
 

Relaxation of the cosmological constant

Peter W. Graham,1 David E. Kaplan,2 and Surjeet Rajendran2,3
1Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,

Stanford, California 94305, USA
2Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA

3Berkeley Center for Theoretical Physics, Department of Physics, University of California,
Berkeley, California 94720, USA

(Received 19 April 2019; published 30 July 2019)

We present a model that naturally tunes a large positive cosmological constant to a small cosmological
constant. A slowly rolling scalar field decreases the cosmological constant to a small negative value,
causing the universe to contract, thus reheating it. An expanding universe with a small positive
cosmological constant can be obtained, respectively, by coupling this solution to any model of a
cosmological bounce and coupling the scalar field to a sector that undergoes a technically natural phase
transition at the meV scale. A robust prediction of this model is a rolling scalar field today with some
coupling to the standard model. This can potentially be experimentally probed in a variety of cosmological
and terrestrial experiments, such as probes of the equation of state of dark energy, birefringence in the
cosmic microwave background and terrestrial tests of Lorentz violation.
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I. INTRODUCTION

The observed accelerated expansion of the Universe is
well described by the existence of a small cosmological
constant. However, quantum corrections to this quantity are
much larger than the observed value. One might hope that
the mysteries of quantum gravity hold the solution, but
dangerous contributions come from very well-known
physics at scales where spacetime curvature is weak (for
example, finite corrections to vacuum energy from the
electron mass). In this regard, the problem can be seen as
one of fine-tuning, where contributions, known and
unknown, conspire to cancel to generate the small value
detected today.
One approach to this puzzle is the introduction of an

exponentially large number of universes, in which the
vacuum energy appears to be a random variable taking on
different values in each. Anthropic selection then deter-
mines which universe we are likely to appear in, based on
the existence of structure or other arguments, and the
assumption that a number of other parameters of our
universe (such as the baryon-to-photon ratio, the dark
matter abundance and the value of the primordial density

fluctuations) are the same over this exponentially large
number of universes.
A more natural solution could come from the dynamical

relaxation of the cosmological constant in the early uni-
verse via a slowly rolling field in a potential. Indeed, such a
model was attempted by Abbott [1] and others (e.g., [2,3]),
and a similar model was successfully implemented in a
solution to the gauge hierarchy problem [4]. Attempts to
solve the cosmological constant (CC) problem fell short as
they invariably result in an empty universe. This is a robust
problem with relaxation: the CC can only be sensed
through gravity, but gravity is universal and thus couples
to the total space-time curvature. One way to solve this
empty universe problem is to make the universe undergo a
bounce after the relaxation of the CC [5–7]. This frame-
work also solves many other thorny issues that confront
solutions of the CC problem such as the problem of
cosmological phase transitions affecting the CC after
relaxation [7]. Motivated by these considerations, in [7],
we discussed ways to obtain a bouncing cosmology but did
not address the relaxation of the CC.
In this paper, we present a dynamical relaxation model

for the CC problem. Here, a rolling scalar field takes the
universe from a natural, large positive cosmological con-
stant (CC) to a small negative one. At this point the universe
will begin to contract. The contraction increases the energy
in the field(s) responsible for the tuning of the CC. At some
density, this increased energy, through a small coupling,
reheats other matter. The energy density in this matter blue-
shifts as the universe continues to contract. We take as an
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assumption that this sector can trigger dynamics that causes
the scale factor to bounce at short distances, allowing the
universe to expand and produce our observed cosmological
history. This bounce could occur through vorticity as in [7],
but any other possible bounce model (e.g., through NEC
violating fluids) would work as well. The relaxation
mechanism is independent of the bounce and cosmology
that comes after. The simplest model (Sec. II) naturally
tunes a CC scale as large at 10 MeV to a negative CC of
scale 1 meV. We show how a few additional fields (Sec. III)
and stages of rolling allow one to scan a CC from scales
much higher than 1 TeV, and end with a positive CC
of order the current critical density. These models are
experimentally testable (Sec. IV), through astrophysical,
cosmological, and laboratory probes.
This existence proof factorizes the solution of the CC

problem into an infrared (IR) part that accomplishes the
sensitive tuning of the CC and an ultraviolet (UV) sector
whose purpose is to accomplish a cosmological bounce at
high densities. Importantly, the UV dynamics is decoupled
from the IR tuning. This existence proof highlights the
importance of short-distance descriptions of a cosmological
bounce, and presents the opportunity to reimagine the
source of the initial perturbations often credited to inflation.

