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We present a lattice QCD study of the valence parton distribution inside the pion within the framework of
Large Momentum Effective Theory. We use a mixed action approach with 1-HYP smeared valence Wilson
clover quarks on 2þ 1 flavor HISQ sea with the valence quark mass tuned to 300 MeV pion mass. We use
483 × 64 lattice at a fine lattice spacing a ¼ 0.06 fm for this computation. We renormalize the quasi parton
distribution functionmatrix element in the nonperturbative regularization independent momentum subtraction
(RI-MOM) scheme. As a byproduct, we test the validity of a 1-loop matching procedure by comparing the
RI-MOM renormalized quasi parton distribution function matrix element with off-shell quark external states
as computed in the continuum 1-loop perturbation theory with the lattice results at a ¼ 0.04 and 0.06 fm. By
applying the RI-MOM to MS one-loop matching, implemented through a fit to phenomenologically
motivated parton distribution functions, we obtain the valence parton distribution function of pion.
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I. INTRODUCTION

QCD factorization allows us to calculate the cross
section of hard hadronic processes in terms of the con-
volution of partonic cross section and parton distribution
functions [1]. Parton distribution for a hadron can be
defined using hadronic matrix elements of appropriately
chosen gauge invariant operators separated along the light
cone. For example, the quark parton distribution function
(PDF) of a hadronH can be defined in terms of an operator
bilocal in quark field ψ as [1,2]

fðxÞ¼ 1

4π

Z
dξ−eixP

þξ−hHðPÞjψ̄ðξ−ÞγþWðξ−;0Þψð0ÞjHðPÞi;

ð1Þ

where Wðξ−; 0Þ ¼ Peig
R

ξ−

0
dξ−Aþ

is the path-ordered
straight Wilson line on the light cone, and the light-cone
coordinates ξ� ¼ ðt� zÞ= ffiffiffi

2
p

. A straightforward first prin-
ciple calculation of PDF is not possible because lattice
QCD is formulated in the Euclidean space-time, and, thus,
it cannot access quantities defined on the light cone. To
circumvent this problem, it has recently been proposed to

calculate the quasi parton distribution function (qPDF),
q̃ðx; PzÞ, defined in terms of matrix elements of equal time,
but spatially separated, quark bilinears [3] evaluated in a
hadron state boosted to a large momentum Pz:

q̃ðx;PzÞ¼
1

4π

Z
dze−ixP

zzhHðPzÞjψ̄ðzÞΓWðz;0Þψð0ÞjHðPzÞi;

ð2Þ

where Γ is either γz or γt for the unpolarized parton
distribution addressed in this paper. Here, Wðz; 0Þ is a
straight spatial Wilson line joining the quark and antiquark.
For sufficiently boosted hadrons, one can use the Large
Momentum Effective Theory (LaMET) [4] to relate the
qPDF to PDF through a convolution with a matching
kernel C as

q̃ðx; μL; PzÞ ¼
Z þ1

−1

dy
jyjC

�
x
y
;
yPz

μ
;
μL
yPz

�
fðy; μÞ: ð3Þ

Here μL and μ are the renormalization scales of the schemes
in which the qPDF and PDF are defined. For the latter, MS
scheme is used and μ is referred to as the factorization scale.
The matching kernel is perturbative and hence universal for
all the hadrons. Therefore, it is calculated using quark
external states in a chosen gauge. Such calculations at
1-loop order have been performed using the cutoff scheme
[5] as well as in the MS scheme [6–8]. There are also
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related approaches to calculate the PDF from the lattice that
use similar logic but differ in details, like the pseudo-PDF
approach proposed in Refs. [9,10] and the use of good
lattice cross sections [11,12]. The latter includes the
current-current correlators [13].
Using LaMET and related approaches, various attempts

have been made to calculate the unpolarized and polarized
isovector quark distribution of the nucleon [7,14–17]. The
first studies of the valence quark distribution for the pion
have also been presented [13,18]. One important issue in
the calculation of the PDF from the lattice is the renorm-
alization and matching. As indicated above, the PDF and
qPDF are usually defined in different renormalization
schemes. The qPDF, which is calculated on the lattice,
needs a nonperturbative renormalization scheme because
of the self-energy divergence of the Wilson line [19], and
this is usually implemented using the regularization inde-
pendent momentum subtraction (RI-MOM) scheme [20]
defined using external off-shell quark states accessible on
the lattice. Then, one has to match the qPDF in this lattice
renormalization scheme to the PDF in the MS scheme
through Eq. (3). This is achieved through the convolution
using the matching kernel between the RI-MOM and MS
schemes that is perturbatively calculated in the continuum
theory using dimensional regularization [8]. One could also
define the qPDF operator in the MS scheme and then
perform the matching between PDF and qPDF [6,21]. The
current status of this field, including the comparison with
the phenomenological PDF and the issue of renormaliza-
tion, is reviewed in Refs. [22–24].
In principle, Eq. (3) offers a way to calculate PDF from

the lattice, but it is unclear as to what extent this is actually
feasible given the various assumptions that go along with
the equation implicitly. For example, at any finite hadron
momentum Pz, the Eq. (3) suffers from OðΛ2

QCD=ðx2P2
zÞÞ

higher twist corrections. This is closely related to the
assumption that the perturbative calculation, currently
truncated at 1-loop order, is able to capture the renormal-
ization as well as the matching of the qPDF matrix element
over a range of quark-antiquark separations, z—to be in the
perturbative regime, one would expect z to be smaller than
or about Oð1Þ fm. It is also important to ensure that aPz <
1 to make sure we are not overcome with lattice artifacts
[25]. Therefore, a closer look at this new methodology is
warranted and is actively being studied [7,26]. The aim of
this paper is to explore these issues further by using finer
lattices than what are being used in the qPDF literature, and
use the pion as a case study. The smaller mass of the pion
makes it easier to achieve a large boost, the numerical
calculations are expected to be less expensive, and it also
helps suppress the target mass correction by ensuring
mπ ≪ Pz. We focus on the valence PDF of the pion since
it can be accessed using the isotriplet u − d PDF, and,
thereby, avoid mixing with the gluon sector. In our study,
we will use the renormalization and matching strategy

outlined in [7,20]. The pion valence PDF has been
determined through leading-order and next-to-leading-
order analyses of the experimental data [27–35], but it is
much less constrained than the nucleon PDF, and, there-
fore, the lattice calculations may have more impact in this
case, especially in constraining the x → 1 limit which is not
yet well established.
The paper is organized as follows. In Sec. II, we discuss

our lattices setup. In Sec. III, we present the calculations
of the two-point function of the boosted pion and check
how reliable the extractions of the ground state and the first
excited state are. In Sec. IV, we present our results for the
pion three-point function that defines the qPDF. Here, we
also discuss the problem of excited state contamination. In
Sec. V, we discuss the nonperturbative renormalization as
well as the validity of 1-loop matching. Our results on the
renormalized pion qPDF and the matching to PDF are
presented in Sec. VI. Some technical aspects of the calcu-
lations are discussed in the Appendices. Preliminary
results on this work have been reported in conference
proceedings [36–38].

II. LATTICE SETUP

We performed the calculations of the pion two-point and
three-point functions needed to obtain the qPDF using the
Wilson-Clover action for valence quarks on 1-HYP smeared
gauge configurations [39] and the highly improved staggered
quark (HISQ) action [40] in the sea.We used the 2þ 1 flavor
gauge configurations corresponding to lattice size 483 × 64
and the lattice spacing of a ¼ 0.06 fm generated by the
HotQCD collaboration [41]. In addition to this ensemble, we
also used 644 highly improved staggered quark lattices [41]
with the lattice spacing a ¼ 0.04 fm for the study of the
nonperturbative renormalization (NPR). In both the ensem-
bles, the sea quark mass was tuned to a pion mass of
160 MeV. A similar setup was used by the PNDME
collaboration, albeit for 2þ 1þ 1 flavor MILC configura-
tions (c.f., Ref. [7]). For thevalence quarkmasses,weused the
values am ¼ −0.0388 (i.e., κ ¼ 0.12623) for the a ¼
0.06 fm ensemble and am ¼ −0.033 (i.e., κ ¼ 0.12604)
for the a ¼ 0.04 fm ensemble, which are tuned such that
the pion mass, mπ , is 300 MeV. We did not see any
exceptional configurations for these valence quark masses
in our calculations.
We used higher statistics at smaller quark-antiquark

separations z than at larger ones; to be exact, we used
216, 100, and 48 gauge configurations for jzj=a ∈ ½0; 8�,
(8, 16], and (16, 24], respectively. We further improved the
statistics by using the All-Mode Averaging (AMA) [42]
technique in the computations of the two- and three-point
functions, with 32 sloppy calculations to one exact solve
for each configuration. For the exact and sloppy inversions,
we used the stopping criterion of 10−10 and 10−4, respec-
tively. In our study, we will consider the valence quark
distribution, which in turn is related to the isovector u − d
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quark distribution in the pion, and thus we do not compute
the quark line disconnected diagrams.
For a reliable extraction of qPDF, a good overlap of the

source operator with the pion state is necessary so as to
project out the ground state at as small source-sink separation
as possible. The quark sources with a Gaussian profile,
typically implemented through a gauge covariant Wuppertal
smearing [43], are used for this purposewhen the hadron is at
rest. However, for the fast moving hadrons that are required
in the qPDF framework, the use of the Gaussian sources is no
longer sufficient, and this necessitates the usage of the
boosted Gaussian sources [44] instead. Since we are inter-
ested in the calculation of the pion two- and three-point
function at several values of the pion momenta and several
source-sink separations, we found it more practical to
implement the Gaussian sources by using the Coulomb
gauge instead of implementing the Wuppertal smearing. We
found the optimal size of the Gaussian profile to be about
0.3 fm, which roughly corresponds to 90 steps of Wuppertal
smearing. We checked that in terms of the signal-to-noise
ratio, the Wuppertal and Coulomb-gauge Gaussian sources
are similar (see Appendix E). In the next section, we discuss
the boosted sources in detail and the energy levels of the
boosted pion. In Appendix A, we have explained the
construction of boosted sources in detail.
Out of 216 gauge configurations used in our calculations,

24 gauge configurations were analyzed using the graphics
processing unit (GPU) cluster in Brookhaven National Lab
to calculate two-point and three-point correlation functions.
These calculations were performed entirely on GPU using
the QUDA suite [45–47], including the inversion of the
fermion operator with a multigrid algorithm, communication
between GPU devices to perform covariant shifts, and the
necessary spin-color matrix multiplications. In QUDA, the
communications between GPUs on the same node are
implemented through message passing interface or as direct
peer-to-peer communications between the GPU devices. We
have found that on rare occasion the QUDA peer-to-peer
communications did not finish by the time the computations
started. These rare glitches happened randomly. We checked,
however, that these glitches did not affect our results
noticeably compared to other errors.

III. TWO-POINT FUNCTION
OF THE BOOSTED PION

We calculated the two-point functions of the positively
charged pion (πþ ¼ d̄u),

Css0
2ptðt; PzÞ ¼ h½πþs ðt; P⃗�½πþs0 ð0; P⃗Þ�†i; ð4Þ

for a spatial pion momentum P⃗ ¼ ð0; 0; PzÞ which is
nonzero only along the z-direction, using the pion source
and sink πþs ð0; P⃗Þ and πþs0 ðt; P⃗Þ, respectively. The values of
momenta in lattice units are aPz ¼ �2πnz=48 for nz
ranging from 0 to 5, which in physical units correspond

to Pz ¼ 0, 0.43, 0.86, 1.29, 1.72, and 2.15 GeV, respec-
tively. We always used the Coulomb gauge Gaussian
smeared-source (s ¼ S), and either a smeared-sink
(s0 ¼ S) or point-sink (s0 ¼ P). In the rest of the paper,
we will refer to the smeared-source and smeared-sink setup
to be SS, and we will refer to the smeared-source point-sink
set-up as SP.
For the lowest two momenta, we used the usual Gaussian

sources. To improve the signal for the higher momenta, we
followed Ref. [44] and used boosted sources in which the
valence quarks are boosted to a momentum kz ¼ ζPz, with
ζ being a tunable parameter. Naively, one might expect
that the optimal choice would be ζ ¼ 0.5. However, we
found that the optimal choice of ζ for the pion in terms of
the signal-to-noise ratio is between 0.6–0.75. For Pz ¼
0.86 GeV the signal-to-noise ratio is not very sensitive to
the value of ζ. These findings are in agreement with
Ref. [44]. We discuss the optimization of boosted sources
further in Appendix E. Since we need to create a source for
each value of ζ, we used kz ¼ 2ð2π=48Þ for nz ¼ 2, 3 and
kz ¼ 3ð2π=48Þ for nz ¼ 4, 5, corresponding to the choices
of the parameter ζ ¼ 1; 2=3; 3=4, and 3=5 for nz ¼ 2, 3, 4,
and 5, respectively. We have shown the corresponding
effective masses for the SS two-point functions in Fig. 1.
By using the boosted smeared sources, one can see that a
reasonable signal for the two-point correlation function
can be obtained up to source-sink separations t ¼ 12a
for all momenta except for the highest momentum
Pz ¼ 2.15 GeV. Simply from the data points in Fig. 1,
we see that the effective masses approach a plateau

FIG. 1. The effective masses Eeff from the pion two-point
functions with the boosted Coulomb gauge Gaussian source and
sink for different momenta as a function of the source-sink
separation t. The horizontal lines are the energy levels from the
continuum dispersion relation with mπ ¼ 300 MeV.

