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We consider N uniformly accelerating Unruh-DeWitt detectors whose internal degrees of freedom are
coupled to a massless scalar field in ð1þ 1ÞDMinkowski space. We use the influence functional formalism
to derive the Langevin equations governing the nonequilibrium dynamics of the internal degrees of freedom
and show explicitly that the system relaxes in time and equilibrates. We also show that once the equilibrium
condition is established a set of fluctuation-dissipation relations (FDRs) and correlation-propagation
relations emerges for the detectors, extending earlier results of Raval, Hu, and Anglin [Stochastic theory of
accelerated detectors in quantum fields, Phys. Rev. D 53, 7003 (1996)] which discovered these relations for
the quantum field. Although similar in form to the FDRs commonly known from linear response theory,
which assumes an equilibrium condition a priori, their physical connotations are dissimilar from that of a
nonequilibrium origin. We show explicitly that both sets of relations are needed to guarantee the balance of
energy flow in and out of the system in dynamical equilibrium with the field. These results are helpful to
investigations of quantum information and communications of detectors in space experiments and inquiries
of theoretical issues in black holes and cosmology.
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I. INTRODUCTION

Fluctuation-dissipation relations (FDRs) are fundamen-
tal relations established in statistical mechanics with wide-
ranging implications in many areas of physics, theoretical
and applied. The commonest form of FDR is often quoted
in linear response theory (LRT) [1,2] in the context of
many-body or condensed matter systems [3,4]. However,
FDRs can exist in a more general setting. When viewed in
the open systems or driven dissipative systems perspective
the usual FDR in the LRT form emerges in a system
interacting with its environment after it has relaxed to an
equilibrium state at late times (e.g., [5]), or when kept in a
nonequilibrium steady state (e.g., [6]).
As an example of the FDR’s wide-ranging implications

and applications, we mention the suggestion of Candelas
and Sciama [7,8] in viewing a black hole interacting with a

quantum field as a dissipative system, and viewing
Hawking [9] radiation in light of a FDR. (See also
[10].) The same interpretation of the physics applies to
the Unruh effect [11] experienced by a uniformly accel-
erated detector. Even though it was later shown [12] that the
fluctuations that these authors refer to are not the proper
statistical mechanical noise of the environment (quantum
field) and the FDR they wrote down has a mismatch, thus
not really addressing the backreaction of quantum fields on
a black hole spacetime, this way of thinking appealed to
one of us enough to have motivated him to launch a
systematic investigation into the statistical mechanical
properties of quantum fields in the presence of accelerating
detectors [13–15], moving particles and masses [16–18],
and interpreting the backreaction of quantum field proc-
esses in black holes [12,19,20] and the early universe
[21–24] in the light of FDRs.
The detectors in the above studies are spatially localized

objects with internal degrees of freedom (d.o.f.) coupled to
quantum fields. Similar detector-field systems are also used
in the newly emergent field of relativistic quantum infor-
mation [25] to examine theoretical issues like environmen-
tal influences on quantum coherence [26] and entanglement
[27–29] which are essential for projected applications in
quantum communications and teleportation [30]. They can
represent not only atoms distributed in space, but also
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mirrors with some internal d.o.f. describing their optical
properties such as reflectivity (e.g., [31–33]), or even those
d.o.f. entering as basic constituents in a dielectric (e.g.,
[34]). In this capacity the investigation of detector-field
interactions in this paper carries as much importance in
terms of experimental capabilities for relativistic quantum
information as atom-field interactions have provided for the
bounty achievements in atomic and optical physics.
Since measurements carried out in quantum fields are

usually more subtle and difficult [35], our results for
relations between atoms facilitate more accessible exper-
imental possibilities. For this purpose we need to address
both the quantum field theoretical and the quantum
thermodynamical aspects of the detector-field system.
In this backdrop we now describe what have been

achieved before on the important issues in the statistical
mechanical properties of detector-field systems, and what
are the new results in our present investigation.

A. Results from [13]: Existence of FDRs and
correlation-propagation relations (CPRs)

A significant work before 1995 is that of Raine, Sciama
and Grove (RSG) [36], the key points therein were
summarized and other prior work described in [13].
There, Raval, Hu and Anglin (RHA) used the worldline
influence functional to treat an arbitrary number of Unruh-
DeWitt detectors, modeled as harmonic oscillators, in
arbitrary yet prescribed motion, minimally coupled to a
massless quantum scalar field in 1þ 1 dimensions.1 This
coupling provides a positive definite Hamiltonian in 1þ 1
dimensions and is of the form of scalar electrodynamics
describing the coupling of charged particles to an electro-
magnetic field in 2D. The field and the system of detectors
are not coupled to each other until the initial moment of
interaction, and the initial state of the field is assumed to be
the Minkowski vacuum. They aimed at describing the
averaged effects of the scalar field on the dynamics of the
system of detectors.
In this (stochastic field theory) approach based on open

quantum system concepts and techniques (via the influence
action) [37,38], the detector (system) dynamics is obtained
by coarse-graining (integrating over) the quantum scalar
field (environment) which interacts with all the detectors.
From the influence action they obtained a set of coupled
Langevin equations for the detectors under the influence of
the scalar field environment. These effective equations for
the system nonetheless contain the full quantum dynamics
of the field.
We mention two examples studied by RHA which may

be viewed as a prelude to our present investigation, (I) two

inertial oscillators kept at some fixed spatial separation,
interacting indirectly via a common scalar field; (II) a
uniformly accelerated detector (oscillator 1) and an inertial
detector (oscillator 2). RHA showed that there exist FDRs
relating the fluctuations of the stochastic forces on the
detectors to the dissipative forces. They also discovered a
related set of CPRs between the correlations of stochastic
forces on different detectors and the retarded and advanced
parts of the radiation mediated by them.
In problem (I) of two inertial detectors RHA find that the

field which mediates the two detectors modifies the
impedance functions [Lij from (3.34) of [13]] of both
detectors. Drawing on the properties of inductance in an
inductor L and the analogy with antenna systems, they
introduced self-impedance and mutual impedance for the
description, where the self-impedance measures the back-
reaction of each detector on itself, and mutual impedance
measures the backreaction of one on the other, namely, the
change in the response of one detector due to the fluctua-
tions of the field in the vicinity of the other one. The
dissipative properties of each detector are correspondingly
altered due to the presence of the other detector. The field
fluctuations (noise) in this case are relatively trivial, and
nontrivial effects can be ascribed mainly to the impedance
functions.
Problem (II) deals with a uniformly accelerated detector

and an inertial detector, the latter is called a probe because it
does not backreact on the accelerated detector. In terms of
applications, for a better understanding of the early uni-
verse cosmology and black hole information issues, this
problem is of interest because it is the setting for inves-
tigating cross-horizon correlations and entanglement
[39,40] which may be useful for information retrieval
(such as after perturbations left the de Sitter horizon and
reenter the Friedmann-Robertson-Walker horizon). Here
the noise associated with the field fluctuations and the field
correlations between the two trajectories play a dominant
role. Since the probe cannot causally influence the accel-
erated detector, the dissipative features of this problem are
relatively trivial. Most of the terms in the correlations of the
stochastic force acting on the probe cancel each other,
leaving behind a contribution that arises purely from field
correlations across the horizon. RHA observed that this
cancellation follows from the dissipative properties of the
accelerated detector and its free uncoupled dynamics. It
does not explicitly involve the fluctuations of the field.
Instead, they point out that this cancellation comes about
because of the existence of a correlation-propagation
relation (CPR). This set of more general relations between
the correlations of various detectors and the radiation
mediated by them is derived from the FDR for the
accelerated detector. Such a relation can be equivalently
viewed as a construction of the free field two-point function
for each point on either trajectory from the two-point
function along the uniformly accelerated trajectory alone.

1Note the definition of minimal vs derivative coupling varies in
the literature: E.g., RHA [13] defined _Qϕ as minimal coupling,
following QED, the same as is used here. But [32] refers toQϕ as
minimal coupling, while _Qϕ or Q _ϕ as derivative coupling [33].
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The remaining terms, which contribute to the excitation of
the probe, are shown to represent correlations of the free
field across the future horizon of the accelerating detector.
In this problem, the dissipative properties of either detector
remain unchanged by the presence of the other. This
happens because the probe cannot influence the accelerated
detector. However, the stochastic force acting on the probe
plays a nontrivial role.

B. This investigation: FDR and CPR
between the detectors

In this paper we consider the nonequilibrium dynamics
of a system of N uniformly accelerating Unruh-DeWitt
detectors with no direct coupling but interacting indirectly
via a common quantum field. The earlier work of RHA,
which demonstrated the existence of a FDR and discovered
the existence of a CPR for the quantum field, was based on
an examination of the properties of the Green functions in
the quantum field, specifically the Hadamard’s elementary
functionwhich represents the noise in the environment, and
the retarded Green function which enters in the dissipation
of the system. For our present problem we need to
(1) Consider whether and how the system equilibrates,
as a precondition for the existence of these relations. This
involves describing the relaxation dynamics of the system.
We then ask: (2) Does there exist a FDR between the
detectors2 as induced by the FDR in the quantum field?
(3) Does there exist a CPR between the detectors as induced
by the CPR in the quantum field? (4) If so, does the CPR
help in understanding some aspect of quantum information,
specifically the quantum correlations and quantum entan-
glement in a detector-field system?
We focus on issues (1)—(3) in this paper, in the setup

when N causally connected detectors in 1þ 1 dimensions
all undergo uniform accelerating motion but with different
accelerations. This is represented by N Rindler trajectories
all in the R wedge with the same asymptotes. One curious
feature of this setup is that in the weak coupling limit, the
detectors at different positions will have different Unruh
temperatures at late times while they are in equilibrium
with the same quantum field. We shall study the properties
of a tensor response function which embodies both the
FDR and the CPR for both the field and the detectors. The
investigation of issue (4) will be left to a future paper.
The major findings in our investigation are as follows:
(1) We examine the nonequilibrium dynamics of the

system during the relaxation process, and show that
the system’s achievement of dynamical equilibration
is a necessary condition for the existence of the
system’s FDR/CPR (we can refer to their combina-
tion as a set of generalized FDRs).

