
precision of 1.4%, αPrimEx ¼ 0.276ð4Þ GeV−1, and this is
therefore an important benchmark for our lattice calcula-
tion. The PrimEx-II experiment aims at reducing the error
on the decay width by a factor of 2 and a preliminary result
Γðπ0 → γγÞ ¼ 7.80ð13Þ eV has been released [24,25],
which leads to αPrimEx−II ¼ 0.275ð2Þ GeV−1 with 0.8%
precision. A tension exists between the state-of-the-art
chiral predictions of the decay width [29,60–62] and the
new, more precise, preliminary measurement.
In the chiral limit, the normalization of the TFF is exactly

predicted by the ABJ chiral anomaly [18,19],

F π0γ�γ� ð0; 0Þ ¼
1

4π2F
; ð54Þ

where F is the pion decay constant in the chiral limit. At
finite quark mass, this result receives corrections which can
be computed in the framework of χPT or directly using
lattice QCD. The chiral expansion of the pion TFF at
vanishing momenta is known up to next-to-next-to-leading
(NNLO) order in χPT [29]. Chiral logarithms are absent at
NLO when the result is expressed in terms of the physical
value of Fπ [60]. They appear only at NNLO but were
shown to contribute at the permille level and are negligible
at our level of accuracy [29]. This motivates the extrapo-
lation of the normalization of the form factor on the lattice
using the Ansatz

fπF π0γ�γ� ð0; 0Þ ¼ α̃þ γm2
π þ δd

�
a

aβ¼3.55

�
2

; ð55Þ

already used in a previous lattice calculation [63]. This
functional form differs from the one assumed in the
previous sections but both parametrizations lead to com-
patible results at our level of precision. Equation (55) has
the advantage to offer the possibility to extract the LECCWr

7

in the odd-intrinsic-parity sector of chiral perturbation
theory at order p6 [64] via the relation [29,61]

CWr
7 ¼ −

3

64
γ; ð56Þ

by varying the quark masses and thus mπ over a range of
values on our lattice ensembles. As explained in Sec. II E,
we note that our lattice ensembles lie in the chiral trajectory
where the trace of the bare quark matrix is kept constant. If
we repeat the analysis done in Sec. III C but using
fπF π0γ�γ�ðQ2

1; Q
2
2Þ instead of F π0γ�γ�ðQ2

1; Q
2
2Þ as our pri-

mary observable and limiting the fit range below 1 GeV, we
obtain the result

α ¼ 0.264ð8Þð4Þ GeV−1;

CWr
7 ¼ 0.16ð18Þ × 10−3 GeV−2; ð57Þ

where the first error is statistical and the second error is an
estimate of the systematic error due to the truncation on the
z-expansion (see Appendix B). The choice N ¼ 1 is
already sufficient to get a χ=d:o:f: ¼ 1.1. The normaliza-
tion of the TFF is almost unchanged compared to the fit
done in Sec. III C. The result in Table III, with N ¼ 3, leads
to α ¼ 0.261ð13Þð2Þ GeV−1. The value of the normaliza-
tion α is compatible with the theoretical prediction
αth ¼ 0.274 GeV−1, given by Eq. (54) with F replaced
by Fπ, with a precision of 3.5%. At this level of precision,
we are not yet sensitive to the other chiral corrections, not
taken into account by this replacement. We note that our
choice of t0 in the z-expansion is optimal for the pion-pole
contribution to aHLbLμ , discussed in the next subsection, but
not for the normalization, as explained in Appendix B. The
results for α and CWr

7 obtained from a fit based on
the LMDþ V model are compatible within error bars with
the model-independent results in Eq. (57).
The central value of our result for the LEC CWr

7 in
Eq. (57) is larger than the bound jCWr

7 j<0.06×10−3GeV−2

used in Ref. [29]. Of course with our current uncertainty
we cannot exclude that this LEC vanishes. The bound is
essentially based on estimates using a resonance
Lagrangian with heavy pseudoscalars and the nonobserva-
tion of the decay πð1300Þ → γγ [1,33,61]. The LEC CWr

7

also vanishes exactly [49] in simple resonance Lagrangians
with vector mesons only, such as the VMD model for the
TFF or the model proposed in Ref. [65], that do not obey
short-distance constraints from the OPE. On the other hand,
using the LMD model [33,34] or a resonance Lagrangian
with vector and heavy pseudoscalar mesons (LMDþ P)
that obeys these short-distance constraints, one obtains the
estimate CWr

7 ¼ 0.35ð7Þ × 10−3 GeV−2 [66]. The result is
actually dominated by the LMD part, and the additional
contribution from the heavy pseudoscalar is again esti-
mated to be very small. Note, however, that the error might
be underestimated. All resonance estimates of LECs are
based on the assumption of narrow resonances in large-Nc
QCD and carry an intrinsic uncertainty of 20%–30%.
Under the assumption that the LECs have a natural size
of 0.5 × 10−3 GeV−2, one could argue that this implies
rather an absolute error of�ð0.10–0.15Þ × 10−3 GeV−2 for
all LECs. With the current precision, our value for CWr

7 in
Eq. (57) is also compatible with the larger LMDþ P
estimate.
As mentioned above, the precision obtained for the

normalization of the TFF from the lattice cannot compete
with the PrimEx or even the PrimEx-II result. However,
with our new estimate for CWr

7 in Eq. (57), we can follow
the same strategy as in Refs. [29,33,61] and use it together
with the experimental decay width Γðη → γγÞ ¼
0.515ð18Þ keV [1] to determine the other LEC CWr

8 that
appears in the expression for the decay π0 → γγ at NLO in
χPT with the result
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CWr
8 ¼ 0.56ð17Þ × 10−3 GeV−2: ð58Þ