VALENCE PARTON DISTRIBUTION FUNCTION OF PION … PHYS. REV. D 100, 034516 (2019)

034516-3



corresponding to the continuum dispersion relation
EπðPzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þm2

π

p
, shown as the horizontal lines. The

effective mass approaches the plateau region at larger
source-sink separations when the momentum is increased,
as one would expect from the shrinking gap between the
ground and excited states as the pion is boosted.
As we will discuss next, we used source-sink separations

t ¼ 8a, 10a, and 12a for the computation of three-point
functions. Therefore, we needed to analyze the excited state
contribution to the SS and SP correlators to perform the
infinite source-sink extrapolations. For this, we performed
multiexponential fits on the SS and SP pion two-point
functions in the interval t ∈ ½tmin; tmax� in order to extract
the energy levels. For fixed tmin, we varied tmax and checked
the sensitivity of the result to tmax. Then, we repeated the
procedure for different values of tmin. We found that we
were able to reliably extract the ground state EπðPzÞ as well
as the first excited state E1ðPzÞ using the four-parameter
two-state fits to the SP correlator instead of using the SS
correlator. This could be due to the fact that the contribu-
tions from the high-lying energy levels are smaller in the SP

correlator compared to the SS correlator stemming from the
possible cancellations between the positive as well as the
negative amplitudes that are allowed in the SP correlator. In
the top-left and bottom-left panels of Fig. 2, we have shown
the systematics of the two-state fits to the SP correlator.
In the top-left and the bottom-left figures, we have shown
the dependence of the best fit values of Eπ (blue circles) and
E1 (black circles) as a function of tmin used in the fits. For a
given tmin, the data points from two values of tmax have
been clubbed together for Pz ¼ 0 and 1.29 GeV, respec-
tively, and it demonstrates that there is no dependence on
tmax. The ground state is seen to compare well with the
expectation from the dispersion relation shown by the black
solid lines. The red band shows the values of E1 chosen as
the best estimate of the first excited state.
On the top-right and bottom-right panels of Fig. 2, we

show similar plots for the first excited state E1 as estimated
using the SS correlator. The statistical errors of the excited
state energy E1 in the simple two-state fits (magenta
diamond) quickly grow large with increasing tmin, and,
thus, these fits turned out to be of limited use. Therefore, we
performed constrained two- and three-state exponential fits
for the SS correlator with the ground state energy fixed to
Eπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þm2

π

p
with mπ ¼ 300 MeV, and imposing a

prior on E1 using its best estimate from the SP correlator—
that is, we added the term ðE1 − E1;priorÞ2=σ2prior to the χ2

with E1;prior and σprior being the mean and error of E1,
respectively, as determined from the SP correlator. The tmin
dependence of the resulting E1 from the constrained two-
state fit (black circles) and constrained three-state fit (blue
triangles) are shown in the top-right and bottom-right
panels. The two-state fits of the SS two-point correlator
largely overestimate the energy of the first excited state for
small tmin whether or not priors are used, and there is a
significant dependence on tmin. One should use tmin ≥ 6a to
obtain reliable results for the first excited state from the SS
correlator. The three-state fits with priors on Eπ and E1 give
energies of excited states that are the same within errors for
the SS two-point correlators and show almost no tmin
dependence. In summary, we determined the lowest three
energy levels using the SP correlator and then determined
the corresponding amplitudes jAnj ¼ jh0jπþS ð0; P⃗ÞjEn; Pzij
of these excited states in the SS correlator through a
constrained fit analysis.
In Fig. 3, we show the three energy levels obtained from

the different fits discussed above, as a function of Pz.
For Pz ¼ 0, we compare our result with the energy levels
that would correspond to the pion resonances πð1300Þ and
πð1800Þ from the particle data group (PDG) [48]. In order
to account for the 300 MeV pion mass, we shifted the
PDG values by 0.161 GeV as an approximation and
these are shown as the two arrows in Fig. 3. Our estimate
of the first excited state energy agrees with this shifted
mass of πð1300Þ. We also show the expected Pz-depend-
ence of E1ðPzÞ assuming a particlelike dispersion, and this

FIG. 2. The systematical dependence of the ground state Eπ and
the first excited state E1 on the fit range ½tmin; tmax� is shown. In
the left panels, we show such a dependence for the pion SP
correlator at two different Pz. For each tmin, data from tmax ¼ 24a
and 32a are shown. The black solid line is the value of Eπ

expected from the continuum dispersion relation. The red
patterned band is our best estimate of E1 using the SP correlator.
In the right panels, the fit systematics of E1 for the SS correlator is
shown. The red band is the prior used for E1 from the SP
correlator (same as the one in the left panels). The different
symbols are the various fit strategies.
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describes the actual data very well. The energy of the
second excited state is much larger than expected, meaning
that the third state effectively parametrizes several higher
lying states. As one can see from the figure the energy gap
between Eπ and E1 shrinks with increasing Pz as expected.
The results on the excited state energies will be important
for the analysis of the pion three-point function discussed in
the next section.

IV. EXTRACTION OF THE BARE QUASI-PDF
MATRIX ELEMENTS FROM THE

THREE-POINT FUNCTIONS

The next step is the calculation of the bare qPDF matrix
element

hBΓðz; PzÞ ¼ hEπ; PzjOΓðz; τÞjEπ; Pzi; ð5Þ

where the bilocal u − d qPDF operator in a time-slice τ
involving a quark and an antiquark separated along the
z-direction by L ¼ ð0; 0; 0; zÞ is given by

OΓðz;τÞ¼
X
x⃗

ðūxWx;xþLΓuxþL− d̄xWx;xþLΓdxþLÞ; where

Γ¼ γt;γz;1; Wx;xþL ¼
YxþL

x0¼x

U3ðx0Þ; ð6Þ

and it is made gauge-invariant by the Wilson line Wx;xþL.
The Dirac γ matrices in the qPDF operator are in the

Minkowskian convention. The state jEπ; Pzi denotes the
on-shell ground state pion with momentum Pz. In addition
to the natural choices of Γ ¼ γt and γz that approach γþ in
the light-cone limit, we also considered Γ ¼ 1. This choice
of Γ is needed because under renormalization,OγzðzÞmixes
with O1ðzÞ [6]. We applied one-level of HYP smearing to
the links enteringWx;xþL in order to reduce the noise. Since
the qPDF calculation involves values of z ∼OðaÞ, we
checked that there is no significant difference between the
renormalized matrix elements using the smeared and
unsmeared Wilson line. To obtain the bare matrix element
hBΓðP; zÞ, we computed the three-point function at different
source-sink separations t and operator insertion point τ,

CSS
3ptðt; τ; z; PzÞ ¼ h½πþS ðt; P⃗Þ�OΓðz; τÞ½πþS ð0; P⃗Þ�†i; ð7Þ

and constructed the ratio of the three-point function to two-
point function,

Rðt; τ; z; Pz;ΓÞ ¼
CSS
3ptðt; τ; z; PzÞ
CSS
2ptðt; PzÞ

: ð8Þ

The reader can refer to Appendix B for a detailed
description of the construction of three-point functions.
The two-point function is always real when the source and
sink are of the same type. The three-point function for the
u − d qPDF operatorOΓðzÞ in a pion external state is real at
all z for Γ ¼ γz; γt and purely imaginary for Γ ¼ 1 (refer
Appendix C). Inserting a complete set of states in the above
equation,

Rðt;τ;z;Pz;ΓÞ

¼
P

n;n0AnA�
n0 hEn;PjOΓðzÞjEn0 ;PÞie−ðEn0−EnÞτ−EntP

mjAmj2e−Emt
; ð9Þ

with Enþ1 ≥ En, and E0 ¼ Eπ . It is easy to see that in the
infinite t limit, Rðt; τ; z; Pz;ΓÞ is equal to hBΓðz; PÞ. The
above equation holds for the infinite time extent. For a
finite time extent, the effects of the periodic boundary
condition should be taken into account. This turns out to be
important for Pz ¼ 0, while for nonzero Pz the effect is
negligible as discussed in Appendix G. In practice, one
truncates the sums in Eq. (9) at some value n, and then
obtains hBΓðz; PzÞ by fitting the t and the τ dependence of
Rðt; τ; z; Pz;ΓÞ using hEn; PjOΓðzÞjEn0 ; PÞi as fit parame-
ters. In the fits, the values of An and En were held fixed at
values determined from the two-state fit analysis on the SS
correlators. In what follows, we will refer to this method of
fitting using n-state ansatz to the data between τ=a > τo
and τ=a < t=a − τo as Fit(n; τo). In this method, the
excited states are suppressed by expð−ðEn − EπÞt=2Þ. For
z ¼ 0, it is easy to see that Rðt; τ; z; Pz;ΓÞ is symmetric in τ
around the midpoint τ − t=2. For z ≠ 0 andPz ≠ 0, we only
have the following relation (see Appendix D):

FIG. 3. The energies of the ground state and the first two
excited states as functions of Pz. The red, blue, and black symbols
correspond to Eπ , E1, and E2, respectively. For each color, the
different symbols correspond to different fitting methods (2-state
and 3-state fit with or without prior on the ground state) and the
types of source-sink (SP or SS). The lines show the expected
dispersion relations for the pion and its first excited state. The
arrows are the PDG values of πð1300Þ and πð1800Þ which are
shifted to account for mπ ¼ 300 MeV.
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hEn; PzjOΓðzÞjEn0 ; PzÞi� ¼ ϕΓhEn0 ;−PzjOΓðzÞjEn;−PzÞi;
ð10Þ

where ϕΓ ¼ 1 for Γ ¼ γt; 1 and ΦΓ ¼ −1 for Γ ¼ γz. Thus,
generically the matrix elements hEn; PzjOΓðzÞjEn0 ; PzÞi
and hEn0 ; PzjOΓðzÞjEn; PzÞi are independent and the num-
ber of fit parameters is thereby increased. Based on the
above relation, we constructed appropriate averages using
both the positive and negative values of momenta to
increase the statistics. However, in practice the gain was
marginal.
We demonstrate the extraction of the matrix element

using the fit method in Fig. 4, where the ratios
Rðt; τ; z; Pz;ΓÞ are shown for Γ ¼ γt and γz qPDFs for
the Pz ¼ 1.29 GeV pion. The results on Rðt; τ; z; Pz;ΓÞ
and the extraction of matrix elements for the other values of
Pz are given in Appendix G. In the figure, we show the data
at t=a ¼ 8, 10, and 12 along with the result of Fit(2,2).
Using the fit, the results for the t → ∞ extrapolations are
shown with the horizontal bands. We also performed the
three-state fit of Rðt; τ; z; Pz;ΓÞ and the picture looks
similar. In this case, the data points at all τ − t=2 could
be described by the fit. The t → ∞ extrapolations from the
three-state fit gave results consistent with the two-state
ones, albeit with larger errors. A closer look at Fig. 4 (and
also from Fig. 21) reveals that the excited state contribution

is larger for Γ ¼ γz than for Γ ¼ γt. Furthermore, the
excited state contribution grows with increasing z. The
nonsymmetric nature of Rðt; τ; z; Pz;ΓÞ for z ≠ 0 is also
apparent in the figure. We expect that hΓðz ¼ 0; PÞ ¼ 1 for
Γ ¼ γt because of the charge conservation once a proper
renormalization is implemented and the continuum limit is
taken. Our extrapolation procedure gives a result for the
bare matrix element which is larger than one at all the
values of momenta as can be seen in Fig. 4, as well as from
Fig. 22 in Appendix G, where, in addition, one can also see
that hBγtðz ¼ 0; PzÞ is independent of Pz. Thus, any
deviation of hBγtðz ¼ 0; PzÞ away from unity should be
taken care of by the renormalization. We will see in Sec. V
that this is indeed the case.
Alternatively we can use the summation method [49] to

obtain hBΓ . Here one sums over all τ=a minus a certain
number of end points τo

Rsumðt; z;ΓÞ ¼
Xt=a−τo

τ=a¼τo

Rðt; τ; z; Pz;ΓÞ: ð11Þ

We will refer to this method as sum(sumðτoÞ). For large t,
one would find a linear behavior in t of Rsum as

