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In this paper we calculate the mass and probability fractions of the meson-meson components of
Xð3872Þ in an unquenched quark model. Different from most other unquenched quark models, the quark-
pair creation operator from 3P0 is modified by considering the effects of the created quark pair’s energy and
the separation between the created quark pair and the valence quark pair. In the calculation all of the wave
functions of the mesons and the relative motion between two mesons are obtained by solving the
corresponding Schrödinger equation with the help of the Gaussian expansion method. The multichannel
couplings of the quark-antiquark state with possible meson-meson states are calculated. The results show
that Xð3872Þ can be described as a mixing state of the dominant charmonium state (70%) and meson-
meson components (30%).
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I. INTRODUCTION

The nonrelativistic quark model successfully describes
the properties of heavy mesons. However, since the well-
known exotic state Xð3872Þ was discovered more and
more exotic particles that cannot fit well in the meson
spectrum have been reported by experimental collabora-
tions. These exotic states represent a great challenge for the
quark model.
In 2003, the Belle Collaboration first found Xð3872Þ in

B-meson decays [1]. Subsequently, the CDF [2] and D0 [3]
collaborations confirmed this state in pp̄ collisions, and
BABAR also found Xð3872Þ in B-meson decays [4].
Different from the ordinary hadrons, the state Xð3872Þ
has some strange properties: its mass is very close to the
threshold of DD̄�, and its decay width is very narrow (less
than 1.2 MeV). So the nature of Xð3872Þ is still an open
question. Due to the ambiguous information about the
quantum numbers of Xð3872Þ at the time, some held the
view that the traditional quark model can still describe its
properties [5–8]. Barnes et al. analyzed some states by
calculating their radiative transitions, and it turned out
that five states (13D3, 13D2, 11D2, 23P1, and 21P1) could
be possible candidates for the new exotic state [5].

After examining the models of mesons and meson-meson
molecules, Swanson et al. and Pakasa and Suzuki con-
cluded that the meson picture may be more suitable for

Xð3872Þ [6,9]. Indeed, the ratio BðXð3872Þ→ψð2sÞγÞ
BðXð3872Þ→J=ψγÞ ¼ 3.4�

1.4 announced by the BABAR Collaboration appears to
support the claim that Xð3872Þ is a traditional meson [10].
Achasov argued that the Xð3872Þ resonance was the cc̄ ¼
χc1ð2PÞ charmonium which “sits on” the D�0D̄0 threshold,
and its mass was shifted from the prediction of the potential
model to the threshold of D�D̄ by the contribution of the
virtual D�D̄þ c:c: intermediate states [11].
Due to the fact that the mass of Xð3872Þ is close to

the threshold of DD̄�, it is natural to interpret the state
Xð3872Þ in the molecular picture [7]. Törnqvist proposed
that, analogously to the deuteron, the one-pion-exchange
potential could make a contribution to the bound state
of Xð3872Þ [7], and that Xð3872Þ has the structure
1ffiffi
2

p ½DD̄� þ D̄D��. This picture could easily explain the

isospin-breaking branching ratio BrðJ=ψπ−πþπ0Þ
BrðJ=ψπþπ−Þ ¼ 1.0�

0.4� 0.3 [12] due to the mass difference between the
neutral D meson and charged D meson. Based on the pion
exchange potential proposed by Törnqvist, Swanson et al.
added an additional mixture of J=ψρ and J=ψω to the state,
and concluded that although the effect of pion exchange
might be responsible for the bound state, the short-range
quark dynamics were present and assisted in binding the
Xð3872Þ via mixing to a hidden charm vector (J=ψ states)
[13]. However, some believed that pion exchange was too
weak to bind Xð3872Þ [8,14,15]. BecauseD� −D − π ¼ 0,
Suzuki thought that there was no long-range attraction
between D and D�, which means that Xð3872Þ is not a
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bound state [8]. In addition, unless the coupling constants
and cutoffs were large, Xð3872Þ could not be a real
molecule that only depends on the pion exchange potential
[14]. Thomas et al. added a tensor tern and a flavor factor to
the one pion exchange model, and they finally got a bound
state [15].
Actually, since the BABAR Collaboration reported the