This result is almost identical to the estimate CWr
8 ¼

0.58ð20Þ × 10−3 GeV−2 from Ref. [29] that was obtained
by setting CWr

7 ¼ 0. We took over their estimate of 30%
uncertainty from neglected terms of order m2

s in the chiral
expansion. Using the expression for the decay amplitude
π0 → γγ given in Ref. [29], including strong isospin
breaking effects from mu ≠ md and electromagnetic cor-
rections, these changes in the LECs lead to the prediction

Γðπ0 → γγÞ ¼ 8.07ð10Þ eV; ð59Þ

confirming the value Γðπ0 → γγÞ ¼ 8.09ð11Þ eV obtained
in Ref. [29]. Therefore the tension with the preliminary
result of the PrimEx-II experiment [25] remains.
Another phenomenologically interesting quantity is the

slope of the form factor at the origin. It is defined through

bπ0 ¼
1

F π0γ�γ� ð0; 0Þ
dF π0γ�γ� ðq2; 0Þ

dq2

				
q2¼0

: ð60Þ

We obtain

bLMDþV
π0

¼ 1.59ð11Þ GeV2;

bz−exp
π0

¼ 1.57ð13Þð11Þ GeV2; ð61Þ

where the first error is statistical and the second error is the
systematic error associated with the z-expansion. Both
determinations are compatible with each other and with
the result obtained in Ref. [51] using a dispersive frame-
work [within our convention, their result reads
bπ0 ¼ 1.73ð5Þ GeV2]. The model independent determina-
tion is affected by a relatively large error which could be
reduced in the future by adding large-volume ensembles
which probe the low-Q2 region.
We also try the method of Canterbury approximants

proposed in Ref. [67] in the context of the pion TFF. It is a
generalization of the Padé approximants for bivariate
functions, and we refer the reader to Ref. [68] for an
introduction to the subject. A general Canterbury approx-
imant has the form

CN
MðQ2

1; Q
2
2Þ ¼

P
N
n;m¼0 anmQ

2n
1 Q2m

2P
M
n;m¼0 bnmQ

2n
1 Q2m

2

; ð62Þ

with the convention b00 ¼ 1 and the relations anm ¼ amn,
bnm ¼ bmn reflecting the Bose symmetry of the photons.
We consider both the diagonal and the subdiagonal
sequences of approximants CN

N and CN
Nþ1. In particular,

the sequence CN
Nþ1 automatically satisfies the short-

distance behavior ∼1=Q2 if one sets bNN ¼ 0. The lowest
order elements for both sequences are

C0
1ðQ2

1; Q
2
2Þ ¼

a00
1þ b01ðQ2

1 þQ2
2Þ þ b11Q2

1Q
2
2

; ð63Þ

C1
1ðQ2

1; Q
2
2Þ ¼

a00 þ a01ðQ2
1 þQ2

2Þ þ a11Q2
1Q

2
2

1þ b01ðQ2
1 þQ2

2Þ þ b11Q2
1Q

2
2

: ð64Þ

The main drawbacks of this method are, first, the absence
of a proof of convergence for the pion TFF and, second, the
rapid growth of the number of fit parameters. As a
consequence, for large values of M, the denominator can
become singular at large virtualities (the presence of
spurious poles in the spacelike domain) where there are
no lattice data. In the following, we perform a global fit of
the TFF, over the whole kinematic range, assuming a linear
dependence of the coefficients aij and bij on the dimen-
sionless parameter ỹ and a quadratic dependence in the
lattice spacing a. Both sequences already give a good χ2 for
N ¼ 1. Using higher-order approximants only increases the
statistical error or leads to unstable fits. The results for the
two sequences are summarized in Table IV. We use as
our final estimate the average between the approximants C1

2

and C1
1, and we take half the difference between the two

sequences as an estimate for the systematic error:
α ¼ 0.261ð12Þstatð8Þsyst GeV−1. This value is compatible
with our determination via the z-expansion with a similar
statistical error, but a systematic error which is difficult to
estimate.

C. Asymptotic behavior of the pion transition
form factor

When at least one of the photon virtualities is large, and
assuming (collinear) factorization, the TFF can be written
as a convolution integral [20]

F π0γ�γ�ðq21; q22Þ ¼
2Fπ

3

Z
1

0

dxTHðx;Q2
1; Q

2
2; μ

2Þφπðx; μ2Þ;

ð65Þ

where THðx;Q2
1; Q

2
2; μ

2Þ is a hard scattering kernel, calcu-
lable in perturbative QCD, and φπðx; μ2Þ is the nonpertur-
bative pion distribution amplitude (DA) of twist two
(normalized to one). The latter is scale dependent but
otherwise universal and therefore plays a major role in the
study of hard exclusive processes. The factorization and
renormalization scales are chosen to be equal μR ¼ μF ¼ μ

TABLE IV. Normalization of the transition form factor ob-
tained from the two sequences of Canterbury approximants CN

N
and CN

Nþ1. As before, chi-square corresponds to uncorrelated fits.

