
 

Anyonic particle-vortex statistics and the nature of dense quark matter
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We show that Z3-valued particle-vortex braiding phases are present in high density quark matter. Certain
mesonic and baryonic excitations, in the presence of a superfluid vortex, have orbital angular momentum
quantized in units of ℏ=3. Such nonlocal topological features can distinguish phases whose realizations of
global symmetries, as probed by local order parameters, are identical. If Z3 braiding phases and angular
momentum fractionalization are absent in lower density hadronic matter, as is widely expected, then the
quark matter and hadronic matter regimes of dense QCD must be separated by at least one phase transition.
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I. INTRODUCTION

The behavior of QCD as a function of baryon density, at
vanishing temperature, is of fundamental importance to
nuclear physics and astrophysics [1–4]. At low density,
quarks and gluons have strong interactions and are bound
into colorless hadrons, producing hadronic nuclear matter.
At asymptotically high densities, one instead finds weakly-
coupled quark matter [5]. Can the hadronic and quark
matter regimes be smoothly connected, or are they neces-
sarily separated by a phase transition?
We consider this question in the simplified, more

symmetric setting of three-color, three-flavor QCD with
degenerate quark masses and SUð3ÞV flavor symmetry.1

The increase in symmetry gives some hope that questions
of principle can be addressed in a sharper fashion. In this
flavor-symmetric setting, there is a well-known conjecture
of quark-hadron continuity due to Schäfer and Wilczek [9].
This conjecture is supported by a comparison of the
expected pattern of low energy excitations and the real-
izations of conventional global symmetries at both high and
low densities.

At asymptotically high densities, “color superconductiv-
ity” leads to a diquark “condensate” hqqi ≠ 0, which in turn
induces nonzero gauge-invariant condensates with the
schematic forms hðqqÞ3i and hq̄ q̄ qqi [10]. The hðqqÞ3i
condensate signals spontaneous breaking of the Uð1ÞB
baryon number symmetry down to Z2, while the hq̄ q̄ qqi
condensate signals, in the limit of massless quarks, sponta-
neous chiral symmetry breaking of the form SUð3ÞL×
SUð3ÞR → SUð3ÞV . The spontaneous breaking of Uð1ÞB
indicates that high density quark matter is a superfluid. At
low densities, one expects an identical chiral symmetry
breaking pattern in the massless limit, while Uð1ÞB sym-
metry breaking is believed to arise (in the flavor symmetric
theory) from the condensation of pairs of Λ hyperons with
flavor content uds. The matching symmetry realization,
along with apparently compatible patterns of low energy
excitations, make it plausible that the quark and hadronic
phases of QCD are smoothly connected, at least in the flavor
symmetric limit [9].
However, there is no guarantee that distinct phases can

always be distinguished by this Landau-Ginzburg style
analysis based on local order parameters. Some transitions
separating distinct phases can only be diagnosed by
changes in behavior of topological observables such as
the ground state degeneracy on large topologically non-
trivial manifolds, or suitable nonlocal order parameters
from which one infers, for example, particle-vortex braid-
ing statistics [11–13].
Given this motivation, we examine topological ground

state degeneracies and quark-vortex braiding statistics in
asymptotically high-density quark matter, and compare
results with the expected properties of hadronic nuclear
matter. In high density quark matter, we find that quarks
acquire nontrivial Z3 Aharonov-Bohm phases, arising from
color holonomies, when encircling a superfluid vortex with
minimal circulation. In terms of dressed gauge-invariant
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1When electromagnetic and weak interactions are included,
and quarks have their physical masses, various phase transitions
associated with, e.g., kaon condensation occur at high, but
nonasymptotic, density [5–8]. Focusing on the flavor symmetric
limit avoids these complications.
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quasiparticle excitations, this means that certain mesonic
and baryonic excitations have orbital angular momentum
quantized in units of ℏ=3 in the presence of a minimal
superfluid vortex. These results can also be interpreted in
terms of anyonic particle-vortex braiding statistics.
These topological features contrast sharply with the

expected properties of superfluid hadronic matter, in which
one expects conventional quantization of quasiparticle
orbital angular momentum in units of ℏ. If the standard
picture of the low density hadronic regime is correct, then
the hadronic and quark matter regimes must be separated
by at least one phase transition.

