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Starting from the observation that artificial neural networks are uniquely suited to solving optimization
problems, and most physics problems can be cast as an optimization task, we introduce a novel way of
finding a numerical solution to wide classes of differential equations. We find our approach to be very
flexible and stable without relying on trial solutions, and applicable to ordinary, partial and coupled
differential equations. We apply our method to the calculation of tunneling profiles for cosmological phase
transitions, which is a problem of relevance for baryogenesis and stochastic gravitational wave spectra.
Comparing our solutions with publicly available codes which use numerical methods optimized for the
calculation of tunneling profiles, we find our approach to provide at least as accurate results as these
dedicated differential equation solvers, and for some parameter choices, even more accurate and reliable
solutions. In particular, we compare the neural network approach with two publicly available profile solvers,
CosmoTransitions and BubbleProfiler, and give explicit examples where the neural network approach finds
the correct solution while dedicated solvers do not. We point out that this approach of using artificial neural
networks to solve equations is viable for any problem that can be cast into the form F ðx⃗Þ ¼ 0, and is thus
applicable to various other problems in perturbative and nonperturbative quantum field theory.
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I. INTRODUCTION

A neural network is an algorithm designed to perform an
optimization procedure, where the loss function provides a
measure of the performance of the optimization. Thus, if a
physics problem can be cast into the form F ðx⃗Þ ¼ 0, then
its solution can be calculated by minimizing the loss
function of a neural network. While this approach is
applicable to any function F , we attempt to apply this
observation to the solution of differential equations and to
the nonperturbative calculation of tunneling rates of
electroweak phase transitions.
Solving differential equations is a profound problem,

relevant for all areas of theoretical physics. For large classes
of differential equations, analytic solutions cannot be
found. Thus, numerical or approximative methods are
needed to solve them. Standard methods to solve differ-
ential equations numerically include the Runge-Kutta

method, linear multistep methods, finite-element or
finite-volume methods, and spectral methods [1]. We
instead propose a novel approach to solving differential
equations using artificial neural networks.
In recent years, machine-learning algorithms have

become increasingly popular in extracting correlations in
high-dimensional parameter spaces. Even for a small
number of dimensions, e.g., ndim ≥ 3, it becomes very
difficult to visualize data such that a human can extract
correlations to a high degree of accuracy. Machine-learning
algorithms, and in particular neural networks, prove to be
faster and more precise and allow a parametric improve-
ment of the precision in how well the region of interest is
interpolated. As a result, various neural network architec-
tures have been designed, e.g., convolutional neural net-
works, recurrent neural networks, deep neural networks,
etc., to perform various increasingly complex tasks.
In particle physics such tasks include the classification of

signal-to-background events based on event selection cuts
[2–5], or the classification of complex objects such as jets,
according to the image their radiation imprints in the detector
[6–14]. In other applications neural networks are used to
regress between data points [15–19] or are trained on a well-
known sample to identify outliers or anomalies [20–22].
However, in all aforementioned applications that can be
characterized as classification and regression, the neural
network is applied to an output sample, trying to extract
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information on the parameters that determine the input.
In particle physics that would mean to analyze the radiation
profile as recorded by a particle detector to learn the
parameters of the underlying model, e.g., the Standard
Model. Input and output are connected through quantum
field theory, i.e., a nontrivial set of differential and integral
equations.
We propose to use these powerful artificial neural network

algorithms in a differentway, namely to directly find solutions
to differential equations. We then apply these methods to
calculate the solution of the nonperturbative quantum-field-
theoretical description of tunneling processes for electroweak
phase transitions. The fast and reliable calculation of tunnel-
ing rates of the electroweak phase transitions within and in
extensions of the Standard Model is of importance to
assessing if the model allows for a strong first-order phase
transition during the evolution of the early Universe. This
could explain baryogenesis [23,24] in such a model as the
source of matter-antimatter asymmetry in the Universe, and
further lead to a stochastic gravitational wave signal which
could potentially be measured at future gravitational wave
experiments [25,26], e.g., eLISA [27].
The universal approximation theorem [28,29] allows us

to expect a neural network to perform well in solving
complicated mathematical expressions. It states that an
artificial neural network containing a single hidden layer
can approximate any arbitrarily complex function with
enough neurons. We make use of this property by propos-
ing a neural network model where the output of the network
alone solves the differential equation, subject to its boun-
dary conditions. In contrast to previous approaches [30–35]
where the neural network is part of a full trial solution
which is fixed to satisfy the boundary conditions, our
approach includes the boundary conditions as additional
terms in the loss function. The derivatives of the network
output with respect to its inputs are calculated and passed to
the loss function, and the network is optimized via back-
propagation to regress to the solution of the differential
equation. The network then gives a fully differentiable
function which can be evaluated at any point within the
training domain, and in some cases, extrapolated to further
points (although we do not explore the extrapolation
performance here).
We will begin by describing the method in detail and

showcasing how it can be used to solve differential
equations of varying complexity, before applying it to
the calculation of cosmological phase transitions.

