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According to a recent proposal of the tetraquark mixing framework, the two light-meson nonets in the
JP ¼ 0þ channel, namely, the light nonet composed of a0ð980Þ,K�

0ð800Þ, f0ð500Þ, f0ð980Þ, and the heavy
nonet of a0ð1450Þ, K�

0ð1430Þ, f0ð1370Þ, f0ð1500Þ, can be expressed by linear combinations of the two
tetraquark types, one type containing the spin-0 diquark and the other with the spin-1 diquark. Among
various consequences of this mixing model, one surprising result is that the second tetraquark with the spin-
1 diquark configuration is more important for the light nonet. In this work, we report that this result can be
supported by the QCD sum rule calculation. In particular, we construct a QCD sum rule for the isovector
resonance a0ð980Þ using an interpolating field composed of both tetraquark types and then perform the
operator product expansion up to dimension 10 operators. Our sum rule analysis shows that the spin-1
diquark configuration is crucial in generating the a0ð980Þ mass. Also, the mixed correlation function
constructed from the two tetraquark types is found to have large strength, which seems consistent with what
the tetraquark mixing framework is advocating. On the other hand, the correlation function from the
interpolating field with the spin-0 diquark configuration alone fails to predict the a0ð980Þ mass mostly by
the huge negative contribution from dimension 8 operators.
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I. INTRODUCTION

Tetraquarks have been anticipated for a long time in the
hadron community. Recently, with the development of
high-energy facilities, tetraquark candidates have been
accumulating from worldwide experiments in the heavy
quark sector. There are some candidates with charm quarks
that include the pioneering state Xð3872Þ [1–4] measured
in the B-meson decays as well as other similar states
Xð3823Þ, Xð3900Þ, Xð3940Þ, Xð4140Þ, Xð4274Þ, Xð4500Þ,
and Xð4700Þ [5–9]. These states have been investigated
theoretically for their possibility of being hidden-charm
tetraquarks [10–13]. The possibility for open-bottom and
open-charm tetraquarks has been investigated in Ref. [14]
for the resonances that are normally treated as the B-,
D-meson excited states.
Also tetraquarks are expected to exist in the light quark

sector composed of u, d, s quarks. In fact, as is well known,

the tetraquark study in the light quark system can be traced
back to the 1970s when Jaffe proposed a fascinating model
of diquark antidiquark [15–17]. In this model, tetraquarks
are constructed by combining the spin-0 diquark, in the
color and flavor structures of (3̄c; 3̄f), with its antidiquark
in (3c; 3f) so that the resulting tetraquarks form a flavor
nonet (3̄f ⊗ 3f ¼ 1f ⊕ 8f). The spin-0 diquark is adopted
because it is most attractive among all the possible diquarks
if the binding is calculated from the color-spin interaction
[18]. Thus, it is commonly expected that the resulting
tetraquarks are stable.
But one may ask whether the spin-0 diquark (and the

corresponding antidiquark) is the only building block to
construct stable tetraquarks under the diquark-antidiquark
approach. Since the total binding energy is calculated by
summing over pairwise interactions among all the con-
stituting quarks, the diquark binding may not be the sole
criterion in judging stable tetraquarks. To be specific, the
diquark (and antidiquark) binding constitutes only the part
of the total binding energy. There are additional contribu-
tions from other pairs like the quark antiquark. In this sense,
it is necessary to examine other diquarks in addition to the
spin-0 diquark as possible constituents in making stable
tetraquarks. Indeed, as recently advocated by Refs. [19–
22], one can construct the second tetraquark by using the
spin-1 diquark with the color and flavor structure (6c; 3̄f).
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Even though the spin-1 diquark is less compact than the
spin-0 diquark, the total binding energy of the second
tetraquark, if calculated from the color-spin interaction for
all the pairs, is found to be more attractive than the binding
from the first tetraquark type involving the spin-0 diquark.
Therefore, two types are possible for the stable tetraquark.
Having the same flavor structure as the spin-0 diquark, the
tetraquarks with the spin-1 diquark configuration also form
a flavor nonet. Both tetraquarks have the same quantum
numbers JP ¼ 0þ by their construction.
What is interesting is that the two tetraquark types mix

strongly with each other through the color-spin interaction.
Two eigenstates that diagonalize the color-spin interaction
can be identified by physical resonances because they also
diagonalize the other terms in the Hamiltonian, the color-
electric potential, as well as the quark mass terms. In other
words, the physical states are linear combinations of the
two tetraquark types. This tetraquark mixing framework
seems to explain very much the two nonets that can be
found in Particle Data Group (PDG) [23] in the JP ¼ 0þ
channel, namely, the light nonet composed of the lowest-
lying resonances, a0ð980Þ,K�

0ð800Þ, f0ð500Þ, f0ð980Þ, and
the heavy nonet whose members are the next higher
resonances, a0ð1450Þ, K�

0ð1430Þ, f0ð1370Þ, f0ð1500Þ.
These two nonets are well separated in mass from the rest
resonances in PDG. In fact, Ref. [22] presented various
phenomenological signatures to support this mixing frame-
work including not only the famous inverted mass spectrum
among the nonet members but also the others related to the
hyperfine mass splittings, the mixing parameters, the Gell-
Mann–Okubo mass relation, the enhancement or suppres-
sion of the fall-apart decay modes, and so on. Therefore, it
is quite promising that this mixing scheme is indeed
realized by the two nonets in PDG.
In order to solidify this picture further, it may be

desirable to test various consequences from dynamical
calculations based on the fundamental theory like quantum
chromodynamics (QCD). In practice, the QCD sum rule
[24–26] or lattice QCD calculation [27] can be used for this
purpose. One surprising result to test is the statement that
the light nonet has more probability to stay in the second
type tetraquark containing the spin-1 diquark rather than in
the first type involving the spin-0 diquark [19–22]. This
picture is very different from the common expectation that
the light nonet has the structure of the first tetraquark type
only [15–18,28,29].
In this regard, it is particularly interesting to revisit the

