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We study the analytic properties of the ’t Hooft coupling expansion of the beta function at the leading
nontrivial large-Nf order for QED, QCD, super QED, and super QCD. For each theory, the ’t Hooft
coupling expansion is convergent. We discover that an analysis of the expansion coefficients to roughly 30
orders is required to establish the radius of convergence accurately, and to characterize the (logarithmic)
nature of the first singularity. We study summations of the beta-function expansion at order 1=Nf and
identify the physical origin of the singularities in terms of iterated bubble diagrams. We find a common
analytic structure across these theories, with important technical differences between supersymmetric and
nonsupersymmetric theories. We also discuss the expected structure at higher orders in the 1=Nf

expansion, which will be in the future accessible with the methods presented in this work, meaning without
the need for resumming the perturbative series. Understanding the structure of the large-Nf expansion is an
essential step towards determining the ultraviolet fate of asymptotically nonfree gauge theories.
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I. INTRODUCTION

The discovery of four-dimensional asymptotically safe
quantum field theories [1] has spurred recent phenomeno-
logical and theoretical interest. The original result made use
of the Veneziano limit, in which one considers a large
number of both colors and flavors. These theories feature
perturbative safety and contain not only gauge and fermion
degrees of freedom but also scalars. It is therefore theo-
retically and phenomenologically important to investigate
the ultraviolet fate of nonasymptotically free gauge theories
featuring a small number of colors but still a large number
of flavors. In particular, one wishes to either exclude or
demonstrate that a large number of flavors can lead to an
asymptotically safe scenario in gauge-fermion theories.
This quest has revitalized the study of quantum field

theories at a large number of flavors Nf. The timeliness of
our investigation is further corroborated by the fact that the
large-Nf nonasymptotically free regime of gauge-fermion
theories is being, for the first time, investigated via first-
principle lattice simulations, where we expect the first
results to appear soon [2].
An intriguing property of this limit is that, at each order

in the 1=Nf expansion, only a finite number of underlying

topologies contributes, where each gauge line is dressed
with matter loops. Correspondingly, at fixed order in 1=Nf,
the number of diagrams grows polynomially with the loop
order, suggesting that a closed-form resummed result with a
finite radius of convergence may be achievable.
The first notable study is large-Nf quantum electro-

dynamics (QED) [3], while large-Nf quantum chromo-
dynamics (QCD) is considered later in Ref. [4]. A
historical summary of the techniques and earlier results
can be found in Refs. [5,6]. The generalization to a wide
class of semisimple gauge-Yukawa theories appeared
only recently in Refs. [7–12]. For gauge theories with
different fermion matter representations, the new phase
diagram as a function of the number of flavors and
colors was put forward in Refs. [13,14], and it was
termed Conformal Window 2.0, extending and general-
izing the original phase diagram of Refs. [15,16] to
contain, besides an infrared conformal window, also an
ultraviolet (safe) one.
In the limit of a large number of matter fields, it is natural

to introduce the ’t Hooft coupling

K ¼ g2NfS2ðRÞ
4π2

; ð1Þ

with the gauge coupling g and the Dynkin index S2ðRÞ,
normalized to 1=2 for the fundamental representation. The
generic beta function has a formal expansion as an inverse
series in Nf:
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βðKÞ ¼
X∞

k¼0

βðkÞðKÞ
Nk

f

; ð2Þ

where each βðkÞðKÞ has itself a perturbative expansion in
the ’t Hooft coupling K. Similar expansions hold for
anomalous dimensions and other critical quantities.
Asymptotic freedom is lost for theories at a finite number

of colors and a large number of flavors, and therefore such
theories can only be fundamental if they develop an
interacting fixed point in the ultraviolet. This cannot occur
in perturbation theory without Yukawa interactions [1,17],
but it may occur nonperturbatively above a critical number
of flavors [9]. To see how this might work, let us
schematically consider the leading nontrivial order-1=Nf
beta function, which up to a normalization reads

