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We study coherent diffractive dijet production in electron-hadron and electron-nucleus collisions within
the dipole picture. We provide semianalytic results for the differential cross section and elliptic anisotropy
in the angle between dijet transverse momentum and hadron recoil momentum. We demonstrate the direct
relation between angular moments of the dipole amplitude in coordinate space and angular moments of the
diffractive dijet cross sections. To perform explicit calculations, we employ two different saturation models,
extended to include the target geometry. In the limit of large photon virtuality or quark masses, we find fully
analytic results that allow direct insight into how the differential cross section and elliptic anisotropy
depend on the saturation scale, target geometry, and kinematic variables. We further provide numerical
results for more general kinematics in collisions at a future electron-ion collider, and study the effects of
approaching the saturated regime on diffractive dijet observables.

DOI: 10.1103/PhysRevD.100.034007

I. INTRODUCTION

Exclusive dijet production in coherent diffractive proc-
esses in electron-nucleus (and electron-hadron) scattering
provides important information on the structure of the
target in both coordinate and momentum space. In certain
kinematic limits, it was shown [1,2] that diffractive dijet
production cross sections can be directly related to the five-
dimensional gluon Wigner distribution of the target [3,4].
This can be used to constrain both generalized parton
distributions [5,6] and transverse momentum dependent
parton distributions [7–9].
Recently, diffractive dijet production in photon-hadron

collisions was studied in the dipole picture [10,11], which
is an appropriate framework for high energy collisions.
Interesting structures, such as diffractive dips, were found
in the differential cross sections as functions of the hadron
recoil momentum and the dijet transverse momentum.
Furthermore, the dependence of the cross section on the
angle between those two momenta exhibited quite a
complex behavior with the sign and magnitude of the
elliptic anisotropy coefficient depending on the photon

polarization, virtuality of the photon, dijet transverse
momentum, and details of the dipole model.
In this work, we aim to provide analytic insight into what

physical properties of the projectile and target are respon-
sible for the observed features in the angle averaged and
angular dependent cross sections, and how these features
depend on the kinematic variables of the studied process.
For this purpose, we concentrate on relatively simple dipole
models, which we extend to include a spatial dependence of
the target’s color charge density, and, if necessary in the
model, an additional explicit correlation between the dipole
orientation and the impact parameter of the collision. These
features are necessary to obtain nontrivial results for the
diffractive cross sections and their angular dependence.
In particular, we first study the Golec-Biernat Wusthoff

(GBW) model [12,13], extended to include a spatially
dependent target and angular correlations. In the limit of
large photon virtualityQ2 and/or mass of the (anti-)quark in
the dijet, we evaluate the diffractive dijet production cross
sections analytically, which allows for important insight
into how projectile and target properties affect the exper-
imental observables.
A somewhat more realistic description, in particular of

the angular dependence, can be achieved by using an
impact parameter dependent McLerran Venugopalan (IP-
MV) model [14–16], where the angular modulation of the
dipole amplitude depends on spatial gradients of the
transverse color charge distribution, as previously shown
in [17]. We discuss how the results are modified from the
GBW model in the limit of large Q2 and/or mass of the
(anti-)quark in the dijet. However, no exact analytical result
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can be obtained within this model, even with the simpli-
fication of the studied limit. We thus evaluate the diffractive
dijet cross sections in this model numerically, which also
reveals interesting features and their dependence on the
target and projectile wave function, as well as the kinematic
variables. We note that more complex saturation models,
such as IPSat [18,19] and b-CGC [20,21], also include
impact parameter dependence, but for the sake of simplicity
and being able to find analytic expressions, we stick to the
two simpler models mentioned above.
Finally, by varying the saturation scale and species of the

target nucleus, we analyze the effects of approaching the
saturated regime on the diffractive dijet observables. We
find a clear nuclear dependence on the growth of the cross
section with decreasing x, as well as a characteristic dip
structure of the differential cross section as a function of
recoil momentum, which varies with changing saturation
scale. The latter is a consequence of approaching the
black disk limit, which means that the effective spatial
color charge distribution of the proton deviates increasingly
from a Gaussian with decreasing x, because of unitarity
constraints.
This work should provide important guidance for future

experiments at an electron ion collider (EIC) [22,23], where
the spatial and momentum structure of nuclear targets can
be probed to unprecedented precision.
We note that geometrical effects, similar to the ones

appearing in this work, have also been studied for the case
of elliptic anisotropies of gluon production in Aþ A [24]
and pþ A (pþ p) [17,25] collisions. However, such
processes, as well as other, like inclusive dijet production
in eþ p collisions [26,27] will have other sources of
anisotropy, dominantly from quantum interference effects.
In contrast, for the case of coherent diffractive processes as
studied in this work, the geometric effects are the dominant
source of anisotropy.
This paper is organized as follows: In Sec. II, we set up

the notation and review the basic ingredients of coherent
diffractive dijet production in the dipole framework.
In Sec. III, we derive a semianalytic expression for

coherent diffractive dijet differential cross sections from the
dipole amplitude. In Sec. III A, we obtain expressions for
the case of a dipole amplitude without angular correlations.
We then extend the analysis to dipole amplitudes with
angular dependence and derive formulas for the differential
cross section and elliptic anisotropy in Sec. III B.
In Sec. IV, we review the models used to specify the

dipole amplitude, and in Sec. V, we investigate analytic
properties of the differential cross section and elliptic
anisotropy for the two models.
In Sec. VI, we present numerical results for the

coherent diffractive dijet cross sections and their angular
modulation in the impact parameter dependent McLerran
Venugopalan (IP-MV) model. We present both the depend-
ence on the dijet momentumP (Sec. VI A) and on the recoil

momentum Δ (Sec. VI B). In both cases, we study proton
and gold targets. We consider different photon virtualities
and saturation scales expected to be reached at a future EIC.
In Sec. VI C, we discuss observable effects of approaching
the saturated regime, focusing on the differential cross
section.
We summarize our results and discuss the limitations of

our analysis and possible extensions of these techniques
to the study of other processes in Sec. VII. We include
multiple Appendixes with technical details of the
calculations.

II. COHERENT DIFFRACTIVE DIJET
PRODUCTION IN THE DIPOLE PICTURE

A. The dipole picture

In the dipole picture, coherent diffractive dijet produc-
tion in electron-nucleus (-proton) scattering can be
described as a two-step process: the fluctuation of the
virtual photon (emitted by the electron) into a color neutral
quark—antiquark dipole and the scattering of the dipole
with the target (proton or nucleus). In the color glass
condensate (CGC) framework at high energies (small
Bjorken-x), the target is described by strong classical color
fields generated by partons at larger x, which are static and
localized color sources. The saturation of these fields in
transverse momentum space is characterized by the satu-
ration scale Qs which grows with decreasing x. We note
that our calculations are performed at leading order. Next-
to-leading order (NLO) impact factors for both diffractive
dijet and vector meson production have been derived
[28,29]. Together with next-to leading order corrections
to the CGC evolution kernel [30–36], complete NLO
calculations will be possible.
The fluctuation of the photon with virtuality Q2 into a

quark-antiquark dipole of size r can be computed in
quantum electrodynamics and is described by the light-
cone wave functions [37–41],

ΨLðrÞ ¼
eZf

2π
ðz0z1Þ3=2δβ0β12Qð1 − δσ0σ1ÞK0ðεfrÞ; ð1Þ

ΨTλðrÞ ¼
eZf

2π

ffiffiffiffiffiffiffiffiffi
z0z1

p
δβ0β1

�
δσ0σ1

mfffiffiffi
2

p ð1þ σ0λÞK0ðεfrÞ

þ ð1 − δσ0σ1Þðz1 − z0 − σ0λÞiεf
ϵλ · r
r

K1ðεfrÞ
�
;

ð2Þ

where ε2f ¼ z0z1Q2 þm2
f and z0 and z1 ¼ 1 − z0 are the

fractions of the longitudinal photon momentum carried by
the quark and antiquark, respectively. The subscript σi ∈
f−1; 1g refers to the helicity and βj to the color of the
quark (antiquark) (i; j ∈ f0; 1g), and mf and eZf are
the mass and electric charge of the quark of flavor f.
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The two-dimensional (2D) vector ϵλ denotes the transverse
polarization, with λ ¼ �1.
The functions K0ðzÞ and K1ðzÞ are modified Bessel

functions of the second kind, which decay rapidly as their
arguments increase. For massive quarks or large photon
virtualities, this implies that only small dipoles will
contribute to the process to be studied, which is favorable
since large dipole contributions are affected by uncon-
trolled infrared physics at the confinement scale [11].
Consequently, we will restrict our analysis to charm quarks.
The scattering of the dipole off the strong classical color

fields is treated within the eikonal approximation, in which
the transverse coordinates of the dipole are unchanged as it
travels through the target, and the scattering is characterized
by the color rotation of the quark and antiquark. The color
rotation of the quark via multiple scattering is encoded in
the longitudinal Wilson line in the fundamental represen-
tation of SUðNc ¼ 3Þ,

V†ðxÞ ¼ eig
R

dz−Aþ;aðz−;xÞta : ð3Þ

Therefore, the scattering amplitude takes a simple form in
transverse coordinate space (because the dipole is initially
in a color singlet state, we use the color delta function δβ0β1
to contract the inner indices of the longitudinal Wilson lines
to form the product)

Sðx1; x2Þij ¼ ½V†ðx1ÞVðx2Þ�ij; ð4Þ

where x1 and x2 are the transverse coordinates, and i and j
are the color indices of the quark and antiquark after
scattering off the target, respectively.
The interaction of the virtual photon (with given polari-

zation) with the proton or nucleus is given by the scattering
matrix element

Mijðx1; x2ÞTλ;L ¼ ΨTλ;Lðx1 − x2Þ
× ðI ij − Sijðx1; x2ÞÞ; ð5Þ

where I ij is the unit matrix.
The nonperturbative information about the degrees of

freedom of the target is encoded in the longitudinal
Wilson lines.
In the next section, we focus on the specific case of

coherent diffractive processes, which require certain con-
straints on the color structure of the matrix element and the
procedure for averaging over the target’s color charge
densities.