C0
1 C1

2 C1
1

α [GeV−1] 0.325(8) 0.253(12) 0.268(10)
χ2=d:o:f: 4.1 1.2 1.3
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and of order Q̄2 ¼ Q2
1 þQ2

2. Here, x and 1 − x are,
respectively, the quark and antiquark longitudinal momen-
tum fractions of the meson’s total momentum. Neglecting
isospin breaking effects, the pion distribution amplitude is
symmetric under the interchange of x and x̄ ¼ 1 − x such
that φπðxÞ ¼ φπð1 − xÞ. At leading twist and leading order
in perturbative QCD, the hard scattering kernel is given
by [20]

TLO
H ðx;Q2Þ ¼ 1

xQ2
1 þ ð1 − xÞQ2

2

¼ 2

Q̄2 þ ωð1 − 2xÞQ̄2
; ð66Þ

where we have introduced the asymmetry parameter ω
defined through

ω¼Q2
2−Q2

1

Q2
2þQ2

1

; Q2
1¼

1−ω

2
Q̄2; Q2

2¼
1þω

2
Q̄2: ð67Þ

In this section, the parameterω should not be confused with
the parameter ω1 introduced in Eq. (3). At next-to-leading
order in perturbative QCD, the hard scattering kernel has
been computed for all values of ω in the MS scheme in
Refs. [69–71] and the result is

TNLO
H ðx;Q2Þ ¼ 1

Q̄2 þ ωð1 − 2xÞQ̄2

�
1þ CF

αsðμÞ
2π

tðx̄; w̄Þ
�

þ ðx ↔ 1 − xÞ; ð68Þ

where an explicit expression for tðx̄; w̄Þ with w̄ ¼
ð1 − ωÞ=2 is given by Eq. (5.2) of Ref. [70]. Then, using
CF ¼ 4=3 and the symmetry properties of the pion DA,
Eq. (65) reduces to

F π0γ�γ�ðq21;q22Þ¼
4Fπ

3Q̄2

Z
1

0

φπðxÞ
1þωð1−2xÞ

×

�
1þ2αsðμÞ

3π
tðx̄;wÞ

�
dxþO

�
1

Q̄4
;
α2s
Q̄2

�
:

ð69Þ
The asymptotic expression of the twist two pion DA,
φas
π ðxÞ ¼ 6xð1 − xÞ, leads to the OPE and BL asymptotic

predictions for the double and single off-shell form factors,
respectively [20,72]. However, this asymptotic result is
expected to hold only at very large virtualities. Higher twist
corrections, discussed in Refs. [22,73], are given by

−
2Fπ

3

80

9

δ2

Q̄4

�
−2ω3 þ 3ωþ 3ðω2 − 1Þtanh−1ðωÞ

ω5

�
; ð70Þ

where the parameter δ2 ¼ 0.20ð2Þ GeV2 has been evalu-
ated in Ref. [22] using QCD sum rules and more recently in
Ref. [74] using lattice QCD.

1. Double-virtual form factor: Symmetric case

When both photons share the same virtualities (ω ¼ 0),
one can see from Eq. (69) that the asymptotic value of the
TFF is not sensitive to the shape of the pion DA [one can
show that tðx̄; 1=2Þ ¼ −3=2 is also independent of the
quark longitudinal momentum fraction x] and the result
reads

F π0γ�γ�ð−Q2;−Q2Þ ¼ 2Fπ

3Q2

�
1 −

αsðQÞ
π

−
8

9

δ2

Q2

�

þO
�
α2sðQÞ; 1

Q4

�
: ð71Þ

Checking the validity of Eq. (71) at asymptotically largeQ2

provides a strong test of perturbative QCD. Here we will
ask whether the given functional form describes our lattice
data at moderately large Q2.

2. Double-virtual form factor: General case

When both photons share different virtualities, the
situation is more difficult because the result depends on
the precise shape of the pion DA, which is largely
unknown, although a recent lattice calculation of the two
lowest Gegenbauer moments has been carried out on a
similar set of lattice ensembles in Ref. [75]. However, as
pointed out in Ref. [76], this dependence is small for small
values of the asymmetry parameter ω. At leading twist, we
have

F π0γ�γ�ð−Q2
1;−Q2

2Þ

¼ 4Fπ

3Q̄2

�
1 −

αsðQÞ
π

þ 1

5
ω2

�
1 −

5

3

αsðQÞ
π

�

þ 12

35
ω2a2ðμÞ

�
1þ 5

12

αsðQÞ
π



1 −

10

3
ln

Q̄2

2μ2F

���
þOðω4; α2sÞ; ð72Þ

where a2 is the second coefficient in the expansion of the
pion distribution amplitude in terms of Gegenbauer poly-
nomials. For Q2

2 ¼ 2Q2
1, where ω ¼ 1=3, corrections to the

asymptotic DA are of the order of 2%. We can therefore fit
our lattice data in a much wider range without being
sensitive to the actual shape of the pion DA.

3. Fits

We perform a global fit using Eq. (71) where δ2 is
considered as a free fit parameter and is allowed to vary
linearly with ỹ and a2. We restrict the fit to virtualities with
ω < 1=3 and Q2 > Q2

min and use the four-loop running
strong coupling in the MS scheme [77]. Of course, one
might question the applicability of perturbative QCD down
to such low values of jQminj ¼ 1.2 GeV, even in Euclidean
space; see Ref. [78] for an analysis of nonperturbative
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effects in the Adler function. The results at the physical
point and for different values of Q2

min are listed in Table V,
and we quote as our final estimate the value at
Q2

min ¼ 2 GeV2,

δ2 ¼ 0.15ð6Þ GeV2: ð73Þ

This result is compatible with the sum rule determination
[22] and the lattice determination [74] although with
larger error.