branching ratio of X → γJ=ψ , people have started to accept
the concept that Xð3872Þ might be an unquenched hadron
state—a mixture of cc̄ and DD̄� [16–19]. Kang and Oller
analyzed the experimental data using a near-threshold
parametrization method and found that the Xð3872Þ com-
positeness coefficients in D0D̄�0 range from nearly 0 up to
1 in the different scenarios [20]. In 2005, Kalashnikova first
used the 3P0 model to study the mass spectrum of cc̄ based
on the nonrelativistic quark model, in which the simple
harmonic oscillator (SHO) functions are used to describe
the wave functions of mesons, and obtained an Xð3872Þ
mass of 3990 MeV [16], only 0.3 MeV over threshold. In
the following years, the qq̄ → qqq̄ q̄ transition operator in
the unquenched quark model (UQM) was often taken as the
3P0 operator, which was first proposed by Micu [21]. Then,
Yaouanc et al. used the operator to calculate the strong
decay widths of baryons and mesons [22,23]. Santopinto
et al. calculated the decay width, components, and mass of
Xð3872Þ using the relativistic quark model and 3P0 model,
where SHO functions were also used [17,24–28]. In
addition, Ortega et al. utilized the unquenched quark model
to analyze the decay width and components of Xð3872Þ,
and their wave functions for the relative motion between
two mesons were obtained by solving the resonating group
method equation [18,29–31]. In many previous works the
SHO functions are used to describe the meson dynamics
and the relative motion between two mesons is described
by plane-wave functions. The systematic errors due to the
approximations are unpredictable for the bound-state cal-
culation, although they are not a bad approximation for the
decay width calculation [32]. In this work we apply the
Gaussian expansion method (GEM)—which is a powerful
method for few-body systems—to analyze Xð3872Þ in an
unquenched quark model [32] with a modified 3P0

operator.
The paper is organized as follows. In Sec. II the chiral

quark model and GEM for solving the qq̄ and qq̄-qq̄
systems are presented. In Sec. III we briefly introduce the
modified 3P0 model. The numerical results are given in
Sec. IV. The last section is devoted to the summary of the
present work.

II. CHIRAL QUARK MODEL AND GEM

In the chiral quark model [33], the meson spectrum is
obtained by solving the Schrödinger equation

HΨJMJ
IMI

ð1; 2Þ ¼ EIJΨJMJ
IMI

ð1; 2Þ: ð1Þ

The wave functionΨJMJ
IMI

of a meson with quantum numbers
IGJPC can be written as

ΨJMJ
IMI

ð1;2Þ¼
X
α

½ψ lðrÞχsð1;2Þ�JMJωcð1;2ÞϕIMI
ð1;2Þ; ð2Þ

where α denotes the intermediate quantum numbers l, s and
possible flavor indices (for isospin I ¼ 0 states, the flavor
indices are uū; dd̄, and ss̄). “[ ]” denotes the angular
momentum coupling, χsms

ð1; 2Þ, ωcð1; 2Þ, and ϕIMI
ð1; 2Þ

are the spin, color, and flavor wave functions (with specific
isospin I) of the meson, respectively, and ψ lmðrÞ (where
r ¼ r1 − r2) is the orbital wave function. In GEM, the
orbital wave function is written as the product of a radial
function and spherical harmonics, and the radial part of the
wave function is expanded by a set of Gaussians,

ψ lmðrÞ ¼
Xnmax

n¼1

cnψG
nlmðrÞ;

ψG
nlmðrÞ ¼ Nnlrle−νnr

2

Ym
l ðr̂Þ: ð3Þ

The Gaussian size parameters are taken as the following
geometric progression numbers:

νn ¼
1

r2n
; rn ¼ r1an−1; a ¼

�
rnmax

r1

� 1
nmax−1

: ð4Þ

This enables the optimization of the expansion employing a
small number of Gaussians. So, the wave function takes the
form

ΨJM
IMI

ð1; 2Þ ¼
X
nα

CIJ
nαΦJM

IMI;nα

¼
X
nα

CIJ
nα½ψ lðrÞχs�JMωcϕIMI

: ð5Þ

Noting that the Gaussians are not orthogonal, the Rayleigh-
Ritz variational principle for solving the Schrödinger
equation leads to a generalized eigenvalue problem,

X
n0;α0

ðHIJ
nα;n0α0 − EIJNIJ

nα;n0α0 ÞCIJ
n0α0 ¼ 0; ð6Þ

HIJ
nα;n0α0 ¼ hΦJM

IMI;nα
jHjΦJM

IMI;n0α0
i; ð7Þ

NIJ
nα;n0α0 ¼ hΦJM

IMI;nα
jΦJM

IMI;n0α0
i: ð8Þ

Extended to the qq̄-qq̄ system, the same Schrödinger
equation is employed to obtain the energy of the system,

