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We study the temperature dependence of the shear viscosity to entropy density ratio in pure Yang-Mills
theory and in QCDwith light and strange quarks within kinetic theory in the relaxation time approximation.
As effective degrees of freedom in a deconfined phase we consider quasiparticle excitations with quark and
gluon quantum numbers and dispersion relations that depend explicitly on the temperature. The
quasiparticle relaxation times are obtained by computing the microscopic two-body scattering amplitudes
for the elementary scatterings among the quasiparticles. For pure Yang-Mills theory, we show that the shear
viscosity to entropy density ratio exhibits a characteristic nonmonotonicity with a minimum at the first-
order phase transition. In the presence of dynamical quarks, the ratio smoothens while still exhibiting a
minimum near confinement. Furthermore, there is a significant increase of the shear viscosity to entropy
density ratio in QCD resulting from the quark contributions. This observation differs from previously
reported estimates based on functional methods but is in line with perturbative QCD expectations at higher
temperatures.
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I. INTRODUCTION

The wealth of collected experimental data in combina-
tion with first-principle results from lattice QCD evidence
of the creation of a strongly coupled quantum fluid, the
quark-gluon plasma (QGP), in the ultrarelativistic heavy-
ion collisions at the large hadron collider (LHC) and the
relativistic heavy ion collider (RHIC) [1–3]. One major
goal of these experiments is to reveal the equilibrium
and transport properties of the QGP as deconfined state
of strongly interacting matter. In particular, the transport
coefficients are sensitive to the relevant degrees of freedom
(d.o.f.), their properties, and interactions in the plasma. The
shear viscosity η as a measure of the resistance against
momentum modifications in the fluid represents a promi-
nent example. Its knowledge and that of its ratio η=s with
the entropy density s are important for fluid dynamical
simulations. In fact, the success of applying fluid dynamics
for the description of the expanding fireball created in a
heavy-ion collision suggests that the QGP is in approxi-
mate local equilibrium.
Early applications of fluid dynamics confronting, in

particular, elliptic flow data revealed that the QGP

constitutes a nearly perfect fluid [4–8]. The specific
shear viscosity η=swas estimated to be close to the Kovtun-
Son-Starinets (KSS) lower bound [9] of 1=4π predicted by
applying the duality between strongly coupled gauge and
weakly coupled gravity theories. Simulations with an
evolution-averaged η=s based on comparisons with com-
bined experimental data from top RHIC and LHC energies
[7,10,11] extracted a possible range of 1<ðη=sÞ=ð1=4πÞ<5.
Those estimates suffered from sizable systematic and
statistical errors, cf. [12] for a review. More realistic studies
then considered a temperatureT dependence of the transport
coefficient [13,14]. It was found that the combined data
favor an increase with T up to a factor of 5 from RHIC to
LHC [15]. A possible baryo-chemical potential μB depend-
ence was investigated in [16], finding a moderate increase
with increasing μB. Thewealth of accumulated experimental
data alsomadeBayesian estimate studies for the temperature
[17] and chemical potential [18] dependence possible,
confirming the previous results.
First-principle calculations of the specific shear viscosity

in QCD are rather scarce. Lattice gauge theory determi-
nations of η=s are available only in pure Yang-Mills theory
and only for a few values of T [19–22]. For QCD, including
dynamical quarks, no explicit calculations exist. Estimates
based on the results for Yang-Mills theory and information
from perturbative QCD [23] suggest a slight increase in
the presence of dynamical quarks [22,24]. As an alter-
native, functional diagrammatic approaches to QCD were
recently exploited [25,26] to determine the shear viscosity
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in Yang-Mills theory via the Kubo relation [27] from gluon
spectral functions. Those are in favor of a quasiparticle
structure. The results presented in [26] are in reasonable
agreement with the lattice results and provide an estimate
for QCD with Nf ¼ 2þ 1 quark flavors also indicating
only a slight increase. Both first-principle approaches find a
minimal η=s of about 0.2 near the deconfinement transition
temperature Tc with a moderate increase with increasing T
that is qualitatively in line with the estimates from fluid
dynamical simulations. We note that similar results can be
obtained from perturbation theory with appropriately
chosen scales in the running coupling [26,28,29].
Since first estimates indicated that η=s of deconfined

strongly interacting matter is close to the KSS bound,
various QCD-like and phenomenological approaches were
studied to give an explanation for the apparent perfectness
of the QGP in terms of relevant d.o.f. in the plasma. The
specific shear viscosity of quark matter was investigated in
Nambu–Jona-Lasinio models [30–37]. Further investiga-
tions in terms of a Gribov-Zwanziger plasma [38], the
Polyakov-loop improved linear sigma model [39], or a
Polyakov-loop extended quark-meson model [40] were
made. Moreover, kinetic theory within partonic transport
simulations was exploited [41–44] as well as anisotropic
fluid dynamics [45,46], both supporting the idea of a
medium composed of quasiparticle excitations.
It is a widespread paradigm that a quasiparticle descrip-