II. THE METHOD

A. Design of the network and optimization

We consider an artificial feedforward neural network
(NN) with n inputs, m outputs and a single hidden layer
with k units. The outputs of the network, Nmðx⃗; fw; b⃗gÞ,
can be written as

Nmðx⃗; fw; b⃗gÞ ¼
X
k;n

wf
mkgðwh

knxn þ bhkÞ þ bfm; ð1Þ

where the activation function g∶Rk ↦ Rk is applied
element-wise to each unit, and h and f denote the hidden
and final layers, respectively. We use a single neural
network with m outputs to predict the solutions to m
coupled differential equations, and for the case of one
differential equation, we use m ¼ 1.
A set ofm coupled jth order differential equations can be

expressed in the general form,

Fmðx⃗;ϕmðx⃗Þ;∇ϕmðx⃗Þ;…;∇jϕmðx⃗ÞÞ ¼ 0; ð2Þ

with boundary or initial conditions imposed on the sol-
utions ϕmðx⃗Þ. Writing the differential equations in such a
way allows us to easily convert the problem of finding a
solution into an optimization one. An approximate solution
ϕ̂mðx⃗Þ is one which approximately minimizes the square of
the left-hand side of Eq. (2), and thus the analogy can be
made to the loss function of a neural network. In previous
approaches [30–33], ϕ̂mðx⃗Þ is a trial solution composed of
two parts: one which satisfies the boundary conditions, and
one which is a function of the output of a neural network
and vanishes at the boundaries. However, this requires one
to choose a special form of the trial solution which is
dependent on the boundary conditions. Furthermore, for
some configurations of boundary conditions, finding such a
trial solution is a very complex task, e.g., in the case of
phase transitions. Instead, we identify the trial solution with
the network output, ϕ̂mðx⃗Þ≡ Nmðx⃗; fw; b⃗gÞ, and include
the boundary conditions as extra terms in the loss function.
If the domain is discretized into a finite number of training
points x⃗i, then approximations to the solutions, ϕ̂mðx⃗Þ, can
be obtained by finding the set of weights and biases,
fw; b⃗g, such that the neural network loss function is
minimized on the training points. For imax training exam-
ples, the full loss function that we use is

Lðfw; b⃗gÞ ¼ 1

imax

X
i;m

F̂mðx⃗i; ϕ̂mðx⃗iÞ;…;∇jϕ̂mðx⃗iÞÞ2

þ
X
B:C:

ð∇pϕ̂mðx⃗bÞ − Kðx⃗bÞÞ2; ð3Þ

where the second term represents the sum of the squares of
the boundary conditions, defined at the boundaries x⃗b.

1

These can be Dirichlet or Neumann, or they can be initial
conditions if defined at the initial part of the domain.

1Here, p represents the order of derivative for which the
boundary condition is defined, and K is a function on the
boundary. For example, for the condition d

dxϕð0Þ ¼ 1 the second
term would be ð ddx ϕ̂ð0Þ − 1Þ2.
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The problem is then to minimize Lðfw; b⃗gÞ by optimiz-
ing the weights and biases in the network, for a given
choice of network setup. To calculate the loss, it is
necessary to compute the derivatives of the network output
with respect to its input. Since each part of the network,
including the activation functions, are differentiable, then
the derivatives can be obtained analytically. Reference [33]
outlines how to calculate these derivatives. The optimiza-
tion can then proceed via backpropagation by further
calculating the derivatives of the loss itself with respect
to the network parameters. We use the Keras framework
[36] with a TensorFlow [37] backend to implement the
network and perform the optimization of the loss function.
As with any neural network, the choice of hyperpara-

meters will have an effect on the performance. For our
setup, the important parameters are the number of hidden
layers, the number of units in each hidden layer, the number
of training points x⃗ðiÞ (corresponding to the number of
anchors in the discretization of the domain of the differ-
ential equation), the activation function in each hidden
layer, the optimization algorithm, the learning rate, and the
number of epochs the network is trained for. Furthermore, a
choice must be made for the size of the domain that
contains the points that the network is trained on, but this
will usually be determined by the problem being solved.
In all the examples, we use the Adam optimizer [38] with

learning rate reduction on plateau—i.e., when the loss
plateaus, the learning rate is reduced—and an initial
learning rate of 0.01. We find that the network is not
susceptible to overfitting—the training points are chosen
exactly from the domain that one is trying to find the
solution to, and are not subject to statistical fluctuations;
thus, finding a solution for which the loss at every training
point is zero would not limit the generalization of the
solution to other points within the domain. Therefore, we
use a large number of epochs such that the training loss
becomes very small. For all examples we use a conservative
number of 5 × 104 epochs. Furthermore, we use the entire
set of training points in each batch so that the boundary
conditions in the loss are included for each update of the
network parameters. We also find that, in general, a single
hidden layer with a small number of units [Oð10Þ] is
sufficient to obtain very accurate solutions.
In order to assess and improve the stability and perfor-