(2) Under the state of dynamical equilibrium, we
identify the generalized FDR of the system. Thus
we have extended the previous results on the FDR/
CPR of the environment to those of the detectors. It
is interesting to note that the former is formulated for
the initial configuration of the environment, while
the latter is only realizable in the final equilibrium
state of the detectors.

(3) The generalized FDR guarantees the energy balance
between the detectors, and the balance between the
detector and the quantum field. This offers a vivid
physical interpretation of the generalized FDR.

(4) The generalized FDR, obtained here from the fully
nonequilibrium dynamics of the system, although
similar in form to the FDR obtained from linear-
response theory, has totally different physical mean-
ings and implications in quantum thermodynamics.

This paper is organized as follows. In Sec. II, we describe
our model of N Unruh-DeWitt detectors in uniform
acceleration, the field configurations, and the influence
functional formalism used for our investigation of the
nonequilibrium dynamics of the detectors’ internal d.o.f.
In Sec. III we use a simple example of two inertial detectors
to illustrate how the FDR/CPR of the detectors can be
obtained and how they are related to the FDR/CPR of the
scalar field. In Sec. IV we examine the relaxation and
equilibration of the internal d.o.f. of the N detectors, then
we define and discuss the meaning of the noise and
dissipation kernels, and establish the FDR/CPR for the
detectors. Then in Sec. V we show how the energy flows
between the constituents of the system and those between
the system and the environment come to a balance, after the
equilibrium condition is reached. This energy balance is a
physical embodiment of the generalized FDR and a
mathematical validation of the necessity of self-consistency
in the formalism. In Appendix A we highlight a possible
ambiguity in the definitions of the Hadamard’s elementary
function and the retarded Green’s function of the system in
Rindler space and point out a subtle nature of temperature
in the detector’s response and the FDR between the system
and its environment in our setup. Finally in Appendix B, for
the purpose of comparison, we present a result in [13] on a
generalized FDR of the scalar field for general timelike
trajectories zðtÞ and z0ðtÞ without horizons.

II. OPEN QUANTUM SYSTEM/INFLUENCE
FUNCTIONAL FORMALISM

Here in ð1þ 1ÞD Minkowski spacetime, we consider N
identical Unruh-DeWitt detectors, whose internal d.o.f. Qi
(with i ¼ 1;…; N) are modeled by simple harmonic oscil-
lators in the detectors’ internal spaces. Suppose the detectors
uniformly accelerate from spatial infinity at the asymptotic
past of Minkowski spacetime towards an inertial observer
resting at the origin of the Minkowski coordinate system
xμ ¼ ðt; zÞ of our choice. This accelerating motion is most

2Interestingly, in LRT, e.g., [1] and its applications to problems
in condensedmatter physics [41] when the details of the bath are of
no great concern, the FDR was primarily derived for the system.
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easily described by the Rindler coordinates [42,43] ðη; ξÞ,
which parametrize the part of Minkowski space, z ≥ jtj, by

t ¼ eaξ

a
sinh aη; z ¼ eaξ

a
cosh aη; ð2:1Þ

The line element of Rindler space ds is given by

ds2 ¼ −e2aξðdη2 − dξ2Þ: ð2:2Þ
with −∞ < η, ξ < ∞, and the constant parameter a > 0.
In terms of these Rindler coordinates ðη; ξÞ, the ith detectors
follows a coordinate line of fixed ξ ¼ ξi with a proper
acceleration

αðξiÞ ¼ ae−aξi ð2:3Þ
in such a way that at η ¼ 0, passing through the z axis of the
Minkowski coordinate, they are all in closest proximity to
the inertial observer at z ¼ 0.
In the comoving frame of the ith detector [44], the

dynamics of oscillator Qi of mass m and natural frequency
ω in its internal space is described by the action

SQ½Qi� ¼
Z

dτi

�
m
2

_Q2
i −

mω2

2
Q2

i

�
; ð2:4Þ

where an overdot denotes differentiation with respect to the
proper time τi of the oscillator. In the background space-
time with metric gμν in (2.2), with its inverse and deter-
minant denoted by gμν and g respectively, a massless scalar
field ϕ described by the action

Sϕ½ϕ� ¼ −
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p
gμν∇μϕ∇νϕ ð2:5Þ

is initially in its vacuum state, according to the inertial
observer. This scalar field couples only to the internal d.o.f.
of the detector. To avoid infrared divergences in a lower
dimension space, we consider a coupling with ϕ in the form
which involves _Qi instead ofQi, i.e., in the interaction term,

SINT½Qi;ϕ� ¼
Z

d2x
ffiffiffiffiffiffi
−g

p
jiðxÞϕðxÞ; jiðxÞ

¼ λi

Z
dτi _QiðτiÞ

δð2Þ½xμ − zμi ðτiÞ�ffiffiffiffiffiffi−gp ; ð2:6Þ

where λi is the coupling constant and zμi ðτiÞ is the
prescribed trajectory depicting the uniformly accelerating
motion of the ith detector.3 Thus jðxÞ can be understood as

a source current from the internal d.o.f. of the detector.
Combining the above elements, the full action for N
uniformly accelerating detectors is given by

S ¼ Sϕ½ϕ� þ
XN
i¼1

ðSQ½Qi� þ SINT½Qi;ϕ�Þ: ð2:7Þ

Note that we have chosen identical mass m and natural
frequency ω for all the detectors while the detector-field
coupling constant λi may be different for each detector. The
fixed locations of the detectors z1i ðτiÞ ¼ ξi in the Rindler
coordinates have been assigned accordingly to get rid of the
resonance in ð1þ 1ÞDmodels [33], so the late-time state of
the detectors will be independent of the initial state.

A. Influence functional, coarse-grained
and stochastic effective action

We adopt the framework of Feynman-Vernon influence
functional [45] or Schwinger-Keldysh [46–49] (or “in-in”
or “closed time path”) formalisms. The closed-time-path
coarse-grained effective action (equivalent to the influence
action) SCG [5,28,45,50] is given by

SCG¼
X
i

Z
dτi½m _ΔðQÞ

i ðτiÞ _ΣðQÞ
i ðτiÞ−mω2ΔðQÞ

i ðτiÞΣðQÞ
i ðτiÞ�

þ1

2

Z
d2x

ffiffiffiffiffiffi
−g

p Z
d2x0

ffiffiffiffiffiffiffi
−g0

p
ΔðjÞðxÞGðϕÞ

R ðx;x0ÞΣðjÞðx0Þ

þ i
2

Z
d2x

ffiffiffiffiffiffi
−g

p Z
d2x0

ffiffiffiffiffiffiffi
−g0

p
ΔðjÞðxÞGðϕÞ

H ðx;x0ÞΔðjÞðx0Þ:

ð2:8Þ

Hereafter, we will denote ΔðxÞ, ΣðxÞ by ΔðxÞ ¼ xðþÞ − xð−Þ

and ΣðxÞ ¼ ðxðþÞ þ xð−ÞÞ=2 for any variable x, and the
superscripts ðþÞ; ð−Þ indicate respectively the forward
and backward time branches along which the associated
variable is evaluated.
The retarded Green’s function GðϕÞ

R ðx; x0Þ and the

Hadamard’s elementary function GðϕÞ
H ðx; x0Þ of the scalar

field4 are defined by

GðϕÞ
R ðx; x0Þ ¼ iθðt − t0ÞTrð½ϕðxÞ;ϕðx0Þ�ρϕÞ; ð2:9Þ

GðϕÞ
H ðx; x0Þ ¼ 1

2
Trðfϕðx;ϕðx0ÞgρϕÞ; ð2:10Þ

where θðtÞ is the unit-step function and ρϕ in this case is the
density matrix of the scalar field associated with its initial

state. The retarded Green’s function GðϕÞ
R ðx; x0Þ of the field

in fact is independent of the field state because it consists of

3A word on the nature of Q and z in the model used here: the
external or mechanical d.o.f. (mdf) z is prescribed and non-
dynamical. It does not couple to the field or the internal d.o.f. (idf)
Q of the detector by any direct or indirect means. The internal
d.o.f. of the detectorQwill undergo nonequilibrium evolution but
its dynamics will not affect the external motion z of the detector.
In a model like what is used in [31,32] where z is dynamical there
will be interplay between the idf and the mdf through the field.

4Their physical interpretations in the influence functional
formalism can be found in [5,28], for example.
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a product of the unit-step function and the Pauli-Jordan
function GðϕÞðx; x0Þ ¼ i½ϕðxÞ;ϕðx0Þ�, which then is the
commutator of the field operator, a c-number. The latter,
together with the Hadamard’s elementary function, con-
stitutes the Wightman function of the scalar field:

GðϕÞ
> ðx; x0Þ ¼ ihϕðxÞϕðx0Þi

¼ 1

2
GðϕÞðx; x0Þ þ iGðϕÞ

H ðx; x0Þ: ð2:11Þ

The Wightman function of a massless scalar field in the
Minkowski vacuum when expressed in terms of the Rindler
coordinates is given by

GðϕÞ
> ðx;x0Þ

¼ i
Z

∞

0

dκ
2π

1

2κ

��
coth

πκ

a
cosκðΔηþΔξÞ− isinκðΔηþΔξÞ

�

þ
�
coth

πκ

a
cosκðΔη−ΔξÞ− isinκðΔη−ΔξÞ

��
: ð2:12Þ

It has the same form as the one in a thermal state with
temperature

T ¼ a
2π

: ð2:13Þ

This offers one way to see the Unruh effect. Here, Δη

and Δξ denote Δη ¼ η − η0 and Δξ ¼ ξ − ξ0 respectively.
Equation (2.12) allows us to immediately identify the
corresponding Hadamard’s elementary function and the
retarded Green’s function. After preforming the temporal
Fourier transformation over Δη according to

f̃ðκÞ ¼
Z

∞

−∞
dΔηfðΔηÞeþiκΔη ; ð2:14Þ

we obtain a relation between the Fourier transforms of the
Hadamard’s elementary function and the retarded Green’s
function,