HΨJMJ
IMI

ð1234Þ ¼ EIJΨJMJ
IMI

ð1234Þ; ð9Þ

where ΨJMJ
IMI

is the wave function of the four-quark state,
which can be constructed as follows. First, we write down
the wave functions of two subclusters,
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ΨJ1MJ1
I1MI1

ð12Þ ¼ ½ψ l1ðr12Þχs1ð12Þ�J1MJ1ωc1ð12ÞϕI1MI1
ð12Þ;

Ψ
J2MJ2
I2MI2

ð34Þ ¼ ½ψ l2ðr34Þχs2ð34Þ�J2MJ2ωc2ð34ÞϕI2MI2
ð34Þ;

where χs, ωc, and ϕI are the spin, color, and flavor wave
functions of the quark-antiquark subcluster, respectively
(the quarks and antiquarks are numbered as 1, 3 and 2, 4,
respectively). The bracket [ ] denotes the angular momen-
tum coupling. Then, the total wave function of the four-
quark state is obtained as

ΨJMJ
IMI

ð1234Þ ¼ A½½ψ l1ðr12Þχs1ð12Þ�J1
½ψ l2ðr34Þχs2ð34Þ�J2ψLr

ðr1234Þ�JMJ

½ωc1ð12Þωc2ð34Þ�½222�½ϕI1ð12ÞϕI2ð34Þ�IMI
; ð10Þ

where ψLr
ðr1234Þ is the wave function for the relative

motion between two clusters with orbital angular momen-
tum Lr. A is the antisymmetrization operator. If all quarks
(antiquarks) are taken as identical particles, we have

A ¼ 1

2
ð1 − P13 − P24 þ P13P24Þ: ð11Þ

The radial part of the wave function is also expanded by
Gaussians as in Eq. (3). Finally, the infinitesimally shifted
Gaussian basis function is employed for the orbital wave
functions with nonzero orbital angular momentum to
simplify the calculation of the matrix elements [34]:

ψG
nlmðrÞ ¼ Nnlrle−νnr

2

Ym
l ðr̂Þ

¼ Nnllim
ϵ→0

1

ϵl
Xkmax

k

Clm;ke−νnðr−ϵDlm;kÞ2 : ð12Þ

The Hamiltonian of the chiral quark model includes three
parts: the rest masses of the quarks, the nonrelativistic
kinetic energy, and the potential energy. The potential
energy is composed of color confinement, one-gluon-
exchange (OGE), and one-Goldstone-boson-exchange
terms. The detailed form of the four-quark states is shown
below [33]:

H ¼
X4
i¼1

mi þ
p2
12

2μ12
þ p2

34

2μ34
þ p2

1234

2μ1234

þ
X4
i<j¼1

�
VG
ij þ VC

ij þ
X

χ¼π;K;η

Vχ
ij þ Vσ

ij

�
;

VG
ij ¼

αs
4
λci · λ

c
j

�
1

rij
−

2π

3mimj
σi · σjδðrijÞ

�
;

δðrijÞ ¼
e−rij=r0ðμijÞ

4πrijr20ðμijÞ
;

VC
ij ¼ ð−acr2ij − ΔÞλci · λcj ;

Vπ
ij ¼

g2ch
4π

m2
π

12mimj

Λ2
π

Λ2
π −m2

π
mπvπij

X3
a¼1

λai λ
a
j ;

VK
ij ¼

g2ch
4π

m2
K

12mimj

Λ2
K

Λ2
K −m2

K
mKvKij

X7
a¼4

λai λ
a
j ;

Vη
ij ¼

g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η
mηv

η
ij

½λ8i λ8j cos θP − λ0i λ
0
j sin θP�;

Vσ
ij ¼ −

g2ch
4π

Λ2
σ

Λ2
σ −m2

σ
mσ

�
YðmσrijÞ −

Λσ

mσ
YðΛσrijÞ

�
;

vχij ¼
�
YðmχrijÞ −

Λ3
χ

m3
χ
YðΛχrijÞ

�
σi · σj;

YðxÞ ¼ e−x=x; ð13Þ

where mi is the mass of quarks and antiquarks, μij is their
reduced mass, r0ðμijÞ ¼ r̂0=μij, σ are the SUð2Þ Pauli
matrices, λ and λc are the SUð3Þ flavor and color Gell-
Mann matrices, and g2ch=4π is the chiral coupling constant,
determined from the π-nucleon coupling constant. αs is the
effective scale-dependent running quark-gluon coupling
constant [33],

αsðμijÞ ¼
α0

ln ½ðμ2ij þ μ20Þ=Λ2
0�
: ð14Þ

The quadratic confinement without color screening is
employed to avoid the double counting of the contributions
from the open four-quark channels [35,36]. All of the
parameters are determined by fitting the meson spectrum—
from light to heavy—taking into account only the quark-
antiquark component. They are shown in Table I.