mance in certain cases, there are some additional technical
methods which we employ beyond the basic setup. First,
the differentiability of the network solution allows us to
calculate the differential contribution, F̂ , to the loss across
the entire training domain. This shows the degree of
accuracy to which each part of the network solution
satisfies the differential equation, and can be used for
assessing the performance in cases where the analytic
solution is not known. Second, for coupled differential
equations with initial conditions, we find that the stability
of the solution can be improved by iteratively training on

increasing domain sizes. Finally, for the calculation of
phase transitions, we employ a two-step training where
initially the boundaries are chosen to be the true and false
vacua, before the correct boundary conditions are used in
the second training. This prevents the network from finding
the trivial solution where the field is always in the false
vacuum.

B. Ordinary differential equation examples

To show how well the method can solve ordinary
differential equations (ODEs), we apply it to both a first
and a second order ODE, which have known analytic
solutions. The equations we study are

dϕ
dx

þ
�
xþ 1þ 3x2

1þ xþ x3

�
ϕ − x3 − 2x − x2

1þ 3x2

1þ xþ x3
¼ 0;

ð4Þ

with the boundary condition ϕð0Þ ¼ 1 in the domain
x ∈ ½0; 2�, and

d2ϕ
dx2

þ 1

5

dϕ
dx

þ ϕþ 1

5
e−

x
5 cos x ¼ 0; ð5Þ

with boundary conditions ϕð0Þ ¼ 0 and d
dxϕð0Þ ¼ 1 in the

domain x ∈ ½0; 2�.
As a simple neural network structure, we choose a single

hidden layer of 10 units with sigmoid activation functions,
and we discretize the domain into 100 training examples.
It is then just a case of passing the differential equations and
boundary conditions to the loss function, as described
in Eq. (3), and proceeding with the optimization. Figure 1
shows the results of the neural network output, compared to
the analytic solutions of Eqs. (4) and (5). The middle panel
of Fig. 1 shows the absolute numerical difference between
the numerical and analytic solutions. This difference can be
reduced further by increasing the number of epochs, the
number of anchors in the discretization of the domain, or
the number of units in the hidden layer. Thus, the neural
network provides handles to consistently improve the
numerical accuracy one aims to achieve.
The lower panel of Fig. 1 shows the differential con-

tribution to the loss function, i.e., how much each training
example contributes to the loss. As we will describe in the
next section, if the solution is not analytically known, this
provides a measure to assess whether the found solution is
the correct one or if a numerical instability led the network
to settle in a local minimum for the loss.

C. Coupled differential equation example

When discussing the calculation of cosmological phase
transitions, we will study the solution of coupled nonlinear
differential equations, for which no closed analytic form is
known. Here, we will first show that such solutions can be

SOLVING DIFFERENTIAL EQUATIONS WITH NEURAL … PHYS. REV. D 100, 016002 (2019)

016002-3



obtained with our approach, for a case where an analytic
solution is known. We consider

dϕ1

dx
− cos x − ϕ2

1 − ϕ2 þ 1þ x2 þ sin2 x ¼ 0;

dϕ2

dx
− 2xþ ð1þ x2Þ sin x − ϕ1ϕ2 ¼ 0; ð6Þ

with boundary conditions

ϕ1ð0Þ ¼ 0; ϕ2ð0Þ ¼ 1: ð7Þ

If the boundary conditions are set on one end of the
domain, e.g., here at x ¼ 0, it requires an increasingly
elaborate network to maintain numerical stability for the
solution over a large domain, e.g., where x ≫ 1. This is due
to small numerical instabilities during backpropagation
because of the complexity of the loss hypersurface. If such
numerical instability leads the network to choose a path that
is in close proximity to the true solution, the NN can settle
on a local minimumwith a small value for the loss function.
To solve this problem, we propose to incrementally extend
the domain on which a solution should be found, by
partitioning the training examples and increasing the
number of partitions the NN is trained on in each step.
If the weights the NN has learned in the previous step are
then retained before training for the next step—i.e., the
network only has to learn the function on the part of the

domain that was incrementally increased—we find that one
can achieve numerical stability for an arbitrarily large
domain.
We show this mechanism in Fig. 2, where we have

partitioned the full domain containing 100 training exam-
ples into three regions each of size 1. The network structure
again consists of a single hidden layer of 10 units with
sigmoid activation functions, and with two units in the final
layer, since there are two coupled equations. The upper
panel shows the solutions for ϕ1 and ϕ2 for each iterative
step. While the first iteration only allows a solution to be
found on a smaller domain, i.e., here from 0 to 1,
subsequent steps, and in particular the third step, allow
an accurate solution to be found over the entire domain.
Again, the differential F̂ proves to be a good indicator of
whether the calculated solution is satisfying the differential
equation over the entire domain (see the lower panel
of Fig. 2).