B. From dipole amplitude to coherent
diffractive dijet cross section

Before we discuss how to obtain the differential cross
section from the dipole amplitude, it is important to
clarify the terminology regarding our process of interest.

Diffractive refers to the absence of net color exchange
between the dipole and the target during the scattering; i.e.,
the color rotation of the quark compensates that of the
antiquark. A rapidity gap is the experimental signature for
this color singlet final state, as no color string is formed
between dipole and target, whose breaking would lead to
particle production at intermediate rapidities. We ensure a
color singlet final state by restricting to the diagonal in
color space.
Coherent refers to scattering processes in which the

target remains intact. Coherent processes require that the
average over color charge densities is taken at the level of
the amplitude. This differs from inclusive processes in
which the average is taken at the level of the cross section
[42–44].
Therefore, the object of interest in coherent diffractive

dijet production is given by the color-diagonal averaged
matrix element

hMijðx1; x2ÞTλ;Li ¼ ΨTλ;Lðx1 − x2ÞDðx1; x2Þδij: ð6Þ

For the sake of simplicity, we will denote the piece in front
of δij as Mðx1; x2ÞTλ;L. The dipole amplitude is defined as

Dðx1; x2Þ ¼ 1 −
1

3
htrðV†ðx1ÞVðx2Þi; ð7Þ

and contains information on the spatial structure of the
target.
In order to compute the cross section, we express the

amplitude in momentum space

hM̃ijðp1; p2ÞTλ;Li

¼
Z

d2x1d2x2e−ip1·x1e−ip2·x2MTλ;Lðx1; x2Þδij; ð8Þ

where p1 and p2 are the transverse momenta of quark jet
and antiquark jet, respectively.
Before presenting the differential cross section for

coherent diffractive dijet production, it is useful to intro-
duce the set of coordinates

r ¼ x1 − x2;

b ¼ 1

2
ðx1 þ x2Þ; ð9Þ

the dipole and impact parameter vectors, respectively. Their
conjugates are

P ¼ 1

2
ðp1 − p2Þ;

Δ ¼ p1 þ p2; ð10Þ

characterizing the dijet transverse momentum and momen-
tum transfer (or nucleus recoil momentum), respectively.
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The differential cross section for coherent diffractive
dijet production in electron-nucleus (-proton) scattering is
then given by

dσTλ;L
dΩ

¼ Ncjqþjδðqþ − pþ
0 − pþ

1 Þ
2ð2πÞ5 jhM̃Tλ;Lij2; ð11Þ

where dΩ ¼ ðdpþ
0 =p

þ
0 Þðdpþ

1 =p
þ
1 Þd2Pd2Δ, and

hM̃Tλ;Li ¼
Z

d2rd2be−iP·re−iΔ·bΨTλ;LðrÞDðr; bÞ: ð12Þ

Here we defined

Dðr;bÞ ¼ 1 −
1

3
htrðV†ðbþ r=2ÞVðb − r=2Þi: ð13Þ

Combining above results, we arrive at expressions for the
differential cross section for coherent diffractive dijet
production for longitudinally and transversely polarized
photons. We sum over helicities and colors (and for the
transverse case over the two possible polarizations λ)

dσL
dΩ

¼ 8NcαEM
ð2πÞ6 Z2

fQ
2z30z

3
1

× δð1 − z0 − z1ÞjF̃ðP;ΔÞj2; ð14Þ

dσT
dΩ

¼ 2NcαEM
ð2πÞ6 Z2

fz0z1δð1 − z0 − z1Þ½ε2fζ2j∂PG̃ðP;ΔÞj2

þm2
fjF̃ðP;ΔÞj2�; ð15Þ

where we defined ζ2 ¼ z20 þ z21.
The functions F̃ðP;ΔÞ and G̃ðP;ΔÞ are given by

F̃ðP;ΔÞ ¼
Z

d2rd2be−iP·re−iΔ·bK0ðϵfrÞDðr; bÞ; ð16Þ

G̃ðP;ΔÞ ¼
Z

d2rd2be−iP·re−iΔ·b
K1ðϵfrÞ

r
Dðr; bÞ: ð17Þ

These functions depend on the details of the light-cone
wave functions and the dipole amplitude.

III. RELATION BETWEEN MODES OF THE
DIPOLE AMPLITUDE AND THE DIFFRACTIVE

DIJET CROSS SECTION

In this section, we derive formulas connecting the modes
of the angular correlation of the dipole amplitude, and
the corresponding modes of the scattering amplitude in
momentum space, and the differential dijet cross section.
If the target is isotropic, the differential cross section will

only depend on the magnitudes P, Δ, and the relative angle
θPΔ ¼ θP − θΔ. The main goal of this work is to describe
the dependence of the diffractive dijet differential cross

section on these three variables and provide analytic insight
into the relation between the target and projectile properties
and experimental observables.
In order to study the angular dependence, it is useful to

decompose the differential cross section in Fourier modes

dσLðTÞ
dΩ

¼ δð1 − z0 − z1Þ

×

�
dσLðTÞ;0
dΩ

þ 2
dσLðTÞ;2
dΩ

cos 2θPΔ þ � � �
�
: ð18Þ

The first term dσLðTÞ;0=dΩ is the differential cross section
averaged over angle θPΔ (from now on we will refer to it
simply as differential cross section). The second term
dσLðTÞ;2=dΩ is the elliptic anisotropy emerging from
angular correlations between P and Δ.
Any momentum correlations are encoded in the func-

tions F̃ðP;ΔÞ and G̃ðP;ΔÞ, and they arise from the angular
correlations between r and b in the dipole amplitude via
Fourier transform. In order to make the connection between
Fourier modes of the dipole amplitude and of the functions
F̃ and G̃more explicit, we decompose the dipole amplitude
into Fourier modes

Dðr; bÞ ¼ D0ðr; bÞ þ 2D2ðr; bÞ cos 2θrb þ � � � ð19Þ

We can then evaluate the modes of F̃ðP;ΔÞ and G̃ðP;ΔÞ
using the following mathematical relation:

F̃kðP;ΔÞ
ð2πÞ2 ¼ ð−1Þk

Z
rdrbdbJkðPrÞJkðΔbÞFkðr; bÞ; ð20Þ

with equivalent expressions for G̃.
This general result shows a one-to-one correspondence

between modes of a function and modes of its Fourier
transform. The derivation of Eq. (20) can be found in
Appendix A.
For our particular definition of F̃ [Eq. (16)], one has

F0ðr; bÞ ¼ K0ðεfrÞD0ðr; bÞ
F2ðr; bÞ ¼ K0ðεfrÞD2ðr; bÞ ð21Þ

and similar expressions for G0 and G2.

A. Dipole without angular correlations

We first review results in the absence of angular
correlations. In this case, one has F̃ðP;ΔÞ ¼ F̃0ðP;ΔÞ
and G̃ðP;ΔÞ ¼ G̃0ðP;ΔÞ. Therefore, using the relation
in Eq. (20) for k ¼ 0, we have

FARID SALAZAR and BJÖRN SCHENKE PHYS. REV. D 100, 034007 (2019)

034007-4



F̃ðP;ΔÞ
ð2πÞ2 ¼

Z
rdrbdbJ0ðPrÞJ0ðΔbÞK0ðϵfrÞD0ðr; bÞ;

G̃ðP;ΔÞ
ð2πÞ2 ¼

Z
rdrbdbJ0ðPrÞJ0ðΔbÞ

K1ðϵfrÞ
r

D0ðr; bÞ:

ð22Þ

The formulas above combined with Eqs. (14) and (15)
result in

dσL
dΩ

¼ δð1 − z0 − z1Þ
8NcαEM
ð2πÞ2 Z2

fQ
2z30z

3
1

×

����
Z

rdrbdbJ0ðPrÞJ0ðΔbÞK0ðϵfrÞD0ðr; bÞ
����2;
ð23Þ

dσT
dΩ

¼ δð1− z0 − z1Þ
2NcαEM
ð2πÞ2 Z2

fz0z1

×

�
ε2fζ

2

����
Z

rdrbdbJ0ðPrÞJ0ðΔbÞK0ðϵfrÞD0ðr;bÞ
����2

þm2
f

����
Z

rdrbdbJ1ðPrÞJ0ðΔbÞ
K1ðϵfrÞ

r
D0ðr;bÞ

����2
	
;

ð24Þ

where in the second expression we have used the identity
for the derivative of the Bessel function of the first kind
J00ðzÞ ¼ −J1ðzÞ. These expressions have been previously
obtained in [10].

B. Dipole with angular correlations

We proceed to compute the differential cross sections in
the presence of angular correlations in the dipole ampli-
tude. This is one of the main results of our paper. We will
find corrections to Eqs. (23) and (24), and most importantly
we will derive an expression for the elliptic anisotropy
[c.f. Eq. (18)]. We divide this section in two parts,
discussing longitudinally and transversely polarized pho-
tons separately.

1. Longitudinally polarized photon

In the presence of angular correlations in the dipole
amplitude, we have

F̃ðP;ΔÞ ¼ F̃0ðP;ΔÞ þ 2F̃2ðP;ΔÞ cos 2θPΔ þ � � � ; ð25Þ

where

F̃0ðP;ΔÞ
ð2πÞ2 ¼

Z
rdrbdbJ0ðPrÞJ0ðΔbÞK0ðεfrÞD0ðr; bÞ;

ð26Þ

F̃2ðP;ΔÞ
ð2πÞ2 ¼

Z
rdrbdbJ2ðPrÞJ2ðΔbÞK0ðεfrÞD2ðr; bÞ;

ð27Þ

where D0ðr; bÞ and D2ðr; bÞ are defined in Eq. (19).
This explicitly shows that the coordinate space angular

correlations in the dipole amplitude produce angular
correlations in momentum space. The expressions for the
differential cross section and the elliptic anisotropy for
longitudinally polarized photons are then

dσL;0
dΩ

¼ 8NcαEM
ð2πÞ6 z30z

3
1Q

2Z2
fðjF̃0j2 þ 2jF̃2j2Þ;

dσL;2
dΩ

¼ 8NcαEM
ð2πÞ6 z30z

3
1Q

2Z2
fℜð2F̃0F̃�

2Þ: ð28Þ

The second term in the first line constitutes a small
correction to the differential cross section (averaged over
angle) due to angular correlations. The second line shows
the elliptic anisotropy generated by angular correlations in
the dipole amplitude.