II. SIMPLE MODEL

We now show a simple model that naturally tunes the CC
from up to ∼ð10 MeVÞ4 to ∼ − ð1 meVÞ4 and sub-
sequently reheats the universe when the universe contracts.
In the following section, we will show how one can
increase the initial cosmological constant and end on a
small positive one.
In this model, a rolling scalar field starts from a point

with large vacuum energy (abiding eternal inflation
bounds). As it rolls down, the CC decreases, eventually
going through zero. At this point, the universe begins to
contract at a parametrically smaller negative CC. The
universe contracts to a large energy density, and assuming
a cosmological bounce, reexpands until today, while the
field value does not evolve significantly, thus keeping the
vacuum energy small. Finally, reheating is shown to be
trivially accomplished by extracting energy from the rolling
condensate and dumping it into a thermal bath through
derivative couplings.
Remarkably, all of this can be accomplished with the

dynamics of the following example model:

L ¼ 1

2
ð∂ϕÞ2 þ 1

4
F0F0 þ ψ̄ðiD −mψÞψ

−
1

2
m2

A0A02 þ g3ϕ −
ϕ

f
F0F̃0; ð1Þ

Here, ϕ is a scalar field with a softly broken shift symmetry,
A0μ is a massive photon whose gauge field strength is F0
and ψ is a charged massive Dirac fermion. The range of ϕ

over which this field theory is valid is ∼ð10 MeVÞ4=g3. We
use a mostly negative metric and we have defined the value
ϕ ¼ 0 to be the point of vanishing cosmological constant
for convenience. For simplicity, we have only given ϕ a
linear slope. But our dynamics do not require this—we
simply need the potential for ϕ to have a technically natural
flat potential. As long as the minimum of this potential is at
a negative value of the CC, our relaxation mechanism
works. The rolling of ϕ decreases the CC and its kinetic
energy is eventually converted to the gauge bosons A0. The
energy in this radiation reheats the universe, producing both
the standard model and the degrees of freedom necessary to
cause the universe to bounce.

A. Rolling to −meV4

The dynamics of interest (see Fig. 1) start with an initial
condition of an expanding universe, and a large negative
value for ϕ, namely ϕ ¼ ϕ1 < 0, jϕ1j ≫ Mp (the reduced
Planck scale) and jϕ1j ∼ ð10 MeVÞ4=g3. Here, there is
positive vacuum energy, Λ4

1 ≡ g3ϕ1, and assuming initially
_ϕ ≪ Λ2

1, ϕ slow rolls down its potential in a vacuum
dominated universe—i.e., the universe undergoes slow roll
inflation. Note that since jϕ1j is comparable to the allowed
range of ϕ, there is no fine tuning in the choice of ϕ1-any
initial condition where the cosmological constant is pos-
itive works.
We would like the universe to evolve to a small

cosmological constant and avoid eternal inflation. This
puts the constraint

FIG. 1. Evolution of ϕ. The field starts rolling from point 1 with
vacuum energy Λ4

1. At point 2, ϕ’s kinetic energy equals its
potential energy, Λ4

2, a distance ∼Mp away from the origin. At
point 3, the Hubble scale passes through zero and the vacuum
energy is ∼ −Λ4

2. The point 4 represents the position of ϕ after a
period of kinetic-energy dominated contraction, where the
vacuum energy as decreased to ∼ −Λ4

2 log ð1=arhÞ and arh is
the scale factor at reheating. At point 5, the reheated universe has
expanded until today and ϕ has moved a negligible amount from
point 4.
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g3 >
ffiffiffiffiffiffiffiffiffiffi

3=2π
p

H3 ≃
ffiffiffiffiffiffiffiffiffiffi

1=2π
p

Λ6
1=ð3M3

pÞ ð2Þ

or a limit on the highest CC that can be relaxed of

Λ1 ≲
ffiffiffiffiffiffiffiffiffi

gMp

p

: ð3Þ

The rolling continues until ϕ reaches a value ϕ ¼
ϕ2 ∼ −Mp, where the kinetic energy surpasses the potential
energy and ϕ is less than a Hubble time away from the
origin. Now, with the kinetic energy increasing, the
potential energy becomes negative and the Hubble scale
decreases at an increasing rate, as one can clearly see from
the Friedmann equations:

H2 ¼ 8π

3
GN

�

1

2
_ϕ2 − g3ϕ

�

ð4Þ

_H ¼ −4πGN
_ϕ2: ð5Þ

The Hubble rate H vanishes in a finite time when a value
ϕ ∼Mp is reached. To see this analytically, take Eq. (5) and
integrate from point ϕ2 to where Hubble vanishes:

0 −H2 ¼ −
Z

4πGN
_ϕ2dt ¼ −4πGN

Z

_ϕdϕ ð6Þ

H2 > 4πGN
_ϕ2Δϕ ð7Þ

where the 2 subscript indicates the values at point ϕ2 where
kinetic and potential energy are equal. The inequality
comes from the fact that H is monotonically decreasing
from (5) making _ϕ monotonically increasing due to its
equation of motion. This allows us to replace _ϕ in the
integral with its minimum (initial) value to generate the
inequality.
Thus, ϕ traverses a finite distance (of order Mp) in a

finite time (as can also be shown numerically). Because
_H < 0 at this point,H continues to decrease below zero and
the universe begins to contract. The potential energy at this
point is ∼ − Λ4

2 ≡ −g3Mp.