βðKÞ
K2

¼ 1þ 1

Nf

βð1ÞðKÞ
K2

þO
�

1

N2
f

�
: ð3Þ

At this order, the function βð1ÞðKÞ=K2 must develop a
singular behavior for the beta function to develop a zero as
Nf → ∞. This indeed happens for QED and QCD, as
summarized in Refs. [5,9,14].
In this paper, we investigate this phenomenon further and

make a systematic study of the analytic structure of the ’t
Hooft coupling expansion of the leading large-Nf beta
function for QED, QCD, super QED (SQED), and super
QCD (SQCD). We discover that for each theory, the
’t Hooft coupling expansion is convergent, but a large
number of expansion coefficients are needed in order to
determine accurately the radius of convergence and to
extract the logarithmic nature of the first singularity of the
theory. Additionally, by a detailed investigation of the
summation properties of the beta function at a leading order
of 1=Nf, we identify the physical origin of the singularities
from the iterated self-energy diagrams. We find a universal
analytic structure across the theories investigated here,
while being able to resolve important physical differences
between supersymmetric and nonsupersymmetric theories.
The paper is organized as follows: In Sec. II, we

investigate large-Nf QED and introduce the relevant
mathematical tests and tools that we use for the various
theories. These include the asymptotic analysis of the
expansion coefficients and Padé approximants. We then
identify the physical origin of the poles. We extend this
analysis to QCD, SQED, and SQCD in Sec. III. There we
also elucidate and highlight the crucial differences among
the various theories. We present our conclusions in Sec. IV.
In the Appendix A, we briefly review Darboux’s theorem,
relevant for the large-order behavior of the expansion
coefficients, and in Appendix B, we describe on a technical
level how we extracted the numerical coefficients of the
beta function.

II. LARGE-NF QED

QED is structurally the simplest gauge theory, but it still
has a rich perturbative and nonperturbative structure, which
we probe here in the large-Nf limit. The QED beta function
has been computed in Ref. [3] at the leading nontrivial
order in the 1=Nf expansion:

βQEDðKÞ ¼ 2

3
K2 þ K2

2Nf

Z
K

0

dxFQEDðxÞ þO
�

1

N2
f

�
: ð4Þ

Here, the integrand function for QED is

FQEDðxÞ ¼ −
ðxþ 3Þðx − 9

2
Þðx − 3

2
Þ sinðπx

3
ÞΓð5

2
− x

3
Þ

27 · 2
2x
3
−5π

3
2ðx − 3ÞxΓð3 − x

3
Þ : ð5Þ

This resummed beta function is shown in Fig. 1 compared
with the supersymmetric version of the model.
The first few terms in the 1=Nf term of Eq. (4) read

βð1ÞQEDðKÞ≡K2

2

X∞

n¼1

cð1Þn Kn

¼K2

2

�
K−

11

36
K2−

77

972
K3þ107þ144ζð3Þ

7776
K4

þ1255þ24π4−2640ζð3Þ
291600

K5þOðK6Þ
�
: ð6Þ

In the coefficients cð1Þn , we recognize characteristic π
powers and zeta values, familiar from algebraic properties
of Feynman perturbation theory and harmonic polylogar-
ithms [18,19].
Before discussing the analytic structure of the integral

representation in Eq. (4), consider the following pragmatic

FIG. 1. Leading-order 1=Nf beta function for QED and SQED.
The dotted vertical lines indicate the location of the first singular
structure of each theory. Note the opposite sign of the behavior at
the leading singularity: for SQED, βð1ÞðKÞ → þ∞, while for
QED, βð1ÞðKÞ → −∞.
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question: supposing, as is often the case, one were given
only a finite number of terms of the expansion in Eq. (6),
what could we learn about the physical nature of the
expansion? There is a well-developed formalism to address
such a question [20,21]. The first observation is that the
expansion is convergent. This can be confirmed by a variety
of simple ratio tests: for example, the radius of convergence

cð1Þ� can be deduced from the limit cð1Þ� ¼ limn→∞jcð1Þn j−1=n,
or from the limit 1=cð1Þ� ¼ limn→∞jcð1Þn =cð1Þn−1j. However,
more information about the physics of the expansion can be
obtained by applying Darboux’s theorem [20–22], which
relates the rate of growth of the perturbative expansion
coefficients to the behavior of the expansion about the
leading and subleading singularities. Note that this is a
stronger statement than simply saying that the location of
the nearest singularity determines the radius of conver-
gence. The expansion coefficients also encode further
information about the nature of the singularity. The general
argument is summarized in Appendix A.