2. Transversely polarized photon

To compute the cross section for transversely polarized
photons, we follow a similar approach to that of the
longitudinal case. In addition to F̃, we now also need to
consider G̃,

G̃ðP;ΔÞ ¼ G̃0ðP;ΔÞ þ 2G̃2ðP;ΔÞ cos 2θPΔ þ � � � ; ð29Þ

where

G̃0ðP;ΔÞ
ð2πÞ2 ¼

Z
rdrbdbJ0ðPrÞJ0ðΔbÞ

K1ðεfrÞ
r

D0ðr; bÞ;

ð30Þ

G̃2ðP;ΔÞ
ð2πÞ2 ¼

Z
rdrbdbJ2ðPrÞJ2ðΔbÞ

K1ðεfrÞ
r

D2ðr; bÞ:

ð31Þ

To evaluate the expression for the transverse cross
section in Eq. (15), we need to compute the derivative
of G̃ in Eq. (29).
Using the expression for the gradient in polar coordi-

nates: ∂P ¼ P̂∂P þ θ̂ 1
P ∂θ, we find

∂PG̃ ¼ ½∂PG̃0 þ 2ð∂PG̃2Þ cos 2θPΔ�P̂

−
4G̃2

P
sin 2θPΔθ̂: ð32Þ
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Keeping terms only up to the second harmonic, we have

j∂PG̃j2 ¼ j∂PG̃0j2 þ 2j∂PG̃2j2 þ 8jG̃2j2=P2

þ 4ℜð∂PG̃0∂PG̃
�
2Þ cos 2θPΔ þ � � � ð33Þ

The derivatives ∂PG̃0 and ∂PG̃2 can be computed using the
identities for the derivatives of Bessel functions: J00ðzÞ ¼
−J1ðzÞ and J02ðzÞ ¼ − 1

2
ðJ3ðzÞ − J1ðzÞÞ,

∂PG̃0

ð2πÞ2 ¼ −
Z

rdrbdbJ1ðPrÞJ0ðΔbÞK1ðεfrÞD0ðr; bÞ;

ð34Þ

∂PG̃2

ð2πÞ2 ¼ −
Z

rdrbdb

�
J3ðPrÞ − J1ðPrÞ

2

�
J2ðΔbÞ

× K1ðεfrÞD2ðr; bÞ: ð35Þ

The components of the differential cross section thus take
the following form:

dσT;0
dΩ

¼ 2NcαEM
ð2πÞ6 Z2

fz0z1

×

�
ε2fζ

2

�
j∂PG̃0j2 þ 2j∂PG̃2j2 þ 8

���� G̃2

P

����2
�

þm2
fðjF̃0j2 þ 2jF̃2j2Þ

	
;

dσT;2
dΩ

¼ 2NcαEM
ð2πÞ6 Z2

fz0z1fε2fζ2ℜð2∂PG̃0∂PG̃
�
2Þ

þm2
fℜð2F̃0F̃�

2Þg: ð36Þ

As in the case of longitudinally polarized photons, the
additional terms in the (angle averaged) differential cross
section provide a small correction. Again, the elliptic
anisotropy arises from angular correlations in the dipole
amplitude.
To proceed further, one needs an explicit form of the

dipole amplitude. In the next section, we introduce two
specific models. We will then investigate analytic proper-
ties of above cross sections in Sec. V. In Sec. VI, we will
evaluate the cross sections numerically and present detailed
results as functions of P and Δ.

IV. REVIEW OF DIPOLE MODELS

The analytic properties of the differential cross sections
and elliptic anisotropies in Eqs. (28) and (36) depend on the
light-cone wave function and the dipole amplitude, which
encode information on the projectile and target. Because in
this work we focus on understanding the analytic structure
of the diffractive dijet cross sections, we will not perform
complex numerical calculations, as done, e.g., in [11], but

introduce relatively simple models for the dipole amplitude.
We focus on dipole amplitudes of the form

Dðr; bÞ ¼ 1 − e−N 0ðr;bÞ−N 2ðr;bÞ cos 2θrb : ð37Þ
This parametrization is appropriate for small dipole sizes
compared to the color charge density gradient of the target.
The second term in the exponent contains the angular
correlations between r and b, which will ultimately produce
the angular correlations in the cross sections.
The dipole in Eq. (37) admits a simple form for the

modes D0 and D2, introduced in Eq. (19). By proper
projection and using the integral representations of modi-
fied Bessel functions of the first kind, I0ðzÞ and I1ðzÞ
[Eq. (B3)], we find

D0ðr; bÞ ¼ 1 − e−N 0ðr;bÞI0ðN 2ðr; bÞÞ;
D2ðr; bÞ ¼ e−N 0ðr;bÞI1ðN 2ðr; bÞÞ: ð38Þ

In the limit of small dipole sizes, we have

D0ðr; bÞ ≈N 0ðr; bÞ;

D2ðr; bÞ ≈
1

2
N 2ðr; bÞ: ð39Þ

In the following, we introduce explicit forms forN 0 and
N 2 based on the Golec-Biernat Wusthoff and impact
parameter dependent McLerran Venugopalan model.

A. Golec-Biernat Wusthoff model

A very simple model to describe the dipole amplitude is
the Golec-Biernat Wusthoff (GBW) model [12,13], where,
after introducing an impact parameter dependence, N 0 in
Eq. (37) takes the phenomenologically motivated form

N 0ðr; bÞ ¼
1

4
Q2

sr2TðbÞ; ð40Þ

with Qs the saturation scale at zero impact parameter, and
TðbÞ the transverse spatial profile of the target, which we
assume to be isotropic.
The GBW model does not contain angular correlations

between impact parameter and dipole orientation. One
could add the angular correlations by hand as was done
in [10] by choosing, e.g.,

N 2ðr; bÞ ¼
c
4
Q2

sr2TðbÞ; ð41Þ

where c characterizes the strength of angular correla-
tions (−1 < c < 1).

B. Impact parameter dependent McLerran
Venugopalan model

In [17], the authors computed the dipole amplitude for
an IP-MV model.
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They found a dipole amplitude of the form of Eq. (37)
with

N 0ðr; bÞ ¼
1

4
Q2

sr2 log

�
1

r2m2
þ e

�
TðbÞ þ � � � ð42Þ

N 2ðr; bÞ ¼
1

4
Q2

sr2
1

6m2

�
d2

db2
−
1

b
d
db

�
TðbÞ þ � � � ; ð43Þ

where m is an infrared regulator, and the factor of e in the
logarithm is included to regulate the divergence for dipoles
of sizes larger than 1=m. We provide details on the
derivation of (42) and (43) in Appendix D.
The ellipses in Eqs. (42) and (43) denote corrections

which can be ignored if the gradients are slowly varying
with respect to the confinement scale 1=m. The logarithmic
factor in N 0 arises from the nonlocal interactions of the
dipole with the color charges. (A nonlocal operation is
involved in determining the Wilson lines from the color
charges. See Appendix D.)
It is important to point out that the angular correlations

N 2 are proportional to gradients of the color charge
density. This is because the dipole will probe regions of
different color charge density depending on its orientation
relative to the impact parameter vector. The larger the
variation of the color charge density around b, the larger
the angular modulations encoded in N 2. Furthermore, the
angular correlations are suppressed for large confining
scale m. As m → 0,N 2 does not diverge, but m is replaced
as regulator by the finite system size, or 1=R (see details in
Appendix D).

V. ANALYTIC PROPERTIES

Recently, coherent diffractive dijet production has been
studied numerically. Some interesting properties of the
differential cross section and elliptic anisotropy were
observed [11]. Our goal is to analyze the properties of
the dijet production cross sections and their angular
dependence based on their analytic structure. In particular,
we will investigate the dependence on the saturation scale
Qs, as well as the photon virtualityQ2, photon polarization,
(anti-)quark massmf, and the geometry of the target’s color
charge density.
We will begin our analysis with the GBW model for

which the analytic calculations are simpler, and the results
will reveal interesting properties of the differential cross
section and elliptic anisotropy. We then move to the more
complex IP-MV model in order to study a more realistic
scenario.

A. Golec-Biernat Wusthoff model

The simplest model we consider is the GBW model.
Even for this simple case the remaining integrals in
Eqs. (26), (27), (34), and (35) cannot be solved analytically

in general. However, in the limit where the saturation scale
Qs is much smaller than the photon virtuality or quark
mass, analytic expressions can be found. We present results
in this limit in the next section and discuss the conse-
quences of relaxing them thereafter.

1. Large photon virtuality or massive quarks: Qs ≪ εf
If Qs ≪ εf, the Bessel functions K0 and K1 suppress

contributions from r≳ 1=Qs in the r integrals in Eqs. (26),
(27), (34), and (35). For r≲ 1=εf ≪ 1=Qs, one can expand
the dipole to quadratic order [Eq. (39)] and obtain

D0ðr; bÞ ≈
1

4
Q2

sr2TðbÞ;

D2ðr; bÞ ≈
c
8
Q2

sr2TðbÞ: ð44Þ

In this limit, the dependence of the dipole amplitude on r
and b factorizes, and one finds the following expressions
for the differential cross sections (we provide further details
on the calculation of the following results in Appendix C):

dσL;0
dΩ

¼ 8NcαEM
ð2πÞ4 Z2

fQ
2z30z

3
1Q

4
s

ðP2 − ε2fÞ2
ðP2 þ ε2fÞ6

jT̃ðΔÞj2; ð45Þ

dσT;0
dΩ

¼ 2NcαEM
ð2πÞ4 Z2

fz0z1Q
4
s

×

�
4ε2fζ

2P2ε2f þm2
fðε2f − P2Þ2

ðP2 þ ε2fÞ6
	
jT̃ðΔÞj2; ð46Þ

and the elliptic anisotropies

dσL;2
dΩ

¼ −
8NcαEM
ð2πÞ4 z30z

3
1Q

2Z2
fQ

4
s

× 2c
ðP2 − ε2fÞP2

ðP2 þ ε2fÞ6
T̃ðΔÞT̃2ðΔÞ; ð47Þ

dσT;2
dΩ

¼ 2NcαEM
ð2πÞ4 Z2

fz0z1ðε2fζ2 −m2
fÞQ4

s

× 2c
ðP2 − ε2fÞP2

ðP2 þ ε2fÞ6
T̃ðΔÞT̃2ðΔÞ; ð48Þ

where T̃2ðΔÞ is the second order Hankel transform of TðbÞ,
i.e., T̃2ðΔÞ ¼ 2π

R
bdbJ2ðΔbÞTðbÞ.

