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We find an explicit supergravity background dual to the Ω-deformation of a four-dimensional N ¼ 2

superconformal field theory (SCFT) onR4. The solution can be constructed in the five-dimensionalN ¼ 4þ

gauged supergravity and has a nontrivial self-dual 2-form. When uplifted to type IIB supergravity the
background is a deformation ofAdS5 × S5which preserves 16 supercharges.We also discuss generalizations
of this solution corresponding to turning on a vacuum expectation value for a scalar operator in the
dual SCFT.
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I. INTRODUCTION

The Ω-deformation was introduced by Nekrasov in [1]
as a tool to calculate the path integral of four-dimensional
N ¼ 2 gauge theories via supersymmetric localization. The
deformation can be thought of as a supersymmetric modi-
fication of the gauge theory Lagrangian on R4 by two real
parameters, ϵ1 and ϵ2. The two deformation parameters are
associated with two Killing vectors on R4 and are used to
define an appropriate equivariant cohomology. This ulti-
mately leads to a rigorous evaluation of the Nekrasov
partition function of the field theory, Zðϵ1; ϵ2;…Þ. Here
the dots stand for possible dependence of the path integral on
various deformation parameters, like Coulomb branch vac-
uumexpectationvalues (vevs) and superpotentialmass terms,
compatible with supersymmetry. Expanding this partition
function in the limit ϵ1;2 → 0 leads to an exact evaluation of
various physical quantities in the undeformed theory on R4.
For example, the leading term in this expansion is the
Seiberg-Witten prepotential on the Coulomb branch of the
theory [2,3]. One can further generalize this construction by
introducing the Ω-deformation for more general four-mani-
folds which possess a Killing vector [4]. This can be thought
of as an extension of the Donaldson-Witten twist of four-
dimensional N ¼ 2 quantum field theories (QFTs) [5,6].
The Ω-deformation and the corresponding Nekrasov par-

tition function find many applications in the physics (and
mathematics) of four-dimensional N ¼ 2 QFTs. For exam-
ple, they are instrumental in the Alday-Gaiotto-Tachikawa [7]
correspondence and the Nekrasov-Shatashvili correspon-
dence [8]. In addition the Nekrasov partition function can

be thought of as a “building block” for a plethora of exact
results for supersymmetric QFTs on compact curved mani-
folds; see [9] for a review.
Given the importance of the Ω-deformation in many

supersymmetric localization calculations and the fruitful
interplay between localization and holography for four-
dimensional N ¼ 2 QFTs, see for example [10,11], it is
natural to ask what is the holographic dual description of
the Ω-deformation. Our goal here is to answer this question
for superconformal field theories (SCFTs) with weakly
coupled supergravity duals.
Rather than viewing the Ω-deformation as a modifi-

cation of the path integral of the supersymmetric QFT one
can consider it as a background of rigid four-dimensional
N ¼ 2 supergravity; see for example [12,13]. We will
call this the Ω-background. The Ω-background can be
defined for any four-dimensionalN ¼ 2 QFT but from the
holographic perspective it is easiest to describe it for
superconformal theories in which all dimensionful cou-
plings and vevs are turned off. In addition the supergravity
approximation requires that we work in the planar limit and
at large ’t Hooft coupling. In this context the holographic
dual of the Ω-background is a simple modification of the
well-known vacuum AdS5 solution of five-dimensional
N ¼ 4þ gauged supergravity [14]. We present this solution
explicitly and show how to embed it in type IIB super-
gravity where it describes holographically the Ω-back-
ground for the N ¼ 4 supersymmetric Yang-Mills (SYM)
theory.

II. THE Ω-BACKGROUND

As discussed in [15] there is a systematic way to classify
nontrivial backgrounds which preserve some of the super-
symmetry of a given d-dimensional QFT. This formalism
is based on using off-shell supergravity in d dimensions.
For superconformal theories one needs to use off-shell
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superconformal gravity to address the same question; see
[16]. For four-dimensionalN ¼ 2 SCFTs this analysis was
initiated in [13], and here we summarize the salient features
of their results relevant for the Ω-background.
The four-dimensional N ¼ 2 Weyl multiplet of