QCD sum rule calculation performed by one of the present
authors (H.-J. L.) in Ref. [30]. There, the QCD sum rule is
constructed by using an interpolating field based on the first
tetraquark type only but the result is not conclusive in
extracting the light nonet mass mainly because of the huge
negative contribution from dimension 8 operators. This
may indicate that the first tetraquark type does not represent
the light nonet properly. A similar result is reported also by

later calculations [31]. From our point of view, the failure of
this QCD sum rule may be closely related to the statement
above that the spin-0 diquark configuration is less probable
for the light nonet. Instead, the spin-1 diquark configuration
may be more important for the light nonet. Therefore, it
may be worth performing the QCD sum rule calculation
again but with an interpolating field incorporating both
spin-0 and spin-1 diquark configurations.
In this work, we present a QCD sum rule study for the

light nonet in order to test the tetraquark mixing frame-
work. In this study, we take the isovector resonance
a0ð980Þ among the light nonet members and this choice
is justified in Sec. II. An interpolating field for a0ð980Þ is
constructed in Sec. III based on the tetraquark mixing
framework. Then using this interpolating field, we con-
struct the corresponding QCD sum rule in Sec. IV by
performing the operator product expansion (OPE) up to
dimension 10. The results are discussed in Sec. V. We
summarize in Sec. VI.

II. TETRAQUARK MIXING FRAMEWORK

To motivate the construction of an interpolating field in
our QCD sum rule study, we briefly look at the math-
ematical structure of the tetraquark mixing framework
advocated by Refs. [19–22]. The mixing framework has
been developed as a possible structure for the two nonets in
PDG, the light nonet composed of a0ð980Þ, K�

0ð800Þ,
f0ð500Þ, and f0ð980Þ, and the heavy nonet of a0ð1450Þ,
K�

0ð1430Þ, f0ð1370Þ, and f0ð1500Þ. According to this
mixing framework, one can introduce two types of tetra-
quark in the diquark-antidiquark model. The first tetraquark
type, which is commonly adopted in the tetraquark studies,
is constructed by combining the spin-0 diquark, whose
color and flavor structures are in (3̄c; 3̄f), and the corre-
sponding spin-0 antidiquark [15–17]. This first tetraquark
type is denoted by j000i where the first number represents
the tetraquark spin, the second the diquark spin, and the
third the antidiquark spin. The second tetraquark type,
j011i, which was suggested as another possibility in
Refs. [19–22,32], is constructed by combining the spin-1
diquark in the structure of (6c; 3̄f) and its antidiquark. By
construction, the two tetraquark types differ by color and
spin configurations but they have the same flavor structure,
namely, the nonet.
The color structure of the two tetraquarks can be

explicitly written as1

j000i∶ 1ffiffiffiffiffi
12

p εabdεaefðqbqdÞðq̄eq̄fÞ; ð1Þ

1See Ref. [33] for technical details in using a tensor notation
for SU(3).
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j011i∶ 1ffiffiffiffiffi
96

p ðqaqb þ qbqaÞðq̄aq̄b þ q̄bq̄aÞ; ð2Þ

where the Roman indices, a, b, d, e, f, denote the colors.
Both tetraquarks form the same flavor nonet, which can be
broken down to an octet and a singlet. Their members in
tensor notation can be expressed by

½8f�ij ¼ TjT̄i −
1

3
δijTmT̄m; ð3Þ

1f ¼ 1ffiffiffi
3

p TmT̄m: ð4Þ

Here Ti (T̄i) denotes the diquark (antidiquark) defined by

Ti ¼ 1ffiffiffi
2

p ϵijkqjqk ≡ ½qjqk�;

T̄i ¼
1ffiffiffi
2

p ϵijkq̄jq̄k ≡ ½q̄jq̄k�; ð5Þ

with respect to the quark flavors, qi ¼ u, d, s (q̄i ¼ ū; d̄; s̄).
The most striking feature is that the two tetraquark types

mix each other strongly through the color-spin interaction
and the two nonets in PDG can be collectively represented
by linear combinations of the two tetraquark types as

jheavy noneti ¼ −αj000i þ βj011i; ð6Þ

jlight noneti ¼ βj000i þ αj011i; ð7Þ

which diagonalize the color-spin interaction. Here α, β are
the mixing parameters determined in each isospin channel
by the diagonalization process. But they are found to be
almost independent of isospin [19–22] and their values are
approximately close to α ≈

ffiffiffiffiffiffiffiffi
2=3

p
, β ≈

ffiffiffiffiffiffiffiffi
1=3

p
. This basi-

cally implies that the wave functions in Eqs. (6) and (7)
separately form an approximate flavor nonet consequently
supporting the identification in terms of the two nonets
in PDG.
One surprising result for the mixing parameters is the

inequality, α > β. As one can see in Eq. (7), this inequality
means that the light nonet members, a0ð980Þ, K�

0ð800Þ,
f0ð500Þ, f0ð980Þ, are more dominated by the spin-1
diquark configuration rather than the spin-0 diquark con-
figuration. To be specific, the probability to stay in the first
tetraquark type is about 33% and that in the second type is
67%. Therefore the spin-1 diquark configuration is more
important in the light nonet members when they are
described by tetraquarks. We stress again that this picture
is very different from the common expectation that the light
nonet members are dominated by the spin-0 diquark
configuration.
Our primary task is to test this surprising result in the

light nonet by QCD sum rules [24–26]. In principle, any

member in the light nonet can be tested for our purpose but
in practice some care needs to be taken in choosing one
specific resonance to work on. In this work, we choose the
isovector resonance, a0ð980Þ, because, first of all, this is a
relatively sharp resonance with small decay width. So the
pole and continuum ansatz, which is the inevitable pre-
scription in QCD sum rules, may fit better to a0ð980Þ than
the other broad resonances like K�

0ð800Þ, f0ð500Þ.
Moreover, the a0ð980Þ resonance has another advantage
over the isoscalar members f0ð500Þ, f0ð980Þ because
a0ð980Þ does not suffer from additional ambiguity coming
from the flavor mixing [21], which can be referred to as the
generalized Okubo-Zweig-Iizuka (OZI) rule.