Rsumðt; z;ΓÞ ≃ ðt − 2τoÞhBΓðz; PzÞ þ constþOðe−ðE1−EπÞtÞ:
ð12Þ

FIG. 4. The ratio of the three-point function to the two-point function, Rðt; τ; z; Pz;ΓÞ is shown as function of τ − t=2 for γt (top row)
and γz (bottom row) for z=a ¼ 0, 4 and 8 (from left to right) and Pz ¼ 1.29 GeV. The central values of the two-state fits of the lattice
results for different source-sink separations are shown as the curves. The horizontal band corresponds to the extrapolated result for the
infinite source-sink separation.
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The advantage of this method is that the excited state
contributions are suppressed as exp½−ðEn − EπÞt� instead
of being suppressed as exp½−ðEn − EπÞt=2� in the fitting
method. We show a sample result using sum(1) and sum(2)
in Fig. 5 for Γ ¼ γz and z ¼ 0. We see that Rsumðt; z; γzÞ can
be well fitted by a straight line in t, and the slope gives the
value of the matrix element. As a cross check, we also show
the expected curve for Rsumðt; z;ΓÞ using our best fit from
Fit(2,2) as the dashed curves. It can be seen that the
difference between a simple straight line fit and the curve
from Fit(2,2) is small. One can also note that sum(1) and
sum(2) are almost parallel, meaning that the extracted
matrix element is independent of τo confirming that the
method works well.
To better understand the systematic effects due to excited

state contaminations, one can look at the case z ¼ 0 in
detail, where the statistical errors are the smallest. The bare
matrix element hBγzðz ¼ 0; PzÞ after renormalization is
expected to be proportional to the hadron velocity,
Pz=EπðPzÞ. One can take the ratio of matrix elements
hBγzðz ¼ 0; PzÞ=hBγtðz ¼ 0; PzÞ to avoid the issues of renorm-
alization. The results for this ratio of matrix elements is
shown in Fig. 6 along with the curve for Pz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þm2

π

p
. We

see that our lattice results follow the expectations reasonably
with small 3–4% deviations from the expected result at small
Pz. A reason for this couldbe the large systematic uncertainty
in γz matrix element due to the relatively larger excited state
extrapolations required. We see that within errors, the two-
state fit, three-state fit, and the summation methods are
consistent.
In Fig. 7, we show the results for hBΓðz; PzÞ as functions

of z for the two highest momenta Pz ¼ 1.29 and 1.72 GeV
determined using the HYP smeared Wilson line. Since the
real part is symmetric, about z ¼ 0, we have only shown the
data for z ≥ 0. At each z=a, we have shown the resulting
t → ∞ extrapolated results using Fit(3,1), Fit(2,2),

sum(2), and sum(2) methods, and these points at a given
z=a are slightly displaced for better visibility. We see that
the results from all these methods agree with each other
within the errors. For γz, some tension between the
summation method, and the two- and three-state fits is
observed at larger jzj. At larger values of z the matrix
elements are suppressed partly because of the larger value
of Pz and in part by the divergent self-energy contribution
in the spatial Wilson line. The latter will be removed upon
renormalization as we will see in the next section. Having
demonstrated a robust determination of the matrix element
using multiple t → ∞ strategies, we will use the matrix
elements obtained using Fit(2,2) in the rest of the paper.
So far we discussed results on the three-point function

obtained using 1-HYP smearing for the spatial link. We
also performed calculations using the unsmeared spatial
Wilson line. In this case, the bare matrix element rapidly
decreased with z due to the larger value of the Wilson line
self-energy divergence. However, we found that the results,
after nonperturbative renormalization (discussed next in
Sec. V), were similar to those obtained with smeared
Wilson lines within errors. The main difference between
the renormalized three-point function obtained with the
smeared and unsmeared Wilson line is that, for the latter,
the statistical errors at large z are significantly larger.

V. RI-MOM NONPERTURBATIVE
RENORMALIZATION AND ITS
COMPARISON WITH 1-LOOP

In the last section, we discussed the extraction of the bare
qPDF matrix element which has to be renormalized. The
renormalizability of qPDF has been recently demonstrated
to all orders of perturbation theory [50,51]. In addition to
the quark wave function renormalization Zq and the
composite operator renormalization required for z ¼ 0,
the qPDF operator at nonzero z requires additional renorm-
alization due to the UV divergence present in the Wilson
line connecting the quark and antiquark [52]. When a

FIG. 6. The ratio of the matrix elements for γz to γt as a function
of Pz. The curve shows the expected result, Pz=EπðPzÞ.

FIG. 5. The t dependence of Rsumðt; z ¼ 0; γzÞ for Pz ¼
1.29 GeV with τo ¼ 1 (red) and τo ¼ 2 (blue). The solid lines
are the straight line fit hBγzðz; PzÞtþ const to the data. The dashed
lines are the expected curve for Rsumðt; z ¼ 0; γzÞ using the fit
(2,2) best fit parameters.

VALENCE PARTON DISTRIBUTION FUNCTION OF PION … PHYS. REV. D 100, 034516 (2019)

034516-7



lattice fermion that breaks chiral symmetry at finite lattice
spacings is used, as is the case in this paper, it has been
shown that only the renormalization of the γt qPDF
operator is purely multiplicative, while the γz qPDF
operator mixes with the scalar qPDF [6,20]. A renormal-
ization scheme that is implementable on the Euclidean
lattice is the RI-MOM scheme, and it is now standard in the
lattice QCD literature. The corresponding RI-MOM
counter-term for the qPDF operator in leading-order
perturbation theory has been worked out using off-shell
quark external states [8], and it is one of the ingredients
used in the perturbative matching of the RI-MOM renor-
malized qPDF to the MS PDF. In this section, we discuss
the renormalization procedure, and then compare the
running of the renormalization constants as determined
on the lattice with the corresponding perturbative expect-
ations. This allows us to quantitate the validity of the
leading-order perturbation theory and matching.
For nonperturbative renormalization, we compute the

expectation value of qPDF operator between off-shell quark
external stateswithmomentump.We refer to themomentum
of quark in the direction of the Wilson line as pz and the
magnitude of the component perpendicular to theWilson line
as p⊥. For these computations, we use Landau gauge fixing.
Let ΛΓðz; pÞ be the quark-line amputated bare qPDF,

ΛΓðz; pÞ ¼ hQðpÞi−1hūðpÞOΓðz; τÞuðpÞihQðpÞi−1; ð13Þ

where QðpÞ is the quark propagator huðpÞūðpÞi and
uðpÞ ¼ P

xuxe
−ip:x. Let us define the bare qPDF after

projection as

qΓðz; pÞ≡ Tr½PΛΓðz; pÞ�; ð14Þ

consistent with the definition used in perturbative calcula-
tions.Here,P is the operator used to project onto one of the γ-
matrices Γ ¼ γα, and Trð…Þ is a trace over both color and
Dirac indices.Based onpreviousworks [8,20],wewill usep-
projection for which P ¼ p=ð12pαÞ. Alternatively, one can
use P ¼ Γ [21] or the minimal projection [8]. In the case of
Γ ¼ γt, since the renormalization is simply multiplicative,
the renormalized quark qPDF is given by

qRγtðz; p; pRÞ ¼ Zγtγtðz; pRÞqγtðz; pÞ; ð15Þ

where the z-dependent RI-MOM renormalization constant Z
is determined using the renormalization condition set at
momentum pR as

qRγtðz; p; pRÞjp¼pR ≡ eip
R
z z: ð16Þ

FIG. 7. The bare matrix elements hBγtðz; PzÞ (left) and hBγzðz; PzÞ (right) as a function of quark-antiquark separation z. The panels in the
top row show results for Pz ¼ 1.29 GeV, while the panels in the bottom row show the results for Pz ¼ 1.72 GeV. The different symbols
are from various methods of t → ∞ extrapolation.
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The right-hand side of the above equation is the tree-level
value of qγt . The renormalization constant so obtained is in
general a complex number. For Γ ¼ γz, we have to take care
of mixing with the scalar Γ ¼ 1. Hence, the renormalized
qPDF is defined as

qRγzðz; p; pRÞ ¼ Zγzγzðz; pRÞqγzðz; pÞ þ Zγz1ðz; pRÞq1ðz; pÞ:
ð17Þ

The diagonal part Zγzγz and the mixing term Zγz1 are
determined using the two RI-MOM conditions [20]:

qRγzðz; p; pRÞjp¼pR ≡ eip
R
z z;

Zγzγzðz; pRÞTrΛγzðz; pÞ þ Zγz1ðz; pRÞTrΛ1ðz; pÞjp¼pR ≡ 0:

ð18Þ

Using the renormalization constants Z determined above
using quark external states, the renormalized pion qPDF can
also be determined by

hRγtðz; Pz; pRÞ ¼ ZqZγtγtðz; pRÞhBγtðz; PzÞ;
hRγzðz; Pz; pRÞ ¼ ZqZγzγzðz; pRÞhBγzðz; PzÞ

þ ZqZγz1h
B
1 ðz; PzÞ; ð19Þ

where Zq is the quark renormalization, that can be deter-
mined using the condition [53]

ZqðpRÞ−1 1

12
TrðhQðpRÞi−1QtreeðpRÞÞ ¼ 1; ð20Þ

where QðpÞ is the quark propagator determined using the
Landau gauge, and Qtree is the free quark propagator for
which we use the free massless Wilson-Dirac propagator.
In Fig. 8, we show the renormalization factors using the

above RI-MOM renormalization conditions on the 0.06 fm
ensemble. On the top-left panel of Fig. 8, we show the real
and imaginary parts of Zγtγt determined at pR

z ¼ 1.29 GeV
and pR⊥ ¼ 1.49 GeV. The rapid, almost exponential,
increase in Z with z is due to the self-energy divergence
present in the bare Wilson line that connects the quark and
antiquark in the qPDF operator. This divergent piece, ecjzj,

FIG. 8. The RI-MOM renormalization constants using p-projection at lattice spacing a ¼ 0.06 fm at renormalization scale
pz ¼ 1.29 GeV, p⊥ ¼ 1.49 GeV are shown. In the top-left panel, the real and imaginary parts of the renormalization constant for
γt qPDF operator are shown as a function of quark-antiquark separation z in physical units. On the top-right panel, the self-energy
divergent part e−cjzj of the Wilson line is removed from renormalization constant for γt qPDF. Similarly, in the bottom-left panel, the
diagonal part Zγzγz and the mixing term Zγz1 are shown, and the corresponding values after the removal of self energy divergence are
shown in the bottom-right panel.
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cannot be captured perturbatively, and it needs to be
determined nonperturbatively in a particular scheme.
However, this might not be an issue for the one-loop
matching if ecjzj cancels exactly between the renormalization
factors and the bare qPDF operator. Therefore, we remove
ecjzj from the renormalization constant that is shown in the
top-left panel, and display the result in the top-right panel.
Thevalue ofc for oura ¼ 0.04 fm ensemblewas determined
in [54], and for 1-HYP Wilson line ca ¼ 0.1586. This
removal of Wilson line self-energy reduces the almost
exponential dependence of ZðzÞ to a weak dependence on
z. In fact, we see that both the real and imaginary parts ofZγtγt
remain Oð1Þ even up to z ¼ 1 fm, thereby providing a
qualitative justification for the usage of leading-order per-
turbation theory to describe the lattice data at short z and at
high quarkmomenta.We show similar data in the bottom-left
and -right panels for the Z-factors for γz qPDF. In this case,
we have the diagonal factor Zγzγz as well as the off-diagonal
factorZγz1 to take care ofmixingwith scalar on the lattice.We
show Zγzγz and Zγz1 as the filled and unfilled symbols in the
bottom panels, respectively. We observe that the imaginary
part of Zγzγz is small compared to the real part. This is not the
case for Zγtγt, which in turn will affect the asymmetry of the
u − d qPDF q̃u−dðxÞ of pion, about x ¼ 0. We also note that
the mixing of γz with the scalar is a minor 5-10% effect, but
we nevertheless take care of it in our calculation.
As we discussed in the last section, the matrix element at

z ¼ 0, hγt is the local current operator which will be exactly
conserved in the continuum limit. Hence, ZqZγtγtðz ¼ 0Þ is
the vector current renormalization factor ZV and the
dependence of ZV on p will give us an idea of the leading
ðpaÞ2 perturbative lattice artifacts for values of p ≫ ΛQCD

as well as the other higher order (or perhaps nonperturba-
tive) contributions to this lattice correction to ZV at smaller
renormalization scales [53]. In Fig. 9, we show Zq

determined using Eq. (20), the value of Zγtγt at z ¼ 0 as
well as their product ZV as a function of ðpaÞ2. One sees a
reasonable plateau for ZV ≈ 0.97 only for ðpaÞ2 > 2. For
comparison, the value of ZV as obtained from the bare pion
isospin charge hBγtðz ¼ 0; Pz ¼ 0Þ is 0.961(3). The values
of ZV determined from hBγtðz ¼ 0; PzÞ at the other nonzero
Pz also give consistent values. With the uncertainties of
choosing the scaling region in ðpaÞ2 to take the ðpaÞ → 0
limit of ZV , we expect the ZV to be in the range 0.97 to
0.99. For relatively smaller values of renormalization
momenta ðpaÞ ≈ 1–1.5, chosen such that the renormaliza-
tion scales lie in the vicinity of the pion momenta used in
this paper, one sees noticeable, but small, 5% dependence
on pa. We used the value of Zq estimated at the same value
of p as used in Zγtγt for renormalizing our pion qPDF.