G̃ðϕÞ
H ðκÞ ¼ coth

πκ

a
ImG̃ðϕÞ

R ðκÞ: ð2:15Þ

This is valid for fixed ξ and ξ0 (for the general cases with

τ-dependent ξ and ξ0, see Appendix B), and G̃ðϕÞ
H;RðκÞ in fact

still depends on Δξ. The diagonal terms (ξ ¼ ξ0) of (2.15)
observe the conventional FDR, which relates the local
effects of quantum fluctuations of the scalar field and
through its backaction, the dissipation in the system with
which the field interacts. The off-diagonal terms observe a
less familiar relation, that between the long-range nonlocal
correlations of the field and the non-Markovian effects in
the system mediated by the ambient field. This is the CPR
termed by Raval, Hu and Anglin [13]. Viewed together we

may call (2.15) a generalized FDR for the scalar field
environment.
In the context of the oscillator environment, the corre-

sponding Hadamard’s elementary function and the Pauli-
Jordan function are often denoted by ν̄ and μ̄ respectively,
and their sum gives the Wightman function, Z ¼ μ̄þ iν̄, of
the environment.
Substituting the current j from (2.6) into the expression

(2.8) for the coarse-grained effective action and making use
of the Feynman-Vernon identity [45], we obtain the
stochastic effective action [16] Seff :

Seff ¼
X
i

Z
dτi

�
½m _ΔðQÞ

i ðτiÞ _ΣðQÞ
i ðτiÞ

−mω2ΔðQÞ
i ðτiÞΣðQÞ

i ðτiÞ�

þ
X
j

λiλj

Z
dτidτj _Δ

ðQÞ
i ðxÞGðϕÞ

R ðzi; zjÞ _ΣðQÞ
j

þ λi _Δ
ðQÞ
i ðτiÞζiðτiÞ

�
; ð2:16Þ

where stochastic noise ζi obeys the Gaussian statistics:

⟪ζiðτiÞ⟫ ¼ 0;

⟪ζiðτiÞζjðτjÞ⟫ ¼ GðϕÞ
H ½ziðτiÞ; zjðτjÞ�; ð2:17Þ

where ⟪ � � �⟫ denotes the stochastic ensemble average
performed over the noise distribution, not the quantum
expectation value [45]. One can say that the noise ζi
encapsulates the quantum fluctuations of the scalar field at
the location of the ith detector.
The variation of this effective action with respect to ΔðQÞ

i
gives the Langevin equation of motion of Qi for each
detector,

δSeff

δΔðQÞ
i

����
ΔðQÞ

i ¼0

¼ 0;

⇒ mQ̈iðτiÞ þmω2QiðτiÞ

þ λ2
X
j

d
dτi

Z
dτjG

ðϕÞ
R ½ziðτiÞ; zjðτjÞ� _QjðτjÞ ¼ −λ_ζiðτiÞ;

ð2:18Þ

where we have let λi ¼ λj ¼ λ. Obviously, in (2.18), the
noise ζi will add a stochastic component in the dynamics of
the internal d.o.f. of the detectors, and in turn this random
motion will induce nonlocal causal influences from 1
internal d.o.f. to the others via the ambient quantum field
(see, e.g., explanations in [28]) in the form of the retarded
Green’s function of the field. This is in the nature of a
quantum radiation [16], different from the classical radi-
ation emitted by a moving charge. The change in the state
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of the internal d.o.f. of one detector will be passed onto the
other detectors by means of the retarded field, which in turn
incurs subsequent disturbances to the other internal d.o.f.
This causes further modifications in their retarded fields,
which will propagate to and affect other detectors. The
process will continue on until all the internal motions settle
down in an equilibrium state, if it exists. In due course, this
causal influence gradually builds up correlations between
the internal d.o.f. among spatially separated detectors. At
the same time, the backaction of this quantum radiation
from each internal d.o.f. gives rise to a quantum reactive
force [51] which damps out the motion of Qi, with a
strength proportional to the time variation of the internal
d.o.f. Therefore, the more violent the motion of the internal
d.o.f. is, the stronger the quantum reactive force will be.
This is conducive to enabling the system to evolve toward
an equilibrium configuration. Inadvertently ignoring this
contribution in the equation of motion will bring about in
general growing fluctuations in the physical observables of
Q, giving unphysical predictions.
Before we proceed to solving the equation of motion, we

observe that the retarded Green’s functionGðϕÞ
R of the scalar

field,

GðϕÞ
R ðx; x0Þ ¼ θðη − η0Þ

Z
∞

0

dκ
2π

1

κ
½sin κðΔðηÞ þ ΔðξÞÞ

þ sin κðΔðηÞ − ΔðξÞÞ�; ð2:19Þ

is time-translationally invariant in Rindler time η, but it
does not have such a nice property when expressed in terms

of the detector’s proper time. The fact that the GðϕÞ
R is

stationary allows us to solve the equation of motion by
means of the Laplace/Fourier transformation. Since the
infinitesimal proper time interval dτ and the Rindler time
interval dη are related by dτ ¼ eaξdη, we can write the
equation of motion (2.18) as

Q00
i ðηiÞ þ ω2e2aξiQiðηiÞ

þ λ2eaξi

m

X
j

d
dηi

Z
∞

0

dηjG
ðϕÞ
R ðηi − ηj; ξi − ξjÞQ0

jðηjÞ

¼ −
λ

m
eaξiζ0iðηiÞ; ð2:20Þ

where we have denoted the corresponding time derivative
with respect to Rindler time η by a prime, i.e.,
dQðηÞ=dη ¼ Q0ðηÞ. If the coupling between the detector’s
internal d.o.f. and the field is switched on at t ¼ 0, the
lower limits of the proper time integrals in (2.18) or that of
the Rindler time integral in (2.20) will be set to zero. At
η ¼ 0, the internal d.o.f. Qi of the detectors are not in
equilibrium with the ambient scalar field, which is in a
thermal state described by (2.12) at the moment when the
coupling is switched on, so Qi follow nonequilibrium

dynamics. It is then of interest to inquire whether this
evolution will settle down to equilibrium and how it does so
through a careful analysis of the relaxation process. Thus,
for example, we cannot a priori presume energy conser-
vation which is possible only under stationarity conditions
such as warranted by the existence of an equilibrium state.
The physics will be more transparent when we isolate the

local contribution from the nonlocal ones in (2.20). Doing
so, we arrive at

Q00
i ðηiÞ þ

λ2eaξi

2m
Q0

iðηiÞ þ ω2e2aξiQiðηiÞ

þ λ2eaξi

2m

X
j≠i

θðηi − lijÞQ0
jðti − lijÞ ¼ −

λ

m
eaξiζ0iðηiÞ;

ð2:21Þ

where lij ¼ jξi − ξjj. No frequency or mass renormaliza-
tion is needed in this case. The nonlocal contributions, the
fourth term, reduce to time-delay terms, reflecting the
nature of causal influences. It represents history-dependent
influences from the other detectors in the full course of their
dynamical evolutions. The second term, resulting from the
local contribution, describes the frictional force in the
equation of motion. If we define γ ¼ λ2=4m as the usual
damping constant, then different detectors can induce
different effective frequencies and damping rates due to
the factor e2aξi being location dependent. This factor
accounts for the redshift of energy transfer between
detectors along different paths.
Next we use a simple example of two static detectors to

see how the CPR between the detectors emerges and to
illustrate the central idea of this paper.

III. TWO INERTIAL DETECTORS: SELF-
IMPEDANCES AND MUTUAL IMPEDANCES

Consider two static detectors at z and z0 in ð1þ 1ÞD
Minkowski space, coupled to a massless scalar field ϕ
initially in its vacuum state. The equations of motion for the
internal d.o.f. Q1, Q2 of the detectors of unit mass are

Q̈1ðtÞ þω2
1Q1ðtÞ þ

e21
2

_Q1ðtÞ þ
e1e2
2

_Q2ðt− lÞ ¼ −e1ζ1ðtÞ;
ð3:1Þ

Q̈2ðtÞ þω2
2Q2ðtÞ þ

e22
2

_Q2ðtÞ þ
e1e2
2

_Q1ðt− lÞ ¼ −e2ζ2ðtÞ;
ð3:2Þ

assuming i, j ¼ 1, 2 from (2.21). Here ωi is the natural
frequency of the internal d.o.f. of the ith detector and ei is
its coupling constant with the scalar field, assumed to be
switched on at t ¼ 0. The detectors are separated by
l ¼ jz − z0j. Thus t − l gives the retarded time for any
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disturbance in the field generated by one detector to
propagate to the other.
In the matrix form, the inhomogeneous solution of

QðtÞ ¼ ðQ1; Q2ÞT is given by

Q̃ðINHÞðωÞ ¼ D̃2ðωÞ · F̃ðωÞ; ð3:3Þ

where Q̃ðωÞ is the Fourier transform ofQðtÞ, andD2ðtÞ is a
homogeneous solution, satisfying D2ð0Þ ¼ 0, whose
Fourier transform is given by

D̃2ðωÞ ¼
 
−ω2 − i e

2
1

2
ωþ ω2

1 −i e1e2
2
ωeþiωl

−i e1e2
2
ωeþiωl −ω2 − i e

2
2

2
ωþ ω2

2

!−1

:

ð3:4Þ

The force term FiðtÞ ¼ −ei _ζiðtÞ. Equation (3.3) implies
that the inhomogeneous solution QðINHÞðtÞ is

QðINHÞðtÞ ¼
Z

t

0

dt0D2ðt − t0Þ · Fðt0Þ: ð3:5Þ

We shall discuss relaxation dynamics and the existence of
dynamical equilibration in the sections that follow. Here we
assume that the homogeneous solution ofQ is negligible at
late times. A more complete treatment of the nonequili-
brium dynamics of N inertial detectors and the thermody-
namics of such a system is given in [5].
We introduce the Hadamard’s elementary function

of Q by5

GðQÞ
H ðti; tjÞ≡ ⟪QiðtiÞQjðtjÞ⟫: ð3:6Þ

Here ⟪ � � �⟫ denotes the stochastic ensemble average
associated with the influence functional formalism [45],
but it can be shown with the help of the reduced density
matrix of Q that this expression is equivalent to half of the
quantum expectation value of the anticommutator of Q
when the internal d.o.f. takes the quantum operator form
[6]. Therefore, in principle, this Hadamard’s elementary
function is defined in the same way as that of the scalar
field. We can show that at late times, the Hadamard’s
elementary function for the internal d.o.f. of the detectors is
given by