II. Uð1Þ SUPERCONDUCTORS

To set the stage for our QCD discussion we first review
related aspects of BCS superconductors at zero temper-
ature. (See, e.g., Ref. [14] for more detail.) Such systems
can be modeled by an Abelian Higgs model,

L ¼ jDμϕj2 þm2jϕj2 þ 1

2
λjϕj4 − 1

4e2
F2
μν: ð1Þ

The complex scalar fieldϕ is assumed to have charge q under
the Uð1Þ gauge symmetry, so Dμϕ≡ ð∂μ − iqAμÞϕ, with
q ¼ 2 for real electron superconductors. Using sloppy
perturbative language, ϕ gets a nonzero vacuum expectation
value in the superconducting regime of large negative
m2, “breaking” the Uð1Þ gauge symmetry. But local gauge
symmetries never truly break spontaneously [15].
Realizations of all conventional global symmetries remain
unchanged as m2 varies, and there are no gauge-invariant
local operators which can serve as order parameters for
superconductivity. Distinguishing the superconducting and
normal phases requires looking beyond the conventional
Landau-Ginzburg paradigm based on local order parameters.
The superconducting phase has Z2 topological order,

arising from Higgsing of the Uð1Þ gauge symmetry down
to Z2 [14]. This provides a sharp distinction from the
normal phase. In this context, topological order [11–13]
has two related consequences: a ground state degeneracy
which depends on the topology of space, and nontrivial
Aharonov-Bohm phases for transport of charged particles
around magnetic vortex lines.
To examine the ground state degeneracy, one may

compactify a single spatial direction with periodic boun-
dary conditions (for all fields), and consider the theory on
R1;2 × S1. Ground state degeneracy arises from multiple
minima of the holonomy effective potential VeffðΩÞ, where
Ω≡ ei

H
A is the Wilson loop (or spatial holonomy)

wrapping the compactified dimension. In the Higgs phase,
the covariant gradient term of the Lagrangian (1) induces a
(Meissner) mass for the photon. When the spatial holon-
omy Ω ≠ 1, this term also gives a tree level contribution to
the holonomy potential,

VeffðΩÞ ¼ min
k∈Z

jvj2
L2

ð2πk − qaÞ2 þ � � � ; ð2Þ

where Ω≡ eia, the ellipsis denotes higher order contribu-
tions (plus terms independent of Ω), v2 ≡ −m2=λ, and k is
the winding number of the phase of the condensate around
the S1. Viewed as a function of a ¼ −i lnΩ, gauge
invariance requires the potential to be 2π periodic, but
when q > 1 it actually has a finer periodicity of 2π=q. For
q ¼ 2 there are two degenerate minima within the funda-
mental domain ½0; 2πÞ, namely a ¼ 0 and a ¼ π, associ-
ated with k ¼ 0 and k ¼ 1, respectively. So hΩi ¼ �1 and
the ground state degeneracy is 2 on R1;2 × S1. (On R × T3,
with charge q, the degeneracy is q3.)
While one does not directly measure this ground state

degeneracy experimentally, the Ω ¼ −1 minimum is
related to the braiding statistics between charged particles
and magnetic vortices [16]. The field configuration describ-
ing a superconducting vortex running along some straight
path is, in cylindrical coordinates, given by

ϕðθ; rÞ ¼ fðrÞeikθ; Aθ ¼ ahðrÞ=r; ð3Þ

where the radial functions fðrÞ and hðrÞ run monotonically
from 0 at r ¼ 0 to 1 at r ¼ ∞, and k ∈ Z. For the vortex to
have finite energy per unit length, the covariant derivative
of ϕ must vanish at large r, implying that a ¼ k=2. So a
minimal vortex carrying k ¼ 1 units of magnetic flux has
an azimuthal gauge field Aθ ∼ 1=ð2rÞ at large r, implying
that the holonomy around a large circle surrounding the
vortex is −1. More generally, ifΩ½C� denotes the holonomy
(Wilson loop) around some closed loop C, then

hΩ½C�iV½P� ¼ eiπlðC;PÞ; ð4Þ

where h� � �iV½P� denotes an expectation value in the presence
of a vortex V running along some closed path P, and
lðC;PÞ is the intersection (linking) number of paths C and
P, provided these paths are well separated.2 This shows
that particles of charge q ¼ 1 have an Aharonov-Bohm
phase of −1 when going around a vortex, demonstrating
that particles and vortices have Z2 braiding statistics. To
reiterate, the holonomy Ω½C� may be far from unity in the
presence of vortices, or with nontrivial topology, even
though electric and magnetic fields are completely screened
in a superconductor [14,17].