tion cannot account for the perfect fluidity observed for
deconfined strongly interacting matter. The first quantita-
tive determination of the specific shear viscosity for pure
Yang-Mills theory described with massive quasiparticles
found, refuting this paradigm, an η=s ≃ 0.2 with a negli-
gible T dependence by using the Kubo formalism [47].
Based on the early works in [48,49], kinetic theory
calculations in relaxation time approximation followed
considering a medium composed of quasiparticles without
residual mean field interaction [31,50] and for pure Yang-
Mills theory with mean field interaction term [51–54]. This
idea was extended to describe interacting hadronic matter at
vanishing [55] and finite chemical potential [56]. Further
quasiparticle model (QPM) predictions for QCD matter
were presented in [57] and, taking the possible formation of
turbulences in an expanding QGP into account, in [58,59].
Modeling quasiparticle interactions, the QPM was more-
over extended by including a finite (and even large)
collisional width Γ in the quasiparticle spectral functions.
With this approach [60–62], using the Kubo formalism or
kinetic theory with relaxation times τ ¼ 1=Γ, an η=s similar
to the first-principle and fluid dynamical simulation results
was obtained.
In the present work, we study the temperature depend-

ence of the specific shear viscosity of deconfined strongly
interacting matter for pure Yang-Mills theory and for matter
antimatter symmetric QCD with Nf ¼ 2þ 1 quark flavors.
Both systems are described in a framework with

quasiparticle d.o.f. The shear viscosity is calculated from
kinetic theory in the relaxation time approximation. The
underlying quasiparticle model is outlined in Sec. II. The
relaxation times are, similar to [62,63], obtained from
evaluating explicitly microscopic scattering amplitudes
of elementary scatterings among the quasiparticles with
T-dependent properties and can be found in Sec. III. Our
results for η=s are presented in Sec. IV, where we discuss
the role quark d.o.f. play for the shear viscosity of the QGP.
We summarize our findings in Sec. V.

II. QUASIPARTICLE MODEL

In the following, we will utilize the basic version of the
successful quasiparticle model [64–66] in which equilib-
rium thermodynamic quantities are defined as standard
phase space integrals over the thermal distribution func-
tions of quarks and gluons which obey medium-dependent
dispersion relations. The thermodynamic integrals are
dominated by excitations with thermal momenta k ∼ T.
Within the model, deconfined QCD matter is described
by quasiparticles with effective masses and a residual
mean field interaction which depend on the temperature.
Longitudinal plasmon and quark-hole excitations are,
instead, assumed to be exponentially suppressed [67].
Describing deconfined QCD matter with Nf ¼ 2þ1

quark flavors at μB¼0, the entropy density in the model
is given by the sum of contributions from gluons g, light
quarks l, and strange quarks s including their antiparticles as

s¼
X

i¼g;l;l̄;s;s̄

si; si¼
di
2π2

Z
∞

0

k2dk
ð4
3
k2þm2

i Þ
EiT

f0i ; ð2:1Þ

where di are the spin-colour degeneracy factors, Ei ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
the energies of the on-shell propagating quasi-

particles, mi their effective masses, and

f0i ¼ ðexpðEi=TÞ þ SiÞ−1; ð2:2Þ

the thermal equilibrium distribution functions with Sl;s ¼ 1

for fermions and Sg ¼ −1 for bosons. The degeneracy
factors read explicitly dl ¼ dl̄ ¼ 2NcNl ¼ 12 for Nl ¼ 2
light (anti-)quark flavors, ds ¼ ds̄ ¼ 2Nc ¼ 6 for strange
(anti-)quarks, and dg ¼ 2ðN2

c − 1Þ ¼ 16 for left-plus right-
handed transversal gluons. The effective quasiparticle
masses depend on the dynamically generated self-energies
Πi via

m2
i ¼ m2

i;0 þ Πi; ð2:3Þ

where we include the current masses mi;0 with mg;0 ¼ 0,
ml;0 ¼ 5 MeV, and ms;0 ¼ 95 MeV. For Πi, we use the
asymptotic forms of the gauge-independent hard thermal
loop self-energies [65,68],
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ΠgðTÞ ¼
�
3þ Nf