As expected from the factorization in b and r, in this
limit the P and Δ dependencies factorize, and both the
differential cross section and elliptic anisotropy grow as
Q4

s . This growth will eventually be tamed by saturation
effects as we discuss in the next subsection.
The P dependence probes the projectile—it is sensitive

to the photon’s polarization and virtuality, as well as
the quark mass encoded in εf. The P dependence of the

DIFFRACTIVE DIJET PRODUCTION IN IMPACT PARAMETER … PHYS. REV. D 100, 034007 (2019)

034007-7



differential cross section for longitudinally polarized pho-
tons develops a dip at P ¼ εf. The location of the dip
depends directly on the virtuality Q2 and the mass mf of
the quark. This feature is absent in the transversely
polarized photon case, which has two contributions, only
one of which exhibits a dip. The elliptic anisotropies for
both polarizations change sign at P ¼ εf, a feature also
observed in the IPSat model in [11]. The sign of the
elliptic anisotropy in the transverse case depends on the
ratio εfζ=mf.
At large P the differential cross section and elliptic

anisotropy decay with the power law 1=P8, while for small
P the former is constant, and the latter vanishes. Similarly,
at Q2 ≫ P2, both cross sections scale as Q−6, while for
smaller Q2 ≪ P2, they scale as Q2. Both elliptic anisotro-
pies scale as Q−8 for Q2 ≫ P2 and Q2 for Q2 ≪ P2 in the
GBW model. We note that detailed scaling relations with
Q2 and the mass number A for the related process of
diffractive vector meson production were discussed in [45].
Information on the target is encoded in theΔ dependence of
the differential cross section, which involves the Fourier
transform of the color charge density profile. The Δ
dependence of the elliptic anisotropy provides access to
target properties via the product T̃ðΔÞT̃2ðΔÞ. This particu-
lar dependence on the target geometry is a consequence of
how we introduced the angular dependence in the GBW
model in Eq. (41). In the more realistic IP-MV model
discussed below, the elliptic anisotropy will only depend
on T̃ðΔÞ.

2. Approaching the saturated regime: Qs ∼ εf
The case where the saturation scale is of the same order

as εf is more difficult to study analytically, as one cannot
expand the dipole amplitude to quadratic order, because
dipoles of size r ∼ 1=Qs will contribute to the cross
sections. One should use the full expressions in Eq. (38)
in which the r and b dependencies do not factorize.
Therefore, the P dependence and Δ dependence of the
differential cross section and elliptic anisotropy no longer
factorize either.
For fixed dipole size r, the dipole amplitude no longer

grows asQ2
s , but it saturates to unity, thus slowing down the

growth of the differential cross section and elliptic anisot-
ropies as the saturation scale Qs is increased.
While in the high virtuality or large quark mass limit the

dominant momentum scale is εf, we now have a competi-
tion between the two scales Qs and εf. This will be
reflected in the Qs dependence of observables. For in-
stance, the dip in P for the differential cross section in the
longitudinally polarized case and the change in sign in the
elliptic anisotropy will also be sensitive to the saturation
scale Qs. Their locations will shift to larger values of P as
the saturation scales increases. This can also be justified
mathematically by observing that the location of the

maximum of the product of dipole amplitude and light-
cone wave function for longitudinally polarized photons,

K0ðrÞð1 − e−
1
4
r2Q2

sTðbÞÞ; ð49Þ

will shift towards smaller values of r asQs increases. Thus,
the Fourier transform of this product will have a zero at a
larger value of P, causing the shift of the dip.
Another interesting feature is that the dipole amplitude is

no longer proportional to the target color charge profile
TðbÞ, thus producing a more complex Δ dependence of the
differential cross section and elliptic anisotropy. The Δ
dependence will not only depend on the geometry of the
profile but also on saturation effects.

B. Impact parameter dependent McLerran
Venugopalan model

In this section, we consider an approximation based on a
parametric estimate of the effect of the logarithm in the IP-
MV model, which distinguishes the outcome of the model
from the result in the previously discussed GBWmodel. To
gain more insight into the features of this model, a
numerical study is necessary, which will be presented in
the next section.

1. Large photon virtuality or massive quarks: Qs ≪ εf ,

As done in the GBWmodel above, we expand the dipole
for small sizes r and arrive at

D0ðr; bÞ ≈
1

4
Q2

sr2 log

�
1

m2r2
þ e

�
;

D2ðb; rÞ ≈
1

8
Q2

sr2
1

6m2

�
d2

db2
−
1

b
d
db

�
TðbÞ: ð50Þ

The presence of the logarithmic factor in D0 makes the
analytic evaluation of F̃0 (26) and ∂PG̃0 (34) difficult. In
Appendix C, we argue that the effect of the logarithmic
factor is to enhance the value of F̃0 and ∂PG̃0 and to shift
the zero of F̃0 to a larger value of P [see Eqs. (C16) and
(C17)]. We arrive at approximate expressions for the
differential cross sections,

dσL;0
dΩ

≈
8NcαEM
ð2πÞ4 Z2

fQ
2z30z

3
1Q

4
s jT̃ðΔÞj2

×
C2
1ðP2 − ξ2ε2fÞ2
ðP2 þ ξ2ε2fÞ6

; ð51Þ

dσT;0
dΩ

≈
2NcαEM
ð2πÞ4 Z2

fz0z1Q
4
sε

2
fjT̃ðΔÞj2

×
4C2

2ε
2
fζ

2P2ξ2ε2f þ C2
1m

2
fðξ2ε2f − P2Þ2

ðP2 þ ξ2ε2fÞ6
; ð52Þ
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where ξ characterizes the shift, and C1 and C2 are the
enhancement factors. In Appendix C, we show that ξ > 1
and C2 > C1 > 1.
Similarly, one finds that the elliptic anisotropies are

given by

dσL;2
dΩ

≈ −
8NcαEM
ð2πÞ4 z30z

3
1Q

2Z2
fQ

4
s
Δ2jT̃ðΔÞj2

3m2

×
C1ðP2 − ξ2ε2fÞP2

ðP2 þ ε2fÞ3ðP2 þ ξ2ε2fÞ3
; ð53Þ

dσT;2
dΩ

≈
2NcαEM
ð2πÞ4 Z2

fz0z1Q
4
s
Δ2jT̃ðΔÞj2

3m2
P2

× ½C2ζ
2ε2fξðP2 − ε2fÞ − C1m2

fðP2 − ξ2ε2fÞ�
× ½ðP2 þ ε2fÞðP2 þ ξ2ε2fÞ�−3: ð54Þ

As in the GBW model for Qs ≪ εf, the P and Δ
dependencies factorize. The P dependence is sensitive to
the light-cone wave function and the logarithm in the dipole
amplitude, as manifest in the dependence on ξ. In the
longitudinal case, the differential cross section displays a
dip at P ¼ ξεf (greater value of P compared to GBW—a
similar behavior was observed in the location of the dip in
the IPSat vs CGC results in [11]). As in the GBW model,
the transverse cross section does not display a dip.
An interesting feature of the IP-MV model in this limit is

that the elliptic anisotropy is highly sensitive to the infrared
regulator m. One should mention that these formulas break
down when m ≪ Δ, since Eq. (43) has been obtained
assuming small momentum transfer kicks to the dipole (see
also last paragraph of Appendix D).
The elliptic anisotropy for the longitudinal photon

changes sign at P ¼ ξεf (greater value of P compared to
GBW, the shift was also seen in [11] from IPSat to CGC.).
The behavior of the elliptic anisotropy for the transverse

polarization is more subtle. Let us assume that ξ ∼ 1.7 and
C2=C1 ∼ 1.2 (see Appendix C). At small P, we have

dσT;2
dΩ

ðP ≪ εfÞ > 0 ⇔ ðζ2ε2fÞ=m2
f < ξC1=C2 ∼ 1.4: ð55Þ

This implies that at low Q2, the elliptic anisotropy is
positive for small P. In contrast, for sufficiently large Q2,
the anisotropy at small P is negative.
At large P, we have

dσT;2
dΩ

ðP ≫ εfÞ > 0 ⇔ m2
f=ðζ2ε2fÞ < ξC2=C1 ∼ 2: ð56Þ

For our choice of ξ and C2=C1, this condition is always
satisfied, and thus one expects the elliptic anisotropy to
remain positive. Therefore, for transverse polarization, we
expect a change in sign in the elliptic anisotropy from

negative to positive for high virtuality Q2. For low Q2, we
expect the elliptic anisotropy to be positive for all P. Such
behavior has been observed in the recent numerical study in
[11]. We observe the same scaling with Q2 and P for the
differential cross section and elliptic anisotropy as in the
GBW model.
The Δ dependence of the differential cross section is

similar to that of the GBW case; the Fourier transform T̃ðΔÞ
of the color charge density appears and introduces the
sensitivity to the details of the geometry of the target’s color
charge density. The elliptic anisotropy differs from that of
GBW, in which the angular correlations where included by
hand. In the IP-MV case, where the angular correlations
emerge as a result of the finite size gradients of the profile,
we only find a dependence on T̃ðΔÞ, not on T̃2ðΔÞ.
Equations (53) and (54) also show that as the momentum
transfer Δ goes to zero (exact correlation limit), the elliptic
anisotropy vanishes. The position of the maximum as a
function of Δ will depend on the details of the profile.