2When fluctuations are taken into account, jhΩij has perimeter
law decay, and the left-hand side of expression (4) should really
be the phase of the Wilson loop, or equivalently the ratio
hΩ½C�iV½P�=hΩ½C�i, where the denominator is the Wilson loop
expectation value in the absence of the vortex.
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III. HIGH DENSITY QCD

We now generalize this analysis to the case of QCD with
SUð3Þ flavor symmetry. Purely for simplicity of presenta-
tion, we assume that the quarks are massive, mq > 0, so
that the theory has a nonvanishing mass gap. (We comment
on the chiral limit below.) We consider the limit of
asymptotically large quark density, and vanishing temper-
ature, so that the quark chemical potential μ (equal to 1=3
times the baryon chemical potential μB) is large compared
to the strong scale Λ or the light quark mass mq. This
regime is weakly coupled at all length scales, thanks to
Cooper pairing of quarks at the Fermi surface and the
resulting color Meissner effect which suppresses long
wavelength gauge field fluctuations. In gauge-variant
language, the large μ, low temperature regime features a
diquark condensate of the “color-flavor-locked” (CFL)
form,

hqiaCqjbi ¼ KgðμÞ−1μ2Δϵijkϵabk ≡Φij
ab; ð5Þ

whereK is a pure numerical factor, indices i, j denote color,

a, b are flavor indices, and Δ ∼ μgðμÞ−5e−3π2=ðgðμÞ
ffiffi
2

p Þ is the
pairing gap [5,18]. Equivalently, at long distances there are
three emergent antifundamental Higgs fields, which may be
viewed as forming a single 3 × 3matrix valued scalar field,

ðϕÞlm ≡ ð4KÞ−1gðμÞμ−2ϵijlϵabmΦij
ab: ð6Þ

In the unitary gauge of Eq. (5), ϕ ¼ Δ · 1.
The determinant of ϕ is the physical, gauge invariant

order parameter which was earlier written schematically as
hðqqÞ3i. Under the Uð1ÞB baryon number symmetry, detϕ
has charge 2. Since hdetϕi ≠ 0, Uð1ÞB symmetry is
spontaneously broken down to Z2 and dense quark matter
is a superfluid. Fluctuations in the condensate phase φ≡
−i log detϕ represent Uð1ÞB Nambu-Goldstone bosons
(NGBs), with associated the low energy effective action

SUð1ÞB ¼
Z

d4x
1

2
f2½ð∂tφÞ2 þ v2s ð∇φÞ2�: ð7Þ

Here f2 ∼ 6μ2=π2 and v2s ∼ 1=3 [19].
The action (7) is conventionally believed to be a valid

long-distance effective action for dense QCD when
mq > 0. In the massless limit, mq → 0, there are additional
Nambu-Goldstone bosons (pions, kaons, etc.) due to the
spontaneous breaking of chiral symmetry [20]. However, at
the level of two derivative terms in the effective action there
is no coupling between phase fluctuations of the neutral
superfluid condensate and these chiral symmetry NGBs.
Consequently, such chiral symmetry NGBs play no role in
any of the phenomena we discuss below, and may simply
be ignored.

IV. COLOR HOLONOMIES

We would like to examine possible equilibrium states on
topologically nontrivial spatial manifolds, and understand
the related issue of particle-vortex braiding statistics. To
this end, we follow the same procedure used above. We
compactify one spatial dimension on a circle of circum-
ference L, with periodic boundary conditions for all fields
and L larger than all intrinsic length scales.3 Fluctuations in
the condensate (6), as well as the color Meissner effect,
may be described by an effective Lagrangian,

Lϕ ¼ κtr½ðDtϕÞ†ðDtϕÞ þ v2s ðDiϕÞ†ðDiϕÞ� þ VðϕÞ; ð8Þ

where κ ¼ Oðμ2=Δ2Þ,Dμ ¼ ∂μ þ iAμ is the color covariant
derivative for an antifundamental, and the scalar potential
VðϕÞ is minimized when ϕ=Δ ∈ Uð3Þ [20].
Let Ω denote the SUð3Þ color holonomy around the S1.