A. Comparison with leading-order
perturbation theory for z < 0.3 fm

We will now investigate in a quantitative way the
agreement/disagreement of the lattice determination of
the RI-MOM renormalized amputated quark qPDF at z <
0.3 fm which one can expect to be in the perturbative
regime. For this, we construct a quantity ζΓðz; p; pRÞ in the
following way:

ζΓðz; p; pRÞ ¼ qRΓðz; p; pRÞ
qRΓðz; p; pÞ

− 1; ð21Þ

where qRΓðz; p; pÞ ¼ eipzz by the renormalization condition.
In the case of Γ ¼ γt, the above definition is simply

ζγtðz; p; pRÞ ¼ Zγtγtðz; pRÞ − Zγtγtðz; pÞ
Zγtγtðz; pÞ

; ð22Þ

which is similar to a discrete scale-dependent anomalous
dimension ∂ log ðZγtγtðz; pÞÞ=∂p. Through the dependence
of ζ on pR slightly away from p, we can understand how
well the leading-order perturbation theory is able to
describe the exact nonperturbative determination on the
lattice. It is important to stress that apart from under-
standing nonperturbative renormalization of qPDF in this
way, we are also essentially comparing one of the steps in
the LaMET formalism that is calculable on the lattice.
Hence, any agreement/disagreement we observe quantifies
the limitations of the leading-order LaMET. In perturbation
theory, ζ is the ratio of the one-loop perturbative correction
to qðz; pÞ to its tree-level value. This expression for ζ has
been calculated, and it is given by1

FIG. 9. The ðpaÞ2 dependence of the renormalization factors
Zq (black squares), Zγtγtðz ¼ 0Þ (red triangles), and ZV ¼
ZqZγtγtð0Þ (blue diamonds) are shown for the a ¼ 0.06 fm
ensemble.

1The formula differs from the one given in [8] due to the issue
of the order of the ϵ ¼ 0 limit in dimensional regularization and
the z ¼ 0 limit. We thank Yong Zhao for communicating the
corrected result to us.
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ζΓðz; p; pRÞ ¼ αsCF

2π

Z
∞

−∞
dxðeið1−xÞpz − 1Þ

�
Hðx; pÞ

−
���� pz

pR

����H
�
1þ pz

pR
z
ðx − 1Þ; pR

��
; ð23Þ

where Hðx; pÞ is the 1-loop correction term to the bare
qPDF, and the two terms in the right-hand side come from
the bare and RI-MOM renormalization counter terms,
respectively.2 The functional forms of Hðx; pÞ for γz and
γt isovector qPDFs are given in [7,8] and therefore we do
not provide them here. The asymptotic 3=ð2jxjÞ behavior of
the bare and the RI-MOM counter term, that contributes to
the UV divergence when integrated over x, gets exactly
canceled and we obtain a UV finite and renormalized result
for ζ. In the discussions below, we will consider the cases
with pz¼pR

z and pz ≠ pR
z separately. In the above leading-

order formula, the scale at which αs has to be evaluated is
arbitrary. Therefore, we vary αs by changing the scale from
0.5pR

z to 2pR
z through the 1-loop running, and quote this

variation as an uncertainty in the perturbative results below.
On the lattice side, we determine ζðz; p; pRÞ using the
nonperturbatively determined Z-factors. In order to esti-
mate the lattice spacing effects, we determined ζ using two
different lattice spacings; a ¼ 0.04 fm is shown as filled
symbols and a ¼ 0.06 fm is shown as open symbols in the
various plots that follow.
In the left and right panels of Fig. 10, we show the typical

dependence of ζγtðzÞ and ζγzðzÞ, respectively, as a function
of z when pR⊥ differs slightly from the transverse quark

momentum p⊥, while the longitudinal components pz and
pR
z are the same. Using Eq. (23), we calculated the

prediction from leading-order perturbation theory for
ζðzÞ at the same values of momenta. The uncertainty bands
for the perturbative result are shown in Fig. 10 along with
the actual lattice data at the two different lattice spacings
that are shown using symbols. For the data shown in
Fig. 10, the longitudinal components pz for the two lattice
spacings are exactly 1.92 GeV, but the transverse compo-
nents p⊥ are only approximately the same between the
two due to the constraints of allowed momenta on the
two different lattice volumes, i.e., p⊥ ¼ 1.49 GeV for
a ¼ 0.06 fm and p⊥ ¼ 1.67 GeV for a ¼ 0.04 fm. To
take care of this slight offset in p⊥ between the two lattice
spacings, we have distinguished the perturbative results
corresponding to a ¼ 0.04 fm as bands enclosed by solid
lines, and similarly for a ¼ 0.06 fm as bands enclosed by
dashed lines. It can be seen that the two perturbative results
are not very sensitive to this difference in p⊥ assuring us
that whatever change we observe between the data at two
different a is mainly due to the change in a. We observe
from the plots that the leading-order perturbation theory
captures the qualitative z-dependence of both the real and
imaginary parts of ζ when pR⊥ is changed from p⊥.
Surprisingly, the 1-loop result seems to work better for
ζγz than for ζγt. In the case of γt, one can certainly see a
large lattice spacing effect with the movement of data
towards the 1-loop result as the lattice spacing is reduced,
while in the case of γz, one can already see a consistency
with the one loop result at the lattice spacings that we use.
Thus, it opens up a question on whether the γz qPDF fares
worse compared to the γt qPDF simply due to the presence
of mixing with the scalar or whether γz qPDF might
eventually show better perturbative convergence and

FIG. 10. The behavior of ζðzÞ (symbols) with the quark-antiquark separation z, is compared with the expectation from 1-loop
perturbation theory (bands) when pR⊥ is slightly away from p⊥. The red symbol and bands are the real part of ζ while the blue ones
correspond to the imaginary part. The bands enclosed by solid curves corresponds to the momenta ðpz; p⊥Þ for the 0.04 fm data, and
similarly the band enclosed by the dashed curves corresponds to ðpz; p⊥Þ of the 0.06 fm data (see text). On the left and right panels, the
comparisons are made for ζγt and ζγz respectively. In each of the panels, the data from two different lattice spacings are also shown
(a ¼ 0.04 fm as filled circles and a ¼ 0.06 fm as open circles). For the data shown, pz ¼ pR

z ¼ 1.92 GeV. The transverse momentum
of the quark p⊥ ¼ 1.58 GeV, and the transverse renormalization momentum is chosen to be 1.5 times p⊥.

2The function Hðx; pÞ here is referred to as hðx; pÞ in Ref. [8].
We reserve h to refer to qPDF matrix element as is the
convention.
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lesser lattice spacing dependence in spite of its other
disadvantages.
In Fig. 11, we concentrate on the renormalization flow of

ζΓ at the fixed small value of z ¼ 0.12 fm. The two panels
show the dependence of ζγt and ζγz on p

R⊥ which is changed
around p⊥. As before, we keep pz ¼ pR

z ¼ 1.92 GeV. The
1-loop result is able to capture the qualitative trend of the
flow in both γz and γt. For both the cases, we can see that
the reduction of lattice spacing leads to a better agreement
with the 1-loop result. Having discussed the cases where
pz ¼ pR

z , we now study the dependence of ζ on pR
z ≠ pz,

while keeping p⊥ ¼ pR⊥. We show the z-dependence of ζγz
when pR

z ¼ 1.5pz in Fig. 12. We find the perturbative result

to have the same qualitative behavior as the lattice data.
Putting together the various observations in this section, we
found only an overall qualitative agreement between the
lattice results on ζ and the one-loop perturbative results.
When the lattice spacing is reduced, we found the agree-
ment to get better. It remains to be seen what the effect is of
including higher order corrections in the perturbative result
for ζ.

B. A way to classify quark-antiquark separations
as perturbative or nonperturbative

Physically, one would expect that for a well-separated
quark-antiquark with z > 1 fm, one would start seeing
traces of nonperturbative physics in the qPDF. Quantifying
the advent of nonperturbative physics for large enough z at
finite quark/hadron momentum is important with regard to
the extraction of PDF since the real-space qPDF at all z
enter the computation of its Fourier transform. A simple
first approximation to study this effect is the following. In
free theory, the qPDF with external quark states is a pure
wave eipzz. We expect, to a first approximation, that the
effect of nonperturbative physics is to damp this pure wave
via an inverse screening length mscr ∼OðΛQCDÞ. Thus, we
model the bare quark qPDF as

qðz; pÞ ¼ Aeiωze−mscrjzje−cjzj; ð24Þ

where we have removed the UV divergent piece e−cjzj from
the qPDF and defined the left-over exponent mscr as a
physical scale. We have also accounted for ω ≠ pz in the
interacting theory since the quark can lose momentum by
emitting gluons. There could be remnant nontrivial depend-
ence of the amplitude A on z, which we assume to be

FIG. 11. The renormalization flow of ζγt (left panel) and ζγz (right panel) with the transverse renormalization scale, pR⊥ are shown at
fixed z ¼ 0.12 fm. The data from two different lattice spacings, a ¼ 0.04 fm (filled circles) and a ¼ 0.06 fm (open circles), shown at
fixed z ¼ 0.12 fm and pz ¼ pR

z ¼ 1.92 GeV. The transverse momenta of the quark at a ¼ 0.04 and 0.06 fm are p⊥ ¼ 1.67 and
1.48 GeV, respectively, and they are chosen to be roughly equal for this comparison. The real part of ζ is shown in red while the
imaginary part is shown in blue. The band enclosed by the solid red (blue) curves corresponds to the 1-loop result for real (imaginary)
parts of ζ at ðpz; p⊥Þ for the 0.04 fm data, and similarly the band enclosed by the dashed curves corresponds to ðpz; p⊥Þ of
the 0.06 fm data.