III. INTERPOLATING FIELD FOR a0ð980Þ
To investigate a0ð980Þ through QCD sum rules, we need

to construct an interpolating field for a0ð980Þ that properly
incorporates the tetraquark mixing framework developed in
the constituent quark picture. The mixing framework
suggests that the isovector resonance a0ð980Þ is repre-
sented by the mixture of the two tetraquark types in the
I ¼ 1 channel,

ja0ð980Þi ¼ βj000iI¼1 þ αj011iI¼1: ð8Þ

The mixing parameters in this I ¼ 1 channel are deter-
mined to be [19–22]

α ¼ 0.8167; β ¼ 0.5770: ð9Þ

The flavor structure of a0ð980Þ, which is the ½8f�12 member
in Eq. (3),2 takes the form

½su�½d̄ s̄� ¼ 1ffiffiffi
2

p ðsu − usÞ 1ffiffiffi
2

p ðd̄ s̄−s̄ d̄Þ: ð10Þ

The color structure of ½su�½d̄ s̄� is given by Eq. (1) for the
j000i case and by Eq. (2) for the j011i case. It should be
remembered that this structure for a0ð980Þ is based on the
constituent quark picture having all the quarks in an
S wave.
To construct an interpolating field with current quarks,

we need to replace the constituting quarks by the Dirac
spinors while keeping the color and flavor structures as
above. Then the remaining task is to determine appropriate
Dirac structures to be inserted between the two quarks for
the spin-0 diquark as well as for the spin-1 diquark. One
more thing to be kept in mind is that the interpolating field
must be nonzero and should be normalized as j000iI¼1,
j011iI¼1 in the static limit so that one can facilitate the same
mixing parameters as given in Eq. (9).

2Among isovector members, we choose the charged member
aþ0 ð980Þ in this study.
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To start, we write down general forms of the interpolat-
ing fields for the two diquark types, one for the spin-0
diquark with the color and flavor structures (3̄c; 3̄f), and the
other for the spin-1 diquark with (6c; 3̄f). That is, for the
member containing u, s quarks,

spin 0∶ ϵabcðsTbΓ0uc − uTbΓ0scÞ; ð11Þ

spin 1∶ sTaΓ1ub þ sTbΓ1ua − uTaΓ1sb − uTbΓ1sa: ð12Þ

The 4 × 4 matrices, Γ0;1, whose subscript denotes the
associated diquark, can be fixed as follows.
A standard way to construct a diquark interpolating

field is to replace the antiquark q̄ in the mesonic field of the
form q̄Γq by its charge conjugation analog, q̄ → qTC [34].
Then Γ0 in Eq. (11) takes the form CΓ where Γ is a Dirac
matrix to be chosen from the 16 independent matrices,
1; γ5; γμ; γ5γμ; σμν. Using the basic properties among Dirac
matrices, one can easily prove that

ΓT
0 ¼ �Γ0 ð13Þ

for all the possible Γ. To take advantage of this identity, we
rewrite the second term in Eq. (11) as

ϵabcuTbΓ0sc ¼ −ϵabcsTcΓT
0ub ¼ ϵabcsTbΓT

0uc; ð14Þ

where the anticommutation relation fu; sg ¼ 0 has been
used in the first step. Then the two terms in Eq. (11) can be
combined into

ϵabcsTbðΓ0 − ΓT
0 Þuc: ð15Þ

In order for this diquark to be nonzero, we should have
ΓT
0 ¼ −Γ0 among the two possibilities in Eq. (13). This

condition, if imposed on the spin-0 diquark, leads to
Γ0 ¼ C, Cγ5.

3 Since the charge conjugation C is off
diagonal in Dirac space, it connects the upper and lower
components of the Dirac spinors when it is plugged into
Eq. (15). Thus, this diquark with Γ0 ¼ C vanishes in the
static limit indicating that this diquark is not relevant.
Instead, the diquark with Γ0 ¼ Cγ5 does not vanish in the
static limit and we can take this as the appropriate diquark
in this spin-0 case.
The similar steps can be taken for the spin-1 diquark,

Eq. (12), and in this case, we find the different constraint,
ΓT
1 ¼ Γ1, essentially due to that the diquark in Eq. (12) does

not entail ϵabc. This constraint, if imposed on the spin-1
diquark, leads to Γ1 ¼ Cγμ. In summary, we come up with
the following Dirac structures,

Γ0 ¼ Cγ5; Γ1 ¼ Cγμ; ð16Þ

as the relevant ones for the spin-0 and spin-1 diquark,
respectively.
Now, combining with the corresponding antidiquarks,

and after some minor manipulations, we obtain the inter-
polating fields for the two tetraquark types as

J0 ¼
1ffiffiffiffiffi
12

p ϵabcϵadeðsTbΓ0ucÞðd̄dΓ̃0s̄Te Þ; ð17Þ

J1 ¼
1ffiffiffiffiffi
72

p ðsTaΓ1ubÞðd̄aΓ̃1s̄Tb þ d̄bΓ̃1s̄TaÞ; ð18Þ

where Γ̃0;1 ¼ γ0Γ†
0;1γ

0. Again, the subscript in J0, J1
denotes the diquark type involved. The numerical factors
in front of these equations are chosen to make the
interpolating fields reproduce the same normalized states
in the static limit. Note also that the Lorentz indices in J1
should be contracted in order to make the spin-0 tetra-
quark state.
Finally, the interpolating field for the light-nonet iso-

vector member, a0ð980Þ, can be expressed by a linear
combination of J0, J1 similarly to its static correspondence
of Eq. (8). That is, the interpolating field for a0ð980Þ can be
written as

JLa0 ¼ βJ0 þ αJ1; ð19Þ

where the superscript L has been introduced to denote the
light nonet member. Of course, the interpolating field
containing the spin-0 diquark, J0, is not new and this type
has been often used elsewhere for investigating tetraquark
possibility in QCD sum rules [30,35,36]. But the second
type J1, which involves the spin-1 diquark, is not conven-
tional in the study of the light nonet in terms of tetraquarks.
Our main goal in this work is to investigate the role of this
additional component as well as its mixing with J0 from
QCD sum rules. There are of course different types of
tetraquark interpolating fields like the ones introduced in
Refs. [37–39] whose connection to the teraquark mixing
framework is unclear at the moment.