D. Partial differential equation example

While we do not study partial differential equations
(PDEs) in the later physics examples of calculating phase
transitions, we showcase here the flexibility of our NN
method. With the same network architecture as used for the

FIG. 2. The upper panel shows the solutions for the functions
ϕ1 and ϕ2 to the coupled differential equation of Eq. (6).
The middle panel displays the numerical difference between
the analytic solution and the NN predicted solution for ϕ1. The
lower panel shows the differential contribution F̂ to the loss
across the entire domain, from the equation for ϕ1. The three NN
curves in each panel correspond to the first, second and third
iteration steps in the training of the network, with iterative
increase of the training domain, as described in the text.

FIG. 1. The upper panel shows the solutions to the first and
second order ODEs of Eqs. (4) and (5), with boundary conditions
as outlined in the text. The middle panel shows the numerical
difference between the analytic solution and the NN predicted
solution for both cases. The lower panel shows the differential
contribution F̂ to the loss across the entire domain.
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solution of the ordinary differential equations (except
for an extra input unit for each additional variable), we
can apply our approach to the solution of partial differential
equations. The precise solution of such equations is a
widespread problem in physics, e.g., in mechanics, thermo-
dynamics and quantum field theory. As an example, we
choose the second order partial differential equation,

∇2ϕ − e−xðx − 2þ y3 þ 6yÞ ¼ 0; ð8Þ

with boundary conditions

ϕð0; yÞ ¼ y3; ϕð1; yÞ ¼ ð1þ y3Þe−1;
ϕðx; 0Þ ¼ xe−x; ϕðx; 1Þ ¼ e−xðxþ 1Þ; ð9Þ

for which an exact analytic solution is known. In Fig. 3 we
show the difference between the numerical solution as
predicted by the NN and the analytic solution over the
domain ðx; yÞ ∈ ½0; 1� × ½0; 1�. The 100 training examples
were chosen from an evenly spaced 10 × 10 grid. As the
value of ϕðx; yÞ is of Oð1Þ for most of the domain, the
relative and absolute accuracies are similar, so we only
show the absolute accuracy here. Across the entire domain,
we find a numerical solution with very good absolute and
relative accuracy for this second order partial differential
equation. However, with a deeper NN, e.g., a second layer
with 10 tanh units, we find that the accuracy improves by an
order of magnitude further. Deeper and wider networks
result in even better accuracies.

III. CALCULATION OF PHASE TRANSITIONS
DURING THE EARLY UNIVERSE

Electroweak baryogenesis is a candidate for solving the
baryon asymmetry puzzle, the observed abundance of

matter over antimatter in the Universe [24,39]. The need
for a dynamical generation of baryon asymmetry is dictated
by inflation—the entropy production occurring in the
reheating phase of inflation would have washed out any
asymmetry already present at the beginning of the
Universe’s evolution [40]. A model of baryogenesis was
proposed by Sakharov in 1967 [23], and must now be
accommodated by any fundamental theory capable of
addressing the baryon asymmetry problem. This is com-
monly translated into three necessary conditions: (i) baryon
number violation, (ii) C- and CP-violation, and (iii) loss of
thermal equilibrium. While the first condition can be
satisfied in the SM, the second and third conditions require
it to be extended [41–43]. Departure from thermal equi-
librium can be obtained during a strong first-order phase
transition, which is usually accompanied by a sudden
change of symmetry [44]. Within the SM, this could have
occurred during electroweak symmetry breaking when the
Universe had the temperature T ∼ 100 GeV [45,46]. In
order to assess whether this might have been the case, it is
crucial to discuss the conditions for scalar-field phase
transitions at finite temperature.
Quantum fluctuations allow the transition between two

vacua of the potential Vðϕ⃗Þ.2 When these are not degen-
erate, the configuration which corresponds to a local
minimum, the false vacuum ϕ⃗F, becomes unstable under
barrier penetration, and can decay into the true vacuum ϕ⃗T
of the potential. The tunneling process converts a homo-
geneous region of false vacuum into one of approximate
true vacuum—a bubble. Far from this region the false
vacuum persists undisturbed [47]. The Euclidean action for
this process reads

S4ðϕ⃗Þ ¼
Z

dτd3x

�
1

2

�
dϕ⃗
dτ

�
2

þ 1

2
ð∇ϕ⃗Þ2 þ Vðϕ⃗Þ

�
: ð10Þ

The description of the tunneling action at finite temper-
atures follows from the equivalence between the quantum
statistics of bosons (fermions) at T ≠ 0 and Euclidean
quantum field theory, periodic (antiperiodic) in the
Euclidean time τ with period T−1. In the calculation of
S4ðϕ⃗Þ, the integration over τ is replaced by multiplication
by T−1 [48], leaving the three-dimensional Euclidean
action

S3ðϕ⃗Þ ¼
Z

d3x

�
1

2
ð∇ϕ⃗Þ2 þ Vðϕ⃗; TÞ

�
; ð11Þ

with S4ðϕ⃗Þ ¼ T−1S3ðϕ⃗Þ. Suggested by the symmetry of
the physical problem, we assume ϕ⃗ðx⃗Þ to be invariant under

FIG. 3. Numerical difference between the analytic solution and
the NN predicted solution of Eq. (8), with boundary conditions as
given in Eq. (9), over the domain ðx; yÞ ∈ ½0; 1� × ½0; 1�.