FIG. 12. The dependence of ζ on the longitudinal momentum
pR
z . ζγz is shown as a function of z for a specific choice of pz and

p⊥ ¼ pR⊥. The uncertainty bands for the real and imaginary parts
for the leading-order expectation are shown using bands enclosed
by solid lines. The symbols are the lattice data determined at
lattice spacing a ¼ 0.04 fm.
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subleading compared to the leading damped oscillatory
behavior and ignore it in the discussion here. There is an
ambiguity in mscr depending on the scheme used to
determine the divergent piece c. Since the values of c
determined from the static quark potential method ensure
that the renormalization factors after the removal of e−cjzj
are Oð1Þ at smaller z in Fig. 8, the choice of separation of
the exponential suppression factor into divergent and
physical scales as defined in Eq. (24) is well motivated
in this scheme. In Fig. 13, we show the bare quark qPDF
qγtðz; pÞ for p⊥ ¼ 1.49 GeV and pz ¼ 1.29 GeV deter-
mined on the a ¼ 0.06 fm ensemble. The short distance
can simply be described by a pure oscillatory eiωz behavior
which is shown using the dashed curves (with ω ¼ 0.85pz
for the case shown). The solid curves in the figure
correspond to the ansatz in Eq. (24) which describes the
data at larger jzj well. Without dwelling further on finding
the best parametrization of the lattice data that asymptoti-
cally behaves like Eq. (24), we simply define an effective
z-dependent ω and mscr through

mscrðzÞ − iωðzÞ≡ −
1

a
log

�
qðzþ a; pÞ
qðz; pÞ

�
− c: ð25Þ

In Fig. 14, we show the behavior ofmscr and ω as a function
of z as extracted from qγtðz; pÞ. We have chosen a different
set of pz and p⊥ to show the dependence on pz at fixed p⊥
and vice versa. From the top panel, we see that ω=pz is
below 1 for z < 0.4 fm and seems to approach a plateau
closer to 1 for z > 0.4 fm. While the values of ω at short
distances depend on pz and p⊥, the approach to ω ≈ pz is
universal. We observed this behavior when we used
qγzðz; pÞ as well. A physical reasoning for this observation
could be that at shorter z, the quark has the ability to radiate

a gluon, and at distances z > 0.4 fm there is effectively a
dressed quark carrying all the momentum. In the bottom
panel of Fig. 14, we have shown the effective screening
mass mscr. In the plots, we have only shown the data where
1-HYP smeared Wilson line was used. For this case, we
subtracted ca ¼ 0.1586 in Eq. (25) to get mscr. One can
clearly see the emergence of nonzero mscr ≈ 300 MeV for
jzj > 0.5 fm which is in the typical ΛQCD scale. When we
repeated this using quark qPDF with an unsmeared Wilson
line, we found the results to be consistent with the data
shown in Fig. 14 after we subtracted out ca ¼ 0.3687
corresponding to the unsmearedWilson line. This assures us
that the observed mscr ≈ 300 MeV is a real physical scale
independent of the self-energy divergence of theWilson line.
This signals the significant presence of a confinement scale
beyond z ≈ 0.5 fm. Also, the near plateauing of both ω and
mscr for these larger z indicates that a simple physically
motivated ansatz in Eq. (25) offers a surprisingly good
description of the actual nonperturbative data. One could
have expected this simply from observing the large jzj part of
Fig. 13. It remains to be seen if this observation can be used
advantageously in improving the LaMET matching at finite
moderately large pz.

FIG. 13. The real and imaginary parts of the lattice data for
qγtðz; pÞ are compared with the purely oscillatory model (dashed
curves) at short-distances, and the damped oscillatory ansatz
(solid curves) at larger jzj. The data correspond to quark
momentum ðpz; p⊥Þ ¼ ð1.29; 1.49Þ GeV.

FIG. 14. The effective frequency of oscillations ω (top) and
effective screening massmscr (bottom) as extracted from qγtðz; pÞ
are shown. The various values of p ¼ ðpz; p⊥Þ for the data are
tabulated in the plots. The values of ω are normalized with respect
to pz. A 1-HYP smeared Wilson line was used in all the
cases shown in the plots, and the corresponding self-energy
ca ¼ 0.1586 was subtracted to obtain mscr.
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VI. FROM RENORMALIZED QUASI-PDF TO PDF

A. On obtaining the valence PDF
using isovector u− d qPDF of pion

Having determined the renormalized qPDF we can now
discuss the matching between qPDF and PDF as well as the
determination of pion PDF from our lattice results. We
computed the u − d qPDF matrix element of a pion which
in practice we obtained from the real part of the connected
piece of the u quark qPDF matrix element. Now, we discuss
how the u − d qPDF and PDF are related to the valence
PDF of pion.
The u and d quark distributions, fuðxÞ and fdðxÞ, as

determined using Eq. (1) has support from x ¼ −1 to 1.
One can make a connection with the conventional, sepa-
rately defined quark distributionsQu;dðxÞ and the antiquark
distributions Qū;d̄ðxÞ that are nonzero only between x ¼ 0

and 1, through the relation

fu;dðxÞ ¼ Qu;dðxÞθðxÞ −Qū;d̄ð−xÞθð−xÞ: ð26Þ

Therefore, fu;dðxÞ contains information on both the quark as
well as the antiquark distributions in the positive and negative
regions of x respectively. Let us first focus on x ≥ 0. In the
isospin symmetric case we are considering,QuðxÞ ¼ Qd̄ðxÞ
and QūðxÞ ¼ QdðxÞ. Therefore, for the positively charged
pion QuðxÞ −QdðxÞ ¼ QuðxÞ −QūðxÞ ¼ fπ;uv ðxÞ is the
valence u-quark distribution. Again, due to the isospin
symmetry, the u and d̄ valence distributions are the same

as fπ;uv ðxÞ ¼ fπ;d̄v ðxÞ ¼ fπvðxÞ. However, unlike the valence
quark distribution, the isotriplet u − d PDF fu−d ¼ fuðxÞ −
fdðxÞ satisfies fu−dðjxjÞ ¼ fu−dð−jxjÞ and it has support
from −1 to 1. That is,

fu−dðxÞ ¼
�
QuðxÞ −QdðxÞ; x > 0

Quð−xÞ −Qdð−xÞ; x < 0;

fπvðxÞ ¼
�
QuðxÞ −QdðxÞ; x > 0

0; x < 0:
ð27Þ

Therefore, one can obtain the u − d quark distribution, and,
from it, one can obtainfπvðxÞ from x ∈ ½0; 1�, or, equivalently,
from ½−1; 0�.
By applying the matching formula on fuðxÞ and fdðxÞ

separately and taking the difference to obtain the u − d RI-
MOM qPDF, we now try to learn what is expected for this
qPDF. Writing down only the x=y dependence for the sake
of brevity and keeping the dependence on yPz=PR

z ,
ðPR=PR

z Þ2 and factorization scale μ implicit, the one-loop
contribution to the matching kernel Cðx=yÞ from the
RI-MOM to MS scheme consists of two terms: F 1ðx=yÞ
and F 2ð1þ η0ðx − yÞÞ with η0 ¼ Pz=PR

z . The expressions
3

for F 1;2 depend on the choice of Γ (γz or γt) [7,8].
Furthermore, F 2 depends on the projection method of
the RI-MOM scheme. Using the matching formula [7,8] on
fuðxÞ and fdðxÞ to obtain the qPDFs q̃uðxÞ and q̃dðxÞ,

q̃u;dðx;Pz;pRÞ

¼ fu;dðx;μÞþ
αsCF

2π

Z
1

−1

dy
jyjF 1

�
x
y

�
þ
fu;dðyÞ

−
αsCF

2π

Z
1

−1
dyjη0jF 2ð1þη0ðx−yÞÞþfu;dðyÞþ �� � : ð28Þ

The above equation includes both the sea and valence
quarks, and there will be mixing with the gluon PDF which
is included in the “� � �” part. In the above convolution, the
vector current conservation is ensured by the plus function
defined as

F 1;2ðξÞþ ¼ F 1;2ðξÞ − δð1 − ξÞ
Z
reg

dξF 1;2ðξÞ; ð29Þ

such that any extra variable that F 1;2 will depend on are
held fixed in the above integral. Since the matching
between qPDF and PDF is linear, the q̃u−d ¼ q̃uðxÞ −
q̃dðxÞ is simply obtained as

q̃u−dðx;Pz;PRÞ

¼ fu−dðx;μÞþ
αsCF

2π

Z
1

−1

dy
jyjF 1

�
x
y

�
þ
fu−dðyÞ

−
αsCF

2π

Z
1

−1
dyjη0jF 2ð1þ η0ðx− yÞÞþfu−dðyÞ; ð30Þ

with the terms in “� � �” in Eq. (28) exactly canceled between
the u and d terms. This is the matching relation we use to
obtain the u − d PDF from u − d qPDF. Using the u − d
PDF, we obtained the valence PDF as discussed above.
While fu−dðjxjÞ ¼ fu−dð−jxjÞ, it is also true that
q̃u−dðjxjÞ ≠ q̃u−dð−jxjÞ in the RI-MOM scheme. One
way to understand this is from the fact that the bare
qPDF matrix element is purely real while the RI-MOM
renormalization factor is in general complex, thereby
making the renormalized qPDF matrix element complex.
One can see this by starting from the matching convolution
above, and find that

q̃ðjxj;Pz;PRÞ− q̃ð−jxj;Pz;PRÞ¼ αsCFjη0j
2π

×
Z

1

−1
dy½−F 2ð1þη0ðx−yÞÞþF 2ð1−η0ðx−yÞÞ�fðy;μÞ;

ð31Þ

is nonzero due to an RI-MOM specific term F 2, while the
terms containing F 1 cancel due to their dependence only
on jPzj. In other schemes such as the MS, this symmetry

3In [8], the terms F 1 and F 2 are referred to as f1 and f2,
respectively.

TAKU IZUBUCHI et al. PHYS. REV. D 100, 034516 (2019)

034516-14



about x ¼ 0 would be preserved by matching because the
corresponding factorization formulas depend on renormal-
ization/regularization scales through combinations such as
μ2z2 [55]. In the RI-MOM scheme there are two renorm-
alization scales, PR and PR

z , and since the z-direction is
special the above statement does not hold. Thus, it is
important to capture this asymmetry in the qPDF, or
equivalently to describe both the real and imaginary parts
of the RI-MOM renormalized pion qPDF from matching.
We use the matching kernel corresponding to the p-
projection in the results to be discussed next.

B. Numerical results on pion valence
PDF from matching

The one-loop perturbative matching relates the Fourier
transform q̃ðx; Pz; PRÞ of the renormalized RI-MOM real-
space qPDF matrix element hRðz; Pz; PRÞ, and the MS PDF
fðx; μÞ at factorization scale μ. The relation is through the
convolution in Eq. (3). There are two approaches to
consider here:
(1) One can parametrize the real space data

hRðz; Pz; PRÞ over the range z where one has the
lattice data and then model the dependence of
hRðz; Pz; PRÞ over z extending to infinity where
data does not exist (c.f., [56,57]). Using such a
parametrization, one can obtain its Fourier transform
q̃ðx; Pz; PRÞ. Since the matching is only up toOðαsÞ,
one can invert the relation Eq. (3) by replacing f ↔
q̃ and αs → −αs. Thereby, one can obtain fðx; μÞ. In
this method, one does not control what values of z
enter the Fourier transform and one could question
the validity of perturbation theory for z > 1 fm.

(2) One can start from a phenomenologically motivated
n-parameter family of PDFs fðx; μ;a1;…anÞ.
Through Eq. (3), one can obtain qPDF q̃ðx; μ;
a1;…anÞ, and, thereby, obtain a family of real
space qPDF matrix elements hRðz;Pz;PR;a1…anÞ.
Using this, one can fit the parameters ða1;…; anÞ so
as to best describe the real space lattice data over a
range z. This method was used in the case of
the lattice cross-section approach in [13]. Since
the model PDFs are not predictions from QCD, the
model dependence enters the analysis and one has to
rely on the prior that experimentally determined
PDFs are indeed very well described by such a
family of PDFs. However, the advantage of this
method is that one can precisely control the range of
z that enters the analysis, and one also does not have
to invert the matching convolution.

