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We consider the appearance of the coherence length of neutrino oscillations in a quantum field-
theoretical approach to the description of neutrino oscillations based on the Feynman diagram technique in
the coordinate representation. The setup of neutrino oscillation experiments characterized by negligibly
small sizes of a source and a detector compared to the distance between them requires one to adjust the rules
of passing to the momentum representation in the Feynman diagram technique in accordance with it, which
leads to a modification of the Feynman propagator in the momentum representation. The approach does not
make use of wave packets, both initial and final particle states are described by plane waves, which
simplifies the calculations considerably. We study the coherence lengths of the neutrino oscillation
processes, where the neutrinos are produced in three-particle weak decays of nuclei and detected in the
charged-current interaction with nuclei or in the charged- and neutral-current interactions with electrons.
Particular examples are considered and it is shown that the momentum spread of the produced neutrinos
and the energy dependence of the differential cross section of the detection process result in the suppression
of neutrino oscillation, which is characterized by a coherence length specific for a pair of production and
detection processes. This coherence length turns out to be much smaller than the coherence length in the
standard quantum-mechanical approach defined by the quantum uncertainty of neutrino momentum.
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I. INTRODUCTION

The Standard Model allows one to describe a great
amount of different elementary particle interaction proc-
esses with a high accuracy in the framework of the
perturbative S-matrix formalism and the Feynman diagram
technique. However, there is a number of phenomena
which cannot be described in the framework of the standard
perturbation theory. In particular, these are strange neutral
meson oscillations and neutrino oscillations, which take
place at finite macroscopic space and time intervals. These
phenomena are described either in the quantum mechanical
approach in terms of plane waves [1–7] or in the quantum
mechanics or quantum field theory approaches in terms of
wave packets [8–12]. The first one is based on the notion of
the states with definite flavor (definite strangeness) which
are superpositions of the states with definite mass. It is
postulated that it is the flavor states that are produced in the
weak interaction, and their evolution in time underlies the
oscillations. However, in the plane wave approximation, the

production of states without definite mass leads to violation
of energy-momentum conservation, which was widely
discussed in the literature [8–12]. This problem can be
solved in the framework of the wave-packet treatment [5],
but the price is an essential complication of the corre-
sponding calculations.
An alternative quantum field-theoretical description of

neutrino oscillations in the framework of the standard
S-matrix formalism was put forward in [8] and developed
in [9,10]. It explains the oscillations by interference of
the amplitudes of processes mediated by different virtual
neutrinos with definite masses. However, in order to take into
account the spatial localization of the production and detec-
tion subprocesses one has to use awave-packet description of
the particle states involved in the interaction processes. In the
framework of this description there are no problems with
energy-momentum conservation, but the calculations of
amplitudes turn out to be rather complicated because of
the necessity to use wave packets. The calculation procedure
is essentially different from the standard calculations in the
Feynman diagram technique in the momentum representa-
tion. This is due to the standard S-matrix formalism of
quantum field theory not being convenient for describing
processes at finite distances and finite time intervals.
In papers [13–15] it was shown that neutrino oscillations

may be consistently described in the framework of quantum
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field theory using only plane waves, which simplifies the
calculations considerably. Nevertheless, in the developed
approach energy momentum is conserved as well. The
approach is based on two papers by Richard Feynman
[16,17]. The idea of the approach is to adjust the standard
S-matrix formalism for describing the processes of finite
duration. We consider the processes of production and
detection as a whole, use the Feynman diagram technique
in the coordinate representation towrite down the amplitude
and then pass to the momentum representation in a way,
which corresponds to the experimental setting. Effectively it
leads to a modification of the Feynman propagator in the
momentum representation, while all the other Feynman
rules in the momentum representation are kept intact.
In the approach under consideration neutrino oscillation

is an interference process. An important characteristic of
interference processes is the coherence length that is the
distance, beyond which the interference pattern fades out
and becomes invisible. In the quantum-mechanical descrip-
tion of neutrino oscillation in terms of wave packets the
coherence length appears due to the momentum uncertainty
of the neutrino states. Meanwhile, in the framework of this
approach one considers only the neutrino states with the
same expectation value of momentum, which enters the
expressions for the oscillation lengths. This means that a
beam of such neutrinos can be viewed as a monochromatic
one at the distances from the source much smaller than the
coherence lengths. However, the neutrinos produced in
three-particle weak decays of nuclei are not monochro-
matic, and the spread of neutrino momenta can also affect
the oscillation pattern.
In the quantum field-theoretical approach to neutrino

oscillations under consideration there is no momentum
uncertainty of neutrino states, because all the particles, just
like in the standard Feynman diagram technique, are
described by plane waves. For this reason fading out of
the oscillation pattern in this approach can result only from
the momentum spread of the produced neutrinos and the
spectral characteristic of the detection process.
In the present paper, we show how the coherence length

appears in the framework of the proposed approach. To this
end, we explicitly calculate the normalized neutrino detec-
tion probabilities depending on the distance between a
neutrino source and a detector for several specific exam-
ples. The neutrino oscillation processes are considered,
where the neutrinos produced in three-particle weak decays
of nuclei are detected either in the weak charged-current
interaction with nuclei or in both the charged- and neutral-
current interactions with electrons. It is found that the
neutrino nonmonochromaticity in a three-body decay leads
to fading out of the oscillation pattern at a much smaller
distance than the quantum momentum uncertainty in the
standard approach generates. The corresponding coherence
length turns out to be much smaller than the ones obtained
in the framework of the standard formalism and, therefore,
this effect is dominant in a realistic experiment.