B. Kinetic energy during contraction

As the universe contracts, the kinetic energy of ϕ quickly
dominates the potential energy and blue-shifts as
_ϕ2 ¼ _ϕ2

0a−6, where a is the scale-factor of the Friedmann-
Robertson-Walker metric and _ϕ0 is the velocity of ϕ at the
point where H ¼ 0 (taking a ¼ 1 at that point). Taking
the kinetic energy to be dominant, it is simple to compute the
distance ϕ travels down its potential while the universe
contracts:

Δϕ ¼
Z

_ϕdt

≈ −
Z

_ϕ0

1

a3

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πGN=3
p

_ϕ0

a2da

≈
ffiffiffi

6
p

Mp log ð1=aÞ ð8Þ

where we used the first Friedmann equation (4), the fact that
H < 0, and the definition of the reducedPlanckmass.We see
that the distance traveled by ϕ (and thus the change in the
potential energy) is only logarithmically sensitive to the scale
factor. For example, if the universe contracts to a scale where
the energy density is 1

2
_ϕ2 ¼ Λ4

hot, where a ¼ ðΛ2=ΛhotÞ2=3,
then Δϕ ¼ ffiffiffi

6
p

Mpð2=3Þ log ðΛhot=Λ2Þ, or about 60Mp for
Λhot ¼ 1 TeV and Λ2 ¼ 1 meV. This defines the point 4 in
Fig. 1. And so in the time that ϕ rolls parametrically not far
beyond point 3, the energy density in the universe (kinetic
energy in ϕ) increases all the way up to an essentially
arbitrarily high scale Λ4

hot.
The final limit on the highest CC that can be naturally

scanned down to ∼meV4 then arises as follows. In order to
avoid tuning we want the negative CC reached after
contraction to be ∼meV4 in magnitude. The value of the
CC at point 5 in Fig. 1 is very close to the value at point 4
(as we will see below). So we need the value at point 4
g3ϕ4 ≲meV4. Combining this with Eq. (8) and Eq. (3)
gives

Λ1 ≲
�

3

2
ffiffiffi

6
p

log ðΛhot=Λ2Þ

�1
6

meV
2
3M

1
3
p ð9Þ

or Λ1 ≲ 10 MeV for Λhot ¼ 1 TeV and Λ2 ¼ 1 meV, with
only a very weak dependence on Λhot. So this model can
naturally reduce a CC of 10 MeV to the observed value,
reducing fine-tuning by roughly 40 orders of magnitude.

C. Reheating A0

Now we utilize ϕ’s coupling to the massive vector to
convert the kinetic energy of ϕ into a thermal bath of A0

μ and
ψ . We describe this process in two stages:
(1st stage) A population of vectors will be produced

when _ϕ=f > mA0 due to an instability in the mode equation
for the vectors [8–10]:

Ä0
� þ

�

k2 � 4k
_ϕ

f
þm2

A0

�

A0
� ¼ 0 ð10Þ

where A0
� are the spatial Fourier transforms of circularly

polarized modes of the vector A0. The A0
− modes with wave

numbers k < ð _ϕ=fÞ and k > ðfm2
A0= _ϕÞ will be exponen-

tially growing modes. Assuming an initial fluctuation of
order A0

− ∼ k in each mode (the minimum set by quantum

RELAXATION OF THE COSMOLOGICAL CONSTANT PHYS. REV. D 100, 015048 (2019)

015048-3



mechanics), the largest energy density comes from modes

k ∼ _ϕ
f in the massive vector and so grows up to

ρA0 ∼ ð _ϕ=fÞ4e2ð _ϕ=fÞtth ; ð11Þ

where tth is the thermalization timescale. This initial density
sources the thermal destruction of the condensate as we
see below.
In order to be sure that the thermal calculations we rely

on below [in (14)] are valid, we would like to have the A0

thermalize when their energy density is above m4
A0 so that

the temperature they thermalize at is abovemA0 . Even if this
is violated, the thermal friction may well still stop the
rolling of ϕ as we want, but it is outside the regime of
validity of the thermal field theory calculations that have
been done, so we will choose to avoid this region. As we
will see this is easy to do.
We compute a process that will start thermalizing the A0.

Assuming the fermion ψ’s mass is of order mA0, the cross
section for scattering A0A0 → ψψ is

σv ∼
α2

m2
A0

ð12Þ

where α ¼ e2
4π and e is the charge of ψ , and we have

assumed that
_ϕ
f ∼mA0 so the A0 produced by the rolling ϕ

are semirelativistic. We want the vector to thermalize only
after the energy density in A0 has reached m4

A0 . The number
density of A0 at this point is n ∼m3

A0 . Then the scattering
rate at this point is

ΓA0A0→ψψ ∼ nσv ∼ α2mA0 : ð13Þ

We need this to take longer than the time it takes ϕ to
produce this energy density which is, using (11),

tth ∼ 2ðf= _ϕÞ log ðmA0f= _ϕÞ. Again, assuming
_ϕ
f ∼mA0 , this

simply requires that α < 1=
ffiffiffi

2
p

. Satisfying this bound
allows the energy density in the vectors to grow to at least
m4

A0 before thermalization begins.
(2nd stage) After there are some A0 particles around, they

will produce ψ particles, and they can then thermalize
rapidly. This then leads rapidly to a thermal bath which will
then cause thermal friction of ϕ (see e.g., [11]). We will
take the thermal friction coefficient to be