TABLE I. Quark model parameters.

Quark masses mu ¼ md (MeV) 313
ms (MeV) 536
mc (MeV) 1728
mb (MeV) 5112

Goldstone bosons mπ (fm−1) 0.70
mσ (fm−1) 3.42
mη (fm−1) 2.77
mK (fm−1) 2.51

Λπ ¼ Λσ (fm−1) 4.2
Λη ¼ ΛK (fm−1) 5.2

g2ch=ð4πÞ 0.54
θpð°Þ −15

Confinement ac (MeV) 101
Δ (MeV) −78.3

OGE α0 3.67
Λ0 (fm−1) 0.033
μ0 (MeV) 36.976
r̂0 (MeV) 28.17
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III. 3P0 MODEL

A. Traditional 3P0 operator

The 3P0 model (quark-pair creation model) was origi-
nally introduced by Micu [21] and further developed in
Refs. [22,23,37,38]. It can be applied to the OZI-rule-
allowed two-body strong decays of a hadron [21,37,39–41].
The transition operator in the 3P0 model is

T1 ¼ −3γ
X
m

h1m1 −mj00i
Z

dp3dp4δ
3ðp3 þ p4Þ

× Ym
1

�
p3 − p4

2

�
χ341−mϕ

34
0 ω34

0 b†3ðp3Þd†4ðp4Þ; ð15Þ

where γ represents the probability of the quark-antiquark
pair with momentum p3 and p4 created from the vacuum.

Because the intrinsic parity of the antiquark is negative,
the created quark-antiquark pair must be in the state
2Sþ1LJ ¼ 3P0. ϕ34

0 and ω34
0 are flavor- and color-singlet

states, respectively (the indices of the quark and antiquark in
the original meson are 1 and 2). The S-matrix element for the
process A → Bþ C is written as

hBCjTjAi ¼ δ3ðPA − PB − PCÞMMJA
MJB

MJC ; ð16Þ

where PB and PC are the momenta of mesons B and C in
the final state, which satisfy PA ¼ PB þ PC ¼ 0 in the
center-of-mass frame of meson A. MMJA

MJB
MJC is the

helicity amplitude of the process A → Bþ C, which can
be obtained as

MMJA
MJB

MJC ðPÞ ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EAEBEC

p X
MLA

;MSA;
MLB

;MSB;
MLC

;MSC; m

hLAMLA
SAMSA jJAMJAihLBMLB

SBMSB jJBMJBi

× hLCMLC
SCMSC jJCMJCih1m1 −mj00ihχ14SBMSB

χ32SCMSC
jχ12SAMSA

χ341−mi

× ½hϕ14
B ϕ32

C jϕ12
A ϕ34

0 iIMLA
;m

MLB
;MLC

ðP; m1; m2; m3Þ
þ ð−1Þ1þSAþSBþSChϕ32

B ϕ14
C jϕ12

A ϕ34
0 iIMLA

;m
MLB

;MLC
ð−P; m2; m1; m3Þ�; ð17Þ

with the momentum-space integral

I
MLA

;m
MLB

;MLC
ðP; m1; m2; m3Þ ¼

Z
dpψ�

nBLBMLB

�
m3

m1 þm3

Pþ p

�
ψ�
nCLCMLC

�
m3

m2 þm3

Pþ p

�
ψnALAMLA

ðPþ pÞYm
1 ðpÞ; ð18Þ

where P ¼ PB ¼ −PC, p ¼ p3, and m3 is the mass of the
created quark q3. To analyze the results and compare the
theoretical results with experimental data, the partial-wave
amplitude MJLðA → BCÞ is often employed. It is related
to the helicity amplitude by the Jacob-Wick formula [42],

MJLðA→BCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p

2JAþ 1

X
MJB

;MJC

hL0JMJA jJAMJAi

× hJBMJBJCMJC jJMJAiMMJA
MJB

MJC ðPÞ:
ð19Þ

In evaluating the momentum space integral (18), we use the
wave functions of mesons A, B, C obtained in the mass
spectrum calculation. Because the wave functions are
expanded by a series of Gaussians, the integral can be
evaluated analytically.
The parameter γ is generally determined by an overall

fitting of the strong decay width of hadrons. In this way,
one obtains γ ¼ 6.95 for uū and dd̄ pair creation, and γ ¼
6.95=

ffiffiffi
3

p
for ss̄ pair creation [43].