From our observation on how the 1-loop perturbation
theory fails to capture the quark qPDF quantitatively, even
at short distances, and from the observation of significant
nonperturbative screening effects beyond z ¼ 1 fm, we
think it is important to be in control of what values of z
enter the convolution and, hence, in this paper we take the

second approach. Also, due to the loss of signal to noise
ratio for z > 1 fm, we found Fourier transforming the noisy
data to be challenging without introducing unwanted
wiggles in q̃ðxÞ at larger x.
To be on par with the experimental extraction of PDFs,

one should use sophisticated methods such as the usage of
neural networks to choose the set of model PDFs to start
with (c.f., [58]). We defer such an analysis to a future work
and, instead, we use a simple two-parameter phenomeno-
logically motivated functional form for the valence PDF:

fπvðx; a; bÞ ¼ Axað1 − xÞb; ð32Þ

for x ∈ ½0; 1� and zero elsewhere. As we will see below,
such a form is enough to describe our lattice data. One can
fix the coefficient A through a stringent conditionR
1
0 fπvðxÞdx ¼ 1. Instead, we use a more conservative
constraint on A using

R
1
0 f

π
vðxÞdx ¼ hRðz ¼ 0; Pz; PRÞ to

allow for sample by sample fluctuations in hRðz ¼
0; Pz; PRÞ close to 1 and fold this into the error estimate.
It should be noted that the valence PDF of the pion
determined from the experimental data by the JAM
collaboration [59] can be well described by such a two
parameter ansatz, for example with a ¼ −0.407 and
b ¼ 1.12 at μ ¼ 3.2 GeV.
Using the above valence PDF, we construct the u − d

PDF as

fu−dðx; a; bÞ ¼
1

2
ðfπvðx; a; bÞ þ fπvð−x; a; bÞÞ; ð33Þ

with x ∈ ½−1; 1� and zero elsewhere. Through the con-
volution of fu−dðxÞ with the matching kernel, we obtain
q̃u−dðx; a; bÞ, which in turn we use to construct the real
space qPDFs hðz; a; bÞ ¼ R∞

−∞ q̃ðx; a; bÞeixPzzdx. We will
refer to these functions hðz; a; bÞ as the two-parameter
family of phenomenologically motivated qPDF matrix
elements. With the set of hðz; a; bÞ from a range of a
and b, we can fit the parameters a and b to the data by
minimizing either χ2r or χ2ri below:

χ2r ¼
Xzmax

z¼−zmax

ðReðhRðzÞÞ − Reðhðz;a; bÞÞÞ2
σrðzÞ2 þ σpertr ðzÞ2 ;

χ2i ¼
Xzmax

z¼−zmax

ðImðhRðzÞÞ − Imðhðz; a; bÞÞÞ2
σiðzÞ2 þ σperti ðzÞ2 ;

χ2ri ¼ χ2r þ χ2i : ð34Þ

In the above equations, ½−zmax; zmax� specifies the fit range.
The statistical errors on the real and imaginary parts of the
lattice data hRðzÞ is σrðzÞ and σiðzÞ, respectively. To
account for any systematic errors coming from the higher
order corrections in αs in the matching kernel, we deter-
mine hðz; a; bÞ from fπvðx; a; bÞ by varying the value of αs
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in the matching kernel from αsðμ=2Þ to αsð2μÞ though the
1-loop running. The corresponding changes in the real and
imaginary parts of hðz; a; bÞ are denoted as σpertr ðzÞ and
σperti ðzÞ, respectively, and we include these uncertainties in
the matched result in the χ2. If the matching was exact, then
by fitting only the real part by minimizing χ2r would
automatically guarantee that the imaginary part also agrees
with the data. Therefore at any finite order matching, the
fits obtained by minimizing χ2r and χ2ri will in general be
different. For the results shown below, we used χ2ri in order
to obtain the PDF that best describes both the real and
imaginary parts of the real space qPDF, but we also used χ2r
and found it to lead to consistent results but with larger
uncertainties. We did not include the correlations between
the data at different z for the primary reason that it is
difficult to keep these correlations intact in the process of
excited state extrapolations. It also helps us to easily
incorporate the effect of σpert from nonstatistical origin
in the analysis, and in treating the real and imaginary parts
of the renormalized matrix elements as two distinct pieces
of data as is the case in the context of matching. We
determined the errors on the fit parameters through the
bootstrap analysis.
In Fig. 15, we show the fitting procedure for γt qPDF. In

the top panels, we show the Pz ¼ 0.86, 1.29, and 1.72 GeV
real-space RI-MOM pion qPDF matrix elements from left
to right. The symbols are the actual lattice data. The solid
and patterned red (blue) bands are 1 − σ error-bands of the
real (imaginary) parts of the fitted real space qPDF matrix
element that best fits the data over the range ½−zmax; zmax�

for zmax ¼ 1.44 fm and 0.72 fm, respectively. The agree-
ment with both the real and imaginary parts of the lattice
data is noteworthy. In fact, we find the qPDF matrix
element as inferred from the JAM PDF [59] is able to
explain the lattice data well for the entire range of z at the
two largest momenta. In the bottom panels, we show the
process leading from model PDF to the real space qPDF
matrix elements shown in the top panels. In order to avoid
cluttering the figure, we have shown only the mean value of
fu−dðxÞ (shown as dashed lines) while we have shown the
error bands for the qPDF q̃u−dðxÞ as obtained through the
1-loop matching. The colors red and blue in the bottom
panels correspond to the fits with zmax ¼ 0.72 and 1.44 in
the top panels, respectively. As one can see, we started from
a symmetric u − d PDF by construction and matching
introduces an x → −x asymmetry. After Fourier trans-
formation, this asymmetry leads to the imaginary part in
the real space data in the top panels which captures the
lattice data to a good accuracy. For both the real-space as
well as in x space, we find no significant difference
between using zmax ¼ 1.44 fm and 0.72 fm in the fits.
We could infer that within the precision of our numerical
results, the nonperturbative effects at z ≈ 1 fm that we
found using quark qPDFs is not important. Therefore, we
show results for an intermediate zmax ¼ 0.98 fm in the
results below. When we repeated this analysis by minimiz-
ing χ2r , we found the estimates to be consistent with the
above, but with larger uncertainties.
In Fig. 16, we show our results for fπvðx; μÞ and xfπvðx; μÞ

at the factorization scale μ ¼ 3.2 GeV using the proce-
dure described above at our two largest pion momenta

FIG. 15. Top panels: The RI-MOM renormalized qPDF matrix element in real space hRγtðz; Pz; PRÞ at pion momenta Pz ¼ 0.82, 1.29,
and 1.72 GeVare shown at fixed RI-MOM renormalization scale ðPR

z ; PR⊥Þ ¼ ð1.29; 2.98Þ GeV. The red and blue points are the real and
imaginary parts of the actual data, respectively. The bands were obtained by fitting the two-parameter phenomenologically motivated
real space qPDF matrix element to the data over a range z ∈ ½−zmax; zmax�—the solid band is for zmax ¼ 1.44 fm and patterned one for
zmax ¼ 0.72 fm. Bottom panels: The two parameter u − d PDF fu−dðxÞ (dashed lines) at μ ¼ 3.2 GeV, and the matched qPDFs q̃u−dðxÞ
(1 − σ error bands) that describe the real space qPDF on the top panels are shown. To avoid clutter, only the central values of fu−dðxÞ are
shown as dashed lines. The results from different zmax are shown in red and blue.
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Pz ¼ 1.29 GeV and 1.72 GeV starting from γt qPDF. For
each case, we overlay the results from two different RI-
MOM scales PR in order to show the scatter as a systematic
error in our estimates. We find the PR dependence to be
minor compared to the error bands (we repeated the
analysis with multiple other values of PR that are not
shown and only minor scatter with respect to PR was seen).
We also show the result from the JAM collaboration [59]
for the pion valence PDF at the same factorization scale as
the black solid line, which lies within the statistical and
systematic uncertainties of our estimates. In the left panels
showing fπvðxÞ, this overall agreement can be seen even up
to smaller x, but one has to be cautious of this agreement for
x ⪅ ΛQCD=Pz ≈ 0.2 for the two highest pion momenta we
use. By construction, in our fitting procedure fπvðxÞ has
support only from 0 to 1 without any necessity to recover
this condition in the infinite Pz limit. However, the values
of exponent b closer to zero are also allowed thereby
leading to a wider error band closer to x ¼ 1. This seems to
be consistent with the observation in Ref. [18] that the PDF
obtained from qPDF through the inverse one-loop match-
ing (approach-1) vanishes at about x ≈ 1.2. We see our
Pz ¼ 1.29 GeV and 1.72 GeV estimates to be consistent,
albeit with a significant increase in error at the largest
momentum.

In Fig. 17, we summarize the information in Fig. 16 by
showing the 1 − σ ellipses (whose x and y projections give
the marginal 68% confidence intervals of the exponents a
and b, respectively). In this figure, the dashed and con-
tinuous ellipses are for Pz ¼ 1.29 and 1.72 GeV, respec-
tively. The ellipses for different PR are distinguished by
the colors, with the color code being the same as in Fig. 16.
The Pz ¼ 1.29 GeV data offer a stronger constraint on the
allowed region of ða; bÞ than the noisier Pz ¼ 1.72 GeV. In
this plot, the JAM estimate is the black point. The JAM data
are well within the Pz ¼ 1.72 GeV ellipses while the Pz ¼
1.29 GeV data seem to favor the slightly smaller exponent
b. However, these differences are well within 2σ. Even
though our lattice data have large errors on the exponents a
and b individually, the data offers a tight constraint on the
combined allowed region. In particular, the principal
component of this correlation between a and b points
directly at the JAM data implying that if one fixes the
exponent a to be from the experiment, then the best value of
b would also be closer to that from the experiment. To
understand this better, we have also shown the line of
constant value of first moment of the valence PDF,
hxi ¼ R

1
0 xq

π
vðxÞdx, set to 0.215 as inferred from the

JAM data. It is clear that the 1σ ellipses are oriented along
this line, which means that qPDF determines hxi robustly

FIG. 16. The top and bottom panels show our estimated pion valence PDF at μ ¼ 3.2 GeV using γt qPDF at Pz ¼ 1.29 and 1.72 GeV,
respectively. The results using multiple RI-MOM scales ðPR

z ; PR⊥Þ are shown using different colored error bands. On the left panels, the
results for fπvðxÞ are shown, while on the right panels the results for xfπvðxÞ are shown. For all the cases shown, the fit range was held
fixed at zmax ¼ 0.98 fm. The solid line (with a small error band around it) is the JAM result [59] for pion valence PDF at the same μ.
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and this in turn provides a strong constraint in the allowed
PDFs. Not surprisingly, we do find consistent values
of hxi ¼ 0.21ð2Þ and 0.22(3) from the Pz ¼ 1.29 and
1.72 GeV estimates. It should be noted that the moments
of pion PDF have also been directly determined without the
usage of LaMET formalism [60–64] and similar values for
the first moment for the pion were obtained, but at slightly
different values of μ2 than used here.
The exponents a and b were also recently obtained using

the lattice cross-section approach [13] which used current-
current correlators, with the matching implemented at
tree-level. Here, the exponents were estimated as a ¼
−0.34ð31Þ and b ¼ 1.93ð68Þ which are consistent with
the region allowed at the largest momentum in Fig. 17. It is
worth noting that there are indications from next-to-leading-
logarithmic soft gluon resummation calculation [35], the
Dyson-Schwinger equation [65–67] and light-front holo-
graphic QCD [68] that the value of exponent b could be
approximately 2 as expected from perturbative counting rule
(c.f., [69]), whereas a chiral quark model analysis [70,71]
suggests a value of b closer to 1. It will be interesting to see if
a similar implementation of an improved matching kernel
could lead to a softer largex behavior for thepion thanwhat is
observed using the 1-loop qPDF matching here and perhaps
in [18]. In fact, a general consideration of power correc-
tions to qPDF [72] revealed the presence of the form
Λ2
QCD=ðð1 − xÞx2P2

zÞ implying higher values of Pz might
be required in order to correctly describe physics close to
x ¼ 1, and this might be the effect which we are finding.
Similar conclusions have also been obtained in 2dQCD [73].

Due to the larger errors in the γz qPDF attributed mostly
to the steep excited state extrapolations, we use the γz qPDF
to provide a consistency check of our calculations instead.
For this, we use our above best estimates of the PDF
obtained using the γt qPDF to get the corresponding
prediction for the real space γz qPDF matrix element
through a convolution with the appropriate matching
kernel. In the top and bottom panels of Fig. 18, we show
such a comparison between the actual real space data of γz
qPDF (data points) along with the prediction from our
estimated PDF (bands) for pion momenta Pz ¼ 1.29 and
1.72 GeV. We find good descriptions of the real part of the
RI-MOM γz qPDF at both the pion momenta with a slight
tension between the imaginary parts. From our discussion
on the excited state contamination, it is important to first
gain better control of the larger excited state contamination
in the γz qPDF before one can investigate the effect of one-
loop matching on this rather small discrepancy.

FIG. 18. In the top and bottom panels, the real (red) and
imaginary (blue) parts of the renormalized real space γz qPDF
matrix element are shown for pion momenta Pz ¼ 1.29 GeV and
1.72 GeV, respectively. The data points are the actual lattice data.
The bands are the expected matched γz qPDF matrix element
starting from our best estimate for valence pion PDF obtained
using γt qPDF analysis.