2Without loss of generality we consider an n-dimensional real
scalar field ϕ⃗ðxÞ.
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three-dimensional Euclidean rotations (see Ref. [49] for a
rigorous demonstration in the case of one single scalar
field), and define ρ ¼

ffiffiffiffiffi
x⃗2

p
. The bubble configuration ϕ⃗bðρÞ

is the solution to the Euler-Lagrange equation of motion,

d2ϕ⃗
dρ2

þ 2

ρ

dϕ⃗
dρ

¼ ∇V; ð12Þ

where the gradient of the potential is with respect to the
field ϕ⃗. The boundary conditions are

d
dρ

ϕ⃗ð0Þ ¼ 0; lim
ρ→∞

ϕ⃗ðρÞ ¼ ϕ⃗F: ð13Þ

The solution thus minimizes the action. The probability per
unit time and unit volume for the metastable vacuum to
decay is given by

Γ
V
¼ Ae−B=T: ð14Þ

This is maximized by the bounce,

B ¼ S3ðϕ⃗bÞ − S3ðϕ⃗FÞ; ð15Þ

where S3ðϕ⃗FÞ is the action evaluated at the stationary
configuration ϕ⃗F. A complete expression for the factor A in
Eq. (14) would require complex computations of differ-
ential operator determinants, for which we refer the reader
to Ref. [40]. An estimate can be obtained from dimensional
analysis, which gives A ∼ T4 [50].
Dedicated methods for calculating the nucleation rate,

by finding a solution for the bubble profile ϕ⃗ to the
nonlinear coupled differential equations of Eq. (12),
exist and have been implemented in publicly available
codes, e.g., CosmoTransitions [51] and BubbleProfiler
[52]. For the single-field case, both CosmoTransitions
and BubbleProfiler use variants of the overshooting
and undershooting method. In the multiple-field case,
BubbleProfiler applies the Newton-Kantorovich method
[53], as described in [54]. CosmoTransitions instead uses a
method that splits the equation of motion into a parallel and
perpendicular component along a test path through field
space. Then the path is varied until a configuration is found
that simultaneously solves both directions of the equations
of motion. A further code to calculate the tunneling rates is
given in Ref. [55]. An approach using neural networks to
directly learn bounce actions from potentials was described
in Ref. [56]. Recently, a novel approximative approach for
single [57] and multiple fields [58] was proposed, and a
new method based on exact analytic solutions of piecewise
linear potentials is outlined in Ref. [59]. Older numerical
approaches to calculating bubble profiles and tunneling
rates include Refs. [60–63].

A. Phase transition with a single scalar field

As a first application of our method to the computation
of cosmological phase transitions, we consider the case of a
single scalar field. Equation (12) then has a straightforward
classical analogy—it describes the motion of a particle with
coordinate ϕðρÞ subject to the inverted potential −VðϕÞ and
to a peculiar looking damping force which decreases with
time. The problem reduces to finding the initial position ϕ0,
in the vicinity of ϕT , such that the particle stops at ϕF as
ρ → ∞.
Existence of a solution was proven in Ref. [47]. Starting

too close or too far from ϕT would lead to missing the final
configuration ϕF, due to overshooting and undershooting,
respectively. Continuity of ϕðρÞ thus implies that there
must exist an intermediate initial position ϕ0 which solves
the boundary conditions in Eq. (13). The solution presents
two limiting profiles, determined by the ratio of Δ≡
VðϕFÞ − VðϕTÞ to the height of the potential barrier
VðϕbarÞ. If this ratio is ≳1, which corresponds to the
thick-wall case, the particle will overshoot unless its initial
energy is similar to VðϕFÞ. Conversely, if this ratio is small,
corresponding to the thin-wall case, in order to avoid
undershooting, the particle must wait close to ϕT until the
time ρ ≈ R, when the damping force has become negligible.
The value of R can be determined exactly in the thin-wall
limit [47] using