½GðQÞ
H ðt; t0Þ�ij≃

Z
t

0

ds
Z

t0

0

ds0½D2ðt− sÞ�ik½D2ðt0− s0Þ�jl
×⟪FkðsÞFlðs0Þ⟫

¼ ekel

Z
t

0

ds
Z

t0

0

ds0½D2ðt− sÞ�ik½D2ðt0− s0Þ�jl

×
∂2

∂s∂s0 ½G
ðϕÞ
H ðs− s0Þ�kl: ð3:7Þ

In the limit t, t0 → ∞, Eq. (3.7) reduces to

lim
t;t0→∞

½GðQÞ
H ðt; t0Þ�ij ¼ ekel

Z
∞

−∞

dω
2π

ω2½D̃�
2ðωÞ�ik½D̃2ðωÞ�jl

× ½G̃ðϕÞ
H ðωÞ�kle−iωðt−t0Þ: ð3:8Þ

We observe that the Hadamard’s elementary function

GðϕÞ
H ðt − t0Þ of the scalar field is given by

GðϕÞ
H ðx − x0Þ ¼ 1

2

Z
∞

0

dω
2π

1

2ω
ðeþiωl þ e−iωlÞ

× ðeþiωΔt þ e−iωΔtÞ; ð3:9Þ

where Δt ¼ t − t0, so that its Fourier transform is given by

G̃ðϕÞ
H ðωÞ ¼ sgnðωÞ 1

4ω
ðeþiωl þ e−iωlÞ: ð3:10Þ

In (3.10), sgnðωÞ is the signum function with sgnðωÞ ¼ �1
when ω ≷ 0 or zero otherwise. On the other hand, the
Fourier transform of the Pauli-Jordan function GðϕÞðt; t0Þ is

G̃ðϕÞðωÞ ¼ i
2ω

ðeþiωl þ e−iωlÞ; ð3:11Þ

from which we can construct the Fourier transform of the
retarded Green’s function by

G̃ðϕÞ
R ðωÞ ¼ −i

Z
∞

−∞

dω0

2π

G̃ðϕÞðω0Þ
ω0 − ω − i0þ

; ð3:12Þ

such that its imaginary part is

ImG̃ðϕÞ
R ðωÞ ¼ −

i
2
G̃ðϕÞðωÞ ¼ 1

4ω
ðeþiωl þ e−iωlÞ: ð3:13Þ

From (3.10) and (3.13) we can thus explicitly show the
existence of FDR/CPR, or a generalized FDR for the scalar
field in its Minkowski vacuum

G̃ðϕÞ
H ðωÞ ¼ sgnðωÞImG̃ðϕÞ

R ðωÞ: ð3:14Þ

This is well known and is a consequence of the time-
ordering among various Green’s functions. In addition, it
holds for all fixed values of z and z0 even when the
corresponding spacetime points ðt; zÞ and ðt0; z0Þ are

5Some freedom may exist in the choice of the two-point
functions for the detector system. Please see Appendix A for
more details.
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spacelike separated. Although the retarded Green’s func-
tion of the massless scalar field is zero for a nonlightlike
interval, it does not imply that the corresponding temporal
Fourier transform is also zero.
Equation (3.10) implies that

G̃ðϕÞ
H ðωÞ¼sgnðωÞ

 
1
2ω

1
4ωðeþiωlþe−iωlÞ

1
4ωðeþiωlþe−iωlÞ 1

2ω

!
:

ð3:15Þ

On the other hand, from (3.4), we can explicitly show that

½D̃2ðωÞ�−1 − ½D̃�
2ðωÞ�−1

¼ −i2ω2

 e2
1

2ω
e1e2
4ω ðeþiωl þ e−iωlÞ

e1e2
4ω ðeþiωl þ e−iωlÞ e2

2

2ω

!
:

ð3:16Þ

Thus, (3.8) becomes

½GðQÞ
H ðt − t0Þ�ij ¼

i
2

Z
∞

−∞

dω
2π

sgnðωÞ½D̃�
2ðωÞ�ik

× f½D̃2ðωÞ�−1 − ½D̃�
2ðωÞ�−1gkl

× ½D̃2ðωÞ�lje−iωðt−t0Þ

¼
Z

∞

−∞

dω
2π

sgnðωÞIm½D̃2ðωÞ�ije−iωðt−t0Þ;

ð3:17Þ

where we have used the property that D̃2ðωÞ is symmetric.
Thus we arrive at

G̃ðQÞ
H ðωÞ ¼ sgnðωÞImG̃ðQÞ

R ðωÞ; ð3:18Þ

if we identify G̃ðQÞ
R ðωÞ ¼ D̃2ðωÞ. The latter can be verified

with the help of the density matrix formalism.
Equation (3.18) is the generalized FDR for the internal
d.o.f. of the two static detectors when the environmental
field is initially in its vacuum.
Since (3.5) is a matrix equation and describes how Q

responds to the noise force F, we may make an analogy
with impedance in elementary electromagnetism. That is,
writing

Q̃1ðωÞ ¼ L11ðωÞF̃1ðωÞ þ L12ðωÞF̃2ðωÞ;
Q̃2ðωÞ ¼ L21ðωÞF̃1ðωÞ þ L22ðωÞF̃2ðωÞ; ð3:19Þ

we may interpret L11 and L22 as self-impedance and L12,
L21 as mutual impedance [13] with

LiiðωÞ¼ χ̃iðωÞ
�
1þe21e

2
2

4
ω2eþi2ωlχ̃1ðωÞχ̃2ðωÞ

�
−1
; ð3:20Þ

L12ðωÞ ¼ L21ðωÞ
¼ þi

e1e2
2

ωeþiωlχ̃1ðωÞχ̃2ðωÞ

×
�
1þ e21e

2
2

4
ω2eþi2ωlχ̃1ðωÞχ̃2ðωÞ

�
−1
; ð3:21Þ

with χ̃iðωÞ being

χ̃iðωÞ ¼
�
−ω2 − i

e2i
2
ωþ ω2

i

	
−1
: ð3:22Þ

Following the previous discussions, we obtain

⟪Q2ðtÞ; Q2ðt0Þ⟫ ¼
Z

∞

−∞

dω
2π

sgnðωÞImL22ðωÞe−iωðt−t0Þ;

ð3:23Þ

at late times after the motion of the internal d.o.f. is fully
relaxed. This turns out to be Eq. (3.23) of [13] after
rewriting.
Observe that (3.14) is the generalized FDR of the

scalar field for fixed spatial coordinates z and z0. In fact,
in ð1þ 1ÞD Minkowski space, we may take advantage of
the null coordinates to derive the generalized FDR of the
scalar field for general timelike trajectory zðtÞ and z0ðtÞ as
long as they do not possess horizons [13]. For the sake of
comparison, we adapt the relevant material in Appendix B.
Next, we will formally solve the equation of motion for

N uniformly accelerating detectors, and examine the energy
flow in and out of each detector because the balance of
the net energy flow will be an indicator that the system
dynamics approaches equilibrium.

IV. RELAXATION TO EQUILIBRIUM

Following the procedures and arguments worked out for
inertial detectors [5], we expect the nonequilibrium dynam-
ics of the system to show relaxation in the present setup, but
there may be complications arising from the asymmetric
configuration from location-dependent effective parameters
expressed in Rindler time, even though technically using
Rindler time has a few advantages outlined earlier. On the
other hand, from the aspect of physical measurements, it
seems more sensible to use the proper time to express the
observables and their time derivatives because that is the
time an observer comoving with the detector keeps.
Thus, wewill discuss energy balance in terms of physical

quantities defined in the comoving frame of the detector,
but express them by the Rindler coordinates when neces-
sary. We write the Langevin equation in the comoving
frame (2.18) but in terms of the Rindler time as
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me−2aξi
d2Qi

dη2i
ðηiÞ þmω2QiðηiÞ

þ λ2e−aξi
X
j

d
dηi

Z
dηj G

ðϕÞ
R ½ziðηiÞ; zjðηjÞ�

dQj

dηj
ðηjÞ

¼ −λe−aξi
dζi
dηi

ðηiÞ: ð4:1Þ

We can solve this equation, if we perform the Laplace
transformation of Q for a fixed ξ according to

Q̄ðsÞ ¼
Z

∞

0

dηQðηÞe−sη: ð4:2Þ

This renders Eq. (4.1) to an algebraic equation. Note that
the Laplace transform Q̄ðsÞ of Q is defined in terms of the
Rindler time, and it has an implicit dependence on ξ, as will
be seen clearly later. After performing the Laplace trans-
formation, we cast (4.1) into the form

fðme−2aξi s2 þmω2Þδij þ λ2e−aξi s2½ḠðϕÞ
R ðsÞ�ijgQ̄jðsÞ

¼ −λe−aξi sζ̄iðsÞ þ initial conditions; ð4:3Þ

where on the right-hand side, the terms which are
associated with the initial conditions are not explicitly

shown. The matrix notation ½ḠðϕÞ
R ðsÞ�ij is a shorthand for

ḠðϕÞ
R ðs; ξi; ξjÞ. The presence of the damping term, as seen in

(2.21), implies that at late times when relaxation is nearly
complete, the contributions from the initial conditions of
QiðηÞ will become exponentially small, thus negligible.
The inhomogeneous solution, on the other hand, can be
expressed by

Q̄ðINHÞ
i ðsÞ ¼ Dð2Þ

ij ðsÞf−λe−aξj ½sζ̄jðsÞ − ζjð0Þ�g; ð4:4Þ

with

Dð2ÞðsÞ ¼ ½ms2A2 þmω2Iþ λ2s2A · ḠðϕÞ
R ðsÞ�−1; ð4:5Þ

and Aij ¼ e−aξiδij, so that with Rindler time, the inhomo-
geneous solution of Qi takes the form