2

�
GðTÞ2

6
T2; ð2:4Þ

ΠlðTÞ ¼ 2

0
@ml;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðTÞ2

6
T2

r
þ GðTÞ2

6
T2

1
A; ð2:5Þ

ΠsðTÞ ¼ 2

0
@ms;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðTÞ2

6
T2

r
þGðTÞ2

6
T2

1
A; ð2:6Þ

where the perturbative running coupling has been replaced
by an effective couplingGðTÞwhich in the high-temperature

regime resembles the perturbative coupling for thermal
momenta. This setup of the model can be modified to
describe pure Yang-Mills thermodynamics by setting
Nf ¼ dl ¼ dl̄ ¼ ds ¼ ds̄ ¼ 0.
Figure 1 shows results for the scaled entropy density

s=T3 in the quasiparticle model compared to state-of-the-
art lattice gauge theory results for pure Yang-Mills theory
[69] (circles) and Nf ¼ 2þ 1 QCD with physical quark
masses [70] (squares). The temperature dependence of the
effective coupling GðTÞ in the model is adjusted as to
describe the lattice data and accommodate nonperturbative
effects near the deconfinement transition temperature Tc.
The results for GðTÞ are shown in Fig. 2 (left panel). The
depicted error bars reflect possible variations in GðTÞ as a
consequence of the errors reported for the lattice data seen
in Fig. 1. The corresponding effective quasiparticle masses
are shown in the right panel of Fig. 2.
While the entropy density in Yang-Mills theory exhibits

indications for a first-order phase transition, see Fig. 1,
s=T3 is continuous for T around Tc in Nf ¼ 2þ 1 QCD.
Through the presence of dynamical quark d.o.f. the scaled
entropy density is increased by about a factor 2–3 in the
deconfined phase. This is reflected in the behavior of the
effective coupling GðTÞ; see Fig. 2 (left). Except for
T ≲ Tc, where the effective coupling and, thus, the gluon
quasiparticle mass must become large in order to describe
the sudden drop in the Yang-Mills entropy density, GðTÞ is
larger for QCD than for Yang-Mills theory. Moreover, at
larger T both couplings exhibit comparable slopes. This
agrees with the perturbatively expected behavior of the β
function and its Nf dependence. With the corresponding
temperature dependence of the effective quasiparticle
masses, shown in Fig. 2 (right), the QPM is capable of
describing the lattice data for s=T3. While mi=T at high T
vanishes logarithmically in line with the perturbative

0

4

8

12

16

 1  1.5  2  2.5  3

Nf=2+1

Nf=0

s 
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FIG. 1. Scaled entropy density s=T3 as a function of scaled
temperature T=Tc. The quasiparticle model results (solid lines)
are shown in comparison to the lattice gauge theory results for
Yang-Mills theory (Nf ¼ 0) from [69] (full blue circles) and for
Nf ¼ 2þ 1 QCD from [70] (full red squares). We use Tc ¼
260 MeV and Tc ¼ 155 MeV for Nf ¼ 0 and Nf ¼ 2þ 1,
respectively.
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FIG. 2. Left: Effective coupling GðTÞ as a function of scaled temperature T=Tc employed in the description of the scaled entropy
density shown in Fig. 1. Right: Corresponding effective quasiparticle masses miðTÞ, see Eq. (2.3) (full blue circles and open red circles
for gluons, open red triangles for light, and open red squares for strange quarks) as functions of T=Tc. The error bars shown in both
panels highlight estimates for the uncertainties obtained as a result of the errors in the lattice data for s=T3.
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coupling for k ∼ T, miðTÞ itself rises approximately lin-
early with T in this regime, exhibits a minimum somewhat
above Tc and becomes large near Tc. Moreover, the gluon
effective mass is found to be comparable for Yang-Mills
theory and QCD when plotted as a function of T=Tc. The
apparent Nf independence in the shown temperature
interval is a consequence of the compensation of two
effects, the Nf dependence in the dynamically generated
gluon self-energyΠgðTÞ in Eq. (2.4) including the behavior
of GðTÞ and the Nf dependence of Tc.