B. Modified 3P0 operator

The modified transition operator T2 (in position space)
was first proposed by Chen et al. to deal with the fact that
the mass shift of a light meson is too large if the traditional
transition operator T1 is used [32],

T2 ¼ −3γ
X
m

h1m1 −mj00i
Z

dr3dr4

�
1

2π

�3
2

ir2−
5
2f−5

× Y1mðr̂Þe−
r2

4f2e
−
R2
AV
f2
0 χ341−mϕ

34
0 ω34

0 b†3ðr3Þd†4ðr4Þ: ð20Þ

Here, RAV ¼ RA −RV is the relative coordinate between
the source particle “A” and the created quark-antiquark pair
in the vacuum, with

RA ¼ m1r1 þm2r2
m1 þm2

;

RV ¼ m3r3 þm4r4
m3 þm4

¼ r3 þ r4
2

:
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The convergence factor expð−r2=ð4f2ÞÞ [expð−f2p2Þ in
momentum space, where p is the relative momentum
between the created quark and antiquark] of the modified
operator T2 mainly considers the effect of the quark-
antiquark energy created in the vacuum, i.e., that it
suppresses the contribution from meson-meson states with
high energy. The damping factor expð−RAV

2=R0
2Þ takes

into account the fact that the created quark-antiquark pair
should not be far away from the source particle. The
convergence problem was also studied in Ferretti and
Santopinto’s work, where only the contribution from the
closest set of meson-meson intermediate states were
calculated and the contributions from other states were
taken as some kind of global constant [44]. With some
reasonable arguments, the parameters f and R0 were fixed,
and the parameter γ was determined by fitting the decay
width of ρ → ππ,

γ ¼ 32.2 f ¼ 0.5 fm R0 ¼ 1.0 fm:

Based on the modified transition operator T2, Chen et al.
calculated the mass shift of a light meson and adjusted
some parameters of the quark model to bring unquenched
light ground-state meson masses into agreement with
experimental data,

α0 ¼ 3.85; Δ ¼ −58.5:

IV. UNQUENCHED QUARK MODEL

The mass and structure of a meson in the unquenched
quark model are obtained by solving the Schrödinger
equation

HΨJMJ
IMI

¼ EΨJMJ
IMI

; ð21Þ

whereΨJMJ
IMI

is the unquenched wave function of the system
which contains two- and four-quark components. It can be
written as

ΨJMJ
IMI

¼ c2Ψ
JMJ
IMI

ð2qÞ þ
XN
i¼1

c4iΨ
JMJ
i;IMI

ð4qÞ; ð22Þ

where Ψð2qÞ and Ψð4qÞ are the wave functions with two-
and four-quark components, respectively (the simplified
symbols are used to save space), and N is the total number
of four-quark channels.
In the nonrelativistic quark model, the number of

particles is conserved. So there is no rigorous way to write
the Hamiltonian of the unquenched quark model. Here we
only give a description of the Hamiltonian H as follows:

H ¼ H2q þH4q þ T24; ð23Þ

whereH2q acts on the wave function of the quark-antiquark
component Ψð2qÞ, and H4q only acts on the wave function
of the four-quark component Ψð4qÞ. T24 takes the form of
the transition operator in the 3P0 model [Eq. (15) or
Eq. (20)], which mix the two- and four-quark components.
So, in this way, the matrix elements of the Hamiltonian can
be written as

hΨjHjΨi ¼ c22hΨð2qÞjH2qjΨð2qÞi

þ
XN
i;j¼1

c�4ic4jhΨið4qÞjH4qjΨjð4qÞi

þ
XN
i¼1

c�4ic2hΨið4qÞjT24jΨð2qÞi

þ
XN
j¼1

c�2c4jhΨð2qÞjT†
24jΨjð4qÞi: ð24Þ

Then, we get block Hamiltonian and overlap matrices:

ðHÞ ¼

2
6666664

hH2qi hH24i1 hH24i2 … hH24in
hH42i1 hH4qi11 hH4qi12 … hH4qi1n
hH42i2 hH4qi21 hH4qi22 … hH4qi2n
… … … … …

hH42in hH4qin1 hH4qin2 … hH4qinn

3
7777775
;

ð25Þ

ðNÞ ¼

2
6666664

hN2qi 0 0 … 0

0 hN4qi11 hN4qi12 … hN4qi1n
0 hN4qi21 hN4qi22 … hN4qi2n
… … … … …

0 hN4qin1 hN4qin2 … hN4qinn

3
7777775
;

ð26Þ

where hH2qi, hH24ij, and hH4qiij are hΨð2qÞjH2qjΨð2qÞi,
hΨð2qÞjT24jΨjð4qÞi, and hΨið4qÞjH4qjΨjð4qÞi, respec-
tively. The subscript labels the index of the four-quark
channel. By solving the generalized eigenequation

ððHÞ − EnðNÞÞðCnÞ ¼ 0; ð27Þ

we get the eigenenergy En and the expansion coeffi-
cients Cn.