IV. QCD SUM RULE FOR a0ð980Þ
In this section, we illustrate how we construct a QCD

sum rule for a0ð980Þ using the interpolating field devel-
oped in Sec. III. In this sum rule, we consider the following
correlation function,

Πðq2Þ ¼ i
Z

d4xeiq·xh0jTJLa0ðxÞJL†a0 ð0Þj0i; ð20Þ

with the interpolating field JLa0 given by Eq. (19). As
usually done in QCD sum rules, this correlation function is
evaluated in two ways. On the one hand, the OPE is

3These structures turn out to be the same as determined simply
from the diquark spin being 0. But our prescription becomes more
restrictive when it determines the structure of the spin-1 diquark.
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performed to express the correlator in terms of QCD
degrees of freedom. In practice, the OPE calculation is
truncated up to a certain dimension because the OPE is
expected to converge as the operator dimension grows. Its
validity therefore relies in whether high dimensional
operators contribute less to the truncated OPE. On the
other hand, the phenomenological ansatz for the correlator
is constructed using hadronic degrees of freedom. This
ansatz involves the lowest-lying state of concern and higher
resonances that are normally treated as the continuum
modeled by the QCD duality assumption.
Through a dispersion relation, the correlation function

Πðq2Þ can be expressed by its spectral density via

ΠOPE;phenðq2Þ ¼ 1

π

Z
∞

0

ds
ImΠOPE;phenðsÞ

s − q2
; ð21Þ

for the OPE and phenomenological side, respectively. The
two sides are then matched after the Borel transformation,
which eventually leads to the familiar sum rule equation
relating the two spectral densities,Z

s0

0

ds
1

π
Im½ΠOPEðsÞ − ΠphenðsÞ�e−s=M2 ¼ 0; ð22Þ

where s0, M denote the continuum threshold and the Borel
mass, respectively. Through the QCD duality assumption,
higher resonance contributions in the phenomenological
side are equated to the logarithmic cut in the OPE above
the continuum threshold s0 so that the integral is restricted
to the interval 0 ∼ s0. In addition, the Borel weight, e−s=M

2

,
amplifies the lowest-lying pole contribution while
suppressing higher resonance contributions in the phenom-
enological side. Also this weight suppresses high
dimensional operators in the OPE side as it transforms

the nonperturbative terms of the form 1=sn, ðn ≥ 2Þ into
1=½ðn − 1Þ!ðM2Þn−1�. Therefore, it is expected that Eq. (22)
can be used to predict some properties of the lowest-lying
pole from the truncated OPE. All these prescriptions,
however, as they are rough, suggest that the results from
QCD sum rules may not coincide precisely with the
hadronic parameters to be extracted. Instead, the results
can be regarded as qualitative guides.
Nevertheless, by following the prescriptions above, only

the lowest-lying resonance contributes to the phenomeno-
logical side. Using the convention

h0jJLa0ð0Þjaþ0 i ¼
ffiffiffi
2

p
fa0m

4
a0 ; ð23Þ

we get the phenomenological side of Eq. (22),

Z
s0

0

ds
1

π
ImΠPhenðsÞe−s=M2 ¼ 2f2a0m

8
a0e

−m2
a0
=M2

: ð24Þ

The Borel-weighted integral of the OPE spectral density,
which we denote by Π̂OPEðM2Þ, can be divided into three
parts depending on the interpolating fields in Eqs. (17) and
(18). Specifically, we have, for the OPE side of Eq. (22),

Π̂OPEðM2Þ≡
Z

s0

0

ds
1

π
ImΠOPEðsÞe−s=M2

¼ β2Π̂OPE
0;0 þ 2βαΠ̂OPE

0;1 þ α2Π̂OPE
1;1 ; ð25Þ

where the subscripts in the second equation specify the
interpolating fields, J0, J1, that participate in this equation
through Eq. (19). Each correlator can be calculated
straightforwardly.4 We obtain the OPE expressions for
the three correlators up to dimension 10, after the Borel
transformation, as

Π̂OPE
0;0 ¼ 1

12

�
M10E4ðM2Þ
29 ·5π6

þ hg2cG2i
210 ·3π6

M6E2ðM2Þþms½hs̄si−2hq̄qi�
25 ·3π4

M6E2ðM2Þþhq̄qihs̄si
22 ·3π2

M4E1ðM2Þ

þms½hs̄gcσ ·Gsiþ6hq̄gcσ ·Gqi�
27 ·3π4

M4E1ðM2Þþmshq̄gcσ ·Gqi
26π4

M4W̃1ðM2Þ

−
1

23 ·3π2
½hq̄qihs̄gcσ ·Gsiþhs̄sihq̄gcσ ·Gqi�M2E0ðM2Þ−mshg2cG2i

27 ·32π4

�
5hq̄qi−3

2
hs̄si

�
M2E0ðM2Þ

−
mshg2cG2ihq̄qi

26 ·3π4
M2W0ðM2Þþ 59

29 ·32π2
hq̄gcσ ·Gqihs̄gcσ ·Gsiþ

7hg2cG2ihq̄qihs̄si
25 ·33π2

−
mshq̄qihs̄si

32
½2hq̄qi− hs̄si�

�
;

ð26Þ

4We take the same technical steps as in Refs. [30,40] in calculating the OPE expressions. So one may take a look at these references
for additional details. One slight difference is the notation for the Dirac matrix σμν. There, it was defined as σμν ≡ 1

2
½γμ; γν�while here we

define it with imaginary “i” so that σμν ≡ i
2
½γμ; γν�.
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Π̂OPE
0;1 ¼ 1