2. Approaching the saturated regime Qs ∼ εf
Similarly, to the case of the GBW model, we expect the

P dependence and Δ dependence of the differential cross
section and elliptic anisotropy not to factorize, and their
growth with Qs to slow down, as we move away from the
limit discussed above. Compared to that limit, the P-
dependent longitudinal differential cross section will
develop a dip at larger values of P, and the elliptic
anisotropy will change sign at larger values of P as well.
The conditions for the elliptic anisotropy for the trans-

versely polarized photon in Eqs. (55) and (56) will be
modified as Qs increases. The numerics will show that the
change in sign in this case will happen for larger virtuality
Q2. The Δ dependence of the differential cross section and
elliptic anisotropy will encode both the geometry of the
target color charge profile and the saturation scale, both
interlaced by the exponent in the dipole amplitude. These
effects, due to the emergence of saturation, will be studied
numerically in the next section.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the semianalytic
formulas for the differential cross section dσ0=dΩ and the
elliptic anisotropy dσ2=dΩ in Eqs. (28) and (36) using the
dipole amplitude of the impact parameter dependent MV
model of Eqs. (42) and (43) together with the projection
formulas in Eq. (38). In the first two subsections, we study
the P and Δ dependence. We perform our analysis for both
protons and gold nuclei, and two different photon virtual-
ities, Q2 ¼ 1 and 10 GeV2. We further employ mf ¼
1.28 GeV for the mass of the charm quark. We choose
m ¼ 0.4 GeV as our infrared regulator. For simplicity, our
analysis is performed at fixed z0 ¼ z1 ¼ 0.5, which
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dominates the bulk of the cross section and could be fixed
in experiments as well.
For our study of the proton, we useQ2

sp ¼ 0.5 GeV2 and
a Gaussian target profile

TpðbÞ ¼ e−b
2=ð2R2

pÞ; ð57Þ
with Rp ¼ 0.4 fm, which is the gluonic radius of the
proton. The normalization is chosen such that TpðbÞ ¼ 1

at b ¼ 0. In this case, the value of Qs quoted is that in the
center of the proton.
For our analysis of the nucleus, the thickness function TA

in the transverse plane is obtained by the integration of a
Woods-Saxon distribution along the longitudinal direction

TAðbÞ ¼ NA

Z
dzρA


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p �
; ð58Þ

where the Woods-Saxon distribution is given by

ρAðrÞ ¼
1

1þ eðr−RAÞ=aA ; ð59Þ

and NA is chosen such that TAð0Þ ¼ 1. For a gold nucleus
(A ¼ 197), we choose RA ¼ 6.37 fm and aA ¼ 0.535 fm.
The saturation scale is Q2

sA ¼ 1.09 GeV2. Once again, the
normalization is such that theQs quoted is that in the centerof
the nucleus. The relation between proton saturationQ2

sp and
nuclear saturation scale Q2

sA is discussed in Appendix E.
We will discuss how to use a varying mass number and

Bjorken x to uncover effects of saturation in the differential
dijet cross section in Sec. VI C.

A. P dependence

In this section, we study the P dependence of the
differential cross section and elliptic anisotropy at fixed
momentum transfer Δ ¼ 0.1 GeV. In all plots, we display
the longitudinal, transverse, and total cross sections
separately.

1. Differential cross section dσ0=dΩ
We first study the differential cross sections, shown in

Figs. 1–4. The most salient feature is the dip in the
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Proton

Q2 = 1.0 GeV2

FIG. 1. Differential cross section dσ0=dΩ as a function of P for
a proton target. Here Δ ¼ 0.1 GeV and Q2 ¼ 1.0 GeV2.
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FIG. 2. Differential cross section dσ0=dΩ as a function of P for
a proton target. Here Δ ¼ 0.1 GeV and Q2 ¼ 10.0 GeV2.
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FIG. 3. Differential cross section dσ0=dΩ as a function of P for
a gold target. Here Δ ¼ 0.1 GeV and Q2 ¼ 1.0 GeV2.
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FIG. 4. Differential cross section dσ0=dΩ as a function of P for
a gold target. Here Δ ¼ 0.1 GeV and Q2 ¼ 10.0 GeV2.
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longitudinal cross section in all four cases. The location of
the dip shifts to larger momentum with increasing photon
virtualityQ2. The location of the dip is at larger momentum
P for the gold target, compared to the proton, because the
saturation scale Qs is larger for the former, and in general
both Qs and Q2 affect the P dependence of the cross
section, as discussed in the previous section.
In all four cases, the transverse components dominate for

most values of P. However, we see that the difference
between the longitudinal and transverse cross sections
decreases with increasing photon virtuality. At small P,
the longitudinal component dominates for Q2 ¼ 10 GeV2

The cross sections decrease with photon virtuality Q2 as
this restricts the size of the dipoles contributing to the
scattering. Furthermore, they are more than 2 orders of
magnitude larger for gold nuclei compared to protons,
because of the larger size of the target and the increased
saturation scale (Q2

s ∼ A1=3).
Observe that despite differences in the specific details,

i.e., the precise location of the dip, ordering of transverse to
longitudinal components, etc., the structure of the results is

similar in all four cases, owing to the fact that the P
dependence is most sensitive to the form of the light-cone
wave functions (projectile) and less sensitive to the target
under consideration.

2. Elliptic anisotropy dσ2=dΩ
The elliptic anisotropy dσ2=dΩ is shown in Figs. 5–8,

using a symmetrical logarithmic scale to display both
negative and positive values.
The magnitude of the elliptic anisotropy follows a

similar pattern to that of the differential cross section,
decreasing with increasing Q2, and increasing with larger
target size and saturation scale Qs. In all four cases, one
observes a maximum at P ≈ 1.0 GeV, with only a weak
dependence of this location on virtuality or saturation scale
(which varies with the choice of target). As expected, the
elliptic anisotropy vanishes at large values of P and
at P ¼ 0 GeV.
For the longitudinally polarized photon, the elliptic

anisotropy changes sign in all four cases. As anticipated
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FIG. 5. Elliptic anisotropy dσ2=dΩ as a function of P for a
proton target. Here Δ ¼ 0.1 GeV and Q2 ¼ 1.0 GeV2.
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FIG. 6. Elliptic anisotropy dσ2=dΩ as a function of P for a
proton target. Here Δ ¼ 0.1 GeV and Q2 ¼ 10.0 GeV2.
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FIG. 7. Elliptic anisotropy dσ2=dΩ as a function of P for a gold
target. Here Δ ¼ 0.1 GeV and Q2 ¼ 1.0 GeV2.
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FIG. 8. Elliptic anisotropy dσ2=dΩ as a function of P for a gold
target. Here Δ ¼ 0.1 GeV and Q2 ¼ 10.0 GeV2.
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from our analytic investigation, this happens at values of P
that coincide with the location of the dip in dσ0=dΩ, which
shifts to larger values of P as the virtuality Q2 and
saturation scales Qs increase.
For the transversely polarized case, at low virtuality Q2

the elliptic anisotropy remains positive (Figs. 5 and 7),
while at large virtuality Q2, the elliptic anisotropy
changes sign (Fig. 6), as discussed in the last paragraph
of Sec. V B. Since Qs is larger for the gold nucleus, the
used Q2 is not large enough to cause a change of sign in
the result shown in Fig. 8. However, as one increases the
virtuality further, the anticipated sign change will appear:
we have checked that dσT;2=dΩ changes sign as a function
of P for Q2 ≳ 12 GeV2.
The transversely polarized contribution to the elliptic

anisotropy dominates at low Q2, but at high Q2 we observe
that the longitudinal piece starts to dominate for values of P
below 2 GeV.
The order of magnitude for the relative total elliptic

anisotropy is about 0.1% for the chosen value of Δ ¼
0.1GeV is in agreement with the results in [11].

B. Δ dependence

In this section, we study the Δ dependence of the
differential cross section dσ0=dΩ and elliptic anisotropy
dσ2=dΩ at fixed P ¼ 1.0 GeV. In all plots, we display the
longitudinal, transverse, and total cross sections separately.

1. Differential cross section dσ0=dΩ
We present the Δ dependence of the cross section for

diffractive dijet production off a proton in Figs. 9 and 10 for
Q2 ¼ 1 and 10 GeV2, respectively. In both cases, one
observes diffractive dips at values comparable to the
inverse size of the proton 1=Rp. This is not purely a
geometric effect, but relies on the presence of saturation.
For example, the results cannot be anticipated from the
nonsaturated regime [quadratic expansion of the dipole
amplitude, e.g., Eqs. (51) and (52)], where one would
obtain a smooth Δ dependence from the used Gaussian
profile in coordinate space. In fact, this behavior cannot
be obtained in any finite order Taylor expansion of the
dipole amplitude. It is a consequence of the (resummed)
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FIG. 10. Differential cross section dσ0=dΩ as a function of Δ
for a proton target. Here P ¼ 1.0 GeV and Q2 ¼ 10.0 GeV2.
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FIG. 11. Differential cross section dσ0=dΩ as a function of
Δ for a gold target. Here P ¼ 1.0 GeV and Q2 ¼ 1.0 GeV2.
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FIG. 12. Differential cross section dσ0=dΩ as a function of Δ
for a gold target. Here P ¼ 1.0 GeV and Q2 ¼ 10.0 GeV2.
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FIG. 9. Differential cross section dσ0=dΩ as a function of Δ for
a proton target. Here P ¼ 1.0 GeV and Q2 ¼ 1.0 GeV2.
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multiple scattering of the dipole, or unitarity of the dipole
amplitude [10,46]. Consequently, the location of the dip
depends on Qs, which we will demonstrate explicitly in
the next subsection. As before, one further observes in
Figs. 9 and 10 that with increasing Q2 the difference
between cross sections for transverse and longitudinal
polarizations decreases.
Results for a gold nucleus target are presented in Figs. 11

and 12. The various diffractive dips occur at multiples of
∼3=RA ∼ 0.1 GeV (the factor of 3 is closely related to the
zeroes of the Bessel function J0), where RA is the size of the
nucleus. The locations of the diffractive dips also depend
on aA (the skin depth of the nucleus). Unlike for the
(Gaussian) proton, these dips are present due to the
geometry of the nucleus. Nonetheless, their locations are
also modified by the unitarization of the dipole amplitude.
We have checked that in the absence of saturation (expan-
sion to quadratic order), the dips shift to larger values of Δ.
At large Q2, the difference between the longitudinal and
transverse components of the differential cross section is
reduced.