A. Asymptotic analysis of expansion coefficients

Our goal in this section is to deduce physical information
from a finite number of expansion coefficients cð1Þn in
Eq. (6). We studied these coefficients up to order M ¼ 60,
and from 60 terms we obtain a great deal of asymptotic
information. Using Richardson extrapolation [23] with
these 60 coefficients, we learn that as n → ∞,

cð1Þn ∼
1

ðnþ 1Þ
�
R0

�
2

15

�
nþ1

þ R1

�
2

21

�
nþ1

þ R2

�
2

27

�
nþ1

þ � � �
�
; ð7Þ

where R0 ¼ 0.063044292, R1 ¼ −0.013027009, and
R2 ¼ 0.0033170626. These numbers can be fit to R0 ¼
28
45π2

, R1 ¼ − 9
70π2

, and R2 ¼ 11
336π2

, identifications that can be
confirmed to higher precision using higher-order
Richardson extrapolations. We explain the origin of these
coefficients below in Eq. (12).
Thus, using Darboux’s theorem (see Appendix A), from

these 60 perturbative expansion coefficients we learn that
(i) the radius of convergence is 15=2; (ii) the leading

singularity of βð1ÞQEDðKÞ at K� ¼ 15=2 is a logarithmic

branch point, with coefficient 1
2
R0K2 ¼ 14K2

45π2
; (iii) there

are no higher-order corrections associated with this singu-
larity; and (iv) there are higher-order corrections associated
with further singularities at K¼21

2
and K¼ 27

2
. Interestingly,

we need approximately M ¼ 30 terms of the expansion to
be able to deduce precise information about the leading
singularity. With fewer than M ¼ 30 terms, even identify-
ing the radius of convergence to be 15=2 is noisy;
see Fig. 2. To extract accurately the second and third

singularities and their coefficients, we require M ≈ 40 and
M ≈ 50, respectively.
Thus, the leading behavior of the 1=Nf correction to the

beta function as K approaches the radius of convergence is

βð1ÞQEDðKÞ ∼
14K2

45π2
ln

�
15

2
− K

�
þ � � � ; K →

15

2
: ð8Þ

This implies that in order to obtain a zero of the beta
function in the large-Nf limit, we must approach a non-
perturbative fixed point at [1]

Knp
� ¼ 15

2
− exp

�
−
15π2

7
Nf

�
: ð9Þ

This physical information has been deduced from a finite
number of terms in the perturbative expansion of βð1ÞðKÞ.
However, since we have an all-orders integral representa-
tion [3] in Eq. (4), we can probe the analytic structure more
precisely by studying the properties of the integrand
function FQEDðxÞ defined in Eq. (5). The singularities of
the integrand are simple poles at xn ¼ 15

2
þ 3n, for n ≥ 0,

generated by Γð5
2
− x

3
Þ. These are the only singularities, as

can be seen from the decomposition

Γ
�
5

2
−
x
3

�
¼Γ

�
5

2
−
x
3
;1

�
þ
X∞

n¼0

ð−1Þn
n!

1

ðx−3n− 15
2
Þ ; ð10Þ

where the incomplete gamma function Γð5
2
− x

3
; 1Þ is

regular. The potential poles at x ¼ 3 − 3n, with n ≥ 0,
coming from the denominator in Eq. (5) are in fact canceled
by the sinðπx

3
Þ factor in the numerator. Alternatively, one can

rewrite the integrand using the gamma-function reflection
formula as

FIG. 2. Logarithm of jðnþ 1Þcð1Þn j, for the expansion coeffi-

cients cð1Þn entering the leading 1=Nf QED beta function βð1ÞðKÞ
in Eq. (6), compared to the numerically extracted large-order
behavior in Eq. (7). From n ≈ 30 onwards, the coefficients agree
with the expectation from the large-order behavior.
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FQEDðxÞ ¼ −
�

sinðπx
3
Þ

xðx − 3Þðx − 6Þ
�

2
�ðx − 9

2
Þðx − 3

2
Þ

cosðπx
3
Þ

�

×
25−

2x
3 ðx − 6Þðx − 9

2
Þðx − 3

2
Þ

9π3=2
Γð1þ x

3
Þ

Γð1
2
þ x

3
Þ ; ð11Þ

from which we see that the only singularities come from the
secðπx

3
Þ factor, with the poles at x ¼ 3

2
and x ¼ 9

2
excluded.