V. NUMERICAL RESULTS AND DISCUSSIONS

In the present calculation, we focus on the charmonium
state χc1ð2PÞ and try to explain the well-known exotic state
Xð3872Þ in the unquenched quark model. To fix the
parameters associated with the charm quark, the two
charmonia ηc and J=ψ are also investigated in the
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unquenched quark model. For comparison, two transition
operators–the traditional one and the modified one—are
used in the calculation.

A. Accumulating approach

Generally, the dimension of H in the unquenched quark
model is very big and the matrix construction process is
very complex. So all the previous unquenched quark model
calculation adopt an accumulating approach, that is to do
two-channel coupling calculation, bare stateΨð2qÞ and one
of the four-quark state Ψið4qÞ, to get the mass shift Δmi
and the probability fraction of four-quark component Pi,
then the total mass shift ΔMt and the total fraction Pt of
four-quark component are obtained by accumulating Δmi
and Pi,

ΔMt ¼
XN
i¼1

Δmi; ð28Þ

Pt ¼
XN
i¼1

Pi: ð29Þ

In this approach, the dimension of the Hamiltonian matrix
H needs to be diagonalized becomes much smaller. The
approach works well if the cross matrix elements
between different four-quark channels are small enough.
Unfortunately, this is not always the case. If there is a
coupling between two four-quark channels, the accumulat-
ing approach will introduce errors, especially for the case
when the energy of the four-quark state is close to the bare
mass of the meson. We compare the results for the states ηc
and χc1ð2PÞ between the accumulating approach and
the full-channel diagonalization in Table II, where the

traditional transition operator T1 is used. There is no
coupling between DD̄� and DsD̄�

s , so the mass shifts and
the probability fractions of the four-quark components for ηc
and χc1ð2PÞ from the accumulating approach are almost the
same as those from three-channel diagonalization. However,
if there is a coupling between DD̄� and D�D̄, then the
different approaches will give different results. For ηc, the
accumulating approach overestimates the mass shift by
about 10%, and the probability fraction by about 30%.
For χc1ð2PÞ, the overestimates are 30% for the mass shift
and 160% for the probability fraction, because DD̄� is an
open channel for the state χc1ð2PÞ. Thus, here the multi-
channel coupling calculation is adopted if there are nonzero
matrix elements between different four-quark channels.
We compare our results for ηc and those from other

calculations in Table III, where the same transition operator
T1 is employed. Our calculation clearly gives larger mass
shifts than those found in other works. The reason is that
different wave functions are used in the different calcu-
lations. In most previous works [16,17,45] the SHO wave
functions were chosen as the radial part of the orbital wave
functions of mesons, and the relative-motion wave function
between two meson clusters was chosen as the plane wave
function. The plane-wave approximation is a good one in
the decay calculation, but it would not be a good one for the
bound-state calculation. In most cases the SHO wave
function can describe the ground meson well, but different
parameter values should be used for different mesons. To
simplify the calculations, the same parameter values were
used for different mesons in previous works. In our
calculation, all of the wave functions are determined by
system dynamics. In this way, we are able to perform a self-
consistent calculation.

B. Results

The direct use of the transition operator T1 leads to rather
large mass shifts for ground-state mesons, and violates the
validity of the quark model description of ground-state
mesons, especially for light mesons [32]. The transition
operator has to be modified in the channel coupling
calculation. In the present work, the modified operator
T2 is employed. Using the modified operator, and keeping
all of the parameters used in the valence quark model
unchanged, we calculate the mass shifts and probability
fractions of the four-quark components of the state χc1ð2PÞ.

TABLE II. The mass shifts and probability fractions of four-
quark components in the accumulating approach and the three-
channel coupling calculation with the unmodified transition
operator. DD̄� (D�

sD̄s) stands for the two-channel coupling cc̄ −
DD̄� (cc̄ −D�

sD̄s). “Total” is the sum of the two two-channel
coupling results. DD̄� þD�

sD̄s denotes the three-channel cou-
pling cc̄ −DD̄� −D�

sD̄s. An “S” in parentheses denotes that the
relative motion between two clusters is in the S wave.