R ¼ 2σ

Δ
; ð16Þ

where the surface tension σ is given by

σ ¼ lim
Δ→0

Z
ϕT

ϕF

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðϕÞ − VðϕFÞ�

p
: ð17Þ

We test our method on the potential [52],

VðϕÞ ¼ λ

8
ðϕ2 − a2Þ2 þ ϵ

2a
ðϕ − aÞ; ð18Þ

and set λ ¼ a ¼ 1. Two distinct and nondegenerate minima
exist for 0 < ϵ≲ 0.3, with the upper bound representing
the thick-wall limit and smaller values of ϵ representing
progressively thinner cases. A plot of the potential is
shown in Fig. 4, for the values ϵ ¼ 0.01 and ϵ ¼ 0.3
which we consider as our thin-wall and thick-wall cases,
respectively.
For the boundary conditions in Eq. (13), it is clearly not

possible to implement an infinite domain for the training of a
neural network, and the divergence in the second term of
Eq. (12) prevents the equation from being evaluated at
ρ ¼ 0. Therefore, a training domain ρ ∈ ½ρmin; ρmax�must be
chosen. Since the solution approaches the boundaries
exponentially, it can be safely assumed that the numerical
uncertainties induced by these choices can be neglected,
provided that ρmin is sufficiently small and ρmax is
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sufficiently large. To help in choosing this domain, the
identification of ϵ in Eq. (18)withΔ in Eq. (16) can bemade,
and the bubble radius R calculated. We then use ρmax ¼ 5R
for the thick-wall case, and ρmax ¼ 2R for the thin-wall case
[since Eq. (16) underestimates the true radius for thick-wall
cases]. Furthermore, we use ρmin ¼ 0.01 for both cases.
Although these choices may seem arbitrary, we find that the
solution converges provided that the transition point is
contained well inside the domain, and the result remains
stable even if larger domains are used. The boundary
conditions then read

d
dρ

ϕðρminÞ ¼ 0; ϕðρmaxÞ ¼ ϕF: ð19Þ

Our NN method can then be applied to find the bubble
profile by solving the Euler-Lagrange equation (12). In this
context, the NN method corresponds to an approach where
the neural network attempts to apply the minimum action
principle to the Euclidean action of Eq. (11). The test-field
configuration, defined by the output layer of the neural
network, is then adjusted using backpropagation until the
classical trajectory is found. We discretize the domain into
500 training points and choose a network with a single
hidden layer. For the thick-wall case, we use 10 hidden
units with a sigmoid activation function, as was used in
earlier examples; however, for the thin-wall case, we find
that a single tanh unit is sufficient to achieve very good
performance since the solution itself closely resembles a
tanh function. To prevent the network from finding the
trivial solution where the field remains in the false vacuum
forever, we first train the network with the boundary
condition at ρmin modified to ϕðρminÞ ¼ ϕT so that the
network finds a solution in the vicinity of the correct

solution, since the starting point is close to the true vacuum,
before training again with the correct boundary conditions.
We use this two-step training for all phase transition
calculations.
Our results for the thick-wall and thin-wall cases are

shown in Figs. 5 and 6, respectively, together with the
CosmoTransitions and BubbleProfiler solutions. While all
threemethods agreeverywell for the thick-wall case, there is
a disagreement in CosmoTransitions compared to
BubbleProfiler and the NN approach in the thin-wall case.
The dotted vertical line indicates where the bubble radius
should be according to Eq. (16). Both BubbleProfiler and
NN find a solution that matches the analytic calculation for
the bubble radius. CosmoTransitions instead finds a solution
with a smaller bubble radius, and therefore a smaller action
and a larger tunneling rate.
For thin-wall cases, numerical stability is difficult to

achieve. It is possible for an approximate solution to be
found, which transitions at a much earlier ρ than it should,
since a translated solution also approximately solves the
differential equation [55]. For our method, F̂ can be
monitored during the course of the training. During the early
stages of the training where the solution does not yet have the
correct transition point, F̂ will be sharply distributed in the
region of the incorrect transition.As the training proceeds and
the solution converges, the function will flatten out until an
accurate solution is found across the entire domain.

FIG. 5. The upper panel shows the bubble profile for the thick-
wall potential (ϵ ¼ 0.3) in Eq. (18) for one scalar field, as
obtained by our NN method, BubbleProfiler and CosmoTransi-
tions. The middle panel displays the numerical difference
between the NN predicted solution and the solutions from the
other two codes. The lower panel shows the differential con-
tribution F̂ to the loss.

FIG. 4. Plot of the potential in Eq. (18), with λ ¼ α ¼ 1, for the
thick-wall (blue solid) and the thin-wall (red dashed) cases. For
the latter, the position of the global minimum is also marked by
the black dot for clarity.
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We have shown that the NN achieved very good stability
for the thin-wall case using a single tanh function. We also
explored the idea of using an adaptive distribution of
training examples, such that more examples are distributed
close to the region where the transition of the NN solution
happens, and this distribution is then modified over the
course of the training. A larger contribution to the loss in
this region will be amplified by having more training
examples, which can speed up learning. We found that the
results can be improved by using this procedure, and this is
an idea which could be investigated further in future work.