D. Determination of the pion-pole contribution
to HLbL scattering in the ðg− 2Þμ

The hadronic light-by-light scattering contribution to the
anomalous magnetic moment of the muon is one of two
dominant sources of uncertainty along with the hadronic
vacuum polarization. For the HLbL scattering, a model
independent dispersive approach has been proposed
recently [10], and the dominant contribution is expected
to be the pion-pole contribution which requires the pion
TFF as input. Until recently, most estimates were based on
model calculations where errors are difficult to estimate. In
our previous work [28], we provided the first lattice QCD
calculation of the pion-pole contribution, with a statistical
precision of about 12%. Recently, a data-driven determi-
nation based on the calculation of the TFF using dispersion
theory was published [51]. The result is compatible
with our previous determination but with reduced uncer-
tainty. In this section, we propose to use our results to
improve our estimate of the pion-pole contribution from
lattice QCD.
Following [8], the pion-pole contribution to the hadronic

light-by-light scattering in the muon (g − 2) can be
expressed as a three-dimensional integral involving two
model-independent weight functions w1 and w2 and the
product of a single-virtual TFF times a double-virtual TFF
for arbitrary spacelike virtualities,

aHLbL;π
0

μ ¼
�
αe
π

�
3
Z

∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτðw1ðQ1; Q2; τÞ

× F π0γ�γ� ð−Q2
1;−ðQ1 þQ2Þ2ÞF π0γ�γ� ð−Q2

2; 0Þ
þ w2ðQ1; Q2; τÞF π0γ�γ� ð−Q2

1;−Q2
2Þ

× F π0γ�γ� ð−ðQ1 þQ2Þ2; 0ÞÞ: ð74Þ

The integrals run over the lengthsQi ¼ jðQiÞμj, i ¼ 1, 2, of
the two Euclidean four-momentum vectors and the angle θ
between them, Q1 ·Q2 ¼ Q1Q2 cos θ, where we defined

τ ¼ cos θ. The analytical expressions for the dimensionless
weight functions wiðQ1; Q2; τÞ, i ¼ 1, 2, can be found in
Ref. [8]. In particular, it was shown in Ref. [79] that the
relevant integration range involves spacelike virtualities
below 2 GeV2, precisely the kinematical region where we
have lattice data.

1. Phenomenological models

A first estimate of the pion-pole contribution is obtained
using the LMDþ V model, which provides a good
description of our lattice data. The parameters at the
physical point are determined from the global fit procedure
described in Sec. IVA, and we obtain

aHLbL;π
0

μ;LMDþV ¼ ð58.6� 2.7Þ × 10−11; ð75Þ

where the error is statistical but includes the error from the
continuumand chiral extrapolations. It can be comparedwith

our previous estimate, aHLbL;π
0

μ;LMDþV ¼ ð65.0� 8.3Þ × 10−11,
obtained with two dynamical quarks [28]. The slightly lower
central value in Eq. (75) arises due to the slightly lower
values of the parameters α and h̃2 emerging from the fit, but
the results are in agreement within the quoted uncertainties.

We also checked that computing aHLbL;π
0

μ;LMDþV on each ensemble
separately and then, in a second step, extrapolating the results
to the continuum limit and at the physical pion mass using a
fit linear in ỹ and a2 gives a similar result. In this case, we
would obtain ð58.4� 2.4Þ × 10−11. Since we are using a
phenomenological model to describe the lattice data, the
result could be biased and the error underestimated.
Moreover, for the LMDþ V model, we do not fit all the
model parameters butmade some assumptions on the second
vector-resonance mass MV2

to stabilize the fit.

2. Canterbury approximants

A second possibility is to use the results obtained from
the method of the Canterbury approximants presented in
Sec. IV B. The short-distance constraints in Eqs. (39) and
(40) are explicitly implemented using the sequence with
M ¼ N þ 1 with the additional constraint bNN ¼ 0. Using
the approximant ðN;MÞ ¼ ð1; 2Þ, which provides a good
description of our lattice data, we find at the physical point

aHLbL;π
0

μ ¼ ð58.3� 4.2Þ × 10−11: ð76Þ

The next approximant leads to unstable fits. We note that
this result is compatible with the LMDþ V model deter-
minations, which suggests that the model dependence of
the central value is small. As for the LMDþ V model, it is,
however, difficult to assess a systematic error, especially
because we are limited to rather low values of M.

TABLE V. Value of the higher twist coefficient δ2 as a function
of Q2

min.

Q2
min [GeV2] 1.5 1.75 2.0 2.25

δ2 [GeV2] 0.13(5) 0.14(6) 0.15(6) 0.15(7)
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3. Final result: z-expansion

Finally, the z-expansion provides a systematically
improvable determination. The choice for the function
PðQ2

1; Q
2
2Þ in Eq. (41) guarantees the 1=Q2 falloff of the

TFF in all directions, and, using the results of Sec. III C
with N ¼ 3, we quote as our final result

aHLbL;π
0

μ ¼ ð59.7� 3.4� 0.9� 0.5Þ × 10−11

¼ ð59.7� 3.6Þ × 10−11; ð77Þ

where the first error is statistical, the second is the
systematic error inferred from the study in Appendix B,
and the third error comes from the disconnected contribu-
tion. In particular, the first error includes the error on the
lattice spacing, the renormalization of the vector currents
and the extrapolation to the physical point. In the last step
of Eq. (77), we have added the errors in quadrature. Since
the TFF has units of GeV−1, the relative scale-setting
uncertainty on the pion-pole contribution is 2 times the
relative error on the lattice spacing expressed in fm. The
scale is known with a precision of 1%which translates in an

uncertainty of about 2% on aHLbL;π
0

μ . The uncertainty on the
renormalization of the vector current is negligible.
Therefore, the statistical precision of the correlation func-
tions and the extrapolation to the physical point are the
dominant sources of uncertainties in our calculation. They
could be improved in a future calculation, in particular by
including a lattice ensemble at the physical pion mass in the
analysis. In contrast to phenomenological analyses, our

result for aHLbL;π
0

μ is significantly more accurate than our
determination of F π0γ�γ� ð0; 0Þ.
In the left panel of Fig. 13, we show the difference