II. COHERENCE LENGTH OF NEUTRINO
OSCILLATIONS IN EXPERIMENTS WITH
DETECTION IN THE CHARGED-CURRENT

INTERACTION ONLY

A. Theory

We work in the framework of the minimal extension of
the Standard Model by the right neutrino singlets. The
charged-current interaction Lagrangian of the leptons takes
the form

Lcc ¼ −
g

2
ffiffiffi
2

p
�X3

i;k¼1

l̄iγμð1 − γ5ÞUikνkW−
μ þ H:c:

�
; ð1Þ

where li is the field of the charged lepton of the ith
generation, Uik denotes the Pontecorvo-Maki-Nakagawa-
Sakata matrix, and νk stands for the field of the neutrino
state with definite mass.
Let us consider a process, where a neutrino is emitted

and detected in the charged-current interaction with nuclei.
In the lowest order of perturbation theory the process is
described by the following diagram:

ð2Þ

The points of production x and detection y are supposed to
be separated by a fixed macroscopic interval. The inter-
mediate neutrino mass eigenstate is a virtual particle and is
described by the propagator in the coordinate representa-
tion. All three virtual neutrino mass eigenstates contribute
to the amplitude of the process, thus the amplitude of the
process corresponding to the diagram must be summed
over all three neutrino mass eigenstates, i ¼ 1, 2, 3.
As it is customary in the Feynman diagram technique,

we suppose that the initial and final nuclei and particles are
described by plane waves, i.e., they have definite momenta.
Hence, all three virtual neutrino eigenstates have definite
momenta as well. Let us assign the 4-momenta of the par-
ticles as it is shown in the diagram, namely, q is the positron
4-momentum, k is the electron 4-momentum and pn is the
intermediate virtual neutrino 4-momentum. To be specific,
we will suppose that the virtualW-bosons are produced and
absorbed in the interactions with nuclei as follows: a
nucleus A1

Z1
X, which will be referred to as nucleus 1, emits

Wþ-boson and turns into the nucleus A1

Z1−1X, which will be

referred to as nucleus 10, and a nucleus A2

Z2
X, which will be

referred to as nucleus 2, absorbs Wþ-boson and turns into
the nucleus A2

Z2þ1X, which will be referred to as nucleus 20.
Thereby the filled circles in the diagram represent the
matrix elements of the weak charged hadron current,
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jð1Þμ ðPð1Þ; Pð10ÞÞ ¼ hA1

Z1−1Xjj
ðhÞ
μ jA1

Z1
Xi;

jð2Þρ ðPð2Þ; Pð20ÞÞ ¼ hA2

Z2þ1XjjðhÞρ jA2

Z2
Xi;

corresponding to nuclei 1; 10 and 2; 20; the nuclei 4-
momenta are denoted by PðlÞ ¼ ðEðlÞ; P⃗ðlÞÞ, Pðl0Þ ¼
ðEðl0Þ; P⃗ðl0ÞÞ, l ¼ 1, 2.
The amplitude in the coordinate representation corre-

sponding to diagram (2) can be written out using the
Feynman rules in the coordinate representation formulated,
for example, in textbook [18]. In order to pass to the
momentum representation one would have to integrate the
amplitude with respect to x and y over Minkowski space,
which would give the corresponding matrix element of the
S-matrix.
However, such an integration would result in losing the

information about the space-time interval between the
production event and the detection event, because the setup
of neutrino oscillation experiments implies that the distance
between the production point and the detection point along
the neutrino propagation direction remains fixed. To gen-
eralize the standard S-matrix formalism to the case of
processes passing at fixed distances, we have to modify the
integration in such a way that it would take into account a
fixed distance between the neutrino production and detec-
tion points. This can be done by introducing the delta
function δðp⃗ðy⃗ − x⃗Þ=jp⃗j − LÞ into the integral, which fixes
the distance L between these points along the neutrino
momentum p⃗. When we pass to the momentum represen-
tation and integrate with respect to x and y over the
Minkowski space, the introduction of this delta function
is formally equivalent to replacing the standard Feynman
propagator of the neutrino mass eigenstate νi in the
coordinate representation Sci ðy−xÞ by Sci ðy−xÞδðp⃗ðy⃗− x⃗Þ=
jp⃗j−LÞ. Nevertheless, the propagation of the neutrino mass
eigenstates is still described by the Feynman propagator,
and the introduced delta function serves only to take into
account the experimental situation that the neutrino mass
eigenstates with momentum p⃗ are detected at a distance L
from the source. The Fourier transform of the expression
Sci ðy − xÞδðp⃗ðy⃗ − x⃗Þ=jp⃗j − LÞ was called in paper [13]
the distance-dependent propagator of the neutrino mass
eigenstate νi in the momentum representation. When cal-
culating the amplitudes of processes with virtual neutrinos
traveling the distance L, we have to take the value of this
propagator in the momentum representation for a neutrino
4-momentum p ¼ ðp0; p⃗), the neutrino momentum p⃗ being
the momentum, which enters the expression in the delta
function. For this reason there is a problemwith defining the
inverse Fourier transformation of this propagator.
However, in paper [14] it was argued that to circumvent

this problem it was possible to fix the time interval between
the production and detection events by introducing the delta
function δðy0 − x0 − TÞ into the integral. Fixing the time
interval T between these events instead of the distance L is