III. KINETIC THEORY IN RELAXATION
TIME APPROXIMATION

In this work, we determine the shear viscosity of
deconfined strongly interacting matter by making use of
the Boltzmann kinetic transport equation which for each
quasiparticle species i with medium-dependent dispersion
relation reads as

ðkμi ∂μ þmiF
μ
i ∂kμi

Þfi ¼ Ci½ffjg�: ð3:1Þ

The second term on the left-hand side of Eq. (3.1) contains
an external force on the quasiparticles, Fμ

i ¼ ∂μmi with
ki;μF

μ
i ¼ 0, induced by the residual mean field interaction

as a consequence of the temperature-dependent effective
mass miðTÞ. This is essential when making contact
between the kinetic theory description and fluid dynamics
by defining a covariantly conserved energy-momentum
tensor from which transport coefficients can be deter-
mined [71,72].
In the following, we will consider the case of out of but

near local thermal equilibrium. This allows us to expand the
Boltzmann equation around its local thermal equilibrium
solution f0i such that the left-hand side of Eq. (3.1) can be
written in terms of gradients of the thermodynamic vari-
ables and the collision operator Ci, which formally depends
on all fj, becomes linearized in the deviation δfi ¼ fi − f0i
from equilibrium. Furthermore, we will study the collision
operator in relaxation time (or Bhatnagar-Gross-Krook)
approximation which amounts to replacing [73]

Ci½ffjg� ¼ −
kμi uμ
τi

δfi; ð3:2Þ

where τi is the energy-averaged relaxation time for species
i in the presence of other quasiparticles and uμ is the fluid
four-velocity field. In the local rest frame of the fluid, we
have uμ ¼ ð1; 0⃗Þ and kμi ¼ ðEi; k⃗Þ.
In this approximation, the leading-order deviation of

the covariantly conserved energy-momentum tensor from
local thermal equilibrium can easily be obtained by the
sum of individual quasiparticle contributions. Matching the
expression with its corresponding definition in fluid
dynamics allows one to find an explicit form of the shear

viscosity in the local rest frame which depends on the τi.
For a given quasiparticle species i, we have [48–51,55,71]

ηi ¼
1

15T

Z
d3k
ð2πÞ3

k⃗4

E2
i
diτif0i ð1 − Sif0i Þ: ð3:3Þ

For QCD with Nf ¼ 2þ 1 quark flavors at μB ¼ 0, one
finds, therefore, for the total shear viscosity

η ¼
X
i

ηi ¼ 2ðηl þ ηsÞ þ ηg; ð3:4Þ

while in pure Yang-Mills theory we have η ¼ ηg.
The essential quantities that need to be evaluated are the

relaxation times τi entering Eq. (3.3). In this work, they are
explicitly computed from the microscopic scattering cross
sections for scatterings among massive quasiparticle exci-
tations. The relaxation time is inversely related to the
particle number density of scattering partners and the
scattering cross section. For a multicomponent system, it
follows in matrix form as [73] τ̂−1 ¼ n̂ ˆ̄σ. For QCD with
Nf ¼ 2þ 1 quark flavors, this explicitly reads

0
BBBBBBB@

τ−1l
τ−1
l̄

τ−1s

τ−1s̄
τ−1g

1
CCCCCCCA

¼

0
BBBBBBB@

σ̄ll σ̄ll̄ σ̄ls σ̄ls̄ σ̄lg

σ̄ l̄l σ̄ l̄ l̄ σ̄ l̄s σ̄ l̄ s̄ σ̄ l̄g
σ̄sl σ̄sl̄ σ̄ss σ̄ss̄ σ̄sg

σ̄s̄l σ̄s̄ l̄ σ̄s̄s σ̄s̄ s̄ σ̄s̄g

σ̄gl σ̄gl̄ σ̄gs σ̄gs̄ σ̄gg

1
CCCCCCCA

0
BBBBBBB@

dlnl
dl̄nl̄
dsns
ds̄ns̄
dgng

1
CCCCCCCA
; ð3:5Þ

where

ni ¼
Z

d3k
ð2πÞ3 f

0
i ð3:6Þ

is the T-dependent particle number density per d.o.f. of
quasiparticle species i. While in general τi depends on the
energy Ei of the quasiparticle, we approximate τi by its
energy average which depends on the energy-averaged
cross section σ̄ij. From Eq. (3.5), one readily finds the
relaxation time for light quarks as

τ−1l ¼ dl
2
nl½σ̄ud→udþ σ̄uu→uu�þdsnsσ̄us→us

þdl̄
2
nl̄½σ̄uū→uūþ σ̄uū→dd̄þ σ̄uū→ss̄þ σ̄uū→ggþ σ̄ud̄→ud̄�

þds̄ns̄σ̄us̄→us̄þdgngσ̄ug→ug; ð3:7Þ

or for gluons as
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τ−1g ¼ dgng½σ̄gg→gg þ σ̄gg→uū þ σ̄gg→dd̄ þ σ̄gg→ss̄�
þ dlnlσ̄gu→gu þ dl̄nl̄σ̄gū→gū

þ dsnsσ̄gs→gs þ ds̄ns̄σ̄gs̄→gs̄; ð3:8Þ

while for pure Yang-Mills theory we have only τ−1g ¼
dgngσ̄gg→gg.
The individual energy-averaged cross sections for the

scattering process ð1; 2Þ → ð3; 4Þ in the medium are given
by [30]