Euclidean conformal supergravity consists of the metric

gð4Þμν , two gravitini ψ i
μ, two real 2-forms T�

μν, SO(1,1) and

SU(2) gauge fields, A0
μ and Aij

μ , two dilatini χi, and a real
scalar field d̃; see [17] for a review. In the rigid supergravity
limit these fields capture the couplings to all operators in
the energy-momentum multiplet of an N ¼ 2 SCFT.
A supersymmetric bosonic background for the SCFT is
fully specified by the fields in the Weyl multiplet as well as
a conformal Killing spinor parameter which encodes the
preserved supersymmetry. It was shown in [13], in agree-
ment with [12], that the Ω-background is described in this
formalism by the following bosonic fields:

ds24 ¼ dx21 þ dx22 þ dx23 þ dx24;

T− ¼ db; b ¼ 2βðx½2dx1� þ x½4dx3�Þ: ð1Þ
The rest of the fields in the Weyl multiplet vanish.
The parameters specifying the conformal Killing spinors
preserved by this background are

ζ− ¼ ζ−0 −
i
2
bmγmζ

þ
0 þ xmγmη

þ
0 ;

ζþ ¼ ζþ0 ; η� ¼ 1

4
γm∂mζ

∓: ð2Þ

Here γm are Dirac γ-matrices, ζ�0 and ηþ0 are constant spinors
with a definite chirality, γ1234ζ�0 ¼ �ζ�0 , γ1234η

þ
0 ¼ þηþ0 ,

and b is the 1-form on R4 given in (1). Note that we have
twelve independent real components in the spinor param-
eters in (2) since η−0 ¼ 0. From the perspective of the four-
dimensional N ¼ 2 SCFT in flat space ζþ0 and ζ−0 generate
the eight Q supercharges and ηþ0 generate four of the S
supercharges [18]. TheΩ-background in (1) thus breaks the
S supercharges associated to η−0 .
There is an analogous supersymmetric background to the

one in (1) with a nonvanishing anti-self-dual 2-form Tþ
instead of the self-dual T−. The preserved spinors for it are
the same as in (2) but with ηþ0 replaced by η−0 . Note that the
bosonic background in (1) depends only on a single
parameter β which should be thought of as a linear
combination of the Ω-deformation parameters ϵ1;2. In
[12,13] the parameter β was identified with the linear
combination ϵ1 þ ϵ2. We will keep using the parameter β to
denote the specific deformation studied in this paper.
The background in (1) describes a deformation of the

SCFT involving only operators in the energy-momentum
tensor multiplet. For Lagrangian SCFTs the 2-form cou-
pling T− in (1) turns on a deformation by a dimension 3
operator of the schematic form Tr½ΦFþ

μν þ ξ̄γþμνξ�. HereΦ is

the complex scalar in a vector multiplet with gauge field
Fμν, ξ are the fermions in a hyper multiplet, the trace is over
gauge indices, and the þ superscript denotes the self-dual
part of a 2-form. This is the minimal deformation that the
N ¼ 2 SCFT is subjected to in the Ω-background. The
conformal symmetry and the SO(1,1) R-symmetry are
broken by the deformation, but a linear combination of
the dilatation operator and the generator of SO(1,1) is
preserved. To describe the coupling of other operators in
the SCFT in the presence of the Ω-deformation one should
study the more general rigid supergravity setup in which
the Weyl multiplet is coupled to background vector and
hyper multiplets. This should also allow for the study of
Ω-deformations of N ¼ 2 SCFTs for which the two
deformation parameters ϵ1;2 are independent.
As discussed in [16] every supersymmetric background

of conformal supergravity in d dimensions can also be
viewed as a supersymmetric asymptotically locally AdS
boundary condition for an appropriate gauged supergravity
in dþ 1 dimensions. This vantage point makes it clear that
to construct the holographic dual to an SCFT placed on this
d-dimensional background one has to solve the full set of
supersymmetry variations and equations of motion of the
gauged supergravity theory. This is in general a nontrivial
technical task which should be addressed on a case by
case basis and may not always lead to regular bulk
solutions. We now show how to implement this program for
the Ω-background in (1).