a technique, which is useful for developing a consistent
formalism of describing neutrino oscillation in quantum
field-theoretical approach. Of course, it is the distance
between a neutrino source and a detector, which is, in fact,
fixed in neutrino oscillation experiments. However, for a
beam of neutrinos with the same momentum, this is
equivalent to fixing the time interval between the events
of neutrino production and detection in accordance with the
formula T ¼ Lp0=jp⃗j, which is often used in describing
neutrino oscillation processes [5].
Having fixed the time interval between the events of

production and detection, we integrate the amplitude with
respect to x and y over Minkowski space. Thus, just like in
the standard S-matrix formalism, we consider the process
taking place throughout Minkowski space-time, but the
time interval between the production and detection events is
now fixed by the delta function. This is equivalent to
replacing the standard Feynman fermion propagator in
the coordinate representation Sci ðy − xÞ by Sci ðy − xÞ×
δðy0 − x0 − TÞ.
The Fourier transform of this expression gives us the so-

called time-dependent propagator of the neutrino mass
eigenstate νi in the momentum representation, defined by
the relation

Sci ðp; TÞ ¼
Z

dxeipxSci ðxÞδðx0 − TÞ: ð3Þ

This integral can be evaluated exactly [13,14]:

Sci ðp; TÞ ¼ i
p̂ − γ0ðp0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 þm2

i − p2
p

Þ þmi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 þm2

i − p2
p

× eiðp
0−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2þm2

i−p
2

p
ÞT; ð4Þ

wheremi is the mass of ith neutrino mass eigenstate and the
standard notation p̂ ¼ γμpμ is used. The inverse Fourier
transformation of this time-dependent propagator is well
defined, which allows us to retain the standard Feynman
diagram technique in the momentum representation just by
replacing the Feynman propagator by the time-dependent
propagator.
In paper [9] it was rigorously proved that virtual particles

propagating at large macroscopic distances (or, equiva-
lently, propagating over macroscopic times) are almost on
the mass shell, which means that jp2 −m2

i j=ðp0Þ2 ≪ 1.
This is in accord with the structure of time-dependent
propagator (4). As it was discussed in [15], formally the
amplitude of a process with such a propagator corresponds
to the instant registration. The process itself is considered to
take time T exactly. It reality, however, the registration has
a nonzero duration Δt, and the amplitude constructed with
time-dependent propagator (4) should be interpreted as the
amplitude per unit time. In order to find the amplitude of a
realistic process with the detection time Δt one must
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integrate the time-dependent amplitude with respect to T
from T − Δt=2 to T þ Δt=2. It reduces to the integration of
propagator (4) only, which gives

ZTþΔt=2

T−Δt=2

Sci ðp; tÞdt ¼ Sci ðp; TÞ
sin α
α

Δt;

α ¼
�
p0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 þm2

i − p2

q �Δt
2
: ð5Þ

For large α ≫ 1 this integral is close to zero, and we can
expect that the amplitude will be essentially nonzero only
for those particles, for which α ≃ 0. In this case the
amplitude with the registration time Δt is proportional to
Δt, and the amplitude with T fixed can really be viewed as
the amplitude of the registration per unit time.
The registration time interval Δt is macroscopically large,

which means that the factor ðp0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 þm2

i − p2
p

Þ
should be very small. The latter is the expression of the
fact that the virtual neutrino is almost on the mass shell.
Thus, our approach actually gives another proof of the
Grimus-Stockinger theorem [9]. Applying this result to
time-dependent propagator (4), i.e., neglecting jp2 −m2

i j=
ðp0Þ2 ≪ 1 everywhere, except in the exponential, where it is
multiplied by the macroscopic time T, we get

Sci ðp; TÞ ¼ i
p̂þmi

2p0
e
−i

m2
i
−p2

2p0
T
: ð6Þ

It is this expression that will be used for the calculations
hereafter.
Now we are in a position to write down the amplitude in

the momentum representation corresponding to diagram (2)
in the case, when the time difference y0 − x0 between the
events of production and detection is fixed and equal to T.
Since the momentum transfer in both the production and
detection processes is small, one can use the approximation
of Fermi’s interaction. Using the time-dependent fermion
field propagator (6), where we retain the neutrino masses
only in the exponential, we arrive at the amplitude summed
over all the three neutrino mass eigenstates:

M ¼ −i
G2

F

4p0
n

X3
i¼1

jU1ij2e
−i

m2
i
−p2n

2p0n
T

× jð2Þρ ðPð2Þ; Pð20ÞÞūðkÞγρð1 − γ5Þp̂nγ
μð1 − γ5Þ

× vðqÞjð1Þμ ðPð1Þ; Pð10ÞÞ: ð7Þ

Here and below we omit the fermion polarization indices
for simplicity.

The squared modulus of the amplitude, averaged with
respect to the polarizations of the incoming nuclei and
summed over the polarizations of the outgoing particles and
nuclei (the operation of averaging and summation is
denoted by the angle brackets), factorizes in the approxi-
mation of massless neutrinos as follows:

hjMj2i ¼ hjM1j2ihjM2j2i
1

4ðp0
nÞ2

×

�
1 − 4

X3
i;k¼1
i<k

jU1ij2jU1kj2sin2
�
m2

i −m2
k

4p0
n

T

��
;

ð8Þ

hjM1j2i ¼ 4G2
Fð−gμνðpnqÞ

þ ðpμ
nqν þ qμpν

nÞ þ iεμναβpnαqβÞWð1Þ
μν ; ð9Þ

hjM2j2i ¼ 4G2
Fð−gρσðpnkÞ

þ ðpρ
nkσ þ kρpσ

nÞ − iερσαβpnαkβÞWð2Þ
ρσ ; ð10Þ

where the nuclear tensors Wð1Þ
μν , W

ð2Þ
ρσ characterizing the

interaction of nuclei 1 and 2 with the virtual W-bosons are
defined as

WðlÞ
αβ ¼ Wðl;SÞ

αβ þ iWðl;AÞ
αβ ¼ hjðlÞα ðjðlÞβ Þþi; l ¼ 1; 2; ð11Þ

their symmetrical parts Wðl;SÞ
αβ being real and the antisym-

metrical ones iWðl;AÞ
αβ being imaginary.