σ̄12→34ðTÞ¼
Z

∞

sth

ds
Z

tmax

tmin

dt
dσ12→34

dt
ðs;t;TÞ

×sin2θðs; t;TÞð1−S3f03Þð1−S4f04ÞPðs;TÞ:
ð3:9Þ

We note that σ̄ depends on T both explicitly via the
equilibrium distribution functions f0i ðs;TÞ and implicitly
via GðTÞ and mi¼1…4ðTÞ. In writing Eq. (3.9), we have
assumed that the center of mass (c.m.) of the system
is at rest in the medium such that all entering quantities
can be expressed in terms of the Mandelstam variables
s and t, where u can be replaced using the condition
sþ tþ u ¼ P

4
i¼1 m

2
i . Accounting for the possible phase

space occupation in the final state, the factors ð1 − Sif0i Þ
represent Pauli blocking (for quarks and antiquarks) or
Bose enhancement (for gluons) in the medium. The
integration limits in the four momentum transfer tmin and
tmax are determined from the condition −1 ≤ cos θ ≤ 1,
where θ is the scattering angle, while sth¼max½ðm1þm2Þ2;
ðm3þm4Þ2�. Moreover, as in [30,31,74] we include the
phenomenological weight factor sin2 θ in Eq. (3.9) which
signals the dominance of large angle scatterings for the
transport of momentum. As a consequence, σ̄ is reduced
compared to the isotropic cross section which implies an
increase in the τi. Finally, Pðs;TÞ denotes the probability of
finding (3,4) with c.m. energy s in the final state,

Pðs;TÞ ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −m2

1 −m2
2Þ2 − 4m2

1m
2
2

q
× f03f

0
4vrelðs;TÞ;

ð3:10Þ

where the normalization constant C is fixed via

Z
∞

sth

dsPðs;TÞ ¼ 1; ð3:11Þ

and vrelðs;TÞ is the relative velocity between the two
scattering quasiparticles

vrelðs;TÞ ¼
2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −m2

1 −m2
2Þ2 − 4m2

1m
2
2

p
s2 − ðm2

1 −m2
2Þ2

: ð3:12Þ

The differential cross section dσ=dt for the process
ð1; 2Þ → ð3; 4Þ entering Eq. (3.9) is obtained from the
corresponding total scattering amplitude squared hjMj2i via
dσ12→34

dt
ðs; t;TÞ ¼ 1

16πððs −m2
1 −m2

2Þ2 − 4m2
1m

2
2Þ

× hjM12→34j2ðs; t;TÞi: ð3:13Þ

In hjMj2i, we sumover the spin/polarization and color d.o.f.
in the final state and, since the degeneracy factors di are
included already in Eqs. (3.3) and (3.5), average over the
initial state. The individual amplitudes are computed per-
turbatively at tree level for the elementary two-body scatter-
ing processes qq → qq, qq0 → qq0, qq̄ → qq̄, qq̄0 → qq̄0,
q̄ q̄ → q̄ q̄, gg → gg, qq̄ → q0q̄0, qq̄ → gg, and gg → qq̄
among the massive quasiparticles, where q ¼ u; d; s and
also exchanged gluons obey Eq. (2.3). Accordingly, the
(anti-)quark and gluon propagators are, suppressing color
indices, modified as

i
=k −ml;l̄;s;s̄

;
−igμν

k2 −m2
g
; ð3:14Þ

respectively. Expressing the gluon propagator in Feynman
gauge allows us to enforce directly the on-shellness con-
dition for the quasiparticles in the thermal medium. For the
coupling, we employ the effective coupling GðTÞ. Explicit
expressions for the scattering amplitudes will be reported
elsewhere. We note, however, that in the limit mi¼1…4 → 0
our analytic expressions for the differential cross sections
agree with those presented in [63] and found in [75].
With the above-described setup, we compute the relax-

ation times τi in pure Yang-Mills theory and for Nf ¼
2þ 1 QCD. The corresponding results as functions of
T=Tc are presented in Fig. 3. In pure Yang-Mills theory, τg
exhibits a sharp minimum around Tc and a shallow
maximum for about 2Tc before slowly decreasing with
increasing temperature. The pronounced nonmonotonicity
near Tc is caused by the behavior of GðTÞ; see Fig. 2 (left
panel). A qualitatively similar observation can be made for
light and strange quarks in QCD.
However, τl and τs are an order of magnitude larger, and

both extrema are smooth and shifted toward slightly higher
temperatures. Moreover, one observes that the current
quark mass mi;0 plays a considerable role only for
T < 1.5Tc. In contrast, τg in QCD remains a monotonically
decreasing function of T=Tc that is roughly a factor 4–5
smaller than τl;s. Since the shear viscosity directly depends
on the relaxation time, see Eq. (3.3), it is clear that the main
contribution to the total shear viscosity in QCD will stem
from the quark and antiquark sectors. Furthermore, the
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increase of τg from pure Yang-Mills theory to QCD
highlights the impact of dynamical quarks in the QGP
on the effectiveness of gluons at equilibrating momentum
degradations.