ΔaHLbL;π
0;disc

μ between the results obtained with and without

including the disconnected contribution. At the SUð3Þflavor
symmetric point, the difference vanishes exactly, while it
turns negative as the pion mass approaches its physical
value. At a constant value of the trace of the quark-mass
matrix, the disconnected contribution is proportional to
ms −ml close to the SUð3Þflavor symmetric point. In
practice, we parametrize it as being linear in m2

K −m2
π

and obtain ΔaHLbL;π
0;disc

μ ¼ −1.0ð0.3Þ × 10−11 at the physi-
cal point. To be conservative, and because our data do not
allow us to perform a precise continuum extrapolation, we
associate 50% uncertainty to this contribution.
Similar to the case of the LMDþ V model, we could

perform the z-expansion on each ensemble separately and

then extrapolate aHLbL;π
0

μ to the physical point. We would
obtain ð58.5� 4.0Þ × 10−11, compatible with the results
from the global fit. We note that the continuum and chiral
extrapolations are very mild, as can be seen in the right
panel of Fig. 13. We prefer the global fit method which
reduces the number of fit parameters and relies on the chiral
extrapolation of the pion TFF itself instead of the pion-pole
contribution.
Our final value given by Eq. (77) is compatible with our

previous determination [28] using two dynamical quarks
but with an improved accuracy. It is also in good agreement
with the data-driven determination recently published in
Ref. [51] and based on dispersion theory, with a similar
precision to results published in Ref. [67], based on a fit to
experimental data using Canterbury approximants.

4. Combination of lattice and experimental data

The experimental precision on the normalization of the
TFF, dominated by the PrimEx experiment [23], is still
better than our lattice determination. It is thus possible to
reduce the error on aHLbL;π

0

μ by exploiting this experimental

FIG. 13. Left panel: Difference in aHLbL;π
0

μ with or without including the disconnected diagrams. The red line corresponds to a linear

fit and the vertical dashed line to the physical point. Right panel: Continuum and chiral extrapolation of aHLbL;π
0

μ using the local
z-expansion performed on each ensemble.
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measurement. We thus performed a constrained linear fit: to
propagate the error on the normalization of the TFF, the
constraint is imposed on each jackknife sample with a
Gaussian distribution reproducing the PrimEx result. We
obtain

aHLbL;π
0

μ ¼ ð62.3� 2.0� 0.9� 0.5Þ × 10−11

¼ ð62.3� 2.3Þ × 10−11: ð78Þ

Two comments on these results. First, this value is
slightly higher than in Eq. (77). This can be explained
by our lower value for the normalization of the TFF.
Second, the statistical error has been reduced by a factor of
1.7 which can be attributed to the small experimental error
on the decay width, emphasizing the importance of precise
lattice data at low virtualities. Thus, to further improve the
lattice determination, it would be interesting to add large
volume ensembles, which more tightly constrain the
normalization of the TFF. The CLS ensemble E250 [80]
at the physical mass and with a volume of 6.2 fm would be
valuable.

V. CONCLUSION

We have computed the neutral pion transition form factor
with Nf ¼ 2þ 1 dynamical quarks at the physical point.
The results are summarized in Table III where we provide
the coefficients of the modified z-expansion and the
associated correlation matrix. Our results are in good
agreement with experimental data from CELLO and
CLEO in the single-virtual case. In the double-virtual case,
where no experimental data exist yet, we can compare our
result with the recent dispersive analysis [51]. Finally, when
both virtual photons carry large virtualities, our result
reproduces the asymptotic prediction from perturbative
QCD once one includes the first-order αs correction and
higher-twist corrections.
In Sec. IV, we first compared our result with popular

phenomenological models, often used to estimate the pion-
pole contribution to hadronic light-by-light scattering in the
muon g − 2. The LMDþ V model, which satisfies both the
OPE and the Brodsky-Lepage constraints at short distances,
provides a good parametrization over the whole kinematic
range covered by our lattice data. The fit parameters turn
out to be close to their phenomenological values obtained
in Ref. [81]. However, our lattice data show significant
deviations from the VMD or LMD models. Second, we
have extracted the normalization of the TFF using either the
phenomenological models or the more systematic para-
metrization based on the z-expansion. We reproduce
the experimental result with a precision of 3.5%:
α ¼ 0.264ð9Þ GeV−1. This is an important benchmark of
our calculation. The precision is not yet competitive with
the experimental estimate from the PrimEx Collaboration

[23], but we were able to extract the LEC appearing in
the odd-intrinsic-parity sector of χPT at order p6,
CWr
7 ¼ 0.16ð18Þ × 10−3 GeV−2. This value lies in-between

some recent estimates based on various resonance
Lagrangians that do or do not fulfill short-distance con-
straints from the OPE. Reference [29] revisited the analysis
of pion decay π0 → γγ at NLO in χPT and assumed that this
LEC vanishes. It turns out that with our new result from the
lattice, the other relevant LEC at NLO does not change
much compared to the analysis in Ref. [29]. We get CWr