B. Phase transition with two scalar fields

To investigate how well the NN approach can solve the
differential equation of Eq. (12) for multiple fields, we
consider a potential for two scalar fields [51],

Vðϕ1;ϕ2Þ ¼ ðϕ2
1 þ ϕ2

2Þ
�
9

5
ðϕ1 − 1Þ2 þ 1

5
ðϕ2 − 1Þ2 − δ

�
;

ð20Þ

which has a local minimum at ϕ1 ¼ ϕ2 ¼ 0 and a global
minimum near ϕ1 ≈ ϕ2 ≈ 1. We focus again on the thick-
and thin-wall cases, setting δ ¼ 0.4 for the former and

δ ¼ 0.02 for the latter. For the thick-wall potential, we
solve the coupled equations in (12) with the boundary
conditions,

d
dρ

ϕ1ðρminÞ ¼ 0; ϕ1ðρmaxÞ ¼ 0;

d
dρ

ϕ2ðρminÞ ¼ 0; ϕ2ðρmaxÞ ¼ 0; ð21Þ

in the training domain ρ ∈ ½0.01; 6�with 500 training points.
Again, the NN is built with 10 units in a single hidden layer
with a sigmoid activation function. Since there are two
fields, the NN has two units in the final layer. The two
components ϕ1 and ϕ2 of the bubble solution, and the
associated path through field space, are shown in Figs. 7
and 8, respectively. Once more, BubbleProfiler and the NN
predictions agree very well, both for the one-dimensional
profiles for ϕ1 and ϕ2, and for the path in the ðϕ1;ϕ2Þ plane.
CosmoTransitions shows a slightly different shape for the
solutions of ϕ1ðρÞ and even more so for ϕ2ðρÞ, resulting in a
slightly modified escape path in Fig. 8. The behavior and
small numerical value of the differential contribution F̂ to
the loss suggests that the NN has converged to a correct
solution for the profiles. Since it also agrees very closely
with the result from BubbleProfiler, we conclude that in this

FIG. 6. The upper panel shows the bubble profile for the thin-
wall potential (ϵ ¼ 0.01) in Eq. (18) for one scalar field, as
obtained by our NN method, BubbleProfiler and CosmoTransi-
tions. The middle panel displays the numerical difference
between the NN predicted solution and the solutions from the
other two codes. The lower panel shows the differential con-
tribution F̂ to the loss. The dotted vertical line shows the analytic
location of the bubble radius, which agrees with the radius found
by both the NN and BubbleProfiler.

FIG. 7. The upper panel shows the bubble profiles for the thick-
wall potential in Eq. (20) for two scalar fields, as obtained by our
NN method, BubbleProfiler and CosmoTransitions. The middle
panel displays the numerical difference between the NN predicted
solutions and the solutions from the other two codes. The lower
panel shows the differential contribution F̂ to the loss from ϕ1

and ϕ2.
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case the BubbleProfiler result is correct. We note that our
NN solution has found initial positions for the fields which
agree with those from BubbleProfiler. In thick-wall cases,
these can differ significantly from the true vacuum ϕT—
these initial positions have been independently found by the
network during optimization and have not been used as an
input during training.
For the thin-wall potential we find that the performance

can be significantly improved if a deeper network is used.
BubbleProfiler instead does not find a solution at all,
while the NN agrees very well with the path found by
CosmoTransitions. Since there is not a solution from all
three codes, we do not show the plot here.
Thus, in this section we have shown examples where

CosmoTransitions or BubbleProfiler fail to provide a
correct result, while the NN approach can cope well with
both the thick-wall and the thin-wall solutions.

C. Singlet-scalar extended Standard Model
with finite-temperature contributions

As a final example, we study a scenario of phenomeno-
logical interest, namely the extension of the SM Higgs
sector by a single scalar field.3 Despite its simplicity,
the singlet-scalar extended Standard Model (SSM) could
potentially provide solutions to puzzles such as the
existence of dark matter [66–68] and electroweak baryo-
genesis [69–72], where a crucial requirement is a strong
electroweak phase transition, as discussed previously.
The tree-level potential reads

Vð0Þðh; sÞ ¼ −
1

2
μ2hh

2 þ 1

4
λhh4 þ

1

2
μ2ss2

þ 1

4
λss4 þ

1

4
λms2h2; ð22Þ

where h denotes the Higgs field and s the additional
Z2-symmetric scalar field.4 It is possible to consider a
scenario in which the potential barrier separating the
electroweak symmetric and the broken phase is generated
already at tree level [73]. In this scenario, to study the
evolution of parameters with T, it is enough to include only
the high-temperature expansion of the one-loop thermal
potential, which results in thermal corrections to the mass
parameters [61],

Vð1Þðh; s; TÞ ¼
�
1

2
chh2 þ

1

2
css2

�
T2; ð23Þ

where

ch ¼
1

48
½9g2 þ 3g02 þ 2ð6h2t þ 12λh þ λmÞ�; ð24Þ

cs ¼
1

12
ð2λm þ 3λsÞ; ð25Þ

with g and g0 being the SUð2ÞL andUð1ÞY gauge couplings,
respectively, and ht is the top Yukawa coupling. We then
consider Eq. (12) with the potential