12
ffiffiffi
6

p
�
−
3ms

28π4
½hq̄gcσ ·Gqi þ hs̄gcσ · Gsi�M4½E1ðM2Þ − W̃1ðM2Þ�

−
mshg2cG2i

29π4
½hq̄qi − 3hs̄si�M2E0ðM2Þ −mshg2cG2i

29π4
½3hq̄qi − hs̄si�M2W̃0ðM2Þ

þ 1

25π2
½hq̄gcσ ·Gqi þ hs̄gcσ ·Gsi�½hq̄qi þ hs̄si�M2E0ðM2Þ − 17

210 · 3π2
½hq̄gcσ ·Gqi þ hs̄gcσ ·Gsi�2

−
hg2cG2i
26 · 3π2

½hq̄qi2 þ hs̄si2�
�
; ð27Þ

Π̂OPE
1;1 ¼ 1

72

�
M10E4ðM2Þ
26 · 5π6

þ 5hg2cG2i
29 · 3π6

M6E2ðM2Þ þms½hs̄si − hq̄qi�
22 · 3π4

M6E2ðM2Þ þ hq̄qihs̄si
3π2

M4E1ðM2Þ

þms½9hq̄gcσ ·Gqi þ 46hs̄gcσ ·Gsi�
27 · 3π4

M4E1ðM2Þ þ 1

23 · 3π2

�
hq̄qihs̄gcσ ·Gsi − 3

2
hs̄sihq̄gcσ · Gqi

�
M2E0ðM2Þ

−
13mshg2cG2ihq̄qi

28 · 32π4
M2E0ðM2Þ þmshg2cG2ihs̄si

27 · 3π4
M2E0ðM2Þ −mshg2cG2ihq̄qi

24 · 3π4
M2W0ðM2Þ

þ 5mshg2cG2ihq̄qi
26 · 3π4

M2W̃0ðM2Þ þ 5

28π2
hq̄gcσ ·Gqihs̄gcσ ·Gsi − hg2cG2ihq̄qihs̄si

26 · 33π2
−
4mshq̄qihs̄si

32
½4hq̄qi − hs̄si�

�
:

ð28Þ

Here EnðM2Þ; W̃nðM2Þ;WnðM2Þ are the functions asso-
ciated with the continuum threshold and their explicit
expression can be found in Refs. [30,40]. The overall
factors, which are written outside of the brackets, come
from the normalizations in Eqs. (17) and (18). Note also
that the vacuum saturation hypothesis has been used in
factorizing high dimensional operators into lower dimen-
sional ones. In our numerical analysis, we use the conven-
tional QCD parameters,

hq̄qi ¼ ð−0.25Þ3 GeV3 for q ¼ u; dðq̄ ¼ ū; d̄Þ;
hq̄gcσ ·Gqi ¼ m2

0hq̄qi ¼ 0.8hq̄qi;
hs̄si
hq̄qi ¼

hs̄gcσ ·Gsi
hq̄gcσ ·Gqi ¼ 0.8; ms ¼ 0.15 GeV;

hg2cG2i ¼ 0.47 GeV4; Λ ¼ 0.5 GeV: ð29Þ

We rewrite the QCD sum rule for a0ð980Þ succinctly as

2f2a0m
8
a0e

−m2
a0
=M2 ¼ Π̂OPEðM2Þ; ð30Þ

where the phenomenological side has been taken from
Eq. (24) and the OPE side from Eq. (25). This final sum
rule, Eq. (30), is a general formula in a sense that it can be
used also for the sum rule only with J0 by setting the
mixing parameters, α ¼ 0, β ¼ 1, and for the J1 sum rule
by α ¼ 1, β ¼ 0. From these separate sum rules, one can
investigate the relative importance of the spin-0 and spin-1
diquark configurations in describing a0ð980Þ. Another
thing to mention is that the left-hand side of Eq. (30) is

positive definite, which can be utilized as another constraint
[30,36] in testing the reliability of our QCD sum rules.
If the equation Eq. (30) is exact, then, as one can guess

from the mathematical form of the left-hand side, the
a0ð980Þ mass can be extracted from the corresponding
OPE side through the relation,

ma0 ¼
�

M3

2Π̂OPE

∂Π̂OPE

∂M
�
1=2

: ð31Þ

This way of extracting a hadronic mass is often adopted in
QCD sum rules particularly for mesons. In reality, however,
since Eq. (30) is not exact by the rough assumption of QCD
duality and the truncation in the OPE, Eq. (31) may be
limited in determining a hadron mass of concern precisely
[41]. But our standpoint is that Eq. (31) is still useful as a
qualitative guide in determining the possible structure
of a0ð980Þ.
In our analysis, we take the continuum threshold corre-

sponding to the mass of a0ð1450Þ, i.e., s0 ¼ ð1.45 GeVÞ2.
a0ð1450Þ is the next higher resonance with the same
quantum numbers whose decay width is relatively large
around 260MeV. So this choice seems to be consistent with
the usual pole and continuum ansatz for the phenomeno-
logical side. One worry though is that a0ð1450Þ is the
companion state of a0ð980Þ related by the tetraquarkmixing
framework. That is, its wave function is orthogonal to
a0ð980Þ in the constituent quark picture. Then, one may
wonder whether the interpolating field, Eq. (19), which was
constructed optimally for a0ð980Þ, does not couple to
a0ð1450Þ at all, denying its participation in the continuum.
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But it should be remembered that the interpolating fields are
composed of current quarks so the features established in the
constituent quark picture are not necessarily sustained in the
current quark picture. The coupling strength might be small
but it is not 0. In principle, a detailed analysis might be
necessary in determining the continuum threshold by
scrutinizing the OPE terms carefully [41]. But our simple
prescription might be enough for our present purpose in
testing the reliability of the interpolating field like Eq. (19)
for the light nonet.
In passing, it is also worth mentioning some limitations

in applying a QCD sum rule to the heavy nonet member,
a0ð1450Þ. To construct a QCD sum rule for a0ð1450Þ, one
can introduce an interpolating field for a0ð1450Þ based on
its static analog in Eq. (6), namely,

JHa0 ¼ −αJ0 þ βJ1; ð32Þ

and proceed with the calculation similarly as above. But this
sum rule has a serious flaw from the fact that the interpolat-
ing field can couple to both a0ð980Þ and a0ð1450Þ. Even
though the interpolating field, Eq. (32), is optimal for
a0ð1450Þ, it still can couple to a0ð980Þ. Then the problem
is that the unwanted resonance a0ð980Þ constitutes the
lowest-lying pole whose contribution is amplified by the
Borel weight in this a0ð1450Þ sum rule. Therefore, pre-
dictions from thea0ð1450Þ sum rule are contaminated by the
unwanted lowest-lying pole contribution.