QðINHÞ
i ðτÞ ¼ QðINHÞ

i ðηÞ ¼
Z
C
dsQ̄ðINHÞ

i ðsÞesη

¼
Z

η

0

dη0Dð2Þ
ij ðη − η0Þ

�
−λe−aξj

dζjðη0Þ
dη0

�

¼ −λ
Z

η

0

dη0½GðQÞ
R ðη − η0Þ�ij

dζjðη0Þ
dη0

; ð4:6Þ

where the closed contour C encloses all the poles6

of Dð2ÞðsÞ. Here we see how ξi implicitly enters in Qi

due to the factor Aij, and in addition, ḠðϕÞ
R ðsÞ still has

dependence on ξi − ξj. In (4.6), we introduced the

retarded Green’s function GðQÞ
R ðη − η0Þ of the internal

d.o.f. Q by

½GðQÞ
R ðηi − ηjÞ�ij ≡Dð2Þ

ij ðηi − ηjÞe−aξj ; ð4:7Þ

which will be of great use in the context of showing the
energy balance and proving the generalized FDR.
Equation (4.6) will be the single most important expression
in the following discussions.
A few words about the matrix notations of various

Green’s functions: The i–j component of G means that
the Green’s function G is evaluated at a pair of spacetime
points ðηi; ξiÞ and ðηj; ξjÞ, that is, Gðηi; ξi; ηj; ξjÞ, while the
i–j component of Ḡ for the Laplace transform or G̃ for the
Fourier transform of G tells that they are evaluated for a
pair of spatial coordinates ξi and ξj. This convention will
apply to the Green’s functions of the field as well as those
of the internal d.o.f. of the detectors.
From the general solution of the Langevin equation (4.1),

the two point function GðQÞ
H ðηi; ηjÞ≡ ⟪QiðηiÞQjðηjÞ⟫ in

general is not invariant under Rindler-time translations
due to the nonequilibrium evolution of the system.
However, in the course to relaxation, damping will
suppress any dependence on initial conditions of Q and
quell the components which are not time-translationally
invariant. Explicitly, at late times we can show from (4.6)
that

GðQÞ
H ðηi;ηjÞ¼ λ2

Z
ηi

0

dη0k

Z
ηj

0

dη0l½GðQÞ
R ðηi−η0kÞ�ik

× ½GðQÞ
R ðηj−η0lÞ�jl

∂2

∂η0k∂η0l ½G
ðϕÞ
H ðη0k−η0lÞ�klþ���

¼ λ2
Z

dκ
2π

κ2½G̃ðQÞ�
R ðκÞ�ik½G̃ðϕÞ

H ðκÞ�kl½G̃ðQÞT
R ðκÞ�lj

×e−iκðηi−ηjÞ

þexponentially small terms at late times;

ð4:8Þ

where we have used the approximation suitable for large
time t → ∞,

6We note that Dð2ÞðzÞ may have poles in the wrong
half plane of complex z when the coupling constant is
exceptionally large, when two neighboring detectors are
exceedingly close or when the resonance occurs [33]. We
shall avoid these extreme conditions because finite-size effect
or feedback-recoil effects to the external d.o.f. need to be
considered.
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Z
t

0

dsGðQÞ
R ðt− sÞe−iκs

¼ e−iκt
�Z

∞

∞
dΔGðQÞ

R ðΔÞe−iκΔ −
Z

∞

t
dΔGðQÞ

R ðΔÞe−iκΔ
�

¼ e−iκtG̃ðQÞ�
R ðκÞ þOðe−αtÞ; ð4:9Þ

with α being some positive number to describe the generic

decaying behavior of GðQÞ
R with time due to dissipative,

reactive force in the Langevin equation, and thatGðQÞ
R ðΔÞ is

a retarded function.
Equation (4.8) immediately tells us that the integrand is

the Fourier transformation of GðQÞ
H ðηi; ηjÞ, that is,

½G̃ðQÞ
H ðκÞ�ij ¼ λ2κ2½G̃ðQÞ�

R ðκÞ�ik½G̃ðϕÞ
H ðκÞ�kl½G̃ðQÞT

R ðκÞ�lj;
ð4:10Þ

or, in matrix notation,

G̃ðQÞ
H ðκÞ ¼ λ2κ2G̃ðQÞ�

R ðκÞ · G̃ðϕÞ
H ðκÞ · G̃ðQÞ

R ðκÞ; ð4:11Þ

since G̃ðQÞ
R ðκÞ is symmetric in its indices. Now we will use

the matrix identity

B−1 · ðC −BÞ · C−1 ¼ B−1 −C−1

⇒ ðC�Þ−1 · ðImCÞ · C−1 ¼ −ImðC−1Þ; ð4:12Þ

to write (4.8) as

GðQÞ
H ðηi − ηjÞ ¼ −

Z
dκ
2π

coth
πκ

a
½G̃ðQÞ�

R ðκÞ�ik
× fIm½G̃ðQÞ

R ðκÞ�−1gkl½G̃ðQÞT
R ðκÞ�lje−iκðηi−ηjÞ

¼
Z

dκ
2π

coth
πκ

a
½ImG̃ðQÞ

R ðκÞ�ije−iκðηi−ηjÞ:

ð4:13Þ

To arrive at (4.13), we have used the generalized FDR of
the scalar field (2.15) in the matrix form

G̃ðϕÞ
H ðκÞ ¼ coth

πκ

a
ImG̃ðϕÞ

R ðκÞ; ð4:14Þ

and Eq. (4.7), which gives G̃ðQÞ
R ðκÞ ¼ D̃ð2ÞðκÞ ·A, or

explicitly

G̃ðQÞ
R ðκÞ ¼ ½−mκ2Aþmω2A−1 − λ2κ2G̃ðϕÞ

R ðκÞ�−1; ð4:15Þ

to link the noise kernel of the field G̃ðϕÞ
H ðκÞ with the

dissipation kernel G̃ðQÞ
R ðκÞ of the internal d.o.f.,

coth
πκ

a
Im½G̃ðQÞ

R ðκÞ�−1 ¼ −λ2κ2G̃ðϕÞ
H ðκÞ: ð4:16Þ

Equation (4.13) nicely shows that after the internal d.o.f. Q
of the detector reaches equilibrium, a generalized FDR
appears among the kernel functions of Q,

G̃ðQÞ
H ðκÞ ¼ coth

πκ

a
ImG̃ðQÞ

R ðκÞ; ð4:17Þ

in addition to the generalized FDR established earlier for
the scalar field (4.14).
The generalized FDR in (4.17) looks identical to the

conventional form, obtained in the framework of linear-
response theory (LRT), for a quantum system in thermal
equilibrium at the temperature a=2π. However, their
physical origins and contexts are quite distinct, so it is
worth some elaborations of (4.17). In the conventional form
based on LRT, the FDR is established for a general
nonrelativistic quantum system in contact with a thermal
bath. The interaction between them is assumed vanishingly
weak so that the system can be described by an equilibrium
thermal state of the Gibbs form, and the backaction of the
system on the bath can be ignored. The correlations
established between different components of the system
are due to their direct interactions; the bath barely plays any
role in this aspect.
In contrast, Eq. (4.17) is formulated in a nonequilibrium

setting: At a given initial time, the internal d.o.f. of the
detectors start interacting with the ambient quantum field in
a given initial state, in this case the Minkowski vacuum as
reported by an inertial observer. Since in general the initial
state is not an eigenstate of the Hamiltonian of the detector-
field combined, the reduced dynamics of the internal d.o.f.
of the detectors will undergo nonequilibrium evolution,
unlike in the LRT where the system is assumed to remain
close to equilibrium throughout in a Gibbs’ distribution,
regulated by a bath with a set temperature or chemical
potential. The setting of LRT requires that the coupling
between the system and the bath is ultraweak. Here, in an
open system setting, stochastic noise force from the
quantum field induces dissipation in the nonequilibirum
dynamics of the reduced system. For this Gaussian model
under study the coupling strength between the system and
the bath can be arbitrarily strong. As long as the afore-
mentioned assumptions are not violated, in general we find
that the final relaxed state of the reduced system is quite
distinct from the Gibbs thermal state, even though the
correlation function of the field in its initial state, formu-
lated in terms of Rindler coordinates, looks thermal in
ð1þ 1ÞD Minkowski space.
From the previous construction, we see that the gener-

alized FDR in this setup emerges only after the internal
d.o.f. reach a final equilibrium state, which, owing to the
nonequilibrium evolution of the system, is totally different
from its initial state. From these considerations, it is quite
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amazing that the FDRs (4.17) assume the same form as the
conventional one based on LRT. Here we would like to
stress again that the proportionality factor in (4.17) is
related to the initial state of the field, not the final state of
the internal d.o.f. In other words, the generalized FDR of
the scalar field is formulated based on its initial configu-
ration, while the generalized FDR of the detectors acted on
by the field as their environment is only realizable in their
final equilibrium state.
This same appearance of the generalized FDR may not

be hard to understand. As has been pointed out earlier, at
late times the dynamics of the reduced system of the
detectors’ internal d.o.f. is dictated by the environmental
scalar field. This is most clearly seen from (4.6).
Examining more closely the matrix relation (4.17),

whereas its diagonal elements, obeying the conventional
FDRs of the scalar field (2.15), express the local balance
between dissipation and fluctuations of the internal d.o.f. of
each detector, its off-diagonal elements obey the CPRs
which connect the mutual non-Markovian influences
among different detectors mediated by the ambient scalar
field. In the next section, we will show that these off-
diagonal elements are essential in maintaining the energy
balance between the reduced system and its environment
after they have reached equilibrium. Thus lies the deeper
physical significance of the generalized FDRs.