ηc χc1ð2PÞ
Bare mass 2986.28 3889.62
Exp 2980.30 3871.69
Meson-meson Δmi (MeV) Pi Δmi (MeV) Pi

DD̄�ðSÞ −189.75 4.02% −73.65 43.09%
D�

sD̄sðSÞ −76.50 1.75% −15.13 1.26%
Total −266.25 5.77% −88.78 44.35%
DD̄� þD�

sD̄sðSÞ −266.71 5.20% −83.39 35.53%
DD̄�ðSÞ −189.75 4.02% −73.65 43.09%
D�D̄ðSÞ −189.75 4.02% −73.65 43.09%
Total −379.50 8.04% −147.30 86.18%
DD̄� þD�D̄ðSÞ −369.43 6.4% −117.11 33.38%

TABLE III. The mass shift of ηcð1SÞ in the different calcu-
lations (in units of MeV).

Meson-meson Ref. [16] Ref. [17] Ref. [45] This work

DD̄�ðD�D̄Þ −59 −34 −114 −189.75
D�D̄� −55 −31 −105 −354.48
DsD̄�

sðD�
sD̄sÞ −26 −8 −106 −76.50

D�
sD̄�

s −35 −8 −98 −147.14
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The results are listed in Table IV. For comparison, the
results with the unmodified operator T1 are also listed in
Table IV. From the table, we can see that the mass shifts
with T2 are about 1=3 of the mass shifts with T1. For the
results with T2, the open channel DD̄� (both the S and D
waves of the relative motion between D and D̄� are
considered) makes the largest contribution, and pushes
the bare mass of χc1ð2PÞ down about 76.37 MeV. The D-
wave D�D̄� also pushes the bare mass down about
85.61 MeV. The mass shifts from the states DsD̄�

s and
D�

sD̄�
s are small. Finally, coupling of all the four-quark

components make mass shifts −181.21 MeV to the state
χc1ð2PÞ, and the unquenched mass of the state is
3708.41 MeV. In the valence quark model, the parameters
are determined by fitting the ground-state mesons. In
UQM, the parameters have to be readjusted to fit the
meson spectrum.

If we want to reproduce the mass of the state Xð3872Þ
exactly, we can fine-tune the model parameters related
to the charm quark and keep the light meson sector
unchanged as much as possible. To justify the fine-tuning,
the charmonia ηc and J=ψ are also calculated in the
unquenched quark model. The adjusted parameters are
listed in Table V with the original parameters and the
parameters adjusted in Ref. [32]. From the table, we can see
that the adjustment of parameters is small, less than 5%
except the energy shift Δ.
The results with the new parameters for the charmonia ηc,

J=ψ , and χc1ð2PÞ are shown in Table VI. The masses of ηc
and J=ψ are fitted by adjusting the parameters, so the
experimental data are reproduced well. The dominant
components of ηc and J=ψ are cc̄, over 90%. In this case
the calculated unquenched mass of χc1ð2PÞ is 3871.7 MeV,
which is almost the experimental value for Xð3872Þ. In our
calculation, the state is a mixture cc̄ and four-quark
components. The dominant component is still cc̄ (∼70%),
the fraction of DD̄� þD�D̄ is around 22.5%, D�D̄�, 5.6%
and Dð�Þ

s D̄ð�Þ
s , 2.4%. The results are qualitatively consistent

with some previous works [11,17,20]. However, because of

TABLE V. Adjusted quark model parameters.

Parameter ChQM Ref. [32] This work

Quark masses mc (MeV) 1728 1728 1690.5
Confinement ac (MeV fm−2) 101 101 112.7

Δ (MeV) −78.3 −58.3 −52.7
αs αqq 0.57 0.60 0.60

αqs 0.54 0.56 0.56
αqc 0.49 0.52 0.52
αsc 0.44 0.46 0.46
αcc 0.38 0.39 0.39

TABLE VI. The mass shifts and probability fractions of four-quark components in UQM. ’S’, ’P’ and ’D’ in the
parentheses denotes the relative motion between two clusters are in S-, P- and D-wave.