V. RESULTS AND DISCUSSION

We now present and discuss the results from the sum
rule, Eq. (30), based on the OPE [Eq. (25)] provided
through Eqs. (26)–(28). Our discussion first focuses on
each QCD sum rule constructed from J0 and J1 separately.
Each sum rule is examined in terms of its reliability in
predicting the a0ð980Þ mass. We then discuss the full sum
rule constructed from JLa0 , which, through Eq. (19), is a
linear combination of the two fields J0, J1.

We start with the QCD sum rule constructed only from
the interpolating field J0 [Eq. (17)], which contains the
spin-0 diquark. This sum rule can be obtained from Eq. (30)
[also see Eq. (25)] by setting the mixing parameters α ¼ 0,
β ¼ 1. The OPE part in this case is, therefore, given by
Π̂OPE

0;0 [Eq. (26)]. From this sum rule, we reconfirm the
result from Ref. [30] that the interpolating field J0 is not
relevant for a0ð980Þ in viewing the fact that the OPE is
inconsistent with the left-hand side of Eq. (30) being
positive definite.5 In particular, we plot in Fig. 1 various
contributions to Π̂OPE

0;0 classified according to the OPE
dimension. One can see that the most important contribu-
tion comes from dimension 8 operators but its value is
negative. This negative value is driven mainly by the term
containing ½hq̄qihs̄gcσ ·Gsi þ hs̄sihq̄gcσ ·Gqi�, which
even makes Eq. (26) totally negative in the Borel region
0.5 GeV ≤ M ≤ 1.0 GeV (Fig. 2). The curve in Fig. 2 is
not even similar in shape to the Borel curve roughly
plotted from the phenomenological form ∼e−m

2
a0
=M2

with
ma0 ∼ 1 GeV. Thus, the matching formula, Eq. (30), makes
no sense in this case with α ¼ 0, β ¼ 1. In other words, the
OPE side is simply incompatible with its phenomenologi-
cal side. Furthermore, the fact that the high dimensional
operators of dimension 8 and 10 contribute dominantly to
the OPE already indicates that the truncation in the OPE is
not appropriate in this sum rule.
Even so, one may blindly estimate the a0ð980Þ mass

from the Borel region M ≳ 1 GeV, but the result is not
conclusive at all. To show this, we plot in Fig. 3 the a0ð980Þ
mass calculated from Eq. (31) with respect to the Borel
mass in this case with α ¼ 0, β ¼ 1. The curve is very
sensitive to the Borel mass so it seems almost impossible to
choose any plateau from which one can extract the a0ð980Þ
mass. All these results support that the sum rule with J0
alone simply fails in predicting the a0ð980Þ mass.
Therefore, we conclude that the interpolating field J0

FIG. 2. The Borel curve for Π̂OPE
0;0 , that is, the sum of all the lines

in Fig. 1.
FIG. 1. The Borel curves contributing to Π̂OPE

0;0 [Eq. (26)],
plotted separately for each OPE dimension as specified in
the inset.

5Our calculation in this sum rule is slightly updated from
Ref. [30] by including dimension 10 operators.
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[Eq. (17)] containing the spin-0 diquark configuration only
does not represent a0ð980Þ properly.
On the other hand, very different aspects can be observed

from the sum rule using the interpolating field J1 [Eq. (18)],
which contains the spin-1 diquark only. This sum rule can
be obtained by setting α ¼ 1, β ¼ 0 in Eq. (30) [also see
Eq. (25)] so its OPE side is given by Π̂OPE

1;1 [Eq. (28)]. First,
as one can see in Fig. 4, the contribution from dimension 8
operators, which was dominant in Π̂OPE

0;0 , becomes small
with its values being negative. This is mainly due to the
cancelation in the term ½hq̄qihs̄gcσ · Gsi − 3

2
hs̄sihq̄gcσ ·

Gqi� in Eq. (28). The full OPE in this case is positive
as it is mainly driven by dimension 6 operators so that this
sum rule at least is not contradictory to the positive
constraint imposed by the left-hand side of Eq. (30).
Secondly, the high dimensional operators at dimension 8
and 10 take up a small portion in the OPE, which
qualitatively guarantees the OPE convergence in this
calculation up to dimension 10. Moreover, the Borel curve,
if plotted for the full OPE (Fig. 5) in this J1 sum rule, is
similar in shape to the Borel curve roughly generated from
the phenomenological form ∼e−m

2
a0
=M2

. So both sides can

be matched at least qualitatively. By comparing the vertical
scales of Figs. 2 and 5, one can see that Π̂OPE

1;1 is much larger
than Π̂OPE

0;0 in most of the Borel region. Thus, Π̂OPE
1;1 must be

an important part even in the final sum rule later with the
full interpolating field JLa0 [Eq. (19)].
We investigate this J1 sum rule further by calculating the

a0ð980Þ mass from Eq. (31). The Borel curve is drawn in
Fig. 6, which is much flatter than the J0 case in Fig. 3. The
extracted mass is very good but it still has moderate
dependence on M. Specifically, we see from the figure
that the a0ð980Þ mass varies between 0.86 GeV < ma0 <
1.11 GeV within the Borel range 0.8GeV<M<1.45GeV.
The middle value from the mass window,ma0 ∼0.985GeV,
agrees very well with the experimental mass but the
extraction error is somewhat large as Δma0 ∼ 0.25 GeV.
One reason for this error can be traced to the fact that the
OPE is dominated by the dimension 6 contribution. It is not
difficult to see from Fig. 4 that the other OPE terms, even if
they are all summed up, are rather small compared to the
dimension 6 contribution. Nevertheless, from all the nice
aspects discussed above, we can claim that the interpolating
field with the spin-1 diquark configuration is much
more promising in describing a0ð980Þ than the one with

FIG. 5. The Borel curve for Π̂OPE
1;1 , that is, the sum of all the lines

in Fig. 4.