Vðh; s; TÞ ¼ Vð0Þðh; sÞ þ Vð1Þðh; s; TÞ: ð26Þ

At high temperatures the thermal contribution in Eq. (23)
dominates, and the global minimum is the Z2 and electro-
weak symmetric configuration ðh ¼ 0; s ¼ 0Þ. The behav-
ior as T decreases is determined by the choice of
parameters. These are constrained to the parameter region
in which the potential develops a strong tree-level barrier at
the critical temperature TC [73]. In particular, at T > TC
after Z2-symmetry breaking, s acquires a nonzero vacuum
expectation value, hsi ¼ w, along the hhi ¼ 0 direction.
This configuration constitutes a global minimum for the
potential. At T ¼ TC a second degenerate minimum
appears at the electroweak symmetry breaking phase hhi ¼
v and at the restored Z2-symmetric vacuum, hsi ¼ 0.
Finally, at T < TC the electroweak minimum ðv; 0Þ repre-
sents the only energetically favorable configuration. The
nucleation temperature at which the phase transition from
ϕ⃗F ¼ ð0; wÞ to ϕ⃗T ¼ ðv; 0Þ occurs is found from the
requirement S3ðTNÞ=TN ≃ 140 [41,74].
As an example parameter configuration, we consider

TC ¼ 110 GeV, λm ¼ 1.5 and λs ¼ 0.65, as used in

FIG. 8. Calculated solutions for the tunneling path for NN,
BubbleProfiler and CosmoTransitions. The paths range from the
localminimum to the exit point of the tunnelingbarrier.Also shown
are the contours of the potential, where the global minimum is
denoted by the black dot and the local minimum by the black cross.

3For projected and existing limits on this model, see
Refs. [64,65] and references therein.

4This condition could also be relaxed, since in models with no
Z2-symmetry the most general renormalizable potential would
have three more parameters [64,73].
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Ref. [52], and a temperature of T ¼ 85 GeV, which is the
nucleation temperature that BubbleProfiler finds. We thus
solve Eq. (12) with the boundary conditions

d
dρ

hðρminÞ ¼ 0; hðρmaxÞ ¼ 0;

d
dρ

sðρminÞ ¼ 0; sðρmaxÞ ¼ w: ð27Þ

We use a neural network with 10 units in a single hidden
layer with a sigmoid activation function, on a training
domain of ρ ∈ ½0.01; 50� with 500 training points. To avoid
large numerical values in the loss function, we scale all
mass parameters in the potential by the electroweak
symmetry breaking vacuum expectation value at zero
temperature, vEW. Our result, along with the comparison
to CosmoTransitions and BubbleProfiler, is shown in
Fig. 9. We find very good agreement between all three
methods to calculate the bubble profiles hðρÞ and sðρÞ, and
the small values of F̂ across the domain show that good
convergence has been achieved.

IV. CONCLUSIONS

By building on the capabilities of an artificial neural
network in solving optimization problems, we have
proposed a novel way to find solutions to differential
equations.
Our method extends existing approaches on several

accounts: (i) We avoid trial functions by including the
boundary conditions directly into the loss function; (ii) the
differential shape of F̂ is an excellent indicator of whether a
good solution to F has been found over the entire domain;
(iii) in regions of numerical stability we propose increasing
the domain iteratively to find stable solutions over arbi-
trarily large domains; (iv) for solutions that vary quickly
over a small part of the domain, we find that it can be
numerically beneficial to self-adaptively distribute more
anchors in such regions.
We applied this approach to finding fully differenti-

able solutions to ordinary, coupled and partial differential
equations, for which analytic solutions are known. Various
network architectures have been studied, and even rela-
tively small networks showed a very good performance.
To show how this method can be applied to a task of

direct phenomenological interest, we used it to calculate the
tunneling profiles of electroweak phase transitions and
compared them to those obtained by CosmoTransitions and
BubbleProfiler. We have presented explicit examples where
the neural network method finds correct solutions, while
either CosmoTransitions or BubbleProfiler fails. We find an
optimized neural network to be very flexible and reliable,
and is able to converge to solutions for all the examples
tested with an accuracy that is competitive with the
dedicated programs for calculating the bubble profiles.
However, further work, e.g., in developing an approach to
choosing the domain sizes for phase transitions in a more
robust way, would be required to develop a fully automated
tool using this approach.
As this method could be straightforwardly extended

beyond the calculation of differential equations, we envi-
sion it to be applicable to a wide range of problems in
perturbative and nonperturbative quantum field theory.
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FIG. 9. The upper panel shows the bubble profiles for the
singlet-scalar extended Standard Model potential in Eq. (26), as
obtained by our NN method, BubbleProfiler and CosmoTransi-
tions. The middle panel displays the numerical difference
between the NN predicted solutions and the solutions from the
other two codes. The lower panel shows the differential con-
tribution F̂ to the loss from h and s.
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