IV. FLAVOR DEPENDENCE OF THE
SPECIFIC SHEAR VISCOSITY

With the relaxation times τi at hand, we can now
calculate the shear viscosity for pure Yang-Mills theory
and Nf ¼ 2þ 1 QCD and compare systematically both
theories to study the impact of the quark matter sector
in QCD.
In Fig. 4, we show first the temperature dependence of

the shear viscosity to entropy density ratio for pure Yang-
Mills theory (full blue circles). The ratio exhibits an abrupt,
nonmonotonic change in its behavior around the first-order
phase transition with a pronounced minimum at Tc and a
mild, monotonic increase for larger T. This behavior can be
traced back to the effective coupling GðTÞ and the entropy
density sðTÞ. It is an intriguing observation that the
minimum of the specific shear viscosity reaches the KSS
lower bound of 1=4π. In Fig. 4, we also compare our results
with available data from lattice gauge theory calculations
[19–22] and with the results from employing the gluon
spectral function in the functional diagrammatic approach
[26]. Overall, our results agree remarkably with the bulk of
information from first principles. The global behavior
found in [26] (see dotted purple line in Fig. 4 for a
parametric representation) is within the reported errors
well captured by our model in a wide range of temper-
atures, in particular for T above 1.3Tc. However, near Tc
we find a significantly stronger nonmonotonicity with a

minimal η=s around Tc instead of slightly above Tc as a
natural consequence of the first-order phase transition.
The ratio η=s in QCD with Nf ¼ 2þ 1 quark flavors is

exhibited in Fig. 5 (full squares), where the individual
contributions from the light (as the sum of up and down
quark contributions) and strange quark sectors as well as
from gluons to the total η=s are also presented. We find a
rather shallow minimum of about 0.4 around the pseudoc-
ritical temperature Tc and a moderate, monotonic increase

Nf=0

η 
/ s

T/Tc

 0.1

 1

 1  1.2  1.4  1.6  1.8  2

FIG. 4. Shear viscosity to entropy density ratio as a function of
T=Tc for pure Yang-Mills theory in the quasiparticle model (full
blue circles). For comparison, the corresponding lattice gauge
theory results from [19] (open yellow diamonds), from [20] (open
grey pentagons), from [21] (green cross), and from [22] (open
blue circles and open red squares) are shown. The KSS bound of
1=4π is indicated by the horizontal line, and the parametric
representation of the results from the functional diagrammatic
approach [26] is shown by the dotted purple line.
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 1  1.5  2  2.5  3

Nf=2+1
Nf=0

g l s

τ i 
[fm

]

T/Tc

FIG. 3. Relaxation times τi as functions of scaled temperature
T=Tc for different quasiparticle species. Pure Yang-Mills theory
results for τg (full blue circles) are contrasted with Nf ¼ 2þ 1

quark flavor QCD results (open circles for a gluon, open triangles
for a light, and open squares for a strange quark). The QCD
results shown for τl and τg are obtained via Eqs. (3.7) and (3.8),
respectively.

 0.01

 0.1

 1

 1  1.5  2  2.5  3

Nf=2+1
g l s total

η i
 / 

s

T/Tc

FIG. 5. Shear viscosity to entropy density ratio as a function of
T=Tc in Nf ¼ 2þ 1 QCD. The individual contributions ηi=s
from gluons (circles), light quarks (triangles, as sum of up and
down quarks), and strange quarks (open squares) with equal
contributions from their antiquarks are shown, along with the
total specific shear viscosity of the QGP (full squares), corre-
sponding to Eq. (3.4).
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with T at larger temperatures for the total ratio. Similar
behavior can be seen for the individual contributions ηi=s
entering Eq. (3.4). This is a consequence of the dynamics
encoded in the quasiparticle masses via the effective
coupling GðTÞ. Moreover, one clearly observes a hierarchy
among the individual contributions that follows inversely
the ordering in the effective quasiparticle masses. As
expected, the heaviest quasiparticles are the most effective
ones in equilibrating momentum degradations within the
QGP. We note that a similar but quantitatively different
pattern was reported in [58]. We find ηs=ηl < 0.5 approach-
ing only slowly 0.5 with increasing T while ηg=ηl ≤ 0.2 in
the shown temperature interval.
In Fig. 6 (left panel), we compare the shear viscosity of

the QGP obtained in the present quasiparticle model with
perturbative QCD expectations. The next-to-leading-log
(NLL) expansion in the running coupling g as derived by
Arnold et al. [23] gives the following result for the shear
viscosity:

ηNLL ¼ T3

g4

�
η1

lnðμ�=mDÞ
�
; ð4:1Þ

with coefficients η1 ¼ 106.66 and μ�=T ¼ 2.957 for
Nf ¼ 3, and Debye screening mass

m2
D ¼ 1

3

�
CA þ NfCF

dF
dA

�
g2T2; ð4:2Þ

where dF ¼ CA ¼ 3, CF ¼ 4=3, and dA ¼ 8. Another
perturbative parametrization of the shear viscosity was
proposed by Hosoya and Kajantie [48], reading

η ¼ 64π4

675

T3

g4 lnð4π=g2Þ
�

21Nf

6.8½1þ 0.12ð2Nf þ 1Þ�

þ 16

15½1þ 0.06Nf�
�
: ð4:3Þ

Here, we use Nf ¼ 3 for the number of quark flavors. The
two terms in the square brackets of Eq. (4.3) mark
contributions from massless quarks and gluons, respec-
tively, which are both proportional to a relaxation time
parametrized at leading-log order in g.
Replacing the running coupling in the perturbative

expressions by our effective coupling GðTÞ, we find that
the scaled shear viscosity, η=T3, in the quasiparticle model
approaches within errors the expectations from Eq. (4.1) at
higher temperatures (see red squares and green diamonds in
Fig. 6 (left panel) for QPM and AMY, respectively). The
difference between the QPM result and the result using
Eq. (4.3) is, however, significant [see blue stars in Fig. 6
(left panel) for HK]. This is a consequence of the fact that
the latter describes a system of massless quarks and gluons.
We can, thus, directly see the influence of the dynamical
quasiparticle masses on the shear viscosity of the QGP. We
note that applying the three approaches to pure Yang-Mills
theory yields a similar result for the scaled shear viscosity.
The direct comparison between the quasiparticle model

results of η=s for Nf ¼ 2þ 1 QCD and pure Yang-Mills
theory reveals a significant impact of the quark sector
contributions in the entire range of temperatures studied in
this work. This is shown in Fig. 6 (right panel). The
sizeable increase of η=s in the presence of dynamical
quarks is in line with the observations made for the
relaxation times; see Fig. 3. Although the entropy density
is about a factor 2–3 larger in QCD, this is not sufficient to

 1
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Nf=2+1
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/ T

3

T/Tc

Nf=2+1
QPM AMY HK
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η

FIG. 6. Left: scaled shear viscosity η=T3 as a function of scaled temperature T=Tc for Nf ¼ 2þ 1 QCD in the quasiparticle model
(QPM, red squares). For comparison, two different results for Nf ¼ 3 based on perturbative QCD calculations are shown: (a) using the
next-to-leading-log coupling-expansion result from Arnold et al. [23] (AMY, green diamonds), and (b) applying the parametrized
relaxation time at leading-log order given by Hosoya and Kajantie [48] (HK, blue stars). Right: comparison of the specific shear
viscosity as a function of T=Tc between pure Yang-Mills theory (blue circles) and Nf ¼ 2þ 1 QCD (red squares) in the
quasiparticle model.
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balance the overall dominance of the quark and antiquark
contributions. Moreover, the pronounced nonmonotonicity
at Tc in Yang-Mills theory is significantly smoothened in
QCD, reflecting the difference in the order of the under-
lying phase transition.
Our results for η=s in Nf ¼ 2þ 1 QCD are in quanti-

tative contrast to the functional estimate for QCD reported
in [26] which indicated only a moderate increase of the
ratio for given T=Tc due to the presence of dynamical
quarks. While one might argue that our findings are within
errors still compatible with the old lattice gauge theory
results for pure Yang-Mills theory [19] by Nakamura and
Sakai, the bulk of available first-principle information is
well overestimated by our QCD results. Moreover, we find
a minimal η=s that is at best at the very upper edge of
possible values extracted for the QGP in early fluid
dynamical applications. We note, however, that a very
similar minimal value of the specific shear viscosity was
found in other strongly coupled quantum fluids, namely
ultracold atomic Fermi gases at or near the unitary limit.
The shear viscosity of these physical systems can be
studied experimentally, similar to flow experiments in
heavy-ion collisions, through the fluid dynamical expan-
sion of a trapped gas after removing the trapping potential
[76–78]. Analyzing these experiments with a proper fluid
dynamical framework [79] allows one to extract η in the
normal fluid phase as a function of temperature and density.
In a recent study [80], a minimal specific shear viscosity of
η=s ¼ 0.5� 0.1 was found just above the transition tem-
perature to superfluidity. Moreover, an increase of η=s with
T in line with kinetic theory predictions could be extracted
[81] supporting the idea of an underlying quasiparticle
picture for the strongly coupled fluid.
Let us finally note that the quasiparticle model results