III. N = 4+ SUPERGRAVITY

To construct the holographic dual to the four-dimensional
rigid supergravity background above we use the N ¼ 4þ
gauged supergravity theory in five-dimensions [14]. The

bosonic dynamical fields in this theory are the metric, gð5Þμν , a
scalar field, a SUð2Þ × Uð1Þ gauge field and a pair of
2-forms. There are also four gravitini as well as four gaugini.
These fields comprise the bulk counterpart of the four-
dimensional N ¼ 2 Weyl multiplet discussed above. The
background of interest is captured by a Euclidean version of
the N ¼ 4þ gauged supergravity theory. This analytic
continuation changes the Abelian gauge group from U(1)
to SO(1,1); see [19]. The bosonic Lagrangian of the
Euclidean N ¼ 4þ gauged supergravity is [20]

L ¼
ffiffiffiffiffiffiffi
gð5Þ

q �
R −

1

2
jdλj2 þ 2X4jfj2 − VðλÞ

− X−2ðtrjFj2 þ Bþ · B−Þ
�

−
1

g
ðBþ ∧ H− − B− ∧ HþÞ − 2trðF ∧ FÞ ∧ a; ð3Þ

where g is the gauge coupling, X ¼ e−λ=
ffiffi
6

p
is the scalar, a is

the SO(1,1) gauge field with field strength f ¼ da, Ai is the
SU(2) gauge fieldwith field strengthFi¼dAiþgϵijkAj∧Ak,
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and B� is a 2-form doublet which is charged under the
SO(1,1) gauge field:

H� ¼ dB� ∓ ga ∧ B�: ð4Þ

The 2-forms B� are massive and obey an odd-dimensional
self-duality condition:

H� ∓ g
2
X−2⋆5B� ¼ 0: ð5Þ

The scalar potential can be derived from a real superpotential
W ≡ gð2X þ X−2Þ, and takes the form

VðλÞ ¼ 1

2
ð∂λWÞ2 − 1

3
W2 ¼ −g2ðX2 þ 2X−1Þ: ð6Þ

The supersymmetry variations of the fermions read

δψμ ¼
�
Dμ −

1

12
γμWσ̂3 þ

i
12

ðγμνρ − 4δνμγ
ρÞhνρ

�
ϵ;

δχ ¼ −
i

2
ffiffiffi
2

p ðγμ∂μλþ ∂λWσ̂3 þ iγμν∂λhμνÞϵ; ð7Þ

where we have defined

hμν ¼
1

X
ðFi

μνσ̂3σi þ Bþ
μνσ̂− þ B−

μνσ̂þÞ − iX2fμν; ð8Þ

with σ̂�¼ðσ̂1� iσ̂2Þ=2. Here γμ denote spacetime γ-matrices,
whereas σi and σ̂i, for i ¼ 1, 2, 3, denote two commuting sets
of Pauli matrices. The parameter ϵ represents a pair of spinors
with a definite charge under SO(1,1) in the doublet of SU(2).
The equations of motion for this five-dimensional theory

can be readily derived from the Lagrangian in (3) and are
explicitly given in [19,21,22].

IV. THE SUPERGRAVITY SOLUTION

For the solution of interest most bosonic fields of the
supergravity theory vanish:

λ ¼ 0; a ¼ 0; Ai ¼ 0; Bþ ¼ 0: ð9Þ

The metric is that of Euclidean AdS5 in Poincaré coor-
dinates,

ds25 ¼
L2

z2
ðdz2 þ ds24Þ; ð10Þ

with ds24 the flat metric on R4 in (1). The length scale of
AdS is fixed in terms of the coupling constant g as
L ¼ 2=g. The only other nonvanishing field is

B− ¼ −
L
z
βðdx1 ∧ dx2 þ dx3 ∧ dx4Þ; ð11Þ

where β is a real parameter which is the bulk counterpart of
the parameter in (1). It is not hard to check that this simple
bosonic background solves all equations of motion of the
supergravity theory. The boundary of AdS5 is located at
z ¼ 0 and the 2-form in (11) diverges there as 1=z. This is
the appropriate asymptotic behavior to source the 2-form
operator of dimension Δ ¼ 3 dual to B− in the N ¼ 2
SCFT. This source is given precisely by the 2-form T−

in (1).
This solution can be generalized by giving the scalar

field X a nontrivial profile. This extension also allows for
an analytic solution with metric

ds25 ¼
L2

X2z2
ðdz2 þ X3ds24Þ; ð12Þ

and scalar and 2-form given by

X3 ¼ 1þ wz2;