Therefore, the positions and residues of the (simple) poles
of the integrand are

xn ¼ 3nþ 15

2
; n ¼ 0; 1; 2;…;

Rn ¼
21−2nðnþ 1Þðnþ 2Þð2nþ 7Þ

3π3=2ð2nþ 3Þð2nþ 5ÞΓð1
2
− nÞΓðnþ 1Þ : ð12Þ

These coincide precisely with the numerical values
extracted from the asymptotic analysis in Eq. (7).
Furthermore, the noisiness of the expansion coefficients
at low order can be traced to the oscillatory nature of the
sinðπx

3
Þ tanðπx

3
Þ factor in Eq. (11).

Recall that the poles in Eq. (12) are simple poles of the
integrand of the beta function in Eq. (4). After integration
over x, these poles translate into logarithmic branch points
of the beta function, which were found above [see, e.g.,
Eq. (8)] by a numerical Darboux analysis of the coefficients
of the perturbative expansion of the beta function to
finite order.

B. Padé approximations

Padé approximation is a commonly used method for
studying perturbative expansions in physical systems
[23,24]. Given the integrand FQEDðxÞ in Eq. (5) expressed
in terms of gamma functions, there is a unique analytic
continuation beyond its radius of convergence. However, if
we only had a finite number of terms of the expansion, not
its full analytic form, we could still probe beyond the radius
of convergence using Padé approximation.
Padé approximants construct analytic continuations of

truncated Taylor series (i.e., polynomial) approximations to
functions, expressing the given polynomial as a ratio of two
polynomials of lower order, with coefficients determined
purely algorithmically. Padé approximants thus convert a
polynomial to a rational function, which can also be
expressed as a partial fraction expansion, whose residues
and poles are determined by the coefficients of the original
truncated Taylor series. This means that Padé approximants
tend to be quite good at representing functions with poles,
while they are less good at representing functions with
branch cuts [23,24].
The conversion of a truncated Taylor series to a Padé

approximant,

FQEDðxÞ ≈
XM

n¼0

fnxn → P½R;S�ðxÞ ¼ PRðxÞ
QSðxÞ

; ð13Þ

is algorithmic, leading to a ratio of two polynomials PRðxÞ
and QSðxÞ, of orders R and S, respectively, where
Rþ S ¼ M. It is, in fact, a built-in function in symbolic
mathematics languages such as Maple or Mathematica.
We took up to 60 terms of the expansion about x ¼ 0 of

the integrand FQEDðxÞ and converted it to a diagonal Padé
approximant P½M=2;M=2�ðxÞ, for various values of M. In
Fig. 3, we display the function FQEDðxÞ together with the
diagonal Padé approximants starting from M ¼ 20, 30, 40,
50, 60 coefficients. With M ¼ 20 coefficients, we do not
even “see” the first pole. With M ¼ 30, coefficients we
accurately probe the first pole, but not the second pole. For
the second pole, we need approximately M ¼ 40 coeffi-
cients, while with M ¼ 50 coefficients we accurately
resolve the third pole. These numbers are consistent with
the number of coefficients required in the ratio test and
asymptotic analysis of the beta-function coefficients in
Sec. II A, to resolve the logarithmic singularities of βð1ÞðKÞ.
In fact, a full Padé analysis constructs the “Padé table” of

all Padé approximants P½R;S�ðxÞ, with Rþ S ¼ M. It turns
out that certain off-diagonal approximants are even better at
representing the integrand function FQEDðxÞ. This can be
understood from the analytic representation of the inte-
grand in Eq. (11). Given that trigonometric and gamma
functions have well-known product formula representa-
tions, we see that the Γð1þ x

3
Þ=Γð1

2
þ x

3
Þ factor in Eq. (11) is

naturally represented as a near-diagonal Padé approximant,
but because of the sin2ðπx

3
Þ= cosðπx

3
Þ factor, there is effec-

tively one extra trigonometric factor in the numerator. Thus,
a Padé representation whose numerator is a higher-order
polynomial than the denominator polynomial will represent

FIG. 3. Integrand of the QED beta function FQEDðxÞ (solid red
curve), see Eq. (4), compared to the diagonal Padé approximant
P½M=2;M=2� for M terms in the perturbative expansion in Eq. (13).
Progressively more poles are resolved as the order of the Padé
approximant is increased.
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the analytic structure of the actual function FQEDðxÞ more
accurately. We have confirmed that this is the case, starting
from the 60 expansion coefficients, but we note that the
simple diagonal Padé representations shown in Fig. 3 are
already remarkably precise.