Our next step is to find the differential probability of
the process, where the intermediate neutrino momentum pn
is fixed by the experimental setting. Let us denote the
4-momentum p: ðpÞ2 ¼ 0, the vector p⃗ satisfies the
energy-momentum conservation in the production vertex
and is directed from the source to the detector. According to
the prescription formulated in papers [13–15] we multiply
the squared modulus of the amplitude (8) by the delta
function of energy-momentum conservation ð2πÞ4δðPð1Þþ
Pð2Þ − Pð10Þ − Pð20Þ − q − kÞ, substitute p instead of pn
everywhere in the amplitude and multiply the result by
the delta function 2πδðPð1Þ − Pð10Þ − q − pÞ, which fixes
the virtual neutrino momentum, and integrate it with
respect to the phase volume of the final particles and
nuclei. Besides this, now, when the virtual neutrino
momentum is fixed, one can pass from the time interval
T to the distance traveled by the neutrino L according to the
formula T ¼ Lp0=jp⃗j. Thus, we arrive at the differential
probability, which also factorizes:
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d3W
d3p

¼ 1

2Eð1Þ2Eð2Þ

Z
d3k

ð2πÞ32k0
d3q

ð2πÞ32q0
d3Pð10Þ

ð2πÞ32Eð10Þ
d3Pð20Þ

ð2πÞ32Eð20Þ hjMj2ij pn¼p
T¼Lp0=jp⃗j

× ð2πÞ4δðPð1Þ þ Pð2Þ − Pð10Þ − Pð20Þ − q − kÞ2πδðPð1Þ − Pð10Þ − q − pÞ

¼ d3W1

d3p
W2Peeðjp⃗j; LÞ: ð12Þ

Here

d3W1

d3p
¼ 1

2Eð1Þ
1

ð2πÞ32p0

Z
d3q

ð2πÞ32q0
d3Pð10Þ

ð2πÞ32Eð10Þ hjM1j2ijpn¼pð2πÞ4δðPð1Þ − Pð10Þ − q − pÞ ð13Þ

is the differential probability of decay of nucleus 1 into nucleus 10, a positron and a massless fermion with momentum p⃗,

W2 ¼
1

2Eð2Þ2p0

Z
d3k

ð2πÞ32k0
d3Pð20Þ

ð2πÞ32Eð20Þ hjM2j2ijpn¼pð2πÞ4δðPð2Þ þ p − Pð20Þ − kÞ ð14Þ

is the probability of interaction of a massless fermion with
momentum p⃗ and nucleus 2 with the production of nucleus
20 and an electron, and we introduced a special notation,

Peeðjp⃗j; LÞ ¼ 1 − 4
X3
i;k¼1
i<k

jU1ij2jU1kj2sin2
�
m2

i −m2
k

4jp⃗j L

�
;

ð15Þ
for the expression, which, in the standard approach, is
called the distance-dependent electron neutrino survival
probability. Thus, one finds that the differential probability
of the whole process is the product of the differential

probability d3W1

d3p of the production of a neutrino with a

definite momentum, the probabilityW2 of its interaction in
the detector and the standard distance-dependent oscillating
factor Peeðjp⃗j; LÞ.
Finally we observe that the experimental situation fixes

only the direction of the intermediate neutrino momentum,
but not its length. However, the considered process of the
neutrino production is a three-body decay, hence the
neutrino momentum can have different lengths in a given
direction. In order to take into account the neutrinos with all
the possible momenta directed from the source to the
detector, one has to integrate the differential probability
(12) multiplied by jp⃗j2 with respect to jp⃗j from jp⃗jmin to
jp⃗jmax. In what follows, we assume nuclei 1 and 2 to be at
rest and put their initial momenta P⃗ð1Þ, P⃗ð2Þ equal to zero.
Then the lower limit of integration determined by the
threshold of the registration process and the upper one
determined by the energy-momentum conservation in the
production vertex are given by [19]

jp⃗jmin ¼
ðM20 þmÞ2 −M2

2

2M2

; jp⃗jmax ¼
M2

1 − ðM10 þmÞ2
2M1

:

ð16Þ

HereM1,M10 ,M2,M20 are the masses of nuclei 1, 10, 2, 20,
respectively, and m is the electron mass. As a result we
arrive at the total probability of detecting an electron in the
process under consideration:

dW
dΩ

¼
Zjp⃗jmax

jp⃗jmin

d3W
d3p

jp⃗j2djp⃗j ¼
Zjp⃗jmax

jp⃗jmin

d3W1

d3p

×W2Peeðjp⃗j; LÞjp⃗j2djp⃗j: ð17Þ

In the next subsection we will apply this formula to specific
neutrino oscillation processes.
Summing up this subsection, we would like to note that

in our approach, just like in the standard Feynman diagram
technique, energy momentum is conserved in each inter-
action vertex, which leads to different neutrino mass eigen-
states having exactly the same momenta and energies, since
their production process is uniform. There is no contra-
diction here, because the intermediate neutrinos are virtual
particles, so they can have equal energies and momenta and
different masses at the same time. However, in the calcu-
lations we use the approximation of zero neutrino masses
everywhere except in the exponential of time-dependent
propagator (6). In the latter the neutrino masses cannot be
neglected, because interference between the amplitudes of
the processes mediated by different mass eigenstates leads to
vanishing of the term with p2

n in the exponential (we recall
that 4-momentum pn is uniform for all the neutrino mass
eigenstates), and the difference between the neutrino masses
squared is left multiplied by the time interval T or the
distance L, which are macroscopically large.