2. Elliptic anisotropy dσ2=dΩ
The dependence of the elliptic anisotropy on the

momentum transfer Δ is shown for a proton target in
Figs. 13 and 14 for Q2 ¼ 1 and 10 GeV2, respectively.
Unlike the differential cross section, here we only show
results for Δ ≤ 1.0 GeV. This is because the validity of our
approximation breaks down for the elliptic anisotropy at
large Δ (see the discussion at the end of Appendix D). The
anisotropy increases rapidly with Δ and reaches a maxi-
mum at Δ ≈ 0.5 GeV, which is approximately the inverse
gluonic size of the proton. At Q2 ¼ 10 GeV2, the longi-
tudinal component dominates the elliptic anisotropy, while
at the smaller Q2 ¼ 1 GeV2 the transverse component
dominates. This is in agreement with Figs. 5 and 6.
We conclude our discussion with the gold nucleus,

shown in Figs. 15 and 16. The behavior resembles that
of the differential cross section, except that a global
maximum appears at Δ ∼ 0.05 GeV, which is close to
the inverse size of the nucleus. An interesting feature is the
presence of regions where the elliptic anisotropy is
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FIG. 13. Elliptic anisotropy dσ2=dΩ as a function of Δ for a
proton target. Here P ¼ 1.0 GeV and Q2 ¼ 1.0 GeV2.
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FIG. 14. Elliptic anisotropy dσ2=dΩ as a function of Δ for a
proton target. Here P ¼ 1.0 GeV and Q2 ¼ 10.0 GeV2.
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FIG. 15. Elliptic anisotropy dσ2=dΩ as a function of Δ for a
gold target. Here P ¼ 1.0 GeV and Q2 ¼ 1.0 GeV2.
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FIG. 16. Elliptic anisotropy dσ2=dΩ as a function of Δ for a
gold target. Here P ¼ 1.0 GeV and Q2 ¼ 10.0 GeV2.
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negative. This is an effect of the unitary (exponentiated
scattering) of the dipole amplitude, as such regions will not
be present if the dipole was expanded to quadratic order.
This can be seen directly in Eqs. (53) and (54), which show
that the elliptic anisotropy is proportional to Δ2jT̃ðΔÞj2,
meaning that no sign change will occur with varying Δ.
Our results on the P and Δ dependence of the elliptic

anisotropy presented above provide important guidance for
future experiments. Note that the elliptic anisotropy varies
strongly as a function of both P and Δ. Consequently, the
choice of the kinematics of the dijet will affect how well the
anisotropy can be measured experimentally. For example,
for a proton target, choosing P ≈ 1 GeV and Δ ≈ 0.5 GeV
is predicted to maximize the elliptic anisotropy, while for a
gold target a smaller Δ ≈ 0.05 GeV would be preferred.

C. Observable effects of approaching
the saturated regime

In this section, we study effects of saturation that are
potentially observable in measurements of diffractive dijet
production at a future electron ion collider. We focus our
attention on the differential cross section.
In Fig. 17, we show the x dependence of the differential

cross section at fixed values of P ¼ 1.0 GeV and Δ¼
0.1GeV for different targets: proton, copper (RA¼4.163 fm,
aA ¼ 0.606), and gold. We normalized the differential cross
sections by their values at x0 ¼ 0.01. In the semianalytic
model used here, the evolution in x solely affects the value
of Qs. We thus simply vary Qs and relate it to x using the
parametric relation

Q2
s

Q2
s0
¼

�
x0
x

�
0.28

: ð60Þ

For the initial saturation scalesQ2
s0 of the proton, copper, and

gold nucleus we chose 0.3, 0.43, and 0.65 GeV2,

respectively. The relation between the proton saturation
scale Q2

sp and the nuclear saturation scale Q2
sA is given in

Appendix E.
The reference dotted line shows the expected evolution

in the absence of saturation. In that case, the differential
cross section grows with Q4

s [see Eqs. (51) and (52)]. The
results show the slowdown of the growth of the differential
cross section in response to saturation effects. These set in
earlier for the denser targets because of their larger
saturation scale Q2

s ∼ A1=3 for any given x. C.f. the
discussion in Sec. V B 2.
In Fig. 18, we show the differential cross section as a

function of Δ for a proton target at different values of the
saturation scale Qs. The narrow lines denote a “nonsatura-
tion” model where the dipole amplitude is not exponen-
tiated (expanded to quadratic order). The figure shows that
the differential cross sections are smaller for the case
including saturation (thick lines). This effect is more
pronounced for larger saturation scales as expected.
The more prominent feature is the dependence of the

location of the diffractive dip on the value of Q2
s . As the

saturation scale increases, the dip shifts to lower values of
Δ. This effect has been observed in [10] and explained by
the fact that the effective spatial shape of the proton is non-
Gaussian. This happens because the center of the proton is
approaching the black disk limit (mathematically, this
happens because the Gaussian thickness functions appears
in the exponential of the dipole amplitude). The dip is
absent in the nonsaturated case, as the differential cross
section here is proportional to the square of the Fourier
transform of the Gaussian profile, which does not have a
dip structure [see Eqs. (51) and (52)].
If the Δ-dependent cross section could be measured at a

future electron ion collider for different values of x, and a
similar systematic change of the dip position observed, it
would be an interesting indication that we are approaching
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FIG. 17. Evolution of the differential cross section (here P ¼
1.0 GeV and Δ ¼ 0.1 GeV) with x for proton, copper, and gold.
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the saturated regime. Note that of course there are some
caveats, since the detailed shape of the proton is not known
and here we do not consider the growth of the proton with
decreasing x [47–50], which will likely affect the detailed
quantitative result.

VII. CONCLUSIONS

We have studied analytically and semianalytically the
properties of coherent diffractive dijet production in elec-
tron-proton and electron-nucleus collisions, using two
different saturation models including impact parameter
(and angular) dependence: the Golec-Biernat Wusthoff
model and an impact parameter dependent McLerran
Venugopalan model.
We derived general relations connecting angular corre-

lations of the dipole orientation and impact parameter
vector in coordinate space with angular correlations
between dijet transverse momentum and hadron recoil
momentum [Eq. (20)]. We showed that the nth Fourier
harmonic of the amplitude for diffractive dijet production
(in momentum space) depends only on the nth harmonic of
the dipole amplitude in coordinate space.
In the limit of large photon virtuality Q2 and/or quark

mass, the differential cross sections and elliptic anisotropies
of the GBW model can be expressed completely analyti-
cally. In this limit, the P and Δ dependencies factorize,
providing distinct information on the projectile and target.
The P dependence showed interesting analytic structures
such as a dip in the differential cross section (for longi-
tudinal photon polarization), and changes in sign of the
elliptic anisotropy (for both longitudinal and transverse
polarizations), and provided insight into how these features
depend on Q2, the quark mass, and the longitudinal
momentum fractions of the quark and antiquark. The Δ
dependence directly probes features of the target, being
sensitive to the Fourier transform of the transverse density
distribution.
In the case of the more realistic IP-MV model, where the

anisotropy is explicitly driven by the gradients of the target
geometry, we found approximate analytic expressions for
the differential cross sections and elliptic anisotropies. In
particular, we observed that the P dependence was modi-
fied from the GBW model because of the presence of the
logarithm in the dipole amplitude. Both the locations of
dips in the longitudinal cross section and sign change in the
elliptic anisotropies shifted to larger values of P.
Approaching the saturation limit, we discussed the

expected modification to the features mentioned above,
in particular their dependence on the saturation scale Qs. A
more detailed analysis of the effects of approaching
saturation could only be performed by numerical evaluation
of our semianalytic expressions.
The numerical results confirmed several expectations.

We observed an increase of the value of P at the dip

position in the longitudinal differential cross section with
increasing photon virtuality Q2 and saturation scale Qs
(increasing mass number A). A similar behavior was found
for the change in sign in the elliptic anisotropy (for
longitudinal photons). At lowQ2 the transversely polarized
differential cross section and elliptic anisotropy dominate
over their longitudinally polarized counterparts. The differ-
ence between them decreases with increasing Q2.
As a function of momentum transfer Δ, we observed the

anticipated diffractive dips in the differential cross section
for gold. We also observed a dip in the Δ-dependent cross
section for a proton target, despite the Gaussian shape of
the assumed proton density profile. In the latter case, dips
appear because of the unitarization of the dipole amplitude,
signaling the effects of saturation, which leads to an
effectively non-Gaussian shape of the proton. The Δ
dependence of the elliptic anisotropy also showed some
effects of saturation such as the change in sign for the case
of gold.
To gain more insight into the effects of saturation, we

studied the x evolution of the differential cross section at
fixed values of P and Δ. We observed the expected
slowdown in the growth of the differential cross section
with decreasing x, with the effect setting in at larger values
of x for the larger targets because of their larger saturation
scales at a given x.
Finally, we studied the Δ dependence of the diffractive

dijet cross section for a proton target and different values of
the saturation scale (representing varying x values) and
observed a decrease of the value of Δ at the diffractive dip
position with increasing Qs. We compared to the “non-
saturation” model, where the dipole was expanded to
quadratic order, and did not observe any dips as expected.
We argued that if such diffractive dips and their dependence
on x could be measured experimentally in diffractive dijet
events in eþ p collisions, this could provide a strong
indication of the presence of saturation effects.
The semianalytic approach presented in this paper does

not include some potentially important physical effects of
the small x evolution, such as the growth of the color charge
profile with decreasing x, and the corresponding modifi-
cation of the color charge density gradients. In this work,
the x evolution was only incorporated via the parametriza-
tion of the saturation scale Qs in Eq. (60). The effect was
included in numerical studies using Jalilian Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner evolution [51–57]
and has been analyzed in [11]. The evolution of the dipole
could also be studied using the BK evolution [58,59] with
impact parameter dependence as studied in [60]. Also, a
more detailed analysis will require the incorporation of the
dependence of x on the dijet momenta [11].
Nevertheless, what makes our approach a very powerful

tool for understanding what physical features of projectile
and target are important for the process of diffractive dijet
production in eþ p and eþ A collisions, is that we were
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able to find fully analytic expressions for cross sections and
elliptic anisotropies in certain limits. Even the semianalytic
expressions only involve simple integrals that are easily
evaluated numerically, which is especially helpful for
examining the regimes of large P and/or Δ. This allows
us to efficiently constrain the most interesting setup and
kinematic regions in future experiments. In particular, we
provided predictions for values of P and Δ that maximize
the magnitude of the elliptic anisotropies for different
targets to assist future experiments in observing these
interesting correlations.
Finally, we point out that the presented techniques could

be extended to study other processes such as inclusive dijet
production. In this case, one needs to work out an
expression for the quadrupole, incorporating the effects
of the geometry of the target. Similarly, one could attempt
to extend this analysis to inclusive diffractive dijet and
incoherent diffractive dijet production. In the latter case, we
expect to gain sensitivity to the local structures of the target
and possibly angle dependent fluctuations.
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APPENDIX A: ANGULAR CORRELATIONS:
FROM COORDINATE SPACE TO