C. Physical origin of the poles

We have seen that the finite radius of convergence,
K� ¼ 15

2
, of the expansion of the 1=Nf beta function

βð1ÞQEDðKÞ can be traced directly to the leading pole of the
Γð5

2
− x

3
Þ factor in the integrand function FQEDðxÞ. This

gamma factor arises because it enters the leading 1=Nf

computation via iteration of the basic building block of the
one-bubble self-energy diagram, whose amplitude Π0 is
given by

Π0ðϵÞ ∼ 2
Γ2ð2 − ϵ

2
ÞΓðϵ

2
Þ

Γð4 − ϵÞ ; ð14Þ

regularized in d ¼ 4 − ϵ. In the resummation, this amplitude
typically enters the full beta function as its inverse, 1=Π0,
and its argument is rescaled with the value of the 1=ϵ-
pole1 [6].
For the QED computation, the value of the 1=ϵ-pole in

(14) is 2
3
. Consequently, we expect the resummed 1=Nf beta

function to contain the factor

Π−1
0

�
2

3
x

�
¼ 22−

2x
3 sinðπx

3
ÞΓð5

2
− x

3
Þ

π3=2ð1 − x
3
Þ : ð15Þ

Indeed, this factor appears in the integrand function
FQEDðxÞ and governs the pole structure underlying the
asymptotics of the perturbative expansion coefficients, and
the structure of the Padé approximations to the integrand
function FQEDðxÞ.
Knowing this, one can devise improved expansions in

which this Π−1
0 ð2

3
xÞ factor is factored out, with only the

remaining factors needing to be analyzed. Not surprisingly,
this leads to noticeable improvement of the resulting Padé
approximations, and a much faster approach to the asymp-
totic behavior of the expansion coefficients.
The general idea of using Padé approximants to study the

behavior of beta functions is significant for analyzing
higher orders in the 1=Nf expansion, for which no
closed-form resummation formula is currently known. In
particular, these methods may allow us to access the
leading-order pole structure at higher orders in the 1=Nf

expansion, if enough coefficients can be extracted from the
relevant diagrams. This information has quantitative

implications for the stability, size, and structure of the
asymptotically safe conformal window. One can imagine
the following possible scenarios at higher orders in the
1=Nf expansion:

(i) A new singular structure may emerge closer to the
origin, de facto disconnecting the putative fixed
point in Eq. (9) from the Gaussian fixed point at the
origin. The detailed structure of the new singularity
would determine whether or not the theory remains
UV safe to this order. Alternatively, if the radius of
convergence of the series keeps shrinking as the
order in 1=Nf increases, the UV fixed point could
eventually disappear.

(ii) The current singular structure, and its location, could
be further reinforced by higher-order corrections.
This possibility is partially supported by the fact that
the fermion self-energy amplitude is responsible for
the singular structure of the theory. The order of the
pole in the integrand might become stronger because
n bubble chains appear in diagrams at the order
Oð1=Nn

fÞ. In this case, the ultimate UV fate of the
theory will depend on the character, sign, and
strength of the reinforced singular structure.

(iii) No further singularities emerge, or a new singular
structure appears further away from the leading-
order one. This would be an indication that the
putative fixed point in Eq. (9) is indeed physical. For
example, the leading isolated pole, like the one that
we will see appearing in QCD in the next section, is
a candidate for this scenario, since it is not due to the
fermion self-energy amplitude.

Of course, even the ultimate confirmation of a nonpertur-
bative zero in a generic beta function away from the origin
is typically insufficient to establish the existence of a
physical conformal field theory. Other critical quantities
such as the variation of the a function or anomalous
dimensions can potentially violate physical bounds [13,25].