B. Specific examples

Let us consider a few examples with two reactions of the
solar carbon cycle:
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15O → 15Nþ eþ þ νi and 13N → 13Cþ eþ þ νi:

First, let us take the production process to be the decay of
15O and the detection to be performed by chlorine-argon or
gallium-germanium detectors,

νi þ 37Cl → 37Ar þ e− and νi þ 71Ga → 71Geþ e−:

In nuclear physics, these reactions refer to the so-called
allowed transitions [20]. In this case one can neglect the
nucleon positions and momenta, and the nucleons decay or
interact as if they were at rest. Correspondingly, one can
neglect the dependence of the nuclear form factors on the
momentum transfer [20]. If we also neglect the possible
contribution of the excited states of the final nuclei, the
product of the differential probability of neutrino produc-
tion and the probability of neutrino detection can be
approximated by the function

d3W1

d3p
W2

¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp⃗jmax − jp⃗jÞðjp⃗jmax − jp⃗j þ 2mÞ

p
ðjp⃗jmax − jp⃗j þmÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp⃗j− jp⃗jminÞðjp⃗j− jp⃗jmin þ 2mÞ

p
ðjp⃗j− jp⃗jmin þmÞ:

ð18Þ
This approximation is rather rough. Nevertheless, it is
sufficient to demonstrate that, in the approach under
consideration, the coherence length of neutrino oscillations
arises due to the neutrino momentum spread and is defined
by the spectral characteristics of the production and
detection processes.
Here, again, jp⃗jmax is determined by the production

process and jp⃗jmin is determined by the detection process;
the explicit expression for the normalization constant C,
which is different for different production and registration
processes, is unimportant for us, because we will normalize
the probability (17) so that it equals unity at the point
L ¼ 0. Normalized distribution function (18) represents the
relative contribution of the neutrinos with a given momen-
tum to the probability of the whole process at L ¼ 0. For
the production and detection processes under consideration
we have

jp⃗jGa-Gemin ¼ 232 keV; jp⃗jCl-Armin ¼ 814 keV;

jp⃗jOmax ¼ 1732 keV:

Functions (18) for both detectors are depicted in Fig. 1.
Below the following values of the neutrino masses and

mixing angles are used [7]:

m2
2 −m2

1 ¼ 7.53× 10−5 eV2; m2
3 −m2

2 ¼ 2.51× 10−3 eV2;

θ12 ¼ 0.587; θ13 ¼ 0.146; θ23 ¼ 0.702:

FIG. 1. Normalized distribution functions (18) for a 15O source
and Cl-Ar and Ga-Ge detectors.

FIG. 2. Normalized probabilities of the neutrino oscillation processes with the neutrino production in the 15O decay and the
registration by Cl-Ar and Ga-Ge detectors.
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We failed to perform the integration in formula (17) with
probability density (18) analytically. The results of numeri-
cal integration are presented in Fig. 2 (the probability is
normalized to its value at the point L ¼ 0). We see that the
oscillation pattern depends on the detection process and the
oscillations fade out with distance, which gives rise to a
coherence length in our approach. This is due to the
momentum distribution of the intermediate neutrinos. By
analogy with interference in optics we introduce the
visibility function:

VðLÞ ¼ Imax − Imin

Imax þ Imin
: ð19Þ

Here Imax, Imin stand for the relative neutrino registration
probabilities in the adjacent maximum and minimum of
the oscillation pattern. If we assume the condition of

oscillations’ visibility to be VðLÞ > 0.1 (which is standard
in optics), we arrive at the coherence lengths

LGa-Ge
coh ≈ 105 km; LCl-Ar

coh ≈ 146 km:

In the Ga-Ge case we have a wider momentum distribution
than in the Cl-Ar one, hence the Ga-Ge oscillation fades out
more rapidly thus having a smaller coherence length.
As one can see in Fig. 2 the oscillations asymptotically

approach the value close to 0.55. The behavior of the
oscillations at large distances, much more than the coher-
ence length, is in fact determined by the oscillations’
average with respect to the distance L. Thus, the asymptotic
behavior of the oscillation is given here, according to (12)
and (15), by the expression

P̄ee ¼ 1 − 4
X3
i;k¼1
i<k

jU1ij2jU1kj2
1

2
¼

X3
i¼1

jU1ij4; ð20Þ

which approximately equals to 0.5511 for the taken values
of the mixing angles θik.
Our next step is to compare the neutrino oscillation

processes, where the neutrinos are produced in the reac-
tions of the solar carbon cycle,

15O → 15Nþ eþ þ νi or 13N → 13Cþ eþ þ νi;

and are registered in a chlorine-argon detector. For the 13N
decay we have jp⃗jNmax ¼ 1199 keV. Normalized functions
(18) for these two cases are presented in Fig. 3 (solid and
dashed lines). The results of the numerical integration with
the same parameters are shown in Fig. 4. The coherence
length for the 13N source turns out to be

FIG. 3. Normalized distribution functions (18) for 15O, 13N and
combined sources and a Cl-Ar detector.