8 ¼
0.56ð17Þ × 10−3 GeV−2 and essentially reproduce with
Γðπ0 → γγÞ ¼ 8.07ð10Þ eV the result given in that refer-
ence, using similar input from experiment and theory.
Finally, our model-independent lattice estimate for

the pion-pole contribution to hadronic light-by-light scat-

tering in ðg − 2Þμ, given by Eq. (77), reads aHLbL;π
0

μ ¼
ð59.7� 3.6Þ × 10−11 and corresponds to a precision of 6%.
This is our main result. The precision can be further
improved by imposing the experimental constraint on
the normalization of the TFF from the PrimEx experiment,
and we obtain in this way the lattice and data-driven

estimate aHLbL;π
0

μ ¼ ð62.3� 2.3Þ × 10−11 with a precision
of 4%. This precision has already reached a sufficient level
in view of the forthcoming experiment at Fermilab, for
which a precision of 10% on the theory estimate of the full
HLbL contribution is desired.
In the future, we plan to use our result to estimate the

dominant finite-size effects in the full lattice calculation of
the HLbL contribution to the muon g − 2. Since the QCD
four-point correlation function will be computed on the
same set of lattice ensembles, we should be able to
constrain the tail of the integrand at large distances and
thus reduce the statistical error. We also plan to include
another lattice ensemble, with physical pion mass and large
volume, to constrain even better the chiral and continuum
extrapolations. The large volume should help us reach
smaller virtualities and will constrain the normalization of
the TFF even better. Finally, besides the dominant
pion-pole contribution, it would be interesting to have a
first principle estimate for the η and η0 pseudoscalar-pole
contributions. According to model calculations [79], the
size of these contributions is of the order of 20% of the
pion-pole contribution, and they are therefore not negli-
gible. The same lattice methodology can be used to
extract the relevant pseudoscalar transition form factors,
even though disconnected diagrams will play a more
important role. In that case, the weight functions appearing
in Eq. (74) are peaked at slightly larger virtualities.
However, since a precision of 20% or 30% should suffice,
a lattice calculation should be feasible. Such a study
would have a high impact since only sparse experimental
data are available in the double-virtual case for spacelike
momenta [82].
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APPENDIX A: ANALYTIC EXPRESSIONS
OF ÃVMD

μν ðτÞ AND ÃLMD
μν ðτÞ

In this Appendix, we provide analytical expressions for
the function ÃLMD

μν ðτÞ, introduced in Eq. (3), for a general
pion momentum p⃗, assuming an LMD transition form
factor [33,34]. The VMD case is simply obtained by setting
β ¼ 0 in the equations below. Using the LMD model and
Eq. (10), we obtain

ÃμνðτÞ ¼
Zπ

4πEπ

Z
∞

−∞
dω̃ðPE

μνω̃þQE
μνÞ

αM4
V þ βðq21 þ q22Þ

ðM2
V þ jq⃗1j2 þ ω̃2ÞðM2

V þ jq⃗2j2 − ðEπ − iω̃Þ2Þ e
−iw̃τ; ðA1Þ

where PE
μν ¼ iϵμν0ipi and QE

μν ¼ ϵμνi0Eπqi1 − iϵμνijqi1p
j are independent of ω̃. The integrand has four distinct simple

poles

ω̃ð�Þ
1 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

V þ jq⃗1j2
q

¼ �ik1; ω̃ð�Þ
2 ¼ −i

�
Eπ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

V þ jq⃗2j2
q �

¼ −iðEπ ∓ k2Þ; ðA2Þ

where we used the notations k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

V þ jq⃗1j2
p

and k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

V þ jq⃗2j2
p

. Therefore

ÃLMD
μν ðτÞ ¼ Zπ

4πEπ

Z
∞

−∞
dω̃ðPE

μνω̃þQE
μνÞ

αM4
V þ βðq21 þ q22Þ

ðω̃ − ω̃ðþÞ
1 Þðω̃ − ω̃ð−Þ

1 Þðω̃ − ω̃ðþÞ
2 Þðω̃ − ω̃ð−Þ

2 Þ
e−iω̃τ: ðA3Þ

Case τ > 0

ÃLMD
μν ðτÞ ¼ −

Zπ

4Eπ

�
ðPE

μνω̃
ð−Þ
1 þQE

μνÞ
αM4

V þ βð2M2
V þ E2

π − 2Eπk1 þ jq⃗1j2 − jq⃗2j2Þ
k1ðEπ − k1 þ k2ÞðEπ − k1 − k2Þ

e−k1τ

þðPE
μνω̃

ð−Þ
2 þQE

μνÞ
αM4

V þ βð2M2
V þ E2

π þ 2Eπk2 − jq⃗1j2 þ jq⃗2j2Þ
k2ðEπ − k1 þ k2ÞðEπ þ k1 þ k2Þ

e−ðEπþk2Þτ
�
: ðA4Þ

Case τ < 0

ÃLMD
μν ðτÞ ¼ −

Zπ

4Eπ

�
ðPE

μνω̃
ðþÞ
1 þQE

μνÞ
αM4

V þ βð2M2
V þ E2

π þ 2Eπk1 þ jq⃗1j2 − jq⃗2j2Þ
k1ðEπ þ k1 − k2ÞðEπ þ k1 þ k2Þ

ek1τ

þðPE
μνω̃

ðþÞ
2 þQE

μνÞ
αM4

V þ βð2M2
V þ E2

π − 2Eπk2 − jq⃗1j2 þ jq⃗2j2Þ
k2ðEπ þ k1 − k2ÞðEπ − k1 − k2Þ

eþðk2−EπÞτ
�
: ðA5Þ
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The expression for Ãð1Þ;LMDðτÞ is then obtained using
Eq. (10). The function ÃLMD

μν ðτÞ is continuous for all values
of τ when PE

μν ¼ 0 but is discontinuous at τ ¼ 0 when
PE
μν ≠ 0. However, the function has finite limits when

τ → 0�, respectively. A similar method can easily be
applied to the LMDþ V model.
Finally,we remark thatEqs. (A4) and (A5) indicate the type

of intermediate states that contribute to the Euclidean three-
point function Cð3Þ

μν defined in Eq. (5), according to the LMD
model. Taking into account p⃗ ¼ q⃗1 þ q⃗2 and the relation (4)

between ÃμνðτÞ and Cð3Þ
μν , we find that for τ > 0, either a

vector meson with momentum q⃗1 or a two-particle state
consisting of a pion with momentum p⃗ and a vector meson
with momentum −q⃗2 is propagating between the two vector
currents; for τ < 0, either a vector meson with momentum q⃗2
or a two-particle state consisting of a pion with momentum p⃗
and a vector meson with momentum −q⃗1 is propagating.