The gradient term in the Lagrangian (8) generates a tree-
level contribution to the holonomy effective potential
VeffðΩÞ.4 One finds

VeffðΩÞ ¼
κΔ2v2s
L2

min
k∈Z3

X3
i¼1

ð2πki þ θiÞ2 þ � � � ; ð9Þ

where θ ¼ ðθ1; θ2; θ3Þ are the phases of the eigenvalues of
Ω, with θ3 ≡ −θ1 − θ2, and k≡ ðk1; k2; k3Þ are the winding
numbers of the eigenvalues of ϕ around the S1.
Within the triangular fundamental domain given by

−2θ1 ≤ θ2 ≤ θ1, θ2 ≤ 2π − 2θ1, and 0 ≤ θ1 ≤ 4π=3, the
holonomy potential has one global minimum and two
degenerate local minima. The global minimum lies at
θ ¼ ð0; 0; 0Þ and is associated with k ¼ ð0; 0; 0Þ.
The two local minima are θ ¼ ð2π=3; 2π=3;−4π=3Þ and
θ ¼ ð4π=3;−2π=3;−2π=3Þ, and are associated with k ¼
ð0; 0; 1Þ and ð−1; 0; 0Þ, respectively. In other words, the
global minimum is Ω ¼ 1, while the local minima lie at
Ω ¼ e�2πi=31. The energy density at the local minima
exceeds that at the global minimum by the amount

ΔVeff ¼
4π2κΔ2v2s

3L2
: ð10Þ

Unlike the case of a BCS superconductor, high density
QCD on R3 × S1 has a unique ground state, so the color
superconducting state does not have conventional topo-
logical order. But local minima are present in which the

3On the resulting R2 × S1 spatial manifold, spontaneous
breaking of continuous symmetries remains possible at zero
temperature.

4Reference [21] examined one-loop contributions to the
holonomy effective potential in dense QCD with flavor-twisted
boundary conditions, but did not include this dominant tree-level
contribution. Correcting this oversight eliminates the infinite
sequence of alternating transitions discussed in Ref. [21].
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holonomy is a nontrivial cube root of unity, with energy
density (relative to the ground state) vanishing as L → ∞,
but only as an inverse power of L. This differs from generic
metastable “false vacua” whose energy is linear in the
spatial volume, and is also unlike the exponentially small
(in L) energy differences typically present in gapped
systems with degenerate infinite volume ground states.
To elucidate the physical interpretation of these non-

trivial local minima, consider the superfluid flow velocity
uμ, given by the gradient of the phase of the gauge invariant
condensate detϕ divided by twice the baryon chemical
potential μB. Equivalently, uμ ¼ ð2μBÞ−1trϕ−1Dμϕ. Evalu-
ated in the homogeneous states described by the holonomy
effective potential, one finds a superfluid velocity along the
compactified direction given by

uz ¼
π

μBL
ðk1 þ k2 þ k3Þ: ð11Þ

The Ω ¼ 1 global minimum has vanishing superfluid
velocity, but the nontrivial local minima with Ω ¼
e�2πi=31 have

P
iki ¼ �1, and hence have supercurrents

flowing around the compact direction with the minimal
nonzero quantized circulation. The same quantized circu-
lation appears around superfluid vortices, and one may
regard the circle-compactified theory as mimicking an
annular region surrounding a superfluid vortex, as illus-
trated in Fig. 1.

V. VORTICES IN DENSE QUARK MATTER

Minimal circulation vortex configurations in high den-
sity quark matter were first examined in Ref. [22].5 In the
CFL regime, a suitable field ansatz for describing a minimal
vortex on a path P running along the z axis is given by [22]:

ϕ

Δ
¼ diag½eiθfðrÞ; gðrÞ; gðrÞ�; ð12aÞ

Aθ ¼
hðrÞ
r

diag½−2a; a; a�; ð12bÞ

with other gauge field components vanishing. The radial
functions fðrÞ, gðrÞ, and hðrÞ all approach 1 as r → ∞,
and f and h vanish at r ¼ 0. The gauge invariant order
parameter detðϕ=ΔÞ approaches eiθ far from the vortex
core, showing that this ansatz describes a vortex with
minimal Uð1ÞB winding, or equivalently minimal super-
fluid circulation. Such vortices are necessarily present
when superfluid quark matter rotates (above a critical
frequency), as in neutron stars. The energy per unit length
of any straight, infinitely long superfluid vortex is loga-
rithmically IR divergent. Minimizing the long distance
energy density of the configuration (12), proportional to
r−2½ð1 − 2aÞ2 þ 2a2�, gives a ¼ 1=3.6