FIG. 4. Normalized probabilities of the neutrino oscillation processes with the neutrino production in the 15O and 13N decays and the
registration by a Cl-Ar detector.
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LN
coh ≈ 158 km;

which is larger than for the previously found 15O case
(146 km) since the 13N source provides a more narrow
neutrino momentum distribution.
Finally let us consider a more realistic combined source,

where the neutrinos are produced in the 15O and 13N decays
simultaneously. The registration is performed again by a
chlorine-argon detector. When a neutrino is detected, one
cannot distinguish, whether it came from a 15O or 13N
nucleus. The calculations show that if the source is in the
state of dynamic equilibrium, the probability of a neutrino
being produced by a 13N decay is approximately 83% versus
17% for an 15O one. We will sum the probabilities for 15O
and 13N given by formula (17) with different weights, and
these probabilities of a neutrino being produced in one of
two decays are one source of the weights.
Another source is as follows. Function (18) includes the

constant C, which is different for our two cases. Let us
introduce the notations CO and CN for the corresponding
coefficients. In our approximation, these constants satisfy
the relations

4π

Zjp⃗jZmax

0

CZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp⃗jZmax − jp⃗jÞðjp⃗jZmax − jp⃗j þ 2mÞ

q

× ðjp⃗jZmax − jp⃗j þmÞjp⃗j2djp⃗j ¼ 1

τZ
; ð21Þ

where the index Z takes values “O” or “N” and τZ is the
lifetime of the corresponding nucleus. Given that τO ¼
122.24 sec and τN ¼ 597.90 sec, performing the numeri-
cal evaluation of the integral in (21), one finds the ratio of
the coefficients to be CO=CN ¼ 1.0548, which gives a
small correction.

The resulting weights of probabilities (17) for the 15O
and 13N nuclei are the products of the corresponding
coefficients from these two sources. The weights can be
chosen in a transparent way to be 0.1776 for the 15O
contribution and 0.8224 for the 13N contribution. Total
normalized function (18) for such an experiment is pre-
sented in Fig. 3 (dash-dotted line). The results of the
numerical integration are depicted in Fig. 5. The over-
lapping of the oscillation patterns from two different
sources leads to an even more rapid fading out of the
oscillations, and in this case the coherence length reads

LOþN
coh ≈ 142 km;

which is less than for the 15O or 13N sources separately.
At the end of this section we would like to stress once

again that the coherence length discussed above differs
essentially from the coherence length appearing in the
standard quantum-mechanical description of neutrino oscil-
lation in terms of wave packets. First of all, we note that, in
the case of the wave-packet description, the coherence term
can be found explicitly only if one uses a model Gaussian
momentum distribution for the product of the neutrino
production and detection amplitudes, because only in this
case the integral over the neutrino momenta can be
performed analytically (see, for example, textbook [5],
Sec. 8.2.2). In this case the coherence term depends
explicitly on the coherence length and leads to fading
out of neutrino oscillations with distance (which, in its turn,
indicates the presence of such a term, even if the integration
cannot be performed analytically). The corresponding
coherence length is determined by the width of the
Gaussian distribution, which is defined by the momentum
uncertainty of the produced neutrinos and the spectral
characteristics of the detection process. Thus, in the
standard quantum-mechanical approach in terms of wave

FIG. 5. Normalized probability of the neutrino oscillation process with the neutrino production in both the 15O and 13N decays
simultaneously and the registration by a Cl-Ar detector.
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packets the oscillation fading out and, consequently, the
coherence length arises due to the quantum-mechanical
uncertainty of neutrino momentum. In contrast to it, in the
approach under consideration the neutrinos are supposed to
have definite momenta (no momentum uncertainty), and
the origin of the oscillation pattern blurring is the momen-
tum distribution of the intermediate neutrinos. It is always
present in a three-body decay, even if all the initial and final
particles and nuclei have definite momenta. The above
calculations show that this cause of oscillation fading out
leads to much smaller coherence lengths than the ones
which are due to the natural momentum uncertainty
considered in the standard approach. It means that the
effect of neutrino nonmonochromaticity taken into account
in the framework of our approach is dominant in a realistic
experimental setting, while the blurring due to the neutrino
momentum uncertainty can be neglected compared to it.

III. COHERENCE LENGTH OF NEUTRINO
OSCILLATIONS IN EXPERIMENTS WITH

DETECTION IN BOTH THE CHARGED- AND
NEUTRAL-CURRENT INTERACTIONS

A. Theory

In the same way one can consider the neutrino oscillation
process, where the neutrinos are produced in the charged-
current interaction with nuclei and detected in both the
charged- and neutral-current interactions with an electron.
The process is described by the following diagrams:

ð22Þ

ð23Þ

The amplitude corresponding to diagram (23) should be
summed over all the three neutrino mass eigenstates, i.e.,
k ¼ 1, 2, 3, as they all contribute. Since only the final
electron is detected in the experiment, the probability of the
process with ith neutrino mass eigenstate in the final state

should be summed over i to give us the probability of
registering an electron.
Now let us denote the particle momenta as follows: the

momentum of the positron is q, the momentum of the
virtual neutrinos is pn, the momentum of the outgoing
electron is k, the momentum of the incoming electron is k1,
the momentum of the outgoing neutrino is k2, the momen-
tum of the initial nucleus is Pð1Þ ¼ ðEð1Þ; P⃗ð1ÞÞ and the
momentum of the final nucleus is Pð10Þ ¼ ðEð10Þ; P⃗ð10ÞÞ (we
retain the notations of the previous section for the nuclear
values in order to use the formulas from it without
redefinitions).
Again we use the approximation of Fermi’s interaction

and take the time-dependent propagator (6) keeping the
neutrino masses only in the exponential. The amplitude
corresponding to diagram (22) in the momentum repre-
sentation, when y0 − x0 ¼ T, looks like