FIG. 17. The 1 − σ confidence region ellipse of the exponents a
and b in the model PDF at μ ¼ 3.2 GeV that best describes the
real space RI-MOM qPDF is shown. The solid lines and dashed
lines correspond to Pz ¼ 1.29 GeV and Pz ¼ 1.72 GeV. For
each of these pion momenta, the different colored lines corre-
spond to different RI-MOM scale PR. The black point is the JAM
value [59] for valence pion PDF. The black straight line is the line
of constant first moment of valence PDF, hxi ¼ 0.215.
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VII. CONCLUSIONS

We studied pion PDF in the framework of LaMET,
which relates the qPDF to PDF through the matching
convolution in Eq. (3). For this, we used a small lattice
spacing a ¼ 0.06 fm. We carefully examined the effects of
excited states using the two- and three-state exponential fits
of the relevant 2-point and 3-point functions as well as the
summation method. For our final analysis we used two
momenta Pz ¼ 1.29 GeV and Pz ¼ 1.72 GeV. We found
the qPDF defined using Γ ¼ γt was better determined
compared to the γz qPDF in the lattice calculation for
the following reasons: smaller statistical error, relatively
smaller excited state extrapolation leading to a more robust
result for the matrix element as well as due to the absence of
mixing. Therefore, we focused on the analysis of the γt
matrix element.
The pion qPDF was nonperturbatively renormalized

using the RI-MOM scheme by calculating the matrix
elements of qPDF operator with off-shell quark states in
the Landau gauge for different separations z. For these
calculations we also used finer lattices with the lattice
spacing a ¼ 0.04 fm. We performed the comparison of this
matrix element in the Landau gauge with 1-loop perturba-
tive calculations in the RI-MOM scheme and found a
qualitative agreement for z < 0.3 fm. For the smaller lattice
spacings, a ¼ 0.04 fm we even found quantitative agree-
ment with the 1-loop result for sufficiently small z. We also
explored the role of nonperturbative effects in the calcu-
lation of the off-shell matrix element. The real part of the
RI-MOM renormalization coefficient is close to one, while
the imaginary part is close to zero once the divergent self
energy part of the Wilson line is removed. We pointed out
that the RI-MOM renormalization procedure leads to an
asymmetry in the isovector pion qPDF q̃ðx; Pz; pR

z ; μRÞ
around x ¼ 0, while other renormalization procedures lead
to qPDF that is symmetric around x ¼ 0.
From the renormalized qPDF, we determined the valence

quark pion PDF using the 1-loop perturbative matching of
the γt qPDF, which we implemented through a fit to the
phenomenologically motivated xað1 − xÞb functional form
for the valence PDF. We found our results for the pion
valence PDF using the two largest pion momenta were
consistent with each other, though the statistical errors are
rather large. An overall agreement with the results obtained
recently by the JAM collaboration [59] was seen. We found
our result for the PDF to capture the first moment hxi more
robustly than the small-x and large-x exponents, a and b
themselves. We used the γz qPDF matrix elements to
provide an internal consistency check by comparing to
the expectation from our estimates of the PDF and a
satisfactory agreement was seen. From our analysis it is
clear that the dominant source of errors in the PDF
determination is the statistical error of the lattice calcu-
lations. It will be necessary to significantly increase the
statistics in the future lattice calculations. Future high

statistics lattice calculations will be important for an
accurate determination of the pion PDF as well as testing
of the LaMET approach around small x.
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APPENDIX A: COULOMB-GAUGE GAUSSIAN
AND MOMENTUM (BOOSTED) SMEARING

In order to create hadron interpolatingoperators that have a
good overlap with the corresponding ground states, quark
field smearing is typically required. The amount of applied
smearing is tuned to produce spatial quark distributions of
roughly the same spatial size as the hadron. Gauge-covariant
Wuppertal (Gaussian) smearing [74] is commonly used for
this purpose. However, calculation of quasi- and pseudo-
PDFs and high-momentum hadron structure and spectrum in
general requires lattices with small lattice spacing. Keeping
the physical size of smeared quark distributions the same
becomes a numerical challenge on finer lattices because it
requires larger numbers of smearing iterations. For this
reason, we use Gaussian shape smearing in a fixed
(Coulomb) gauge that can be performed efficiently through
a convolution with a Gaussian profile kernel,

SCG
x;y ∝ e

−ðx⃗−y⃗Þ2
2w2

CG ∝
X
p⃗

eip⃗ðx⃗−y⃗Þe−
1
2
w2
CGp⃗

2

: ðA1Þ

VALENCE PARTON DISTRIBUTION FUNCTION OF PION … PHYS. REV. D 100, 034516 (2019)

034516-19



In the free-field case, this kernel corresponds to the
Wuppertal smearing operator ð1þ w2

4NΔspÞN, where Δsp is
the spatial Laplacian andw2 ¼ 2w2

CG. Thevalue for thewidth
wCG is chosen to match the mean-squared radius hr2i ¼
3w2

CG to that of the optimal Wuppertal-smeared quark
sources. First, we fix the Coulomb gauge

ψC
x ¼ ΩC

xψx; UC
x;μ ¼ UΩC

x;μ ¼ ΩC
x Ux;μΩ

C†
xþμ̂; ðA2Þ

whereΩC
x is the gauge transformation to the Coulomb gauge,

which minimizes the functional

ΩC ¼ Ω∶ min
Ωx

FC½UΩ� ¼ min
Ωx

X
x

X
μ≠t

½−ℜTrUΩ
x;μ� ðA3Þ

(for the Coulomb gauge, μ ≠ t and the functional is mini-
mized independently on each time slice). The numerical
implementation is identical to the algorithm used for fixing
the Landau gauge in NPR calculations. Application of the
smearing kernel requires two 3D Fourier transformations:

½SCGψ �x ¼ ΩC†
x

X
p⃗

eip⃗ x⃗e−
1
2
w2
CGp⃗

2

�
1

V

X
y⃗

e−ip⃗ y⃗ΩC
yψy

�
; ðA4Þ

which is accelerated with off-loadingmatrix-matrix products
to GPU.
Incorporating momentum (boosted) into Coulomb-

gauge Gaussian smearing amounts to translation of the
kernel in the momentum space,

ðSðk⃗ÞψÞx ¼ eik⃗ x⃗½Sð0⃗Þ�x;ye−ik⃗ y⃗ψy ¼ ½eik⃗ x⃗Se−ik⃗ y⃗�x;yψy: ðA5Þ

In a periodic finite volume, care must be taken to avoid
spatial discontinuities in the boosted smearing kernel
[Eq. (A5)]. Such discontinuities may arise because the
optimal boosted smearing momentum k⃗ typically does not
conform to finite-volume momentum quantization k⃗ ¼ 2π n⃗

L⃗

and the phase factors eik⃗ x⃗, eik⃗ y⃗ do not satisfy periodic
boundary conditions. The solution is to define the

smearing kernel in the momentum space as Sðk⃗Þ
x⃗;y⃗ ¼P

p⃗e
ip⃗ðx⃗−y⃗Þe−

1
2
w2
CGðp⃗−k⃗Þ2 , where the momentum difference

ðp⃗ − k⃗Þ is understood as the shortest distance between p⃗
and k⃗ in the Brillouin zone. Such choice leads to a smooth
distribution in the momentum space and, respectively,
smooth and continuous smearing kernel in the coordinate
space.
Finally, it is important to note that the smearing kernel in

Eq. (A5) is Hermitian (as an operator acting in the
[coordinate ⊗ color] space),

Sðk⃗Þ†
x;y ¼ ½Sðk⃗Þ

y;x�† ¼ Sðk⃗Þ
x;y; ðA6Þ

which is similar to the (boosted) Wuppertal smearing
operator and important for computing symmetric hadron
correlation functions.

APPENDIX B: MESON CORRELATION
FUNCTIONS WITH BOOSTING

We use the interpolating operator for the πþ ¼ d̄umeson

½πþ;ð2k⃗Þ�x ¼ ¯̃dxΓMũx ¼ d̄x00S
ð−k⃗Þ
x00;x ΓMS

ðk⃗Þ
x;x0ux0 ; ðB1Þ

which is constructed from smeared quark fields

¯̃dx ¼ d̄x00S
ð−k⃗Þ
x00;x ; ũx ¼ Sðk⃗Þ

x;x0ux0 ; ðB2Þ

where the spinor matrix ΓM ¼ γ5. The Hermitian-
conjugated (creation) meson operator is

½πþ;ð2k⃗Þ�†x ¼ ũ†xΓ†
Mγ4d̃x ¼ ūx0S

ðk⃗Þ
x0;xΓ̄MS

ð−k⃗Þ
x;x00 dx00 ; ðB3Þ

where Γ̄M ¼ γ4ΓMγ4 ¼ ð−γ5Þ. The meson two-point cor-
relation function with boost-smeared source and sink and
momentum projection at the sink is4

C2ptðy4; p⃗; xÞ
¼

X
y⃗

e−ip⃗ðy⃗−x⃗Þh½πþ;ð2k⃗Þ�y½πþ;ð2k⃗Þ�†xi

¼
X
y⃗

e−ip⃗ðy⃗−x⃗Þð−Tr½Sð−k⃗Þ
x;x00 Q

d
x00;y00S

ð−k⃗Þ
y00;y ΓMS

ðk⃗Þ
y;y0Q

u
y0;x0S

ðk⃗Þ
x0;xΓ̄M�Þ

¼
X
y⃗

e−ip⃗ðy⃗−x⃗ÞTr½Q̃d;ð−k⃗Þ
x;y ΓMQ̃

u;ðk⃗Þ
y;x ð−Γ̄MÞ�; ðB4Þ

where Qq
x;y ¼ hqxq̄yi and Q̃q;ð�k⃗Þ ¼ Sð�k⃗ÞQqSð�k⃗Þ are

unsmeared and smeared quark propagators, respectively.
Note that the meson two-point function is constructed from
the u-quark propagator y ← x and the d-quark propagator
x ← y smeared with momenta ðk⃗Þ and ð−k⃗Þ, respectively.
Therefore, separate propagators for u and d quarks are
required to construct meson correlation functions
“boosted” with the total momentum ð2k⃗Þ,

Q̃u;ðk⃗Þ
y;x ¼ Sðk⃗Þy;y0Q

u
y0;x0S

ðk⃗Þ
x0;x ∝ eik⃗ðy⃗−x⃗Þ;

Q̃d;ð−k⃗Þ
x;y ¼ Sð−k⃗Þ

x;x0 Q
d
x0;y0S

ð−k⃗Þ
y0;y ∝ eik⃗ðy⃗−x⃗Þ; ðB5Þ

where “∝” sign stands for additional coordinate depend-
ence due to the boosting. The d-quark x ← y propagator, as
usual, is computed using γ5-Hermiticity of the Dirac
operator,

4Unless explicit summation is performed, implicit summation
over repeated coordinate indices x0, x00; y0; y00 is assumed, as well
as all over omitted spin and color indices.
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Q̃d;ð−k⃗Þ
x;y ¼ γ5½Q̃d;ð−k⃗Þ

y;x �†γ5 ¼ γ5½Sð−k⃗Þ
y;y0 Q

d
y0;x0S

ð−k⃗Þ
x0;x �†γ5; ðB6Þ

where the sign of the boosting momentum is preserved due
to the Hermiticity of the (boosted) smearing operator S
in Eq. (A6).
Repeating similar steps for the meson three-point func-

tion with the insertion of the operator ½ūWΓu�z with
arbitrary Γ-matrix and Wilson line Wz;zþL̂ ¼ ðQLUÞz;zþL̂

along path L, we get

CWΓ
3pt ðy4; p⃗0; z4; q⃗; xÞ
¼

X
y⃗;z⃗

e−ip⃗
0ðy⃗−x⃗Þþiq⃗ z⃗h½πþ;ð2k⃗Þ�y½ūzWz;zþL̂ΓuzþL̂�½πþ;ð2k⃗Þ�†xi

¼
X
z⃗

eiq⃗ z⃗Tr½Bd̄ΓMuðy4;p⃗0Þ
x;z Wz;zþL̂ΓF

u
zþL̂;x

�; ðB7Þ

where the forward propagator Fu ¼ QuSðk⃗Þ and the meson
sink-sequential (backward) propagator Bd̄ΓMuðy4;p⃗0Þ is
defined as

Bd̄ΓMuðy4;p⃗0Þ
x;z ¼

X
⃗y

e−ip⃗
0 ð⃗y−⃗xÞð−Γ̄MÞQ̃d;ð−⃗kÞ

x;y ΓMS
ð−⃗kÞ
y;y0 Q

d
y0;z;

ðB8Þ
which is also computed using the γ5-conjugation.