APPENDIX B: z-EXPANSION:
SYSTEMATIC ERROR

The transition form factor admits a modified double z-
expansion given by Eq. (43) where the conformal variables
z1 and z2 are given by

zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þQ2

k

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tc − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þQ2

k

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

tc − t0
p ;

t0 ¼ tc

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max

tc

s �
; tc ¼ 4m2

π: ðB1Þ

As explained in the main text, t0 is the optimal choice
which reduces the maximum value of jzkj in the range
½0; Q2

max�. Using mπ ¼ 134.9 MeV one finds

jzmaxjQ2
max¼2 GeV2 ¼ 0.40; ðB2aÞ

jzmaxjQ2
max¼3 GeV2 ¼ 0.44; ðB2bÞ

jzmaxjQ2
max¼4 GeV2 ¼ 0.46; ðB2cÞ

well below one. The expansion parameter zk vanishes for
Q2

k ¼ −t0 (with Q2
max ¼ 4 GeV2, it corresponds to

t0 ¼ −0.47 GeV2) and is maximum at zk ¼ 0 and
zk ¼ Q2

max. Finally, the virtualities can be expressed in
terms of the variables zk

Q2
k ¼

�
1þ zk
1 − zk

�
2

ðtc − t0Þ − tc: ðB3Þ

In Sec. III C, the coefficients of the double z-expansion
were obtained by fitting the lattice data for a given value of
N. The latter should be large enough to minimize the
systematic error coming from the truncation of the sum but
its value is also limited by the statistical precision of the
data. We would like to estimate the systematic error
induced by this truncation. Therefore, as a test, we fit
the LMDþ V TFF, defined using Eq. (48c) and the fit
parameters in Eq. (53), with the z-expansion given by
Eq. (43). The model satisfies both short-distance con-
straints given by Eqs. (39) and (40). For this purpose,
we use a regular grid with 0 ≤ Q2

k ≤ Q2
max and a step size

δQ2
k ¼ 0.025 GeV2. In Table VI, and for different values of

N and Q2
max, we provide the results of the fit for the

normalization of the TFF α, the slope at the origin bπ , and

the pion-pole contribution aHLbL;π
0

μ which can be compared
to the exact known results. We also provide the maximum
deviation between the exact TFF and the fit. The level of
agreement is illustrated in Fig. 14.
We conclude that using N ¼ 3 and Q2

max ¼ 4 GeV2 is
already sufficient to get a precision below 1% for the TFF
in the range ½0; Q2

max�. The normalization of the TFF and the

pion-pole contribution, aHLbL;π
0

μ , are also recovered within a
precision below 1%. The slope parameter is obtained with a
precision of 6%. We point out that, using the optimal value
t0, the parameters zk reach their maximal value at Q2

k ¼ 0,
precisely where the normalization of the TFF is obtained.
Therefore, fitting the data in a wide range of virtualities is
not the best method to determine the normalization of the
TFF. However, the minimal value of zk is obtained at
Q2

k ¼ −t0 ≈ 0.5 GeV2, an optimal choice for the pion-pole

TABLE VI. Results of the fits of the LMDþ V model using the modified double z-expansion. The model is defined using Eq. (48c)

and the fit parameters in Eq. (53). The exact values are α ¼ 0.264 GeV−1, bπ ¼ 1.62 GeV−2, and aHLbL;π
0

μ ¼ 59.2 × 10−11. Results for

aHLbL;π
0

μ are given in units of 10−11. The last column, dmax, corresponds to the maximum deviation in percent between the exact TFF and
the fit.

Q2
max ¼ 1 GeV2 Q2

max ¼ 2 GeV2 Q2
max ¼ 4 GeV2

N α [GeV−1] bπ [GeV−2] aHLbL;π
0

μ α [GeV−1] bπ [GeV−2] aHLbL;π
0

μ α [GeV−1] bπ [GeV−2] aHLbL;π
0

μ dmax

1 0.260 1.51 55.4 0.253 1.51 54.4 0.232 1.43 49.1 12.2%
2 0.265 1.63 57.0 0.264 1.55 58.2 0.262 1.40 58.4 3.5%
3 0.264 1.62 57.9 0.264 1.65 57.9 0.265 1.71 58.3 0.6%
4 0.264 1.62 57.8 0.264 1.61 58.3 0.264 1.60 59.2 0.2%
5 0.264 1.62 58.4 0.264 1.63 59.4 0.264 1.62 59.8 0.06%
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contribution since the integrand is peaked around this
value.