V. ENERGY BALANCE

We now consider the energy balance between the
internal d.o.f. of the system and the ambient scalar field
they interact with. From the equation of motion (2.21), it is
easy to see that this interaction takes the form of (i) reactive
force due to quantum radiation, (ii) driving force arising
from the noise in the quantum field, and (iii) non-
Markovian influence between detectors mediated by the
field. They act as conduits to relay and distribute energy
among detectors via the surrounding field. In the transient
regime of the nonequilibrium evolution, net energy flows
between each detector and its environment can be non-
vanishing and varying in time. After the system has reached
equilibrium and settled in a stationary state, the energy flow
in and out of each detector should come to balance. We
show explicitly that this is indeed the case.
Since in this ð1þ 1ÞD model no renormalization of the

mass or the frequency in the equation of motion is
necessary, we do not need to isolate the damping term
from the delay term as is done in the case of inertial
detectors in ð1þ 3ÞD Minkowski spacetime [5,28].
We first take a look at the power delivered by the noise or

stochastic force −λdζi=dτi, from the right-hand side of
equation of motion (2.18), to the internal d.o.f.Qi of the ith
detector,

PðiÞ
ζ ðτiÞ ¼ −λ⟪

dζi
dτi

ðτiÞ
dQi

dτi
ðτiÞ⟫: ð5:1Þ

(In this equation there is no summation over the index i.) It
is essentially the expectation value of a mechanical power
in the comoving frame of the ith detector. At late times the
velocity of the internal d.o.f. dQi=dτi is given by

dQi

dτi
≃

d
dτi

Z
ηiðτiÞ

0

dηj D
ð2Þ
ij ðηi; ηjÞ

�
−λe−aξj

dζj
dηj

ðτjÞ
�

¼ −λe−aξi
d
dηi

Z
ηi

0

dηj ½GðQÞ
R ðηi − ηjÞ�ij

dζj
dηj

ðηjÞ;

τi ≫ γ−1; ð5:2Þ

using (4.6). The power (5.1) can then be written as

PðiÞ
ζ ðτiÞ ¼ λ2e−2aξi

Z
ηi

0

dηj

�
d
dηi

GðQÞ
R ðηi − ηjÞ

�
ij

× ⟪
dζi
dηi

ðηiÞ
dζj
dηj

ðηjÞ⟫: ð5:3Þ

Since ⟪ζiðηiÞζjðηjÞ⟫ gives the Hadamard’s elementary
function of the scalar field in the Rindler frame

⟪ζiðηiÞζjðηjÞ⟫ ¼ GðϕÞ
H ðηi − ηj; ξi − ξjÞ≡ ½GðϕÞ

H ðηi − ηjÞ�ij;
ð5:4Þ

which depends on the difference of two Rindler times. We
can make a change of variable η ¼ ηi − ηj in (5.3) and
arrive at

PðiÞ
ζ ðτiÞ¼ λ2e−2aξi

Z
ηi

0

dη

�
d
dη

GðQÞ
R ðηÞ

�
ij

�
−

d2

dη2
GðϕÞ

H ðηÞ
�
ij
:

ð5:5Þ

Taking the limit τi or equivalently ηi toþ∞ and noting that

GðQÞ
R ðηÞ is the retarded Green’s function of Q, we find that

in this limit

PðiÞ
ζ ð∞Þ¼ λ2e−2aξi

Z
∞

−∞
dη

�
d
dη

GðQÞ
R ðηÞ

�
ij

�
−

d2

dη2
GðϕÞ

H ðηÞ
�
ij

¼ λ2e−2aξi
Z

∞

−∞

dκ
2π

κ3½ImG̃ðQÞ
R ðκÞ�ij½G̃ðϕÞ

H ðκÞ�ij;

ð5:6Þ

where the real part of G̃ðQÞ
R ðκÞ is an even function of κ. The

Fourier transform ofQðηÞ can be related to the correspond-
ing Laplace transform, defined in (4.2), by

Q̃ðκÞ ¼ Q̄ðs ¼ −iκÞ; ð5:7Þ

or a Wick rotation on the complex s plane. Note that the
expression in (5.6) is time independent.
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Likewise, the power delivered by the damping term and
the non-Markovian effect is defined as

PðiÞ
γ ðτiÞ þ PðiÞ

c ðτiÞ

¼ −λ2
X
j

d
dτi

Z
∞

0

dτj G
ðϕÞ
R ½ziðτiÞ; zjðτjÞ�

× ⟪
dQj

dτj
ðτjÞ

dQi

dτi
ðτiÞ⟫

¼ −λ2e−2aξi
X
j

Z
ηi

0

dηj

�
d
dηi

GðϕÞ
R ðηi − ηj; ξi − ξjÞ

�

×

� ∂2

∂ηi∂ηj G
ðQÞ
H ðηi; ηjÞ

�
: ð5:8Þ

Earlier we have shown that at late times the Hadamard’s
elementary functionGðQÞ

H ðηi; ηjÞ of the internal d.o.f.Qwill
become invariant under Rindler-time translations. Thus at
late times this power will take the form

PðiÞ
γ ðτiÞ þ PðiÞ

c ðτiÞ ¼ −λ2e−2aξi
Z

ηi

0

dΔ
�
d
dΔ

GðϕÞ
R ðΔÞ

�
ij

×

�
−

d2

dΔ2
GðQÞ

H ðΔÞ
�
ij
; ð5:9Þ

and in the limit τi → ∞ we obtain

PðiÞ
γ ð∞ÞþPðiÞ

c ð∞Þ

¼−λ2e−2aξi
Z

∞

−∞
dΔ
�
d
dΔ

GðϕÞ
R ðΔÞ

�
ij

�
−

d2

dΔ2
GðQÞ

H ðΔÞ
�
ij

¼−λ2e−2aξi
Z

∞

−∞

dκ
2π

κ3½ImG̃ðϕÞ
R ðκÞ�ij½G̃ðQÞ

H ðκÞ�ij: ð5:10Þ

Since Eq. (4.17) says that the kernels G̃ðQÞ satisfy that same
form of generalized FDRs as G̃ðϕÞ do, we immediately see
that (5.6) and (5.10) add up to zero. That is, we have
explicitly shown that

PðiÞ
ζ ð∞Þ þ PðiÞ

γ ð∞Þ þ PðiÞ
c ð∞Þ ¼ 0; ð5:11Þ

for each detector after it has equilibrated and the energy
balance is established. Physically this is a requisite con-
dition for equilibrium. Mathematically, as is clearly dem-
onstrated in our derivation, self-consistency in the
formalism employed is an absolute necessity.
It is also worth mentioning that energy balance (5.11)

implies that

X
i

�
m
2

�
dQi

dτi

	
2

þmω2

2
Q2

i

�
ð5:12Þ

is a constant of motion. This is a stronger condition than
what the first integral of the equation of motion (2.18)
will imply.
At this point, it is instructive to summarize the physics

involved in the relaxation process of the detectors’ internal
d.o.f. when the detectors undergo uniform acceleration in
an ambient massless scalar field. For the general initial
configuration of the field, the internal d.o.f. of the detectors
will generically undergo nonequilibrium evolution with
time. The noise in the quantum field generates a stochastic
force, imparting a random component in the dynamics of
the internal d.o.f. of the detectors, which engenders
quantum radiation. The backaction of this quantum radi-
ation brings forth a reactive force which eases down their
motion. These competitive processes are conduits of energy
exchange between the detectors and their surrounding field,
enabling the equilibration. During the transient regime, the
correlation between the internal d.o.f. of the detectors in
general is not stationary, but the nonstationary component
is gradually suppressed by damping due to its rapid
oscillating behavior. Thus, at late times, this correlation
becomes stationary. This property is a key to the establish-
ment of a FDR for the internal d.o.f. Since we do not
presume energy conservation, the emergence of the gen-
eralized FDR guarantees that the net energy flows between
each detector and the ambient field, and those between the
detectors, cease at late times. In particular, without taking
the CPRs, that is, the relation governing the off-diagonal
elements in the generalized FDRs, into consideration, the
energy balance cannot be achieved. The presence of energy
balance signals the existence of an equilibrium confi-
guration. This provides a physical understanding of the
generalized FDR.
The formalism we employed produces self-consistent

and exact results for arbitrary coupling, including the
strong coupling regime. In this case, as stressed earlier,
the final equilibrium state of the internal d.o.f. is not of the
Gibbs form, so it is not straightforward to expect why the
corresponding FDR still takes the form as (4.17) without
going through some detailed analysis. Furthermore, at
strong coupling, the interaction term in the total
Lagrangian is not small and can be comparable with the
detectors’ components, so even if the equilibration is
reached, we cannot exclude the possibility that a substantial
portion of total energy might be hidden in the interaction
term such that energy balance may take on a totally
different form from (5.11), thus evading the neat expression
for the generalized FDRs. The analysis shown earlier
precludes those possibilities.

VI. CONCLUSION

Fluctuation-dissipation relations (FDRs) occupy a
central place in statistical mechanics as it succinctly
captures the relation between the dynamics of a (macro-
scopic) system and the (microscopic) fluctuations in its
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environment. It offers an enlightened way to understand
cosmological particle creation [52] and Hawking-Unruh
effects [9,11] and, more importantly, the backreaction
effects of quantum field processes on the dynamics of a
background spacetime as in a black hole [7,10] or the early
universe [21]. This way of thinking drove earlier research-
ers (e.g., [13,15]) to investigate into the relation between
moving detectors and a quantum field, with the detector
playing many roles, from an atom to a mirror to even a
black hole or the cosmos. Backreaction and fluctuation
effects of quantum fields on curved spacetime are the
central themes of semiclassical and stochastic gravity
theories, respectively [53,54], the two interim stages from
quantum field theory in curved spacetime to quantum
gravity.
Another important motivation which prompted us to

continue this line of investigation begun in [13] is the recent
advent of relativistic quantum information, where detectors
are used to probe into the quantum information contents
and features of a quantum field. This is a fruitful line of
inquiry as it is aided by more accessible atomic-optical
experimental designs.
The model we studied is a system of N uniformly

accelerating Unruh-DeWitt detectors whose internal d.o.f.,
modeled as harmonic oscillators, interact with an ambient
quantum scalar field. The oscillators have no direct
coupling but can indirectly interact through the common
field. We follow the nonequilibrium dynamics of this
system and look for conditions for such relations to exist.
It is easy to see that in the transient regime when many time
and length scales compete no such relation exists. But after
the system has relaxed and equilibrated, both the FDR and
the CPR relations for the system do exist. We can refer to
them collectively as the generalized FDRs. Indeed, the
generalized FDRs exist for the system in addition to such
relations already established earlier for the environment
(quantum field) [13]. Both sets of relations appear formally
identical but their physical connotations are starkly differ-
ent. These observations, together with an example we
provide in the Appendix A, point out the subtle roles or
interpretations of the temperatures in the detectors’
responses and in the generalized FDRs of the detectors
and the field in the context of the Unruh effect.
Having shown that a state of dynamical equilibrium

results from the nonequilibrium dynamics of the internal
d.o.f. of the detectors we further investigated the energy
flow between the detectors and between each detector and
the field. The existence of an energy-flow balance for a
moving localized system interacting with an extended field
in a curved background is a nontrivial testimony of the
power of the generalized FDR. Since the late-time dynam-
ics of the internal d.o.f. of the detectors (system) is
governed by the quantum field (environment), it may not
be hard to grasp the formal similarity between the gener-
alized FDRs of the system and that of the environment.