B− ¼ −
LX3=2

z
βðdx1 ∧ dx2 þ dx3 ∧ dx4Þ: ð13Þ

The metric is no longer that of AdS5, and the solution is
therefore not dual to the conformal vacuum of the
Ω-deformed N ¼ 2 SCFT. Instead, the background is dual
to a nontrivial supersymmetric vacuum state in which
conformal symmetry is broken. This breaking is controlled
by the integration constant w which is proportional to the
vacuum expectation value of the dimension Δ ¼ 2 SCFT
operator dual to the scalar X. The range of the coordinate z
is z ∈ ð0;∞Þ for w > 0, and z ∈ ð0; ffiffiffiffiffiffiffi

−w
p � for w < 0, and

the solution has a naked singularity at the upper end of this
interval. Applying the criterion proposed in [23] one finds
that the singularity is acceptable in string theory. This is
due to the fact that the potential in (6) is manifestly
bounded above.
The vanishing of the dilatino variation in (7) imposes

ð1 − γ1234Þð1 − σ̂3Þϵ ¼ 0: ð14Þ

The gravitino variation in (7) is then solved by the
following explicit spinor:

ϵ ¼ z−1=2ε−0 þ þ ðz1=2 þ z−1=2xmγmÞεþ0 þ

þ z−1=2
�
1 −

i
2
bmγmσ̂þ

�
εþ0 −: ð15Þ

Here ε0 are a SUð2Þ doublet of constant spinors with
definite chirality and SO(1,1) eigenvalues, namely
γ1234ε

�
0 ¼ �ε�0 and σ̂3ε0� ¼ �ε0�, and bm is defined in

(1). The constant spinor parameter ε−0 − vanishes due to (14)
and thus the background in (10), (11) preserves 12 real
supercharges. These correspond to the 12 real supercharges
discussed below (2) in the rigid supergravity context.
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The more general background in (12), (13) with w ≠ 0
preserves 8 real supercharges. The explicit spinor is a
generalization of the one in (15) with εþ0 þ ¼ 0 and a
different dependence on the radial coordinate z.
The background in (10) and (11) preserves only part of

the bosonic generators of the superconformal algebra. All
four special conformal generators are broken and the
rotation group is broken from SO(4) to SUð2Þ × Uð1Þ.
The four momentum generators as well as the SU(2)
R-symmetry are preserved. Only a linear combination of
the dilatation generator D and the SO(1,1) generator r is
preserved. More details on this supersymmetric algebra will
be presented in [22].
In analogy to the four-dimensional field theory discus-

sion, in (13) one can turn off the 2-form B− and turn on Bþ
instead. The only modification is that Bþ should be anti-
self-dual on the boundary, i.e., with ðdx1∧dx2−dx3∧dx4Þ
on the right-hand side of (13).
The supergravity solution in (10), (11) describes the

Ω-deformation of all four-dimensional N ¼ 2 SCFTs with
a weakly coupled gravity dual and thus should capture
universal properties of these theories. To study a particular
SCFT in the Ω-background one should promote this five-
dimensional solution into a full string or M-theory back-
ground. We proceed to provide one such embedding in type
IIB supergravity.

V. UPLIFT TO IIB SUPERGRAVITY

The five-dimensional background in (12), (13) can be
readily uplifted to a solution of type IIB supergravity using
the formulas in [24]. The background takes the following
simple form in string frame:

ds2 ¼
ffiffiffiffi
Δ

p
ðds25þL2Xdθ2Þ

þ L2ffiffiffiffi
Δ

p
�
1

X
cos2θdΩ2

3−X2sin2θdϕ2

�
;

F5 ¼−
iL4

gs
ð1þ⋆10Þd

�
ΔX2

z4

�
∧ vol4;