APPENDIX C: RESULTS OF THE z-EXPANSION
FOR SOME INDIVIDUAL LATTICE ENSEMBLES

In Table VII, we provide the coefficients of the z-
expansion for three ensembles used in this work: N101,

N200, and D200. The correlation matrices are, respectively,
given by Eqs (C1), (C2), and (C3). The ensembles
N200 and D200 have the same lattice spacing but different
pion masses, whereas N200 and N101 have similar pion
masses but different lattice spacings. We stress that our main
result in Sec. III C is based on a global fit, where all the
ensembles are fitted simultaneously using the ansatz (44),

corðcnmÞ ¼

0
BBBBBBBBBBBBBBBBBB@

þ1.000 −0.338 þ0.126 −0.242 þ0.188 þ0.054 −0.227 þ0.049 þ0.162 −0.299
−0.338 þ1.000 −0.051 þ0.096 −0.310 þ0.371 −0.113 −0.406 þ0.508 þ0.016

þ0.126 −0.051 þ1.000 −0.946 þ0.757 þ0.550 −0.852 −0.470 þ0.230 þ0.274

−0.242 þ0.096 −0.946 þ1.000 −0.854 −0.517 þ0.932 þ0.331 −0.179 −0.140
þ0.188 −0.310 þ0.757 −0.854 þ1.000 þ0.243 −0.832 −0.034 −0.272 þ0.317

þ0.054 þ0.371 þ0.550 −0.517 þ0.243 þ1.000 −0.577 −0.934 þ0.672 þ0.285

−0.227 −0.113 −0.852 þ0.932 −0.832 −0.577 þ1.000 þ0.365 −0.268 −0.116
þ0.049 −0.406 −0.470 þ0.331 −0.034 −0.934 þ0.365 þ1.000 −0.679 −0.399
þ0.162 þ0.508 þ0.230 −0.179 −0.272 þ0.672 −0.268 −0.679 þ1.000 −0.369
−0.299 þ0.016 þ0.274 −0.140 þ0.317 þ0.285 −0.116 −0.399 −0.369 þ1.000

1
CCCCCCCCCCCCCCCCCCA

; ðC1Þ

FIG. 14. Fits of the LMDþ V TFF using the modified z-expansion in the range 0–4 GeV2 and for different values of N. The
LMDþ V TFF is defined using Eq. (48c) and the fit parameters in Eq. (53).

TABLE VII. Coefficients of the z-expansion, in GeV−1, defined in Eq. (43) and obtained from a fit on a single
ensemble using local vector currents at the source and at the sink. The vector meson masses used in Eq. (41) are
given in Table I.

Id c00 c01 c11 c20 c21

N101 0.2456(46) −0.0755ð61Þ −0.265ð99Þ 0.065(54) 0.02(14)
N200 0.2301(44) −0.0675ð43Þ −0.280ð64Þ 0.071(32) 0.09(11)
D200 0.2484(48) −0.0728ð51Þ −0.399ð94Þ 0.148(47) −0.02ð14Þ

Id c22 c30 c31 c32 c33

N101 −0.038ð85Þ 0.143(125) 0.12(41) −0.35ð62Þ −0.18ð91Þ
N200 −0.250ð58Þ 0.079(95) 0.26(32) −0.16ð76Þ −0.90ð91Þ
D200 −2.44ð1.15Þ 0.283(122) 1.14(55) −1.64ð79Þ −0.15ð89Þ
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corðcnmÞ ¼

0
BBBBBBBBBBBBBBBBBB@

þ1.000 −0.237 −0.409 þ0.084 þ0.140 −0.113 þ0.053 þ0.388 −0.405 þ0.171

−0.237 þ1.000 þ0.152 −0.171 −0.095 þ0.267 −0.394 −0.211 þ0.414 −0.299
−0.409 þ0.152 þ1.000 −0.812 þ0.466 þ0.471 −0.688 −0.510 þ0.331 þ0.077

þ0.084 −0.171 −0.812 þ1.000 −0.790 −0.419 þ0.882 þ0.117 þ0.044 −0.218
þ0.140 −0.095 þ0.466 −0.790 þ1.000 þ0.096 −0.779 þ0.270 −0.487 þ0.512

−0.113 þ0.267 þ0.471 −0.419 þ0.096 þ1.000 −0.402 −0.808 þ0.435 þ0.002

þ0.053 −0.394 −0.688 þ0.882 −0.779 −0.402 þ1.000 þ0.113 −0.093 −0.069
þ0.388 −0.211 −0.510 þ0.117 þ0.270 −0.808 þ0.113 þ1.000 −0.734 þ0.189

−0.405 þ0.414 þ0.331 þ0.044 −0.487 þ0.435 −0.093 −0.734 þ1.000 −0.769
þ0.171 −0.299 þ0.077 −0.218 þ0.512 þ0.002 −0.069 þ0.189 −0.769 þ1.000

1
CCCCCCCCCCCCCCCCCCA

; ðC2Þ

corðcnmÞ ¼

0
BBBBBBBBBBBBBBBBBB@

þ1.000 −0.147 −0.109 −0.006 −0.101 þ0.139 þ0.018 −0.079 þ0.178 −0.246
−0.147 þ1.000 þ0.097 −0.040 −0.257 þ0.411 −0.185 −0.441 þ0.544 −0.082
−0.109 þ0.097 þ1.000 −0.936 þ0.676 þ0.456 −0.812 −0.440 þ0.210 þ0.418

−0.006 −0.040 −0.936 þ1.000 −0.746 −0.434 þ0.890 þ0.322 −0.177 −0.241
−0.101 −0.257 þ0.676 −0.746 þ1.000 þ0.058 −0.811 þ0.041 −0.332 þ0.529

þ0.139 þ0.411 þ0.456 −0.434 þ0.058 þ1.000 −0.490 −0.954 þ0.839 þ0.032

þ0.018 −0.185 −0.812 þ0.890 −0.811 −0.490 þ1.000 þ0.361 −0.229 −0.253
−0.079 −0.441 −0.440 þ0.322 þ0.041 −0.954 þ0.361 þ1.000 −0.834 −0.166
þ0.178 þ0.544 þ0.210 −0.177 −0.332 þ0.839 −0.229 −0.834 þ1.000 −0.370
−0.246 −0.082 þ0.418 −0.241 þ0.529 þ0.032 −0.253 −0.166 −0.370 þ1.000

1
CCCCCCCCCCCCCCCCCCA

: ðC3Þ
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