Γ ∼ 256π2α3
T3

f2
ð14Þ

where T is the temperature of the thermal bath, and the
coupling α is the renormalized coupling at T. This is the
result for the analogous friction in the case of pure Yang-
Mills, and the numerical factor is a result of normalization
difference with [11]. There may be numerical differences

between the computed Yang-Mills case and the yet to be
computed Abelian case with charged fermions, but it is
unlikely to be parametrically different (at least with respect
to f and T dependence), and thus we will use this value as a
rough estimate of the friction.1

This coefficient will damp and ultimately suppress the ϕ
rolling such that its energy density is negligible relative to
that of the radiation. We want to see how long this process
takes. Initially while this damping is happening, the bath is
at some temperature T which is less than the kinetic energy
in ϕ. Then the rate at which energy density is being taken
out of the ϕ rolling and put into the thermal bath is

dρ
dt

∼ 256π2α3
T3

f2
_ϕ2: ð15Þ

Setting the energy density in the thermal bath to ρ ∼ T4 we
find

dT
dt

∼ 64π2α3
_ϕ2

f2
ð16Þ

This means that it takes the longest time to get it up to the
highest temperature (the time is dominated by the UV). We
can see how long it takes to remove an O(1) fraction of the
kinetic energy in ϕ by setting _ϕ to be a constant equal to its
initial value when we want to reheat: _ϕ ∼ T2

reheat. Then we
see how long it takes T to get up to this value, call this time
Δtreheat. We can see that

Δtreheat ∼
f2

64π2α3T3
reheat

ð17Þ

Requiring that this happen within a Hubble time then

means that we set Δtreheat ≲ 1
H ∼ Mp

T2
reheat

. This then leads to the

requirement that

f2 ≲ 64π2α3TreheatMp: ð18Þ

Plugging in _ϕ ∼ T2
reheat ∼ fmA0 , we also have the constraint

f ≲ 16π4=3ðmA0M2
pÞ1=3. From Eq. (18) we can see that f

has a wide range of possible values even for a fairly low
reheating temperature. And f can even be all the way up
near Mp if we take a high reheating temperature.

1One can also build a model where the sector being heated is
non-Abelian and the mass scale mA0 corresponds to the confine-
ment scale of the strong group. In order to avoid the generation of
larger barriers in the ϕ potential, on can add an additional
massless quark. And also, this model is close enough to that
studied in [11] to suggest the damping rate Γ is parametrically the
same.
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D. Bouncing

The contracting universe needs to bounce (evolve to an
expanding universe) so that it can reexpand and reproduce
our cosmic history. The dynamics responsible for the
bounce can be decoupled from the tuning of the cosmo-
logical constant. This is easily accomplished—after all the
kinetic energy of ϕ is dumped by thermal friction into A0,
the A0 can reheat the degrees of freedom responsible for the
bounce through weak couplings. Around the time of the
bounce, these degrees of freedom must effectively violate
the null energy condition or be able to trigger vorticity in
extra dimensions as in [7]. In order to bounce, these degrees
of freedom need to blue-shift faster than the other matter
content in the universe so that they are relevant at the short
distances where the bounce occurs. Further, when the
universe reexpands after the bounce, this matter must
return to its original state so that the tuning of the CC is
not affected. This can likely be guaranteed if the behavior
of this sector is determined by thermodynamics (such as a
temperature), wherein the reexpansion of the universe
would cool this sector, returning it to its original state.
Before the bounce ϕ rolls only a short distance as seen

above. And all the initial kinetic energy of ϕ from
contraction is dumped into the ðA0

μ;ψÞ sector by thermal
friction, so ϕ is then moving very slowly. Once the universe
bounces and reexpands, it is dominated by radiation,
specifically in the ðA0

μ;ψÞ sector, and the kinetic energy

in ϕ is never above its terminal velocity value _ϕ2 ∼ g6=Γ2,
which (as can be easily shown) keeps ϕ from rolling a
significant amount. At any time, even if thermal friction
becomes smaller than Hubble friction, ϕ will not roll more
thanΔϕ ∼ ðΛ2=TÞ4Mp in a Hubble time. So ϕ does not roll
significantly during the entire contraction, bounce, and
subsequent expansion of the universe. Thus the potential
energy of ϕ is not changed significantly and so the
dynamical relaxation solution for the CC is not spoiled.
Due to the above reasons, it should be possible to couple

our relaxation mechanism to many generic models of
cosmological bounces. However, we leave an explicit
model of the way to trigger the bounce starting with our
CC relaxation model for future work.

E. Reheating the Standard Model

The last step would be to reheat the rest of the universe
(namely the Standard Model sector). This can be accom-
plished by coupling the massive vector to the normal matter
through mixing with the photon or through higher dimen-
sional operators, and allowing the Standard Model to
thermalize at some point when the temperature is higher
that the scale of big bang nucleosynthesis.
A kinetic mixing with the hypercharge gauge boson,

ϵF0
μνF

μν
Y would allow the vector A0 decay into standard

model particles with a rate Γdecay ∼ αYϵ
2mA0 . Equating this

with the Hubble scale, this gives the temperature of the

Universe at the time of decay: Td ∼ α1=2Y ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mA0Mp
p

. On the
other hand, the mixing of the vectors produces an effective
coupling to ϕ of the form ϵ2ðϕ=fÞFY

μνF̃
μν
Y . If we require—

though it may not be necessary—the rate of this instability
(from the analogous version of Eq. (10) for photons), to be
less than Hubble, _ϕϵ2=f < H, then none of the dynamics
described above change. This constraint is most sensitive at
the lowest values of Hubble, where _ϕ ∼ g3=H2 ∼H2Mp,
thus requiring f > ϵ2Mp. One can show that these con-
straints are trivial to satisfy.