MOMENTUM SPACE

In this Appendix, we prove the relation in Eq. (20). We
first lay out the conventions for the Fourier transforms and
mode expansion. The Fourier transform (for rotationally
symmetric functions) and inverse Fourier transform are
normalized as follows:

F̃ðP;ΔÞ ¼
Z

d2rd2be−iP·re−iΔ·bFðr; bÞ; ðA1Þ

Fðr; bÞ ¼
Z

d2P
ð2πÞ2

d2Δ
ð2πÞ2 e

iP·reiΔ·bF̃ðP;ΔÞ: ðA2Þ

The Fourier mode decomposition is given by

Fðr; b; θrbÞ ¼ F0ðr; bÞ þ 2
X∞
k¼1

Fkðr; bÞ cos ðkθrbÞ; ðA3Þ

F̃ðP;Δ; θPΔÞ ¼ F̃0ðP;ΔÞ þ 2
X∞
k¼1

F̃kðP;ΔÞ cos ðkθPΔÞ;

ðA4Þ

where the Fk and F̃k can be computed by projection

Fkðr; bÞ ¼
1

2π

Z
2π

0

dθFðr; b; θÞ cosðkθÞ;

F̃kðP;ΔÞ ¼
1

2π

Z
2π

0

dθF̃ðP;Δ; θÞ cosðkθÞ: ðA5Þ

To prove Eq. (20), we use the following identity:

e−iA cosϕ ¼
X∞
n¼−∞

ð−iÞnJnðAÞe−inϕ: ðA6Þ

Then the Fourier transform Eq. (A1) can be expressed as a
Bessel expansion. Changing the variables to θrb and
Θ ¼ 1

2
ðθr þ θbÞ, we arrive at

F̃ðP;ΔÞ ¼
Z

rdrbdb
X∞

n;m¼−∞
ð−iÞnþm

× JnðPrÞJmðΔbÞe−iðnθPþmθΔÞ

×
Z

dΘdθrbeiððnþmÞΘþ1
2
ðn−mÞθrbÞFðr; b; θrbÞ:

ðA7Þ

The Θ integral is trivial and is proportional to a
Kronecker delta, 2πδn;−m, which we use to contract the
summation in m, yielding

F̃ðP;ΔÞ ¼ 2π

Z
rdrbdb

X∞
n¼−∞

ð−1ÞnJnðPrÞJnðΔbÞ

× e−inðθP−θΔÞ
Z

dθrbeinθrbFðr; b; θrbÞ; ðA8Þ

where we used J−nðzÞ ¼ ð−1ÞnJnðzÞ.
To perform the angular integral, we plug in the Fourier

mode expansion Eq. (A3) and find

F̃ðP;ΔÞ ¼ ð2πÞ2
Z

rdrbdb
X∞
n¼−∞

ð−1ÞnJnðPrÞJnðΔbÞ

×

�
F0ðr; bÞδn0 þ 2

X∞
k¼1

δnkFkðr; bÞ cosðkθPΔÞ
�
:

ðA9Þ

Contracting the summation in n and comparing with the
expansion in Eq. (A4), we find

F̃kðP;ΔÞ
ð2πÞ2 ¼ ð−1Þk

Z
rdrbdbJkðPrÞJkðΔbÞFkðr; bÞ:

ðA10Þ
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APPENDIX B: USEFUL INTEGRAL IDENTITIES

Representation of Bessel functions of the first kind

J0ðzÞ ¼
1

2π

Z
2π

0

dϕe−iz cosϕ; ðB1Þ

J2ðzÞ ¼ −
1

2π

Z
2π

0

dϕe−iz cosϕ cos 2ϕ: ðB2Þ

Representation of modified Bessel functions of the first
kind

I0ðzÞ ¼
1

2π

Z
2π

0

dϕe−z cos 2ϕ;

I1ðzÞ ¼ −
1

2π

Z
2π

0

dϕe−z cos 2ϕ cos 2ϕ: ðB3Þ

The following integral is the backbone for our analytic
computations:Z

rdrJ0ðPrÞK0ðεfrÞ ¼
1

P2 þ ε2f
: ðB4Þ

By taking derivatives with respect to P or εf, and using
recurrence relations for derivatives of JnðzÞ and KnðzÞ, one
finds

Z
rdrJ0ðPrÞr2K0ðεfrÞ ¼ −

4ðP2 − ε2fÞ
ðP2 þ ε2fÞ3

;

Z
rdrJ1ðPrÞr2K1ðεfrÞ ¼

8Pεf
ðP2 þ ε2fÞ3

;

Z
rdrJ2ðPrÞr2K0ðεfrÞ ¼

8P2

ðP2 þ ε2fÞ3
;

Z
rdr

J3ðPrÞ − J1ðPrÞ
2

r2K1ðεfrÞ ¼
4PðP2 − ε2fÞ
εfðP2 þ ε2fÞ3

: ðB5Þ

It is also useful to have expressions for the Fourier
transform of an isotropic function. They follow from the
standard definition of the Fourier transform and Eq. (B1),

T̃ðΔÞ ¼ 2π

Z
bdbJ0ðΔbÞTðbÞ;

TðbÞ ¼ 1

2π

Z
ΔdΔJ0ðΔbÞT̃ðΔÞ: ðB6Þ

One can obtain interesting relations by taking derivatives.
For example,

�
d2

db2
−
1

b
d
db

�
TðbÞ ¼ 1

2π

Z
ΔdΔJ2ðΔbÞΔ2T̃ðΔÞ; ðB7Þ

where we used

�
d2

db2
−
1

b
d
db

�
J0ðΔbÞ ¼ b

d
db

�
1

b
d
db

J0ðΔbÞ
�

¼ b
d
db

�
−
1

b
ΔJ1ðΔbÞ

�
¼ Δ2J2ðΔbÞ:

By inverting Eq. (B7), one has

Δ2T̃ðΔÞ ¼ 2π

Z
bdbJ2ðΔbÞ

�
d2

db2
−
1

b
d
db

�
TðbÞ: ðB8Þ

APPENDIX C: DETAILS OF ANALYTIC
CALCULATIONS OF DIFFERENTIAL CROSS

SECTION AND ELLIPTIC ANISTROPY

In order to compute the differential cross sections and
elliptic anisotropies [Eqs. (28) and (36)], it is enough to
calculate the functions in Eqs. (26), (27), (34), and (35). For
the sake of simplicity, we ignore the small corrections to the
differential cross section, i.e., we only keep the terms jF̃0j2
and j∂PG̃0j2). In this Appendix, we show the explicit
calculations for these expressions in the limit Qs ≪ εf, in
which the dipole amplitude can be expanded to quadratic
order. We start with the GBW model, for which we find
exact analytic results, and then proceed to derive approxi-
mate expressions for the impact parameter dependent
MV model.

1. Golec-Biernat Wusthoff model

Using Eq. (26) with the expanded expression for D0 in
Eq. (44), we have

F̃0ðP;ΔÞ ¼
π

2
Q2

s

Z
rdrJ0ðPrÞr2K0ðεfrÞ

× ð2πÞ
Z

bdbJ0ðΔbÞTðbÞ: ðC1Þ

We solve the integrals in r and b with the help of
Eqs. (B5) and (B6), respectively, to find

F̃0ðP;ΔÞ ¼ −2πQ2
s

ðP2 − ε2fÞ
ðP2 þ ε2fÞ3

T̃ðΔÞ: ðC2Þ

The other expressions can be obtained in a similar fashion
to read

F̃2ðP;ΔÞ ¼ 2π
c
2
Q2

s
2P2

ðP2 þ ε2fÞ3
T̃2ðΔÞ; ðC3Þ

∂PG̃0ðP;ΔÞ ¼ −2πQ2
s

2Pεf
ðP2 þ ε2fÞ3

T̃ðΔÞ; ðC4Þ
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∂PG̃2ðP;ΔÞ ¼ −2π
c
2
Q2

s

PðP2 − ε2fÞ
εfðP2 þ ε2fÞ3

T̃2ðΔÞ; ðC5Þ

where T̃2ðΔÞ ¼ 2π
R
bdbJ2ðΔbÞTðbÞ is the second order

Hankel transform of TðbÞ.