Now consider the SUð3Þ holonomyΩ for some loopC in
the presence of this minimal vortex running along the path
P. Assume that the curves C and P are everywhere widely
separated compared to the color magnetic penetration
length. Then by direct contour integration of the gauge
field (12b) one finds

γ ≡N −1htrΩ½C�iV½P� ¼ exp

�
2πi
3

lðC;PÞ
�
; ð13Þ

where lðC;PÞ ∈ Z is the linking number of the contours,
and the normalization factor N ¼ htrΩ½C�i is the expect-
ation value without the vortex. This shows that fundamental
representation quarks and vortices have Z3 braiding phases
in high density quark matter.

VI. SCREENING AND FRACTIONALIZATION

How do the nontrivial color holonomies (13) affect
physical quasiparticle excitations of dense QCD? How
does this relate to color screening in a color superconduc-
tor? These issues were considered in Ref. [27] (see also
Ref. [28]) which examined CFL vortices and discussed
possible implications for quark-hadron continuity. This
followed the interesting earlier work in Ref. [29] which
relied on the gauge variant notion of color-magnetic flux to
argue that vortices could not continue smoothly between
the CFL and hadronic regimes. The authors of Ref. [27]
correctly noted that gauge invariant aspects of “color-
magnetic flux” must be encoded in color holonomies
which encircle a vortex. However, Ref. [27] asserted that

FIG. 1. Left: SUð3Þ holonomy Ω wrapping the compactified
circle on spatial manifold R2 × S1 in dense quark matter. Non-
trivial Z3-valued holonomies are associated with nonzero super-
fluid flow around the S1. Right: the related situation of a Wilson
loop on curveC encircling a minimal superfluid vortex on path P,
with linking number lðC; PÞ ¼ 1.

5These vortices have variously been termed “semilocal” and
“non-Abelian” [23–26]. The former terminology emphasizes that
they are magnetic vortices as far as the SUð3Þ gauge group is
concerned but at the same time are superfluid vortices with
logarithmically divergent energy per unit length. The latter
terminology refers to the gauge-dependent notion of color-
magnetic flux.

6Minimizing the complete energy determines the radial func-
tions, which are monotonic and approach their asymptotic values
exponentially rapidly on a scale set by the coherence length Δ−1

(for f and g) or the much shorter OððgμÞ−1Þ color magnetic
penetration length (for h) [22].
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such holonomies must be trivial “because the condensate,
as a color triplet, can completely screen the color charge of
the probe quark.” This is inconsistent with the above
explicit calculation of the holonomy. Moreover, while
static test quarks are screened in QCD, this only implies
that the magnitude of a large Wilson loop will have
perimeter-law behavior, jhtrΩ½C�ij ∼ e−δmjCj, where jCj
denotes the perimeter and δm is a (renormalization scheme
dependent) mass shift. But such screening does not con-
strain the phase of the expectation which, as we have seen,
can be Z3-valued at high densities.
It is illuminating to recast this point in more physical

terms and examine how nontrivial holonomies affect
“screened” gauge invariant quasiparticle excitations. The
holonomy evaluated above represents the phase, due to the
color gauge field, acquired by a quark when encircling a
minimal vortex in the direction of the superfluid flow. Such
a quark, whose minimal excitation energy is the pairing gap
Δ, can be dressed by the diquark condensate ϕ to produce a
baryonic quasiparticle with the schematic structure qϕ. But
the condensate is periodic, by construction, so this cannot
affect the holonomy induced Z3 phase experienced
by the quark. Equivalently, the condensate (12a) can be
written as a product of Uð1Þ and SUð3Þ factors; at
large distance ϕ=Δ ∼ eiθ=3 × diag½e2iθ=3; e−iθ=3; e−iθ=3�.
The angular variation of the SUð3Þ factor cancels the color
holonomy of the quark—but the Uð1Þ factor reinstates
exactly the same overall phase change.
This Z3 phase implies that a qϕ excitation has anyonic

statistics with superfluid vortices. Just as in BCS super-
conductors [30], one can also interpret the holonomy
induced phase α≡ 2π=3 as a shift in the allowed values
of (orbital) angular momentum of this excitation in the
presence of a vortex, α ¼ 2πΔLz=ℏ, so ΔLz ¼ ℏ=3. More
precisely, for excitations far from the vortex core it is the
azimuthal component of the “kinetic” or “covariant” angular
momentum, Lz ≡ ẑ · r⃗ × ðp⃗ − A⃗Þ, which is fractionalized.
This differs from the conserved angular momentum, or
generator of rotations, which remains integer quantized.
However, it is the kinetic angular momentum Lz which
appears in the relation between angular velocity and angular
momentum, dθ=dt ¼ Lz=ðmr2⊥Þ, or equivalently in the
rotational component of kinetic energy, L2