III. EPICYCLES

The model presented above naturally takes a large
cosmological constant and relaxes it to a parametrically
smaller (albeit negative) one, converts the energy from this
sector to a hot standard model, and (after a bounce)
produces normal big bang cosmology with a tiny cosmo-
logical constant. In this section, we will show how a few
additional degrees of freedom will allow: (a) dynamics that
produce a small positive cosmological constant and
(b) natural relaxation from much larger cosmological
constants, while maintaining technical naturalness.

A. Positive CC

Suppose the CC has been reduced to ∼ −meV4, with the
energy in the rolling field dumped into other forms of
matter. At this stage, the universe starts crunching and the
energy density in these matter fields will blue-shift. This
energy can be used to trigger a technically natural phase
transition at the ∼meV4 scale, resulting in an addition to the
vacuum energy and the CC changing from ∼ −meV4 to
∼þmeV4. This transition is not fine-tuned so long as the
CC is changed to a positive value of roughly the same size
as, or greater than, the small negative value it had after
relaxation. Once the universe has already started to crunch,
changing the CC by ∼þmeV4 does not change the
dynamics of the universe as its energy density is dominated
by the rapidly blue-shifting matter or radiation density.
Thus, the rest of the cosmic evolution necessary to imple-
ment our framework such as the bounce and the subsequent
reexpansion of the universe are unaffected by the transition
necessary to achieve a positive CC. There are likely many
ways to accomplish this goal, we present one such example
in Appendix A.

B. Larger cutoff

The principal difficulty in achieving a larger cutoff in the
model presented in Sec. II is that the slope of ϕ needs to be
sufficiently large when the vacuum energy is big in order to
avoid eternal inflation. This large slope induces a kinetic
energy for ϕ that causes it to roll well beyond ∼meV4. To
achieve a larger cutoff, we can introduce an additional
rolling scalar field (Φ) that has a steeper slope. We start the
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universe with both ϕ and Φ rolling. When the CC is large,
the rolling of Φ provides the clock necessary to avoid
eternal inflation. As the CC approaches ∼ð10 MeVÞ4, we
need to create barriers that stop the rolling of Φ. Once Φ is
stopped at ∼ð10 MeVÞ4, the rolling of ϕ will further relax
the CC down to ∼ −meV4.
How can we naturally trigger barriers for Φ? The key

idea is to observe that when the CC is large, the large
Hubble friction results in a low terminal velocity for Φ. As
the CC drops, Hubble friction decreases, resulting in a
larger terminal velocity. We use this to trigger the barriers.
The increased velocity of Φ can trigger instabilities in
gauge fields to which Φ is derivatively coupled, such as in
the models discussed in Sec. II. The energy released in this
process can be used to raise barriers for Φ. There are many
ways to accomplish this goal—we present a proof of
concept model in Appendix B. Note, this initial stage of
relaxation does not require a bounce since the relaxation
ends at a relatively high, positive value of the CC. Models
of this kind could potentially also be used to simply relax
the value of the CC in inflationary relaxion models where
the CC could be reduced from the cutoff to the weak scale.

IV. POTENTIAL SIGNATURES

There are four generic elements of our construction: a
rolling scalar field ϕ that cancels the bare cosmological
constant, a bounce in our immediate past to reheat the
universe, a phase transition that should occur at scales
∼meV in order to push the cosmological constant to
slightly positive values after it becomes negative and strong
dynamics at various scales (for example, ∼10 MeV) that
enable the cutoff of the theory to be above the TeV scale.
Each of these elements can be separately tested.
Any dynamical relaxation model requires a field that

scans the CC. So a relatively model-independent signature
of this framework is that the kinetic energy of the rolling
field ϕ gives rise to a nontrivial equation of state for dark
energy. Current bounds on the equation of state of dark
energy imply that the velocity _ϕ of the field is ⪅ 0.1 meV2

[12]. In the simplest of our models, we expect _ϕ ∼
g3Mpl=meV2 with g3 ⪅ meV4=Mpl. Thus, current and near
future probes of the equation of state of dark energy are
constraining the simplest models that can solve the cos-
mological constant problem. In addition to cosmological
probes, the kinetic energy _ϕ can also be probed in
laboratory experiments if ϕ has couplings to the standard
model. Of course, this coupling is necessary at some level
since the kinetic energy of ϕ has to reheat the universe just
before the bounce, ultimately resulting in our existence.
Radiative stability of ϕ and efficient reheating implies that
ϕ must couple derivatively to the standard model, much
like an axion. There are two leading interactions that can be
experimentally probed: the coupling of ϕ to electromag-
netism and nucleon/electron spins via the operators ϕ