MðiÞ
nc ¼ i

G2
F

4p0
n
U�

1ie
−i

m2
i
−p2n

2p0n
T
ν̄iðk2Þγμð1 − γ5Þp̂nγ

ρð1 − γ5Þ

× vðqÞjð1Þρ ðPð1Þ; Pð10ÞÞ

×

��
−
1

2
þ sin2θW

�
ūðkÞγμð1 − γ5Þuðk1Þ

þ sin2θWūðkÞγμð1þ γ5Þuðk1Þ
�
: ð24Þ

Similarly, the amplitude corresponding to diagram (23)
summed over k reads

MðiÞ
cc ¼ −i

G2
F

4p0
n
U�

1i

�X3
k¼1

jU1kj2e
−i

m2
i
−p2n

2p0n
T
�

× ūðkÞγμð1 − γ5Þp̂nγ
ρð1 − γ5ÞvðqÞ

× jð1Þρ ðPð1Þ; Pð10ÞÞν̄iðk2Þγμð1 − γ5Þuðk1Þ: ð25Þ
The squared modulus of the total amplitude MðiÞ

tot ¼
MðiÞ

nc þMðiÞ
cc , averaged with respect and summed over

particles’ polarizations, factorizes in the approximation
p2
n ¼ 0 as follows:

hjMðiÞ
tot j2i ¼ hjM1j2ihjMðiÞ

2 j2i 1

4ðp0
nÞ2

: ð26Þ

Here hjM1j2i is given by (9),

hjMðiÞ
2 j2i ¼ 64G2

F

�
jBi þ Ai

�
−
1

2
þ sin2θW

�				
2

× ðpnk1Þ2 þ jAij2sin4θWðpnkÞ2

− sin2θWRe

��
Bi þ Ai

�
−
1

2
þ sin2θW

��
A�
i

�

× ðpnk2Þm2

�
; ð27Þ
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where the notations

Ai ¼ U�
1ie

−i
m2
i
−p2n

2p0n
T
; Bi ¼ U�

1i

�X3
k¼1

jU1kj2e
−i

m2
i
−p2n

2p0n
T
�

ð28Þ
are introduced.
Following the outlined procedure, we introduce the

virtual neutrino 4-momentum p in the same manner,
multiply the squared amplitude (26) by the delta function
of energy-momentum conservation ð2πÞ4δðPð1Þ þ k1−
Pð10Þ − q − k − k2Þ, substitute p instead of pn, multiply
by 2πδðPð1Þ − Pð10Þ − q − pÞ and integrate the result with
respect to the phase volume of the final particles and
nucleus. Next we sum the resulting differential probability
of the process over the final neutrino type i, substitute

T ¼ Lp0=jp⃗j, multiply the result by jp⃗j2 and integrate it
with respect to jp⃗j from jp⃗jmin to jp⃗jmax. We arrive at the
probability of detecting an electron:

dW
dΩ

¼
Zjp⃗jmax

jp⃗jmin

d3W
d3p

jp⃗j2djp⃗j ¼
Zjp⃗jmax

jp⃗jmin

d3W1

d3p
W2jp⃗j2djp⃗j: ð29Þ

Here d3W
d3p is the differential probability of the whole

process, where the intermediate neutrinos have a definite
momentum p⃗ and the final neutrino mass eigenstate

is of any type, d3W1

d3p is the differential probability of decay

of the initial nucleus into the final nucleus, a positron
and a massless fermion with the momentum p⃗ given by
(13) and

W2 ¼
1

2p02k01

Z
d3k

ð2πÞ32k0
d3k2

ð2πÞ32k02
X3
i¼1

hjMðiÞ
2 j2ij pn¼p

T¼Lp0=jp⃗j
ð2πÞ4δðk1 þ p − k − k2Þ

¼ G2
Fm
2π

2jp⃗j2
2jp⃗j þm

�
1 − 2sin2θW

�
1þ 2jp⃗j

2jp⃗j þm

�
þ 4sin4θW

�
1þ 1

3

�
2jp⃗j

2jp⃗j þm

�
2
�

þ 4sin2θW

�
1þ 2jp⃗j

2jp⃗j þm

�
Peeðjp⃗j; LÞ

�
ð30Þ

is the probability of the neutrino scattering in the detector.
Now we will use expression (29) to consider several
examples.

B. Specific examples

In the present subsection we consider neutrino oscilla-
tion experiments, where the neutrinos are produced in the
decays of 15O or 13N and registered by a water-based
Cherenkov detector. For simplicity we assume that the final
electron is detected, when its speed exceeds the speed of
light in water. It gives us the registration threshold
jp⃗jChermin ¼ 775 keV.
Neglecting the dependence of the nuclear form factors on

the momentum transfer, we can again approximate the dif-
ferential probability of neutrino production by the function

d3W1

d3p
¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp⃗jmax − jp⃗jÞðjp⃗jmax − jp⃗j þ 2mÞ

p

× ðjp⃗jmax − jp⃗j þmÞ: ð31Þ

The normalized distribution functions d3W1

d3p W2 at the point
L ¼ 0 in this approximation are represented in Fig. 6 (solid
and dashed lines). The results of numerical integration with
the same parameters as were used in the previous section are
depicted in Fig. 7. The irregular form of the oscillation
pattern in this case is due to the sharp cut of the neutrino

momentum distribution, defined by the detection threshold.
The coherence lengths here turn out to be

LO
coh ≈ 80 km; LN

coh ≈ 75 km:

Finally let us consider the combined 15O and 13N source.
The summation of the probabilities is performed with the

FIG. 6. Normalized distribution functions d3W1

d3p W2 at the point
L ¼ 0 for 15O, 13N and combined sources and a water-based
Cherenkov detector.
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same weights as it was discussed in the previous section.