presented in this work depend systematically on the

approximations we made. One of these is the assumption
of a large angle scattering dominance [30,31,74] for the
transport of momentum; see Eq. (3.9). Relaxing this
approximation leads to an increase of the energy-averaged
cross sections σ̄ and, thus, to a reduction of the relaxation
times and the specific shear viscosity. This is shown
for Nf ¼ 2þ 1 QCD in Fig. 7, where we contrast η=s
computed with employing the large angle scattering
approximation (LAS) and with using the full isotropic
cross sections (no LAS). We note that only by employing
the isotropic cross sections we find a temperature depend-
ence of the specific shear viscosity for the QGP that is
quantitatively compatible with the results presented in the
recent study [62].

V. SUMMARY

We have investigated the temperature dependence of the
specific shear viscosity in pure Yang-Mills theory and in
QCD with Nf ¼ 2þ 1 quark flavors in a quasiparticle
model approach using kinetic theory in the relaxation
time approximation. The effective, temperature-dependent
masses in the quasiparticle dispersion relations are
adjusted as to describe the equilibrium entropy density
provided by first-principle lattice gauge theory simulations.
Interestingly, we find that the gluon thermal mass for pure
Yang-Mills theory and QCD is compatible when plotted as
a function of scaled temperature T=Tc. This is a conse-
quence of the compensation of the Nf dependence in the
deconfinement transition temperature Tc and in the gluon
self-energy. The relaxation times of the individual quasi-
particle species are computed based on the microscopic
scattering amplitudes of all the elementary two-body
scatterings among the massive quasiparticles. For the
associated coupling, we employ the effective coupling of
the model which enters the quasiparticle masses.
The shear viscosity to entropy density ratio, η=s, exhibits

a sharp minimum at Tc in pure Yang-Mills theory
which coincides with the KSS bound 1=4π conjectured
via gauge-gravity duality. The result near Tc is found to be
consistent with all the available lattice data within the
errors. Moreover, the behavior at temperatures higher than
1.3Tc agrees fairly well with the functional diagrammatic
approach [26]. Introducing quark quasiparticles strongly
modifies the temperature dependence of η=s in QCD with
Nf ¼ 2þ 1. The pronounced nonmonotonic structure of
the ratio at Tc in pure Yang-Mills theory is replaced by a
smooth behavior with a shallow minimum around the
pseudocritical temperature in QCD. This modification is
also reflected in the behavior of the quasiparticle relaxa-
tion times.
In contrast to the functional estimate of η=s for QCD

reported in [26], our microscopic calculations reveal a
major impact of the dynamics carried by quark quasipar-
ticles as relevant effective d.o.f. on top of the gluons.
The nontrivial dynamics of those quasiparticles enters
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FIG. 7. Specific shear viscosity as a function of T=Tc for Nf ¼
2þ 1 QCD in the quasiparticle model employing either the large
angle scattering approximation (LAS, red squares) or the
isotropic energy-averaged cross sections (no LAS, turquoise
triangles).
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the scattering cross sections, which results in significant
contributions to the specific shear viscosity. Another
intriguing observation is that the quasiparticle approach
yields a scaled shear viscosity, η=T3, rather comparable
in magnitude to the perturbative QCD result from the
next-to-leading-log expansion [23] at a temperature of
about 3Tc. The comparison to the parametrized η=T3 for
massless quarks and gluons [48], on the other hand,
exhibits a clear difference at any temperature studied in
this work.
We have also illustrated the impact of the large angle

scattering (LAS) approximation which was applied to
evaluate the energy-averaged cross sections. It is shown
that the LAS prescription yields systematically larger
contributions to η=s than employing fully isotropic cross
sections. With the latter prescription, we find quantitatively
comparable results to those reported in [62].
It is a straightforward application of what we have

developed in this paper to study other transport coefficients
and their phenomenological impact on observables via

viscous fluid dynamical simulations. Also, the μB depend-
ence of η=s and other transport coefficients may be
investigated. This will be reported elsewhere.
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