z=ð2mr2⊥Þ. In

other words, a qϕ excitation far from the vortex moves as
if it is a free particle (in the absence of any gauge holonomy)
with fractional angular momentum, Lz=ℏ ∈ Zþ 1=3.
Table I lists the analogous shifts in Lz for other possible

quasiparticles in CFL color superconductors. Note that
these considerations imply the existence of sharply distinct
classes of both baryonic and mesonic excitations in the
presence of a vortex.

VII. TOPOLOGY IN EFFECTIVE THEORY

We obtained the Z3 braiding phases (13) using the
microscopic degrees of freedom of the QCD Lagrangian.
However, the topological data in these braiding phases
must also be encoded in any correct long distance descrip-
tion of the system. Since these braiding phases are
insensitive to a bare quark mass which gaps out other
NGBs (pions) associated with chiral symmetry breaking,
this data must appear in the minimal effective field theory
(EFT) describing the dynamics of Uð1ÞB Nambu-
Goldstone bosons and the response of various probes to
superfluid fluctuations. The conventional effective action
(7) cannot reproduce these braiding phases, and thus cannot
be complete. What must be added to the EFT to fix this
problem?
The correct EFT must reproduce the holonomy-vortex

linking relation (13). When considering the theory on a
nonsimply connected space (such as a toroidal compacti-
fication), it should also reproduce correct Z3-valued
holonomies when there is superfluid flow around a non-
contractible cycle. To construct such a theory, a natural
starting point is a 4D topological quantum field theory
(TQFT) known as BF theory [31–34]. This TQFT has the
Euclidean action

SBF ¼
ip
2π

Z
M4

b2 ∧ da; ð14Þ

whereM4 is a four-dimensional spacetime manifold, b2 is a
2-form gauge field,7 a is a 1-form gauge field, d denotes
exterior differentiation, and p ∈ Z. By itself, this action
describes a Zp discrete gauge theory [33,34]. We wish to
relate holonomies of the gauge field a to the superfluid
circulation. For holonomies encircling vortices, this may be
accomplished by adding the term 1

2πi

R
M4

b2 ∧ d2φ to

SBF. The two-form d2φ is proportional to the superfluid
vorticity and vanishes everywhere except at a vortex center
where φ is ill defined. The resulting equation of motion,
pda ¼ d2φ, connects the Abelian field strength da to the
vorticity. By Stokes theorem, this is the same as equating
the circulation

H
C dφ with p times the holonomy phase

TABLE I. Shifts in orbital angular momentum, ΔLz, of low
energy excitations in the CFL phase in the presence of a minimal
superfluid vortex. Here q denotes a quark excited above the Fermi
surface, q̄ denotes a corresponding hole, and ϕ is the diquark
condensate. Each indicated combination can form a physical,
gauge invariant excitation.

ΔLz 0 þℏ=3 −ℏ=3

Bosons qq̄ q̄ q̄ϕ qqϕ�
Fermions qqq, q̄ q̄ q̄ qϕ q̄ϕ�

7A p-form field is a totally antisymmetric rank-p tensor, and
may be integrated over any dimension p manifold without
needing a metric.
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H
C a. For p ¼ 3, this is precisely our linking number
relation (13).
These considerations suggest that a proper low energy

effective action for high-density QCD should be

Seff ¼?
Z
M4

f2

2
dφ∧⋆dφþ i

2π

Z
M4

b2 ∧ ðpda−d2φÞ; ð15Þ

where ⋆ denotes the Hodge dual and we chose units where
vs ¼ 1. But this effective theory is not fully correct, as it
cannot reproduce the correlation between holonomies and
superfluid flow when spacetime is not simply connected, as
in our earlier example of R3 × S1. We need an effective
action that can connect integrals of a and dφ around
noncontractible curves. However, this is impossible with a
local gauge-invariant 4D effective action.
This problem has a natural solution inspired by theWess-