APPENDIX C: EXPLICIT CALCULATION TO
SHOW THAT BARE PION u− d THREE-POINT
FUNCTION IS PURELY REAL OR IMAGINARY

In the previous appendix, we constructed the connected
piece of the three-point function of ūWΓu operator in πþ. If
one repeats the computation using the d̄WΓd operator, one
will find the disconnected piece to be the same as the one in
the full ūWΓu three-point function and hence such quark
line disconnected terms will cancel in the ūWΓu − d̄WΓd
isospin nonsinglet operator that we are interested in.
Below, we further explain why only the real part of the
connected ūWΓu three-point function for Γ ¼ γt; γz and
the imaginary part for Γ ¼ 1 contributes to the total
isospin nonsinglet three-point function. For the sake of
simplicity let us take the case of point-source and point-
sink, and take Γ ¼ γt. The full expression for the u − d
qPDF three-point function is

Cu−d
3pt ðt; τ;LÞ
¼

X
y⃗;z⃗

e−ip⃗:y⃗Tr½ð−γ5ÞQx;yγ5Qy;zWz;zþLγtQzþL;x�

þ
X
y⃗;z⃗

e−ip⃗:y⃗Tr½ð−γ5ÞQx;yγ5Qy;zþLW
†
z;zþLγtQz;x��;

≡X
y⃗;z⃗

ðe−ip⃗:y⃗T1 þ e−ip⃗:y⃗T�
2Þ; ðC1Þ

where we do not make distinctions between the u and d
quark propagators due to isospin symmetry. Let us call the
trace in first term on the right-hand side asT1 and the second
trace before being conjugated as T2. One can go from T2 to
T1 by parity transformation x ¼ ðx⃗; x4Þ → xp ¼ ð−x⃗; x4Þ,
followed by a spatial translation x → xþ L by making use
of the transformation of the Dirac propagator to be Qx;y →

γtQxp;ypγt andWx;xþL → W†
xp−L;xp under parity. In this case,

the γt from parity transformation for Q commutes with
Γ ¼ γt. In other cases, one should take care of the� factor.
Thus, C3pt becomes

Cu−d
3pt ðt; τ;LÞ ¼

X
y⃗;z⃗

ðT1e−ip⃗:y⃗ þ T�
1e

ip⃗:y⃗Þ; ðC2Þ

and therefore proportional to the connected piece of ūΓWu,
which is the first term in the above equation. We normalize
the three-point function such that the u − d isospin charge
of the pion is 1. By going through the similar calculation,
one can show that the three-point function is real also for
Γ ¼ γz while it is purely imaginary for Γ ¼ 1 u − d
pion qPDF.

APPENDIX D: RELATION BETWEEN
Pz AND-Pz MATRIX ELEMENTS

In this appendix, we derive the relation between con-
jugates of the matrix elements hEn0 ; PzjOΓðz; τÞjEn; Pzi
that enter the excited state contributions to the qPDF three-
point function. For this, let us consider the conjugate of the
simplest component of the qPDF matrix element:X

z

hEn0 ; PzjūzΓWz;zþLuzþLjEn; Pzi�

¼
X
z

hEn; PzjūzþLΓW
†
z;zþLuzjEn0 ; Pzi; ðD1Þ

for Γ ¼ γt; γz; 1. Using the parity operator Π, the right-hand
side of the above equation becomes

X
z

hEn;PzjūzþLΓW
†
z;zþLuzjEn0 ;Pzi

¼
X
z

hEn;−PzjðΠūzþLΠÞðΠW†
z;zþLΠÞðΠuzΠÞjEn0 ;−Pzi

¼
X
z

hEn;−Pzjūz−LγtΓWz−L;zγtuzjEn0 ;−Pzi

¼
X
z

hEn;−PzjūzγtΓγtWz;zþLuzþLjEn0 ;−Pzi: ðD2Þ

Defining, γtΓγt ¼ ΦΓΓwithΦΓ ¼ �1, we have the relation

X
z

hEn0 ; PzjūzΓWz;zþLuzþLjEn; Pzi�

¼ ΦΓ

X
z

hEn;−PzjūzΓWz;zþLuzþLjEn0 ;−Pzi; ðD3Þ
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with ΦΓ ¼ 1 for Γ ¼ γt; 1 and ΦΓ ¼ −1 for Γ ¼ γz with all
Γ being in the Minkowskian convention. Thus, we can
average over Pz and −Pz data after taking care of
appropriate factor of ΦΓ.

APPENDIX E: PION TWO-POINT FUNCTIONS
AND ENERGY LEVELS

In this appendix we discuss some details of the calcu-
lations of the pion two-point function. We tested several
different sources for the pion. In these tests we used 50
gauge configurations. We used Gaussian sources with
several steps of Wuppertal smearings as well as in the
Coulomb gauge (see main text). In Fig. 19 we show the
effective mass for 40 and 90 steps of Wuppertal smearings
as well as the Coulomb gauge Gaussian sources of size
0.3 fm. We see that 90 steps of Wuppertal smearings and
Coulomb gauge Gaussian sources give similar effective
masses, while the excited state contamination is larger
for 40 steps of Wuppertal smearings. We also studied the

two-point functions for different boosted Gaussian sources,
with momentum boost kz. The corresponding effective
masses are shown in Fig. 20 for Pz ¼ 0.86, 1.29, and
1.72 GeV for different values of ζ ¼ kz=Pz. We clearly see
that the nonzero value of ζ improves the signal for all Pz.
We also see that ζ ¼ 0.5 is too small, while ζ ¼ 1.0 is too
large for Pz ¼ 1.29, but works well for Pz ¼ 0.86 GeV.

APPENDIX F: IMPLEMENTATION
OF MATCHING CONVOLUTION

Here, we describe the implementation of the plus
function in the matching formula such as to ensure current
conservation. The matching kernel is of the form

C

�
x
y
; yPz

�
¼ δ

�
x
y
− 1

�
þ αsCF

2π
Cð1Þ
þ

�
x
y
; yPz

�
; ðF1Þ

where the dependence on PR and μ are implicit. The first
perturbative correction is a plus function that ensures
the vector current conservation. The property we know

of the plus function is that
R
∞
−∞ dxCð1Þ

þ ðxy ; yPzÞ ¼ 0, since
the second dependence of the function is independent of x.
In order to implement the plus function correctly, we can
use the following procedure:

Cð1Þ
þ ðξ; yPzÞ ¼ Cð1Þðξ; yPzÞ − NðyPzÞδðξ − 1Þ: ðF2Þ

The x-independent but momentum dependent coefficient
NðyPzÞ is

NðyPzÞ≡
Z
reg

Cð1Þðξ; yPzÞdξ; ðF3Þ

where
R
reg dξ involves an integration over the intervals

½−Λ;−ϵ� ∪ ½ϵ; 1 − ϵ� ∪ ½1þ ϵ;Λ� for some upper cutoff Λ
and a small exclusion parameter ϵ. The above definition
gives the usual result that
Z

∞

−∞
dξCð1Þ

þ ðξ; yPzÞfðξÞ ¼
Z

∞

−∞
Cð1Þðξ; yPzÞðfðξÞ − fð1ÞÞ;

ðF4Þ
with y held fixed as Λ → ∞ and ϵ → 0. The following is
then true for any function f:Z Z

dxdyCð1Þ
þ ðx=y; yPzÞfðyÞ

¼
Z

dy

�Z
dxCð1Þ

þ ðx=y; yPzÞ
�
fðyÞ

¼ 0; ðF5Þ
leading to the vector current conservation or equivalently to
the total area preservation between the qPDF and PDF.
With this prescription, the matching formula becomes

FIG. 19. Effective masses for Pz ¼ 0 using Gaussian sources
with 40 steps of Wuppertal smearings, 90 steps of Wuppertal
smearings, and Coulomb gauge.

FIG. 20. Effective masses for different values of ζ with 50
configurations; green, blue, and black points correspond to
momentum 0.86, 1.29, and 1.72 GeV, respectively.
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Z
∞

−∞

dy
jyjC

ð1Þ
þ ðx=y; yPzÞqðyÞ

¼
Z
reg

dy
jyjC

ð1Þðx=y; yPzÞqðyÞ − NðxPzÞqðxÞ: ðF6Þ

It is convenient to write the above formula in an
explicitly vector current conservation preserving form as

Z
∞

−∞

dy
jyjC

ð1Þ
þ ðx=y;yPzÞqðyÞ

¼
Z
reg

dy
jyjC

ð1Þ
�
x
y
;yPz

�
qðyÞ−

Z
reg

dy0

jxjC
ð1Þ
�
y0

x
;xPz

�
qðxÞ:

ðF7Þ

However, care has to be taken in the numerical regulari-
zation of the above equation to be consistent with the one in
Eq. (F3). That is, in the above equation,

R
reg dy in the first

integral in the right-hand side involves the range y ∈
½−x=ϵ;−x=Λ� ∪ ½x=Λ; x=ð1þ ϵÞ� ∪ ½x=ð1 − ϵÞ; x=ϵ� when
x > 0, and the range reversed when x < 0. A consistent
prescription for

R
reg dy

0 in the second integral in the
right-hand side involves y0 ∈ ½−Λx;−ϵx� ∪ ½ϵx; xð1 − ϵ� ∪
½xð1þ ϵÞ; xΛ�.

APPENDIX G: RESULTS ON TWO-STATE
EXTRAPOLATIONS TO OBTAIN THE MATRIX

ELEMENTS AT ALL Pz

In Fig. 4 in the main text, we showed some sample
results for the t − τ=2 behavior and the t → ∞

FIG. 21. The ratio of the three-point function to the two-point function, Rðt; τ; z; Pz; γzÞ for Γ ¼ γz is shown as function of τ − t=2 for
z=a ¼ 0, 4, and 8 (from left to right), and Pz ¼ 0, 0.483, 0.86, and 1.72 GeV (top to bottom). The corresponding plots for Pz ¼
1.29 GeV are shown in Fig. 4 in the main text. The central values of the two-state fits to the lattice results for different source-sink
separations are shown as the curves. The horizontal band corresponds to the extrapolated result for infinite source-sink separation.
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FIG. 22. The ratio of the three-point function to the two-point function, Rðt; τ; z; Pz; γtÞ for Γ ¼ γt is shown as function of τ − t=2 for
z=a ¼ 0, 4, and 8 (from left to right), and Pz ¼ 0, 0.483, 0.86, and 1.72 GeV (top to bottom). The corresponding plots for Pz ¼
1.29 GeV are shown in Fig. 4 in the main text. The central values of the two-state fits to the lattice results for different source-sink
separations are shown as the curves. The horizontal band corresponds to the extrapolated result for infinite source-sink separation. The
case of Pz ¼ 0, in the top-most panels, is special due to the presence of the effect of lattice periodicity, and, hence, the various symbols
and curves for the top-most panels are explained in detail in the text of Appendix G.
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extrapolations of the three-point function to two-point
function ratio Rðt; τ; z; Pz;ΓÞ for Γ ¼ γt and γz at a specific
intermediate value of Pz ¼ 1.29 GeV. In Fig. 21 and
Fig. 22 of this appendix, we show similar results at all
Pz for Γ ¼ γz and γt, respectively, using Fit(2,2).
For the case of Pz ¼ 0, special care needs to be taken.

For a finite temporal extent Lt of the lattice, ignoring the
effect of periodicity due to the presence of the terms
e−EπðLt−tÞ in the denominator of Eq. (9) is justified when
e−Eπ t ≪ e−EπðLt−tÞ. But one should include the effect of
boundary condition if the two terms become comparable.
For the largest source-sink separation t=a ¼ 12 we use, the
contribution from the wrapping-around term, e−EπðLt−tÞ,
relative to e−Eπ t for Pz ¼ 0 is 2.7%, whereas for higher Pz it
is negligible; e.g., for the smallest nonzero momentum
Pz ¼ 0.43 GeV, this effect is 0.2%. Hence, we included
the term e−EπðLt−tÞ in the denominator of Eq. (9) for the
extrapolation of Rðt; τ; z;PzÞ for Pz ¼ 0, and we also

checked that the effect of the periodicity of lattice was
indeed negligible for any of the nonzero Pz we used.
For the case of Pz ¼ 0 displayed in the top-most panels

of Fig. 22, we have shown the data in two ways to make the
fits and the extrapolated value easier to understand. The
unfilled symbols are the data for Rðt; τ; z; Pz; γtÞ defined as
the ratio of C3ptðt; τ; z; PzÞ to C2ptðt;PzÞ, and the solid
curves are the fits including the e−EπðLt−tÞ term in the
denominator of Eq. (9). While the fits describe the data well,
the trend in the data with increasing t can be seen to be away
from the extrapolated value. To make the reason clearer,
we have shown the modified ratio of C3ptðt; τ; z; PzÞ to
the two-point function without the wrap-around term,
C2ptðt;PzÞ − A0e−EπðLt−tÞ, as the filled symbols. The dashed
curves are now the fits using just Eq. (9). The values of the
amplitude A0 and the energy Eπ were obtained by the two-
state fit as described in the main text. Now, the trend with
increasing t is clearer.
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