B2 ¼ igsC2 ¼
L2

4
e−ϕ sinθB−; C0 ¼ 0; eΦ ¼ gs; ð16Þ

where gs is the string coupling constant, Δ ¼
X cos2 θ þ X−2 sin2 θ, dΩ2

3 is the metric on the round S3,
and vol4 is the volume-form on R4 [25].
It should be noted that since the five-dimensional super-

gravity is written in Euclidean signature with an SO(1,1)
gauge group, the internal space in the ten-dimensional IIB
background is a deformation of the five-dimensional de
Sitter space. This implies that the background above is a
solution of Hull’s type IIB* supergravity [26,27]. This
theory is easily obtained from the standard type IIB
supergravity by considering all RR fields to be purely

imaginary [28]. Alternatively one can take ϕ → iφ in the
background (16) to obtain a purely Euclidean ten-
dimensional metric.
When we set w ¼ 0 the background in (16) is a deforma-

tion of Euclidean AdS5 × S5 and is the supergravity dual of
the Ω-deformation of N ¼ 4 SYM at the conformal point.
The solution preserves 16 supercharges, the ten-dimensional
uplift of the 12 spinors in (15) and additional 4 spinors
similar to ζþ in (2). Note that the nontrivial fluxes break part
of the bosonic symmetries of AdS5 × S5. For w ≠ 0 the
solution in (16) preserves 12 supercharges and is the holo-
graphic dual of the Ω-deformation of the SOð4Þ × SOð2Þ
invariant “Coulomb branch” flow discussed in [29]. This
flow is triggered by a vev for a scalar operator of conformal
dimension 2 in the 200 of the SO(6) R-symmetry of N ¼ 4
SYM. In string theory this vev induces a particular distri-
bution of smeared D3-branes. One can generalize the
background in (16) even further by performing an orbifold
by a discrete subgroup Γ ⊂ SUð2Þ ⊂ SOð4Þ where SO(4) is
the isometry group of dΩ2

3. For the w ¼ 0 solution this
orbifold breaks the 16 supercharges to 12.
The five-dimensional background in (12), (13) can also be

uplifted to a solution of eleven-dimensional supergravity
using the results in [30]. This eleven-dimensional solution
can be interpreted as a holographic dual to theΩ-deformation
of the superconformal theories of “class S” studied in [31].
This will be discussed further in [22].

VI. DISCUSSION

We presented a supergravity background which
describes holographically a four-dimensional N ¼ 2
SCFT subject to an Ω-deformation. Given the simple form
of this solution it should be possible to use the AdS/CFT
dictionary and compute holographically supersymmetric
observables in the dual SCFT and compare with results
from supersymmetric localization. This necessitates a care-
ful study of the large N limit of the Nekrasov partition
function for N ¼ 2 SCFTs with weakly coupled holo-
graphic duals. A natural supersymmetric observable is the
free energy of the Ω-deformed SCFTwhich is given by the
on-shell action of the supergravity solution. From the form
of the supergravity action in (3) and the solution in (12),
(13) it appears that the on-shell action does not depend on
the deformation parameter β, which in turn is related to the
ϵ1;2 parameters of the Ω-deformation. This should be
scrutinized more carefully since there could be finite
boundary counterterms which depend on β and have to
be added in a supersymmetric implementation of the
holographic renormalization procedure. Other interesting
supersymmetric observables in the Ω-deformed SCFT
include line-operators. In the context of the N ¼ 4 SYM
(and its supersymmetric orbifold extensions) these are
described by probe fundamental strings and D1-branes
in the type IIB solution (16). It will be very interesting to
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compute these holographic observables and understand
whether they exhibit nontrivial dependence on the defor-
mation parameter β. This will be studied in [22].
From the supergravity perspective it is possible to study

several generalizations of the background in (12), (13),
(16). One very interesting question is how to deform the IIB
supergravity solution in (16) to describe the holographic
dual of theN ¼ 2� SYM theory on the Ω-background. It is
natural to expect that the superpotential mass parameter in
this theory enters nontrivially in the large N limit of the
Nekrasov partition function, and it should be possible to
compute holographically many nontrivial physical observ-
ables. We expect that the supergravity solution dual to this
more general deformation of N ¼ 4 SYM will depend on
both ϵ1;2 parameters. It is also possible to combine the Ω-
deformation with the Witten-type topological twist, as done
in [4], and study the holographic dual of this setup. Finally,
there is a simple generalization of the solution in (12), (13)
to seven-dimensional maximal gauged supergravity which
is holographically dual to the (2,0) M5-brane SCFTwith an

Ω-deformation. We plan to explore these generalizations
in [22].
The IIB supergravity solution in (16) is a simple

deformation of AdS5 × S5 which preserves 16 super-
charges. Given this high degree of symmetry it is important
to understand whether this solution is protected against α0
corrections and whether the classical integrability of string
theory on AdS5 × S5 survives the Ω-deformation.
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