fa
FF̃

and ∂μϕ
fa

Ψ̄γμγ5Ψ respectively. The electromagnetic coupling

is already constrained—if _ϕ ∼ 0.1 meV2, current con-
straints on B modes in the CMB require fa⪆Mpl as this
coupling will cause the polarization of CMB photons to
rotate as they propagate through the evolving dark energy
[13]. Interactions with nucleon/electron spins can poten-
tially be probed through tests of Lorentz symmetry since
the evolving dark energy provides a cosmic background
that is being searched for in these experiments [14]. These
signatures are relatively model-independent signatures of a
dynamical relaxation solution to the CC problem.
In our model, a cosmic bounce is required. This could be

detected through a cosmological background of stochastic
gravitational waves. The Hubble scale during a bounce is
not constant—thus, the gravitational wave spectrum would
exhibit a sharp feature corresponding to the minimum of
the bounce, unlike inflationary cosmology that produces a
nearly scale invariant spectrum. The detection of stochastic
gravitational waves at different frequency bands would
enable experimental discrimination between these two
possible cosmological scenarios in our immediate past.
One of the simplest ways to obtain a slightly positive

cosmological constant after the rolling of ϕ makes it
slightly negative is to reheat a hidden sector that undergoes
a phase transition at the ∼meV scale. This suggests that the
universe could contain a hidden sector of dark radiation
around the meV scale, with a phase transition likely to
occur in this sector. Such a transition would also indicate an
evolving equation of state of dark energy. Moreover, it
would also be interesting to directly search for dark
radiation in laboratory experiments, building on the work
that has occurred in recent years on searching for ultra-light
dark matter.
Finally, we expect the existence of confining sectors at

scales such as ∼MeV in order to push the cutoff of the
theory to scales above ∼TeV. It would be interesting to
develop techniques to search for such confining sectors—
for example, this sector might contain degrees of freedom
such as glueballs which can interact with the standard
model. A generic operator analysis suggests that these
interactions are suppressed. However, since these particles
are light, they could conceivably be probed in high statistics
intensity frontier experiments [15].

V. DISCUSSION AND CONCLUSIONS

We have shown a technically natural way to solve the CC
problem. Our framework takes a large positive CC and
reduces it to a small negative CC through dynamical
relaxation. This causes the universe to crunch. At the same
time, the relaxation process also naturally dumps energy
into a new sector. The energy densities in this sector blue-
shifts during contraction thus reheating the universe to high
temperatures. By using the energy in the new sector, we are
also able to naturally push the CC to positive values after

GRAHAM, KAPLAN, and RAJENDRAN PHYS. REV. D 100, 015048 (2019)

015048-6



the universe begins to crunch. This new sector has to
ultimately be responsible for instigating a cosmological
bounce so that the universe can reexpand, giving rise to the
present day universe that had a hot big bang but with a
small CC, though we do not model the bounce here. This
framework overcomes all the obstacles faced by dynamical
relaxation methods to solve the CC problem such as the
empty universe problem in Abbott’s model, Weinberg’s
“no-go” theorem [16] and the problem of standard model
phase transitions. Many aspects of this framework lead to
testable consequences, some of which require the develop-
ment of new experimental probes to target these specific
signatures.
An important fact about this construction is that the UV

dynamics of the bounce are decoupled from the IR
relaxation process. Moreover, the CC itself does not change
significantly during the bouncing phase. There is thus
considerable freedom to attach the IR relaxation phase to
any UV dynamics permitting a cosmological bounce
[3,6,7,17–23]. To be considered a complete solution to
the CC problem, we need to identify the specific mecha-
nism that would allow the hot matter in the crunching
universe to trigger a bounce. This requires a better under-
standing of the matter sources necessary to create a bounce.
To reproduce observational facts about our universe, it is

important to identify mechanisms that would give rise to
the scale invariant spectrum of perturbations that have been
observed in the CMB. Since our model is largely just
inflation, but with reheating accomplished through a
bounce, there are elements of scale invariance built into
the mechanism. For example, the rolling scalar field will
have nearly scale invariant fluctuations until the CC goes
through zero. It would be interesting to see if these
fluctuations could seed the observed spectrum of pertur-
bations. At the very least, a period of inflation could follow
the bounce. As long as the inflaton for this period of
inflation returns to its original minimum at the end of
inflation, it will not affect our relaxation mechanism.
Another direction worthy of exploration is to see if the

relaxion paradigm that solves the hierarchy problem can be
successfully incorporated into this CC relaxation mecha-
nism. Cosmological relaxation appears to be the only
dynamical mechanism that has the potential to solve the
naturalness problems associated with both the CC and the
weak scale. These phenomena find a natural home in a
universe that is much older than conventionally assumed—
something that is observationally possible and theoretically
interesting.
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APPENDIX A: AXION MODEL
FOR POSITIVE CC

As discussed in the main article, a simple mechanism for
generating a positive CC is by allowing the thermal bath to
generate a phase transition to a vacuum with a higher
vacuum energy (by an amount meV4). Here we present an
explicit model, though many others are possible.
Take the following low-energy potential for an axionlike

field, χ:

VðχÞ ¼ Λ4 cos
nχ
f

− Λ̃4 cos
χ

f
ðA1Þ

where n is any small integer bigger than 2 and λ > meV
and Λ̃ ∼meV. This potential is shown in Fig. 2. We take
this potential to be periodic with period ∼f. Take χ to be in
some random minimum after the CC relaxation discussed
above. During the crunching universe, it is possible for the
Λ sector to thermalize while the Λ̃ sector does not. This can
happen if the Λ̃ confinement scale is much higher, but the
sector has a small quark mass allowing Λ̃ ≪ Λ. During the
contracting phase, once the temperature of the Λ sector
rises above its confinement scale, the barriers would
disappear. Then χ will begin to roll toward the minimum
of the Λ̃ potential. But then this velocity will rapidly

1 2 3 4 5 6

- 1.0

- 0.5

0.5

1.0

V

FIG. 2. A sketch of the potential in Eq. (A1). The blue line is
the potential at low temperatures, the orange line is the potential
at high temperatures where only the second term in Eq. (A1) is
on. This axion begins in some random minimum in its potential
and then ends up in a different one. The vacuum energies of the
minima are split by meV4 so this can easily raise the negative CC
left after relaxation to a positive CC.
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blue-shift because of the contraction. It is easy to check that
there is a large parameter space where this large velocity
will cause χ to go around the entire ∼f period of the
periodic potential many times. As the universe cools, it will
ultimately end up in other random minimum, in general
different from the one it started in. And there is thus an
Oð1Þ chance it will be a higher minimumwith a net positive
CC. This method is not tuned so long as the original
relaxation mechanism tuned the CC down to a negative
value of ∼meV or lower. Then the amount added to the CC
by this axion field is what determines the CC today.

APPENDIX B: HIGHER CUTOFF

In this section, we show a simple, proof of principle,
model with one extra rolling field (beyond the one that was
already used in the model of Sec. II) that allows us to push
the cutoff well above ∼10 MeV. More generally, this setup
describes how the CC can be relaxed from ∼Λ4

a to a lower,
positive value ∼Λ4

d. This stage can precede the model
presented in Sec. II, thus instrumenting the full tuning. In
fact it could also replace the model of Sec. II as the lowest
stage of relaxation, except that since it leaves a positive CC
the universe does not naturally start crunching and heat up,
so there would have to be some other way to avoid the
“empty universe” problem.
The model of this stage is also one of a rolling field

tuning the CC. During the rolling, however, the field is
coupled to a non-Abelian group (which can generate
barriers) plus an Abelian group (to generate additional
friction):

L¼ 1

2
ð∂ΦÞ2þ 1

4
G0G0 þ 1

4
F0F0 þ κ3Φ−

Φ
fth

G0G̃0 −
Φ
fA

F0F̃0;

ðB1Þ

where G0 and F0 are the field strengths of the non-Abelian
and Abelian groups (with indices suppressed), and the
remaining parameters are couplings. During the rolling, the
coupling of the rolling field, Φ, to non-Abelian gauge
bosons produces a nontrivial background temperature for
the non-Abelian group (akin to what happens in warm
inflation [24]). The temperature remains high enough for a
long period during which the instanton-generated potential
barriers do not form. Once the Hubble scale becomes low
enough, the Abelian group begins to extract energy from
the rolling during which the background temperature
decreases. When the temperature become low enough,
the barriers form and stop the rolling of Φ, fixing the
CC to a value parametrically smaller than its initial value.
During this entire period—as we will show at the end of
this subsection—the model of the previous section does not
evolve much until Hubble becomes small enough that it can
begin to roll consequently.

Thus, while the model in (B1) is quite simple, the
dynamics associated with rolling are quite nontrivial, and
we describe them in the following subsections chronologi-
cally for a rolling field. A summary of the motion is
presented in Fig. 3.

1. Early friction: Hubble

The field Φ is taken to be slowly rolling (as an initial
condition) at point (a) with vacuum energyΛ4

ðaÞ and Hubble
scale HðaÞ ∼ Λ2

ðaÞ=Mp. In addition, there is assumed to be a

small background temperature in the non-Abelian group’s
degrees of freedom, a temperature much smaller than ΛðaÞ,
but larger than the strong group’s confinement scale, which
we will define as Λth. The latter will be the scale of the
nonperturbative, low-energy potential for Φ.
During to the rolling, the background temperature is

maintained in the non-Abelian sector due to thermal
friction ΓðTÞ as described in the last section via
Eq. (14). One can compute an approximate steady-state
temperature during this rolling period by requiring the red-
shifting/cooling of the plasma bath is counteracted by the
heating from the condensate:

FIG. 3. Evolution of Φ. In the upper figure, the field rolls from
(a) where Hubble friction dominates and the background temper-
ature grows quickly, to (b) where thermal friction dominates and
the temperature grow very slowly, to (c) where Φ’s rolling is
dominantly suppressed by coherent production of Abelian fields
and the temperature drops. At point (d), the temperature
drops to the confinement scale of the non-Abelian group and
barriers form.
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0 ≃
dT4

dt
≈ −4HT4 þ

�

256π2α0ðTÞ3 T
3

f2th

�

1

2
_Φ2 ðB2Þ

where in front of T4 there is really a factor that includes the
number of degrees of freedom in the non-Abelian sector
which we take to be ∼1. When Hubble friction dominates,
we can take _Φ ≃ ðκ3=HÞ, its terminal velocity during slow
roll. Thus, for temperatures well above the confinement
scale, and taking a nominal value of the coupling α0 (and
ignoring its temperature dependence), one finds a quasi-
steady-state temperature of

T ≃ 2κ6=ð9H3f̄2Þ; ðB3Þ

where we defined f̄ ≡ fth=ð16πα03=2Þ.