State ηc J=ψ χc1ð2PÞ
Bare mass 3047.0 3169.7 4022.2

Meson-meson state Δmi Pi Δmi Pi Δmi Pi

DD̄� þD�D̄ðPÞ −26.3 2.5% −20.5 2.2% … …
DsD̄�

s þD�
sD̄sðPÞ −6.0 0.5% −4.6 0.4% … …

D�D̄�ðPÞ −24.8 2.2% … … … …
D�

sD̄�
sðPÞ −5.9 0.5% … … … …

DD̄þD�D̄�ðPÞ … … −39.4 4.0% … …
DsD̄s þD�

sD̄�
sðPÞ … … −9.0 0.8% … …

DD̄� þD�D̄ðSþDÞ … … … … −68.2 22.5%
DsD̄�

s þD�
sD̄sðSþDÞ … … … … −8.2 1.7%

D�D̄�ðDÞ … … … … −63.9 5.6%
D�

sD̄�
sðDÞ … … … … −10.2 0.7%

Total −63.0 5.7% −73.5 7.4% −150.5 30.5%
Unquenched mass 2984.0 94.3% 3096.2 92.6% 3871.7 69.5%
Exp 2980.3 3096.9 3871.7

TABLE IV. The mass shifts and probability fractions of four-
quark components of χc1ð2PÞ (in units of MeV). The “S” and
“D” in parentheses denote that the relative motion between two
clusters is in the S wave and/or D wave.

Transition operator T1 T2

States Δmi Pi Δmi Pi

DD̄� þD�D̄ðSþDÞ −202.72 47.14% −76.37 26.76%
DsD̄�

s þD�
sD̄sðSþDÞ −54.87 4.1% −8.84 1.98%

D�D̄�ðDÞ −201.34 10.32% −85.61 6.42%
D�

sD̄�
sðDÞ −68.03 2.01% −10.39 0.72%

Total −526.96 63.57% −181.21 36.88%
Bare mass 3889.62
Unquenched mass 3362.66 3708.41
Exp 3871.69
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the modified transition operator, the contribution from the
high Fock components are all suppressed, and the dominant
component is still the valence one, which implied that the
quenched quark model is a good zero-order approximation
of the hadron spectrum. In other works, the dominant
components of χc1 were meson-meson ones, the fraction
of cc̄ is small, 7% to 32% in Ref. [36], 7.5% to 11.2% in
Ref. [46] and 14.7% in Ref. [44]. Kalashnikova got a little
large fraction of cc̄, 54.3% [16].

VI. SUMMARY

We developed an unquenched quark model to describe
ordinary and exotic mesons in one framework. As this is a
preliminary work, only four-quark components were taken
into account, and the four-quark components were limited
to meson-meson states. The transition operator is required
to relate the valence part to the high Fock components. Here
a modified version of the transition operator of the 3P0

model was employed. The modification consists of two
parts. One is the fact that the creation probability will
decrease when the energy of the created quark-pair
increases. Another requires that the created quark cannot
be far away from the valence quark pair. To minimize the
error from the calculation, a powerful method for dealing
with few-body systems—GEM—was used to find all of the
necessary wave functions. The unquenched quark model
was applied to the light meson spectrum, and a reasonable
result was obtained. All of the mass shifts are around 15%
of the bare masses of the states. In this way, the valence
quark model still successfully describes the low-lying
meson spectrum. We also applied the model to the
charmonium states in an attempt to explain the exotic state
Xð3872Þ.
By keeping the model parameters related to the light

meson unchanged and fine-tuning the parameters related to
the charm quark, we obtained an unquenched mass for
χc1ð2PÞ that is very close to the experimental value for
Xð3872Þ. At the same time, the masses of the charmonia ηc
and J=ψ are reproduced well. In our UQM, the high Fock

components of the ground-state charmonia ηc and J=ψ are
small (less than 10%). Similar results were obtained for the
light mesons [32]. For the states which can decay strongly
to two mesons, the probability fractions of the two-meson
continua will be large, such as the ππ continua for the ρ
meson. Here we obtained similar results for Xð3872Þ. The
fraction of the two-meson continua is around 30%.
However, the dominant component of Xð3872Þ is still
cc̄ (70%).
To develop the unquenched quark model, the problem of

convergence must be taken into account. Using the original
transition operator of the 3P0 model and summing over
infinite towers of the intermediate states, the results may
not converge due to that there is no suppression of the
contribution from the high lying states. Here we modified
the transition operator to suppress the contribution from the
high lying states, and convergent results were obtained.
This also validates the valence quark model description
of ground-state hadrons. All of the wave functions used
in the calculation were obtained by solving the correspond-
ing Schrödinger equation, and the mass shifts were
obtained by solving a few-body problem. In this sense,
our unquenched quark model calculation is a realistic and
self-consistent one.
From our calculation we can see that the unquenched

quark model is a promising phenomenological method to
unify the descriptions of ordinary mesons and exotic
mesons. Of course, further improvements are still needed,
as the four-quark components may be hidden-color states
or diquark-antidiquark states. To give a realistic des-
cription of all mesons the model parameters will need to
be adjusted. We will address these problems in our
future work.
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