Our next work is to extend this analysis to 1þ 3
dimensions [55]. Thereafter we shall examine the dynamics
for two detectors out of causal contact (such as the situation
of Alice having fallen into a black hole and Bob staying
outside of its event horizon [39]) and bring in quantum
information considerations such as mutual information,
purity, fidelity, decoherence and entanglement [40]. We
shall use the tools and results developed here and after for
the analysis of information loss and retrieval in black holes
and inflationary universes.
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APPENDIX A: FDR-CPR AND DEFINITIONS
OF TWO-POINT FUNCTIONS

We observe that there is more than one way to introduce
the Hadamard’s elementary function (3.6) for the internal
d.o.f. of the detector. Thus here we explore whether the
FDRs and CPRs may depend on different definitions of the
two-point functions of Q.
Suppose, instead of (4.7), we define G̃ðQÞ

R ðκÞ ¼
A−1 · D̃ð2ÞðκÞ, that is, ½G̃ðQÞ

R ðκÞ�ij ¼ eþaξi ½D̃ð2ÞðκÞ�ij such
that

G̃ðQÞ
R ðκÞ ¼ ½−mκ2A3 þmω2A − λ2κ2A · G̃ðϕÞ

R ðκÞ ·A�−1;
ðA1Þ

and define the Hadamard’s elementary functionGðQÞ
H ðηi;ηjÞ

of Q by

½GðQÞ
H ðηi; ηjÞ�ij ¼ eaξi⟪QiðηiÞQjðηjÞ⟫eaξj : ðA2Þ

We can still obtain the same generalized FDR as (4.17) and
maintain self-consistency in the balance of energy flow
between each detector and its surrounding field. Does this
imply some ambiguities? Here we take the stance of
minimalism, that is, we choose to define the Hadamard’s
elementary function by (3.6) such that, in the language of
quantum operators, it will be the quantum expectation
values of the anticommutator of the Q̂ operators, without
additional factors as in (A2). Moreover, in the following,
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we will give an example to illustrate the advantage of the

definition of GðQÞ
H in (3.6).

Let us compute the velocity uncertainty ⟪ _Q2ðτÞ⟫ of
the oscillator in the internal space of the detector, which
essentially is the proper-time derivative of the Hadamard’s
elementary function of Q in the coincident time limit. It
also signifies the mean kinetic energy of Q. For simplicity
we only consider the case of one uniformly accelerating
detector, which spares us carrying the full machinery
developed in earlier sections. Thus we will not see non-
Markovian effects due to field-induced interaction between
detectors, but it does not affect our subsequent discussions.
From (2.21), we see the equation of motion for a single

detector coupled to the scalar field is given by

Q00ðηÞ þ ω2eþ2aξQðηÞ þ 2γeþaξQ0ðηÞ ¼ −
λ

m
eþaξζ0ðηÞ:

ðA3Þ

In principle, we may introduce the effective parameters
such as

Ω ¼ ωeþaξ; Γ ¼ γeþaξ; Λ ¼ λeþaξ: ðA4Þ

Again a prime denotes the derivative with respect to the
Rindler time while an overdot represents the derivative with
respect to the proper time of the detector. In so doing, we
obtain an equation of motion that looks like that of a typical
Brownian oscillator, except that the parameters in the
equation are position dependent,

Q00ðηÞ þ Ω2ðξÞQðηÞ þ 2ΓðξÞQ0ðηÞ ¼ −
ΛðξÞ
m

ζ0ðηÞ: ðA5Þ

We leave the physical interpretations of these position-
dependent parameters aside for a moment, except for a
comment that these effective parameters can be very large
by themselves due to the exponential factor eþaξ. This is
nothing but the redshift/blueshift factor, but discretion is
advised when carrying out any perturbative arguments.
We solve this equation of motion for a fixed ξ. The

standard procedures lead to

QðηÞ ¼ � � � − Λ
m

Z
η

0

dη0 d2ðη − η0Þζ0ðη0Þ; ðA6Þ

with the Fourier transform of d2ðηÞ given by

d̃2ðκÞ ¼ ½−κ2 þ Ω2 − i2Γκ�−1; ðA7Þ

where � � � represents terms that depend on the initial
conditions and are exponentially small at late times.
We would like to examine the asymptotic behavior of the

coordinate-velocity uncertainty ⟪Q02ðηÞ⟫, which will take
the form

⟪Q02ðηÞ⟫

¼ Λ2

m2

Z
η

0

dη0
Z

η

0

dη00 d02ðη− η0Þd02ðη− η00Þ⟪ζ0ðη0Þζ0ðη00Þ⟫

¼ Λ2

m2

Z
η

0

dη0
Z

η

0

dη00 d02ðη− η0Þd02ðη− η00Þ

×
∂2

∂η∂η0G
ðϕÞ
H ðη0 − η00Þ; ðA8Þ

where the Hadamard’s elementary function of the massless
scalar field is given by

GðϕÞ
H ðη0 − η00Þ ¼ 1

2

Z
∞

−∞
dκ Jκðx;xÞ coth

πκ

a
e−κðη−η0Þ

¼
Z

∞

−∞

dκ
2π

G̃ðϕÞ
H ðκÞe−κðη−η0Þ; ðA9Þ

with

Jκðx;xÞ ¼
�
2n−1π

nþ1
2

�
eaξ

a

	
n−2

Γ
�
n − 1

2

	�
−1 sinh πκ

a

a

× Γ
�
n
2
− 1þ i

κ

a

	
Γ
�
n
2
− 1 − i

κ

a

	
; ðA10Þ

and in particular in n ¼ 2-dimensional spacetime,

Jκðx;xÞ ¼
1

2πκ
: ðA11Þ

Thus in the limit η → ∞, the coordinate-velocity uncer-
tainty becomes

⟪Q02ð∞Þ⟫ ¼ Λ2

m2

Z
∞

−∞

dκ
2π

κ4d̃�2ðκÞd̃2ðκÞG̃ðϕÞ
H ðκÞ

¼ 1

m
eþaξIm

Z
∞

−∞

dκ
2π

κ2

−κ2 þ Ω2 − i2Γκ
coth

πκ

a
:

ðA12Þ

We make a change of variable κ ¼ yeþaξ and introduce a
parameter α ¼ ae−aξ. Equation (A12) becomes

⟪Q02ð∞Þ⟫

¼ eþ3aξ

π2ma
γ
X∞
n¼−∞

Z
∞

−∞
dy

y4

½ðω2 − y2Þ2 þ 4γ2y2�½n2 þ y2

α2
�
;

ðA13Þ

where we have used

coth
πy
α

¼ y
πα

X∞
n¼−∞

1

n2 þ y2

α2

: ðA14Þ

HSIANG, HU, and LIN PHYS. REV. D 100, 025019 (2019)

025019-14



We need to evaluate the integral in (A13),

Z
∞

−∞
dy

y4

½ðω2 − y2Þ2 þ 4γ2y2�½n2 þ y2

α2
�
¼ πα2

2γ

�
ω2

R − γ2

ðjnjαþ γÞ2 þ ω2
R

þ γ

�
1

jnjαþ γ þ iωR

þ 1

jnjαþ γ − iωR

	�
; ðA15Þ

with the resonance frequency ωR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − γ2

p
, and then perform the subsequent summations

X∞
n¼0

πα2

2γ

ω2
R − γ2

ðnαþ γÞ2 þ ω2
R

¼ iπα
ω2

R − γ2

4ωRγ

�
ψ

�
γ − iωR

α

	
− ψ

�
γ þ iωR

α

	�
; ðA16Þ

where ψðzÞ is the Digamma function.
To evaluate the summation of the second term in the square brackets, we implement a cutoff regularization and obtain

X∞
n¼0

πα

2

�
1

nþ γþiωR

α

þ 1

nþ γ−iωR

α

�
e−nϵ ≃ −παðγε þ ln ϵÞ − πα

2

�
ψ

�
γ − iωR

α

	
þ ψ

�
γ þ iωR

α

	�
; ðA17Þ

with ϵ → 0þ. Here we only have a logarithmic divergence. Since it is independent of α, it is associated with the vacuum
fluctuations of the field at zero temperature.
Thus the summation and the integral in (A13) can be given by

X∞
n¼0

Z
∞

−∞
dy

y4

½ðω2 − y2Þ2 þ 4γ2y2�½n2 þ y2

α2
�
¼ −

πα3

2ωRγ
Im

��
γ þ iωR

α

	
2

ψ

�
γ þ iωR

α

	�
þ � � � ; ðA18Þ

and Eq. (A13) becomes

⟪Q02ð∞Þ⟫ ¼ eþ3aξ

π2ma
γ

�
−
πα2

2γ
þ 2

X∞
n¼0

Z
∞

−∞
dy

y4

½ðω2 − y2Þ2 þ 4γ2y2�½n2 þ y2

α2
�

�

¼ −
αeþ2aξ

2πm

�
1þ 2α

ωR

Im

��
γ þ iωR

α

	
2

ψ

�
γ þ iωR

α

	�
þ � � �

�
: ðA19Þ

The � � � represents the logarithmically divergent term, a contribution from the vacuum fluctuations of the field.