Zumino-Witten term of chiral perturbation theory [35,36].
Let M5 ¼ M4 × ½0; 1� denote the 5D manifold which is the
product of M4 times an interval, and let w ∈ ½0; 1� be a
coordinate along this interval. Regard the w ¼ 1 boundary
as the physical 4D spacetime and extend the superfluid
condensate phase φ to a function φ̃ on M5 (i.e., a mapping
ofM5 into S1) which coincides with φ at w ¼ 1, is constant
at w ¼ 0, and is smooth and differentiable almost every-
where in the interior of M5. When the phase φ winds
around a physical vortex in M4, the vortex worldsheet in
M4 will extend to a 3D world volume in M5 on which φ̃ is
ill defined (and around which φ̃ has nonzero winding). If φ
has winding around some noncontractible cycle inM4, then
φ̃ will necessarily be ill defined on some 3D “vortex world
volume” in the interior of M5. (If M4 is closed, this
3-surface is also closed.) We now replace the incomplete
effective theory (15) with a 5D BF theory coupled to the
vorticity of φ̃,

Seff ¼
Z
M4

f2

2
dφ∧⋆dφþ i

2π

Z
M5

b3∧ ðpda−d2φ̃Þ: ð16Þ

Here b3 is a 3-form gauge field which is required to vanish
at w ¼ 1, while the gauge field a is required to vanish at
w ¼ 0.8 The 5D equations of motion require that pda ¼
d2φ̃ and this, once again, implies that the circulation

H
C dφ

around any closed curve C inM5 coincide with p times the
holonomy phase

H
C a. And, importantly, this now includes

noncontractible curves lying on the boundary at w ¼ 1.
Consequently, the effective theory (16), involving a 5D

topological term coupled to a 4D superfluid effective
action, correctly reproduces the association between the

Z3 holonomy and superfluid circulation in all geometries.
The value of writing down Eq. (16) is simply to establish
that it is possible to construct an effective action describing
the dynamical Uð1ÞB Goldstone boson field φ and some
emergent color-singlet fields b and a, whose own dynamics
are essentially trivial. The role of these emergent fields,
which enter the new 5D term is simply to encode the
nontrivial gauge-invariant holonomies of the color gauge
fields which we found using a more microscopic descrip-
tion of the theory.

VIII. IMPLICATIONS

If the quark-hadron continuity conjecture of Ref. [9] is
correct, then Z3 particle-vortex braiding phases and asso-
ciated angular momentum fractionalization must persist as
the density decreases all the way down to the onset of
superfluidity in nuclear matter, at least sufficiently close to
the SUð3Þ flavor symmetric limit. This would imply that
hadronic nuclear matter cannot be accurately described by
a local effective theory involving colorless baryon and
meson degrees of freedom, which is very hard to believe.
Such a result would not be consistent with the standard
picture that in low density nuclear matter, test quarks are
screened by pair production of quark-antiquark pairs from
the vacuum. The baryon-number violating condensate in
nuclear matter cannot screen a test color charge, because
this condensate has the quantum numbers of a dibaryon and
is color-neutral. This should be contrasted with the sit-
uation in dense quark matter, where a diquark condensate
can screen test quarks, leading to the explicit results
described above concerning color holonomies that encircle
superfluid vortices and associated fractionalization of
orbital angular momentum.
The most plausible interpretation of our results is that

quark-hadron continuity fails, with at least one phase
transition separating high density quark matter, with its
Z3 topological features, from lower density superfluid
nuclear matter lacking these features. To understand why
a discrete change in particle-vortex braiding statistics
implies a thermodynamic phase transition, note that the
ground state must have nonzero amplitudes for configura-
tions in which vortex loops are present. Any such loop
affects the quasiparticle spectrum in its vicinity, and hence
affects fluctuation corrections of the ground state energy.
Consequently, an abrupt change in particle-vortex braiding
statistics should generate nonanalyticity in the ground state
energy.
We emphasize that such a phase transition in dense

nuclear matter does not conflict with the well-known
Fradkin-Shenker results on Higgs-confinement comple-
mentarity [37], which demonstrate continuity between
confinement and Higgs regimes in systems without a
Uð1Þ global symmetry. In contrast, the presence of sponta-
neously broken Uð1ÞB symmetry and the consequent