2. Late friction: Thermal

As Φ rolls, the Hubble scale will slowly drop and the
temperature will rise, eventually reaching a point when the
dominant friction is due to the thermal bath, i.e.,
ΓðTÞ ≃ T3=f̄2 ∼H. This again produces a terminal velocity
for Φ, namely _Φ ≃ κ3=Γ ≃ κ3f̄2=ðT3Þ, and a temperature,
using (B2), of

T ≃
�

κ6f̄2

8H

�1
7

: ðB4Þ

As Hubble slowly decreases, the temperature stays nearly
constant. Without the Abelian sector, the temperature
would eventually dominate Hubble and the universe would
become radiation dominated (as in warm inflation [8]), and
Φ would roll to negative values of the cosmological
constant. We instead would like the temperature to drop
before this happens.

3. Mode instability: Cooling

The coupling of Φ to the Abelian sector produces an
instability in some modes of the gauge fields. An effective
negative mass term appears in the equation of motion for
the A0þ modes with k < _Φ=fA as in Eq. (10), but with mA0

set to zero. Following the analysis of [8], one can show that
a quasi-steady-state is reached when a rolling field is
coupled in this way to an Abelian group and vacuum
energy dominates the energy density of the universe. In this
regime,

_Φ ≃ ξfAH ðB5Þ

where

ξ ¼ 1

2π
log

�

9 · 221π2

7!αA

M4
pfAκ3

VðΦÞ2
�

∼ 10–100 ðB6Þ

where αA is the fine-structure constant for the Abelian
group. The velocity in (B5) becomes the terminal velocity
when this instability becomes the dominant energy-loss
mechanism, which is equivalent to when (B5) is smaller
than the terminal velocity due to thermal friction, κ3=Γ
which happens when:

H <
κ3f̄2

f̄AT3
ðB7Þ

where for simplicity, we define f̄A ≡ ξfA. With this
velocity, thermal friction still extracts energy from the
rolling generating a quasisteady state temperature:

T ≃
f̄2AH

8f̄2
ðB8Þ

which thus decreases asΦ rolls. The rolling thus eventually
stops as the temperature drops to the confinement scale of
the non-Abelian group and barriers in theΦ potential (from
instanton effects) begin to form. This must occur while
vacuum energy is still dominating, both over the temper-
ature bath and over the energy density in the Abelian fields,
which is estimated to be [8] κ3f̄A.

4. Constraints on the initial cosmological constant

Now we can use the above behavior to put constraints on
parameters, including the initial value of the CC. The
constraints are as follows:

Λth≲TðaÞ Temp is higher than confinement scale at start:

Λth∼TðdÞ Temp lowers to confinement scale at end:

Λ4
th > κ3fth Barrier’s slope beats underlying slope:

Λ4
ðdÞ > κ3f̄A CC dominates over Abelian mode growth:

Additional constraints, such as the requirement that the
final vacuum energy is greater than the energy density in
the thermal bath and that thermal fluctuations do not lead
to eternal inflation at any time during the scan, can be
shown to be weaker than those above for the ranges of
parameters here.
Combining these constraints with the steady-state tem-

peratures at the beginning and end of Φ’s roll [Eqs. (B3)
and (B8), respectively], one can derive the following
bound:

ΛðaÞ <
Λ35=27
ðdÞ M10=27

p

f̄2=3
ðB9Þ

where we have taken α0 ¼ Oð1Þ. A strict constraint on ΛðaÞ
could come from requiring fth ¼ 16πα03=2f̄ to be greater
than ΛðaÞ (the CC at top), producing:
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ΛðaÞ < Λ7=9
ðdÞM

2=9
p ðB10Þ

which, forΛðdÞ¼10MeV, produces a boundΛðaÞ<300GeV.
If instead, one requires fth to be only greater than the
highest temperature achieved, which occurs when thermal
friction gives way to mode instability—when Eqs. (B4) and
(B8) are equal—then one finds:

ΛðaÞ < Λ17=27
ðdÞ M10=27

p ðB11Þ
or for ΛðdÞ ¼ 10 MeV, ΛðaÞ < 300 TeV.
One can easily show that the lower stage field ϕ,

described in the previous section, does not evolve

appreciably in its potential. This in fact is not a phenom-
enological constraint, as the upper stage described in this
section will always stop at a positive CC, allowing the
lower stage to work (as long as ϕ is not at the bottom of its
potential). Nevertheless, one can check that during the
upper stage, both classical rolling and evolution due to
quantum fluctuations of ϕ are negligible.
In principle there could be several axion fields with

varying scales in their potentials. This could give rise to
several stages of the relaxation model described here which
could raise the initial CC far beyond the 300 GeV–300 TeV
scales found here. We leave the exploration of multiple
stages for future work.
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