FIG. 4. The Borel curves contributing to Π̂OPE
1;1 [Eq. (28)],

plotted separately for each OPE dimension as specified
in the inset.

FIG. 6. The Borel curve for the a0ð980Þ mass extracted from
Eq. (31) using the interpolating field J1 only.

FIG. 3. The Borel curve for the a0ð980Þ mass extracted from
Eq. (31) using the interpolating field J0 only.
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the spin-0 configuration as far as the QCD sum rule
analysis is concerned.
There are other interesting results to discuss from the

mixed correlator whose OPE is given by Π̂OPE
0;1 [Eq. (27)].

First of all, this mixed correlator is different from Π̂OPE
0;0 ,

Π̂OPE
1;1 in that this correlator alone has no phenomeno-

logical counterpart. As one can see in Fig. 7, its OPE is
dominated by dimension 8 operators. Consequently, the
full OPE from this mixed correlator grows as the
Borel mass increases (Fig. 8). This shape is similar to
Fig. 5 supposedly reinforcing the trends from Π̂OPE

1;1 in
the full sum rule below. The dimension 10 contribution
is quite small as one can see from the solid line in
Fig. 7. The main observation to make is that the total
strength of Π̂OPE

0;1 is fairly large inmagnitudewhen compared
to the other correlation functions. At M∼1GeV,
Π̂OPE

0;1 ¼ 4.8 × 10−8 GeV10, which is comparable to Π̂OPE
1;1 ¼

5.6 × 10−8 GeV10 but it is much larger than any value of
Π̂OPE

0;0 in Fig. 2.
We now discuss the final sum rule of Eq. (30) con-

structed from the full interpolating field JLa0 [Eq. (19)] with
the mixing parameters, α ¼ 0.8167, β ¼ 0.5770, as deter-
mined by Ref. [19]. Here, all the three correlation func-
tions, Π̂OPE

0;0 , Π̂OPE
0;1 , Π̂OPE

1;1 , participate in making the OPE
side of Eq. (30). They are combined through Eq. (25) so
that the relative contribution from each correlator is subject
to further modulation by the fact that α > β. This modu-
lation turns out to be encouraging in two respects. First, the
correlator with J0, that is, Π̂OPE

0;0 , is multiplied by β2 so its
contribution is suppressed relatively more than those from
Π̂OPE

0;1 and Π̂OPE
1;1 . This suppression is very nice because

Π̂OPE
0;0 , whose sum rule contains the unpleasant features as

discussed above, becomes less important in the final sum
rule. Second, the Π̂OPE

1;1 contribution is enhanced by the
parameter α2. This can be regarded as another encouraging
point because the sum rule with J1 alone, which already has

various nice features as discussed above, becomes more
important in the final sum rule.
The contribution from the mixed correlator, Π̂OPE

0;1 , is also
amplified by the factor 2αβ in Eq. (25), which is about 40%
larger than the α2 factor. Recalling that Π̂OPE

0;1 is slightly less
than Π̂OPE

1;1 , the modulated contribution from the mixed
correlator in Eq. (25) becomes even larger than that from
Π̂OPE

1;1 . This indicates that this mixed correlator constitutes
an important part in the final sum rule, Eq. (30). This
finding seems to be consistent with the tetraquark mixing
framework established in the constituent quark picture
where the two tetraquark types mix strongly through the
color-spin interaction [19–22]. Although a direct connec-
tion between the two approaches needs to be clarified, this
consistency could be another evidence to support the
tetraquark mixing framework.
In Fig. 9, we plot the Borel curves for ma0 calculated

from Eq. (31) using the full OPE in Eq. (25). Our result
shown by the solid line in the middle is obtained by using
the same continuum threshold s0 ¼ ð1.45 GeVÞ2 as the
dashed line (the same curve in Fig. 6) calculated only from

FIG. 8. The Borel curve for the mixed correlator, Π̂OPE
0;1

[Eq. (27)].

FIG. 9. The Borel curves for the a0ð980Þ mass extracted from
Eq. (31) using the full interpolating field JLa0 [Eq. (19)] are
presented here with three solid lines with different s0 as specified.
The dashed line is the same curve as in Fig. 6 plotted here again
for a clear comparison.

FIG. 7. The Borel curves contributing to Π̂OPE
0;1 [Eq. (27)],

plotted separately for each OPE dimension as specified
in the inset.
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Π̂OPE
1;1 . Focusing only on this result for the time being, we

see that the extracted mass varies from 0.93 GeV < ma0 <
1.13 GeV so its middle value is 1.03 GeV with the
extraction error Δma0 ∼ 0.2 GeV. This Borel curve is
slightly flatter than the one in Fig. 6. Thus, ma0 from this
full sum rule is not so different from the one from Π̂OPE

1;1 and
also from the experimental mass. The large contribution
from the mixed correlator, Π̂OPE

0;1 , seems to cancel away
mostly through the ratio, Eq. (31), so the extraction of ma0

turns out not to depend much on Π̂OPE
0;1 .