Now we will take some limits to get a better idea about
what (A19) delivers. In the limit α → ∞, we find

lim
α→∞

⟪Q02ð∞Þ⟫ ¼ αeþ2aξ

2πm

�
1þ 4γε

γ

α
þO

�
1

α2

	�

≃ eþ2aξ 1

2m

�
α

π

	
þ � � � : ðA20Þ

Since α turns out to be the proper acceleration of the
detector, we may identify the ratio TU ¼ α=π as the
temperature perceived by the detector, that is, the local
temperature the detector responds to. On the other hand, in
the limit α → 0, we have

lim
α→0

⟪Q02ð∞Þ⟫ ≃ eþ2aξ γ

πm

�
ln

α2

ω2
R þ γ2

þ ω2
R − γ2

γωR

tan−1
ωR

γ

�
þOðαÞ: ðA21Þ

In addition, in the limit of weak coupling γ → 0, we have

tan−1
ωR

γ
→

π

2
; ω2

R � γ2 → ω2 ðA22Þ

so that (A21) reduces to

lim
γ→0

lim
α→0

⟪Q02ð∞Þ⟫ ≃ eþ2aξ

�
ω

2m
þ γ

πm
ln

α2

ω2

�
þ � � � : ðA23Þ

The additional factor eþ2aξ in (A20)–(A23) results from
the fact that here we compute the coordinate-velocity
uncertainty defined with respect to the Rindler time η.
When we express the result in terms of the proper time τ,
which is related to the Rindler time η by dτ ¼ eaξdη, we
arrive at
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⟪ _Q2ð∞Þ⟫¼ e−2aξ⟪Q02ð∞Þ⟫

¼
� 1

2m ðαπÞ þ � � � ; high temperature limit;

ω
2mþ γ

πm ln
α2

ω2 þ � � � ; zero temperature limit:

ðA24Þ

Thus we restore the familiar finite- and zero-temperature
results, and this points out appropriate definitions of the
kernel functions of the internal d.o.f. Q. It is also pointed
out that the Unruh temperature TU measured by the detector
is different from the fiducial temperature T ¼ a=2π that
appears in the correlation function of the scalar field (2.12)
as well as in the generalized FDRs (4.14) and (4.17). This
difference is particularly interesting when there is more
than one detector involved. This again points out the
interesting nature of the generalized FDRs (4.14) and
(4.17). Finally, we observe that these temperatures satisfy
the Ehrenfest-Tolman relation [56],

TU

ffiffiffiffiffiffiffiffiffi−gηη
p ¼ constant ¼ T: ðA25Þ

That is, for a system in thermal equilibrium in curved space,
different observers can see different coordinate temper-
atures. When we say a system is in thermal equilibrium, the
temperature we refer to is the fiducial temperature. Note
this situation is fundamentally different from the physical
temperature difference which allows for a system to settle
in a nonequilibrium steady state, as described in [6].
This example illustrates the difference in temperature

that appears in the response of each detector and in
the formal expressions of the generalized FDRs for the
detectors, as well as for the environmental field. In the
Wightman function of the massless scalar field and, in
particular, the generalized FDRs of the detectors, we see the
fiducial temperature appears in the expression. However,
from the responses of the detectors to the field, the reading
gives the Unruh temperature of each detector, which
depends on the local proper acceleration. It implies that
in the weak detector-field coupling limit, the final state of
the internal d.o.f. of different detectors will be the canonical
thermal state at different temperatures. In other words,
different detectors at different acceleration α will be
thermalized to different temperatures. These temperatures
are related by the above relation. In comparison, the static
detectors at various locations in Minkowski space, such as
depicted in [5], will give the same temperature reading
corresponding to the vacuum state of the field. This raises
an interesting question in the uniform acceleration case
about how we experimentally measure or verify the
existence of the generalized FDRs. Observe that the same
parameter a appears in the generalized FDRs for the entire
one-parameter family of accelerating detectors, one can
invoke the concept of a “bookkeeper” used in [57]. All of
the observers comoving with the uniformly accelerating
detectors report back instantaneously their findings about

the state of the detectors to the bookkeeper. He or she can
use this record to determine the parameter a which enters
the generalized FDR. This is a reflection that the notion of
temperature varies with the observers, as long observed by
Tolman, and that in a curved spacetime setting, one should
add to it a redshift factor

ffiffiffiffiffiffi
g00

p
. Here, we encounter the

equivalent situation [see Eq. (4.98) of [58]].
This issue is further compounded if we allow for strong

interactions between the internal d.o.f. and the field. Our
treatment can fully account for this situation. Earlier studies
[5,59,60] show that at strong coupling, after the internal
d.o.f. of the detector reach equilibrium, their end state is in
general not a Gibbs state. Furthermore, even if we can
introduce an effective temperature for each uniformly
accelerating detector, this temperature parameter will
depend on other parameters of the detectors, which, as
pointed out earlier, are position dependent. This further
obscures the physical meaning of the temperature for
uniformly accelerated observers at strong coupling.

APPENDIX B: GENERALIZED FDR OF THE
FIELD FOR GENERAL TIMELIKE

TRAJECTORIES

In Sec. III, we identified the generalized FDRs of the
field for fixed but arbitrary spatial coordinates. In that case,
since the field is in its vacuum state, the two-point functions
of the field are stationary. This allows us to write the
generalized FDRs in a simple and familiar form in terms of
the Fourier transforms of the two-point functions.
In fact, for the case of a massless scalar field in ð1þ 1ÞD

Minkowski space [13], we can construct the FDRs/CPRs of
the field for two moving detectors following arbitrary
timelike trajectories ziðtÞ as long as they do not possess the
horizons. However, since in this case, such constructed
two-point functions of the field in general are not time-
translationally invariant, the corresponding generalized
FDR can only be expressed in the form of a convolution
integral in time. Next we go over the derivation, based on
[13], for comparison.
Since the Pauli-Jordan function of the scalar field is

given by

GðϕÞðt; z; t0; z0Þ ¼ i
Z

∞

0

dω
2π

1

2ω
½eþiωðu−u0Þ þ eþiωðv−v0Þ

− e−iωðu−u0Þ − e−iωðv−v0Þ�; ðB1Þ

where the right- and the left-moving null coordinates u, v
are defined by u ¼ t − z and v ¼ tþ z respectively, we
find that the relevant kernel function of the field in the
Langevin equation, evaluated along the worldlines of the
moving detectors is
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∂tGðϕÞ½ti; ziðtÞ; tj; zjðtjÞ� ¼ −
1

2

Z
∞

−∞

dω
2π

�
eþiωðvi−vjÞ dvi

dti
þ eþiωðui−ujÞ dui

dti

�

¼ −
1

2

�
δ½uiðtiÞ − ujðtjÞ�

dui
dt

þ δ½viðtiÞ − vjðtjÞ�
dvi
dt

�

¼ −
1

2
fδðti − t0jÞ þ δðti − t00j Þg; ðB2Þ

where we have introduced t0j ¼ u−1i ∘ ujðtjÞ and t00j ¼ v−1i ∘ vjðtjÞ. On the other hand, if we evaluate the Hadamard’s
elementary function of the field along the worldlines of the detectors, we obtain from (3.9) that

GðϕÞ
H ½ti; ziðtiÞ; tj; zjðtjÞ� ¼

Z
∞

0

dω
2π

1

2ω
fcosω½uiðtiÞ − ujðtjÞ� þ cosω½viðtiÞ − vjðtjÞ�g

¼
Z

∞

0

dω
2π

1

2ω
fcosω½uiðtiÞ − uiðt0jÞ� þ cosω½viðtiÞ − viðt00j Þ�g: ðB3Þ

Comparing this with (B2), we may introduce

μðuÞij ðt; t0Þ ¼
Z

∞

0

dω
2π

1

2ω
cosω½uiðtÞ − uiðt0Þ�;

γðuÞij ðt; t0Þ ¼ −
1

2
δ½t − u−1i ∘ ujðt0Þ�; ðB4Þ

μðvÞij ðt; t0Þ ¼
Z

∞

0

dω
2π

1

2ω
cosω½viðtÞ − viðt0Þ�;

γðvÞij ðt; t0Þ ¼ −
1

2
δ½t − v−1i ∘ vjðt0Þ�; ðB5Þ

such that

μðuÞij ðti; tjÞ þ μðvÞij ðti; tjÞ ¼ GðϕÞ
H ½ti; ziðtiÞ; tj; zjðtjÞ�; ðB6Þ

γðuÞij ðti; tjÞ þ γðvÞij ðti; tjÞ ¼ ∂tGðϕÞ½ti; ziðtÞ; tj; zjðtjÞ�: ðB7Þ

Essentially, μðuÞij , μðvÞij are the left- and the right-moving
components of the scalar-field Hadamard’s elementary
function along the detector trajectories. The definitions
(B4) and (B5) imply that there exists a FDR/CPR of the

field in the time domain among GðϕÞ
H ðt; t0Þ and ∂tGðϕÞðt; t0Þ

of the field along the worldlines of the two moving
detectors,

μðu;vÞij ðt; t0Þ ¼
Z

∞

−∞
dsKðu;vÞðt; sÞγðu;vÞij ðs; t0Þ; ðB8Þ

for the right- and the left-moving components, with the

transitive kernel function Kðu;vÞ
i ðt; t0Þ defined by

KðuÞ
i ðt; t0Þ ¼ −

Z
∞

0

dω
2πω

cosω½uiðtÞ − uiðt0Þ�; ðB9Þ

KðvÞ
i ðt; t0Þ ¼ −

Z
∞

0

dω
2πω

cosω½viðtÞ − viðt0Þ�: ðB10Þ

These relations (B8), although much more complex than
(3.14), can be applied to the case that the detectors follow
very general timelike trajectories without any event hori-
zon. In this sense, it is more general than (3.14), but it can
not be extended to ð1þ 3ÞD space.
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