8The action (16) shifts by integer multiples of 2πip under the
gauge transformations b → bþ dλð2Þ and a → aþ dλð0Þ, where
λð2Þ and λð0Þ are 2-form and 0-form gauge functions constrained to
vanish at w ¼ 1 and at w ¼ 0 respectively. Gauge invariance of
the functional integral then implies that p ∈ Z.
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existence of superfluid vortex excitations plays a central
role in our discussion of particle-vortex statistics.
Finally, we emphasize we have assumed coinciding

quark masses and SUð3ÞV flavor symmetry throughout
this paper. This flavor-symmetric limit was the setting for
the quark-hardron continuity conjecture of Ref. [9]. Of
course, the real world has distinct quark masses, plus
electromagnetic and weak interactions. For asymptotically
large μ, such flavor-breaking effects are negligible [5], but
as μ decreases flavor symmetry breaking effects grow in
importance. A detailed analysis of flavor-breaking effects is
undoubtedly interesting, but is left to future work. Aside
from the practical consideration of allowing a discussion of
the physical point, an analysis of flavor symmetry breaking
perturbations is also important to address theoretical points
of principle. For example, as it stands, it is tempting to
define the density-driven phase transition between nuclear
matter and quark matter discussed above as a color
confinement-deconfinement transition. But to make such
a definition reasonable one would want to be sure that the
transition persists for a range of flavor-symmetry breaking
perturbations.

IX. OUTLOOK

The recognition that high density quark matter exhibits
nontrivial topological features such as Z3 particle-vortex
braiding statistics, angular momentum fractionalization,
and an emergent Z3 discrete gauge field, shows that color
superconductivity has novel physical signatures which are
distinct from the more general phenomenon of ordinary
superfluidity. This realization leads to numerous additional
questions. What are observable signatures of angular
momentum fractionalization around vortices? How do
Z3 particle-vortex statistics affect quasiparticle dynamics
and transport processes in rotating quark matter? If quark-
hadron continuity fails, what is the nature of the phase
transition(s) which separate these regimes? How do super-
fluid vortices in a rotating neutron star behave at such a
phase interface [29]? Are there superfluids in condensed
matter systems with similar particle-vortex statistics? We
hope future work can shed light on these and related
questions.
Each of the points in this chain of assertions is prob-

lematic. The authors of Ref. [38] begin with a construction
of a purported effective theory which is based on a gauge-
dependent analysis ignoring all gauge field components
except those in a Cartan subgroup, and then treat individual
components of the (untraced) holonomy as if they are
physical observables. We fail to understand how this
construction can make any sense. They then argue that
their effective theory has an “emergent” Z3 two-form

symmetry, and assert that “if QCD CFL is a superfluid
phase with topological order there should be an emergent
higher form symmetry, and it has to be spontaneously
broken.”We emphasize that at no point have we argued that
high density QCD has topological order as conventionally
defined (involving topology-dependent ground state degen-
eracy). In Sec. IV we explicitly discuss how the presence of
equilibrium states with nonvanishing circulation and non-
trivial holonomy around a close cycle is not topological
order. Hence the entire supposition of Ref. [38] concerning
genuine topological order and associated higher form
symmetries is irrelevant.
Nevertheless, Ref. [38] then argues that their putative Z3

two-form symmetry cannot be spontaneously broken by first
noting that a Z3 symmetry is a subgroup of an “emergent
Uð1Þ symmetry” and then referencing the Mermin-Wagner
theorem on the impossibility of spontaneously breaking
continuous global symmetries in two or fewer dimensions.
Once again, we fail to see the logic of this assertion because
noUð1Þ higher form symmetry of QCDwas identified. Even
when taken at face value, Ref. [38] only claims to identify
such a symmetry approximately, as an emergent symmetry
in the infrared, and only in the Higgs regime; no argument is
given that the purported emergent symmetry is in fact a
feature of full QCD.
Finally, it must be emphasized that nothing in Ref. [38]

casts any doubt on, or even addresses, our explicit
evaluation of nontrivial Z3 holonomies associated with
superfluid circulation in high density QCD, the resulting
physical effects discussed above, or the expectation that
such topological features cannot be present in lower density
hadronic matter.
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Note added.—After our work was posted on the arXiv, the
paper [38] appeared, arguing that quark-hadron continuity
is consistent with an unbroken “emergent two-form sym-
metry.” We disagree with a number of assertions in this
paper and its conclusions. However, nothing in Ref. [38]
casts any doubt on, or even addresses, our explicit
evaluation of nontrivial Z3 holonomies associated with
superfluid circulation in high density QCD and the result-
ing physical effects discussed above.
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