This result shows a physical role of the mixed correlator
when we see it in the context of Eq. (30). Its large
contribution certainly increases the right-hand side of
Eq. (30) substantially but, as we have shown, its inclusion
does not change much the extraction ofma0 in the left-hand
side. Then, its contribution must participate in increasing
the other hadronic parameter in Eq. (30), the coupling
strength fa0 . This implies that the interpolating field JLa0 ,
through Eq. (23), couples to the lowest-lying resonance
a0ð980Þ more strongly when it is represented by the
mixture of the form, Eq. (19).
As we have mentioned earlier, predictions from QCD

sum rules may suffer from various uncertainties coming
from the rough prescriptions adopted. Among various
prescriptions, the major uncertainty in our sum rules comes
from the continuum threshold, s0. To demonstrate this, we
plot the Borel curve with the larger threshold s0 ¼
ð1.60 GeVÞ2 as shown in the upper solid curve in
Fig. 9. The middle value between the upper and lower
mass bounds of the curve becomes 1.13 GeV. This value is
10% larger than the above value of 1.03 GeV. Similarly, the
smaller threshold s0 ¼ ð1.30 GeVÞ2 produces the lower
solid curve, which yields the middle mass 0.92 GeV, i.e.,
10% smaller than 1.03 GeV. This 10% error is more or less
endurable in QCD sum rules if one considers the abrupt
nature in treating the continuum as explained in Sec. IV.
Anyway, the fact that our extracted mass is around 1 GeV,
even if we take into account the uncertainty in s0, can be
used as a qualitative guide in supporting that the inter-
polating field in Eq. (19) is relevant for a0ð980Þ.
The vacuum saturation hypothesis in factorizing high

dimensional operators could be another source of uncer-
tainty in our sum rules because the operators in dimension
6, 8, and 10, which have been estimated by the vacuum
saturation hypothesis, are the important part of the OPE. As
discussed in Refs. [24,42], the vacuum saturation hypoth-
esis is justified by the 1=Nc expansion and its correction
can be estimated by inserting other intermediate states. The
deviation from this hypothesis is expected to be around
10% [26] although there are some reports with bigger
deviations as described in Ref. [41]. So, to estimate the
uncertainty from this assumption, we increase 10% for the
high dimensional operators that have been factorized in
Eqs. (26)–(28). Our numerical calculation shows that the

extracted mass is 1.02 GeV, only 1% smaller than the
factorized result, 1.03 GeV. The other uncertainties from
the truncation in the OPE are not so important in our sum
rules as the dimension 10 operators are already small
enough in the full sum rule above.
But, instead of dwelling on a reliability of the mass

prediction, what is more important to us is the fact that our
sum rule delivers three solid statements related to the
structure of a0ð980Þ, which are not affected much by the
rough prescriptions. The first statement is that the inter-
polating field J1, which involves the spin-1 diquark
configuration only, is the main driving force in producing
the sum rule result. As we have discussed, the sum rule with
J1 alone already has various nice features. The only
exception is the fact that the Borel curve is not flat enough
to pin down a certain mass for a0ð980Þ. The second
statement is that the mixed correlation function Π̂OPE

0;1 also
contributes appreciably to the sum rule. This is essentially
consistent with what the tetraquark mixing framework is
advocating. Its role is to strengthen the coupling fa0 , which
represents an overlap of the interpolating field JLa0 with the
physical a0ð980Þ. The third statement is that the correlator,
Π̂OPE

0;0 , which is constructed from the J0 interpolating field
only, contributes minimally to the a0ð980Þ sum rule. This
last statement is very different from the common expect-
ation that a0ð980Þ is a tetraquark mostly with the spin-0
diquark configuration. But this does not mean that spin-0
diquark configuration is totally irrelevant to describe
a0ð980Þ. This configuration contributes to our sum rule
through the mixed correlator, Π̂OPE

0;1 , which constitutes
another important ingredient in our sum rule as we have
already mentioned.
To conclude, our sum rule supports that the interpolating

field Eq. (19), whose form is motivated by the tetraquark
mixing framework, represents a0ð980Þ reasonably well.
Our final sum rule has the moderate Borel stability and the
OPE convergence. From a detailed analysis of the sum rule,
we demonstrate that the tetraquark structure of a0ð980Þ is
dominated by the spin-1 diquark configuration and its
mixing with the spin-0 diquark configuration. But the QCD
sum rule constructed from the spin-0 diquark configuration
alone fails to predict the a0ð980Þ mass. Our results there-
fore support the tetraquark mixing framework for the two
light-meson nonets established in the constituent quark
picture [19–22].
Our analysis has been performed only for the isovector

resonance a0ð980Þ in this work. This analysis can be
extended trivially to the isodoublet member K�

0ð800Þ in
the light nonet because a0ð980Þ and K�

0ð800Þ are simply
related by the SUð3Þf symmetry when they are viewed
from the tetraquark mixing framework. The SUð3Þf break-
ing, which is governed by the strange-quark mass in this
case, contributes marginally to the sum rule. This means the
spin-1 diquark configuration and its mixing should also be
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important to explain K�
0ð800Þ with similar characteristics.

But the situation can be nontrivial for the isoscalar
resonances f0ð500Þ and f0ð980Þ due to flavor mixing.
The resonances f0ð500Þ and f0ð980Þ are not the definite
flavor members of the octet and the singlet. Instead, they
are the mixtures of the two multiplets according to the
generalized OZI rule [21]. In future, it will be interesting to
investigate the role of the spin-1 diquark configuration in
these resonances using QCD sum rules.

VI. SUMMARY

To summarize, we have performed in this work a QCD
sum rule analysis for a0ð980Þ based on the tetraquarkmixing
framework recently proposed in order to explain the two
light-meson nonets. Motivated by themixing framework, we
construct an interpolating field for a0ð980Þ that can repro-
duce the spin-0 and spin-1 diquark configurations in the static
limit. We then constructed QCD sum rules for a0ð980Þ by
calculating the OPE up to dimension 10 operators. The OPE
expression is divided into three correlation functions depend-
ing on the participating interpolating fields. The first corre-
lator is composed of the interpolating fields with the spin-0
diquark configuration only, the second correlator with the
spin-1 diquark configuration only, and the third correlator the

mixed type of the two configurations. We have performed a
detail analysis to identify the role of each correlation function
in the sum rule. We found that the spin-1 diquark configu-
ration is very important to generate the a0ð980Þmass and the
mixed correlator also constitutes an important part in the total
OPE. The first correlator only with the spin-0 diquark
configuration contributes to the final sum rule marginally.
The last point is quite different from the common expectation
that the a0ð980Þ is a tetraquark containing the spin-0 diquark
configuration. This work may help in establishing an
interesting view on the tetraquark structure of a0ð980Þ, that
is, the state containing the spin-1 diquark configuration as
well as the spin-0 diquark configuration.
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