The normalized distribution function d3W1

d3p W2 at the point

L ¼ 0 for this case is shown in Fig. 6 (dash-dotted line).
The results of numerical integration are presented in Fig. 8.
The coherence length reads

LOþN
coh ≈ 32 km;

which is, as expected, less than for the 15O and 13N sources
separately.
We would like to note here that, unlike the case of

registration only in the charged-current interaction, dis-
cussed in Sec. II, the asymptotic values of the normalized
probabilities of the neutrino oscillation processes presented
in Figs. 7 and 8 are all different. This is due to the fact that,

in the case of registration in the charged-current interaction
only, the oscillating expression Peeðjp⃗j; LÞ, given by (15),
factorizes. Thus, the oscillation asymptotic behavior is
determined by the average of Peeðjp⃗j; LÞ. However, when
the registration is performed in both the charged- and
neutral-current interactions, there is no such factorization,
as one can see from formulas (29) and (30). The numerical
evaluation gives that in the case of 15O and 13N sources
separately the asymptotic values are close to each other and
read 0.6454 and 0.6489, respectively, whereas in the case of
combined source the asymptotic value is 0.5818.

IV. CONCLUSION

In the present paper we have studied the origin of the
coherence length of neutrino oscillations in a quantum

FIG. 7. Normalized probabilities of the neutrino oscillation processes with the neutrino production in the 15O and 13N decays and the
registration by a water-based Cherenkov detector.

FIG. 8. Normalized probability of the neutrino oscillation process with the neutrino production in both the 15O and 13N decays
simultaneously and the registration by a water-based Cherenkov detector.
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field-theoretical approach to the description of neutrino
oscillation processes passing at finite space-time intervals.
The approach is based on the Feynman diagram technique
in the coordinate representation supplemented by modified
rules of passing to the momentum representation, which
reflect the experimental situation at hand. Wave packets
are not employed in this approach, we use only the
description in terms of plane waves, which considerably
simplifies the calculations. The neutrino flavor states turn
out to be unnecessary and only the neutrino mass eigen-
states are used.
The approach under consideration, just like the standard

quantum-mechanical description, predicts a suppression of
neutrino oscillations with distance. In the standard quan-
tum-mechanical description this suppression is assumed to
arise due to the quantum uncertainty of neutrino momen-
tum. However, in a realistic experiment there is also another
source of the suppression effect. It is the intermediate
neutrino being nonmonochromatic, which always takes
place in the case of a tree-body decay even if all the
involved particles are assumed to have definite momenta. If
the production process has a two-particle final state, the
momentum spread of the produced neutrinos comes from
the momentum spread of the initial particles and/or nuclei.
In any realistic experimental situation a neutrino momen-
tum distribution of this type is always present and is
determined by the spectral characteristics of the production
and detection processes. It is this source of the oscillation
pattern blurring that is taken into account in the proposed
description.
The width of the discussed distribution is much larger

than that of the natural neutrino momentum distribution
due to the quantum-mechanical uncertainty, considered in
the standard approach. Consequently, the corresponding
coherence length in our formalism is found to be much
smaller than the one predicted in the standard quantum-
mechanical approach, and hence the former coherence
length is dominant in experiments. The decoherence
process caused by the neutrino momentum quantum
uncertainty also affects the oscillation pattern blurring,
but we can neglect it compared to the more powerful effect
due to the momentum spread of the intermediate
neutrinos.
In the approach under consideration neutrino oscilla-

tion is an interference process, and the coherence length
is found by analogy with interference of nonmonochro-
matic light in optics with the help of the visibility
function. It is completely defined by the production and
detection processes and cannot be decomposed into

coherence lengths for pairs of neutrino mass eigenstates.
The coherence lengths for five combinations of produc-
tion and detection processes have been explicitly calcu-
lated. It was found that the coherence length in the
experiments with two production processes is smaller
than the coherence length in experiments with only one of
the production processes and with the same detection
process.
It is necessary to mention that, in the developed

approach, there is no analogue of the localization term,
which appears in the wave-packet treatment of neutrino
oscillations. This is due to the fact that the approach under
consideration is based on the assumption that the sizes of
the neutrino source and detector are much smaller than the
distance between them, which is always fulfilled in
neutrino oscillation experiments. Since the coherence
length is of the order of the latter distance, this means
that the production and detection processes are localized in
space-time regions much smaller than the oscillation
length. In the standard approach this is exactly the con-
dition that the localization term does not suppress the
oscillations.
Finally we note that the ideas behind our approach are

not entirely new. The approach under consideration can be
viewed as a development of the quantum field-theoretical
description in terms of wave packets [8]. It is based on the
same ideas, makes use of the intermediate virtual neutrino
mass eigenstates and explains neutrino oscillations by
interference of the corresponding amplitudes. The pro-
posed technique of fixing the time interval between the
interaction points serves just to simplify the calculations,
which are rather bulky in the case of the wave-packet
treatment. Thus, the approach, having the advantages of
physical clearness and technical simplicity, allows one to
consistently describe neutrino oscillation processes and to
take into account the decoherence effect due to non-
monochromaticity of the neutrino beam.
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