2. Impact parameter dependent
McLerran Venugopalan model

We now consider the impact parameter dependent
McLerran Venugopalan model in the limit Qs ≪ εf. The
expressions for F̃2 and ∂PG̃2 can be solved exactly. For
example, one has

F̃2ðP;ΔÞ ¼
2π

8
Q2

s

Z
rdrJ2ðPrÞr2K0ðεfrÞ

×
2π

6m2

Z
bdbJ2ðΔbÞ

�
d2

db2
−
1

b
d
db

�
TðbÞ:

ðC6Þ

Using Eqs. (B5) and (B8) to solve the r and b integrals,
respectively, we obtain

F̃2ðP;ΔÞ ¼ 2πQ2
s

2P2

ðP2 þ ε2fÞ3
Δ2T̃ðΔÞ
12m2

: ðC7Þ

Similarly, one has

∂PG̃2ðP;ΔÞ ¼ −2πQ2
s

PðP2 − ε2fÞ
εfðP2 þ ε2fÞ3

Δ2T̃ðΔÞ
12m2

: ðC8Þ

The expressions for F̃0 and ∂PG̃0, on the other hand, cannot
be solved exactly due to the presence of the logarithm in the
r-dependent part of the integrand. For example, one has

F̃0ðP;ΔÞ ¼
π

2
Q2

s T̃ðΔÞ
Z

rdrJ0ðPrÞf0ðrÞ; ðC9Þ

with

f0ðrÞ ¼ r2 log

�
1

m2r2
þ e

�
K0ðεfrÞ: ðC10Þ

It would be useful to approximate Eq. (C10) by an
expression of the form of r2K0ðεfrÞ as it appears in the
GBW model, for which we had an analytic solution. First,
one should note that the convolution (Fourier transform) in
Eq. (C9) is dominated by the maximum of f0ðrÞ. Thus, in
the following we focus on reproducing the effect of the
modified location and height of the maximum of Eq. (C10).
Bescause of the logarithmic factor, Eq. (C10) develops a

maximum at a smaller value of r compared to r2K0ðεfrÞ,
which depends on the ratio κ ≡ εf=m. We will assume that

κ ≫ 1. To see this more explicitly, we change to the
variable u ¼ εfr,

f0ðuÞ ¼
u2

ε2f
log

�
κ2

u2
þ e

�
K0ðuÞ: ðC11Þ

The maximum of this function occurs at (ignoring the
factor of e inside the logarithm)

umax ¼
�
logðκ2=u2maxÞ − 1

logðκ2=u2maxÞ
�
2K0ðumaxÞ
K1ðumaxÞ

; ðC12Þ

while in the GBW model the maximum occurs at umax ¼
2K0ðumaxÞ=K1ðumaxÞ ≈ 1.5.
Therefore, we see that in the IP-MV model, the location

of the maximum is shifted to a smaller value of u
(compared to GBW),

umax ≈ 1.5=ξ; ðC13Þ

with ξ ¼ ½ logðκ2Þ
logðκ2Þ−1�. For values of κ ¼ 3–10, one has

ξ ¼ 1.3–1.8.
The corresponding maximum of f0 is then

f0ðumaxÞ ≈
1.52

ξ2ε2f
logðκ2ÞK0ð1.5=ξÞ: ðC14Þ

We thus approximate f0 in Eq. (C10) by

f0ðrÞ ≈ C1r2K0ðξεfrÞ; ðC15Þ

where C1 ¼ logðκ2ÞK0ð1.5=ξÞ=K0ð1.5Þ > 1.
This expression reflects the shift in the location of the

maximum and the increase in the height of the maximum.
Using this expression in Eq. (C9), we arrive at

F̃0ðP;ΔÞ ≈ −2πC1Q2
s

ðP2 − ξ2ε2fÞ
ðP2 þ ξ2ε2fÞ3

T̃ðΔÞ: ðC16Þ

Similarly, one can approximate

G̃0ðP;ΔÞ ≈ −2πC2Q2
s

2ξPεf
ðP2 þ ξ2ε2fÞ3

T̃ðΔÞ; ðC17Þ

where C2 ¼ logðκ2ÞK1ð1.5=ξÞ=K1ð1.5Þ > 1.

APPENDIX D: DIPOLE AMPLITUDE IN THE
IMPACT PARAMETER DEPENDENT
MCLERRAN VENUGOPALAN MODEL

We briefly summarize the derivation of the dipole
expressions in Eqs. (42) and (43). More details on these
calculations can be found in [17].
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As described in Sec. II, large-x partons are treated
as static color charges ρa that produce color fields Aa;μ

via Yang-Mills equations. These color fields represent
the small-x partons. In the impact parameter dependent
McLerran Venugopalan model, the distribution of color
charges ρa is described by local (in coordinate space and
color space) Gaussian distributions

hρaðx1Þρbðx2Þi ¼ g2μ2δabδð2Þðx1 − x2ÞTðx1Þ; ðD1Þ

where TðxÞ is the transverse profile of color charges
carrying the impact parameter dependence.
In the covariant gauge ð∂μAμ ¼ 0Þ, the gauge fields have

the form Aa;μ ¼ δμþαa, where αa satisfied the 2D Poisson
equation

ð∇2 −m2ÞαaðxÞ ¼ −ρaðxÞ; ðD2Þ

where the “gluon mass” m is introduced to mimic
confinement.
From Eqs. (D1) and (D2), one can find that the correlator

of αa’s is given by

hαaðx1Þαbðx2Þi ¼ δabγðx1; x2Þ; ðD3Þ

where

γðx1; x2Þ ¼
Z

d2k1
ð2πÞ2

d2k2
ð2πÞ2

eik1·x1

k21 þm2

eik2·x2

k22 þm2

× g2μ2T̃ðk1 þ k2Þ: ðD4Þ

From the definition of the longitudinal Wilson line [Eq. (3)]
and the correlator above, one finds

hV†ðx1ÞVðx2Þi ¼ e−N ðx1;x2Þ; ðD5Þ

where

N ðx1; x2Þ ¼
g4μ2CF

2

Z
d2k1
ð2πÞ2

d2k2
ð2πÞ2

ðeik1·x1 − eik1·x2Þ
k21 þm2

×
ðeik2·x1 − eik2·x2Þ

k22 þm2
T̃ðk1 þ k2Þ; ðD6Þ

or in the convenient choice of coordinates of Eq. (9), we
have

N ðr; bÞ ¼ g4μ2CF

2

Z
d2q
ð2πÞ2

d2k
ð2πÞ2

T̃ðqÞeiq·b
ðkþ q=2Þ2 þm2

×
ðeiq·r=2 þ e−iq·r=2 − 2eik·rÞ

ðk − q=2Þ2 þm2
: ðD7Þ

This integral will be dominated by values k ∼ q ∼ 1=R. If
one is interested in dipole sizes much smaller than the scale

controlling the variation of the target r ≪ R, then one can
expand the oscillating exponents in the second bracket,

eiq·r=2 þ e−iq·r=2 − 2eik·r ≈ −2iðk · rÞ þ ðk · rÞ2

−
1

4
ðq · rÞ2 þ � � � ðD8Þ

Then one has

N ðr; bÞ ≈ g4CF

2
rirj

Z
d2q
ð2πÞ2

d2k
ð2πÞ2

T̃ðqÞeiq·b
ðkþ q=2Þ2 þm2

×
ðkikj − qiqj=4Þ
ðk − q=2Þ2 þm2

: ðD9Þ

The double integral has the tensorial structure involving δij

and 2bibj=b2 − δij (orthogonal tensors) which allows for
the expansion

N ðr; bÞ ¼ N 0ðr; bÞ þN 2ðr; bÞ cos 2θrb; ðD10Þ

where

N 0ðr; bÞ ¼
1

4
Q2

sr2TðbÞ log
�

1

r2m2
þ e

�
þ � � � ;

N 2ðr; bÞ ¼
1

4
Q2

sr2
1

π

Z
qdqT̃ðqÞJ2ðqbÞΘðq;mÞ; ðD11Þ

with Q2
s ¼ CFg4μ2

4π and

Θðq;mÞ ¼
Z

∞

0

kdk

�
I

ðI þm2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI þm2Þ2 − k2q2

p
×

2

q2
−

2ðI þm2Þ
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI þm2Þ2 − k2q2

p �
;

Iðk; qÞ ¼ k2 þ q2=4: ðD12Þ

The integral in Eq. (D12) results in

Θðq;mÞ ¼ 1

2

"
1 −

sinh−1 q
2m

q
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð q

2mÞ2
q

#
: ðD13Þ

If one expands in powers of q=2m, one finds

Θðq;mÞ ¼ 1

3

�
q
2m

�
2

þ � � � ðD14Þ

Replacing this expression in Eq. (D11), one obtains

N 2ðr; bÞ ¼
1

4
Q2

sr2
1

6m2

1

2π

Z
qdqq2T̃ðqÞJ2ðqbÞ: ðD15Þ
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Using the identity in Eq. (B7), one obtains the dipole form
in Eq. (43). The validity of this expansion can be under-
stood as follows: the dipole receives small momentum
transfer kicks q ∼ 1=R with each scattering. The appro-
ximation above then is valid if 1=R < 2m. For a large
target such as a nucleus this is satisfied, while for a proton
the approximation is questionable. Since the single scatter-
ing momentum transfers are restricted to q ≲ 2m, we
will not trust this approximation much beyond Δ ∼ 2m.
Even though one might be concerned about the divergence
of as m → 0 in Eq. (43), one should note that in the
limm→0Θðq;mÞ ¼ 1=2, whose effect is to replace the
regulator m by the finite system size, or 1=R in Eq. (43).

APPENDIX E: NUCLEAR SATURATION SCALE

The local saturation scale Q2
sðbÞ ¼ Q2

sTðbÞ is propor-
tional to the charge density squared of the target at point b.
Since the nucleons are assumed to be uncorrelated, the total
charge squared in the nucleus is the sum of the charges
squared of all its nucleons. Thus, one has

Q2
sA

Z
d2bTAðbÞ ¼ AQ2

sp

Z
d2bTpðbÞ: ðE1Þ

For our choice of proton profile Eq. (57) and nuclear profile
Eq. (58), and usingZ

d2bTpðbÞ ¼ 2πR2
pZ

d2bTAðbÞ ≈
2πR2

A

3
; ðE2Þ

where we assumed RA ≫ aA to approximate the ρA in
Eq. (59) by a hard sphere andNA ≈ 1=ð2RAÞ. Thus, we have

Q2
sA ¼ 3A

�
Rp

RA

�
2

Q2
sp ≈ 0.4A1=3Q2

sp; ðE3Þ

whereweusedRp ¼ 0.4 fm and the approximate expression
RA ¼ 1.1A1=3 fm for large nuclei. A similar expression was
obtained in [61], where the authors assumed a cylindrical
shape for nuclei. An expression assuming spherical nuclei
and nucleons was obtained in [62].
If one accounts for the nonzero aA, then one finds

the following relation between the saturation scales:
Q2

sAu ¼ 2.17Q2
sp andQ2

sCu ¼ 1.44Q2
sp, for gold and copper,

respectively.
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