III. COMPARING DIFFERENT THEORIES AND
THEIR PHYSICS

A. Large-Nf QCD

The beta function at order 1=Nf for an SUðNcÞ gauge
theory was first calculated in Ref. [4] and written in a
closed integral form in Ref. [5]. The result is

βQCDðKÞ ¼ 2K2

3

�
1 −

11

4Nf

C2ðGÞ
S2ðRÞ

�

þ K2

2Nf

Z
K

0

dxFQCDðxÞ þO

�
1

N2
f

�
: ð16Þ

The integrand function is now
1This is the case for diagrams containing one resummed gauge

chain.
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FQCDðxÞ¼
21−

2x
3 sinðπx

3
ÞΓð5

2
− x

3
Þ

27π3=2ðx−3Þ2xΓð3− x
3
Þ

×

�
C2ðGÞ
S2ðRÞ

ð4x4−42x3þ288x2−1161xÞ

−4
dðGÞ
dðRÞ ðx−3Þðxþ3Þð2x−9Þð2x−3Þ

�
; ð17Þ

where dðGÞ, dðRÞ are the dimensions of the groupG and the
representation R, and similarly for the quadratic Casimirs
C2. This result is very similar to that forQEDand agreeswith
it in the Abelian limitC2ðGÞ → 0 and dðGÞ=dðRÞ → 1. The
gamma factor Γð5

2
− x

3
Þ produces the same pole pattern as in

QED. However, a new isolated simple pole appears at
x� ¼ 3, leading to a smaller radius of convergence,
K� ¼ 3. This effect is purely due to the non-Abelian nature
of the theory, as can be seen also from its residue:

R0 ¼
1

12

C2ðGÞ
S2ðRÞ

; at x� ¼ 3: ð18Þ

By an argument similar to that in Sec. II C, we can identify
this pole with the gluon bubble loop rather than the fermion
bubble loop. Since this diagram does not appear iterated in a
chain, it does not result in an entire series of poles.
The simple pole of FQCDðxÞ at x� ¼ 3 leads to a

logarithmic behavior of βð1ÞQCDðKÞ:

βð1ÞQCDðKÞ ∼ K2

24

C2ðGÞ
S2ðRÞ

ln ð3 − KÞ þ � � � ; K → 3: ð19Þ

This implies that in order to obtain a zero of the beta
function in the large-Nf limit, we must approach a non-
perturbative fixed point at [1,13]

Knp
� ¼ 3 − exp

�
−16

S2ðRÞ
C2ðGÞ

Nf

�
: ð20Þ

Since the leading singularity for QCD is closer to the origin
than for QED, fewer perturbative orders are required to
resolve it using an asymptotic or Padé analysis. For
example, for Nc ¼ 3 and with fermions in the fundamental
representation, the leading residue can be extracted with
Oð10−3Þ accuracy from the asymptotic expansion of the
coefficients already at ∼14th order. Retaining up to 15th
order in the expansion of the integrand, the Padé approx-
imant P½7;7�ðxÞ gives a good reconstruction of the integrand
within the radius of convergence. A similar analysis can be
carried out for the other poles in the integrand: the results
for the theories considered here are summarized in Fig. 4.
Note that our result for QED is compatible with Ref. [26],
where an expansion up to the 24th order was not sufficient
to find a stable zero in the beta function.
Our results across the various theories indicate that the

main factor determining the number of coefficients needed

to resolve a given pole is the distance of the latter to the
origin.2 As discussed in the end of Sec. II C, the behavior
near the leading pole is associated with the amplitude factor
Π−1

0 , so we expect a similar relation between the number of
coefficients and the location of the poles at the next orders
in the 1=Nf expansion. Furthermore, since no closed-form
resummed perturbative expressions are known at higher
orders in 1=Nf, this motivates the importance of a similar
Padé analysis of the perturbative series at 1=N2

f.

B. Large-Nf supersymmetric results

In this section, we review and discuss the results obtained
in Refs. [27,28] for large-Nf N ¼ 1 supersymmetric QED
andQCD. The results are obtained in dimensional reduction
(DRED) in d ¼ 4 − 2ϵ. For SQED, one finds

βSQEDðKÞ ¼ K2 þ K2

2Nf

Z
K

0

dxFSQEDðxÞ þ � � � ;

FSQEDðxÞ ¼
23−xð1 − xÞ sinðπx

2
ÞΓð3

2
− x

2
Þ

π3=2xΓð2 − x
2
Þ ; ð21Þ

while for SQCD,

βSQCDðKÞ¼K2

�
1−

1

Nf

C2ðGÞ
S2ðRÞ

�

þ K2

2Nf

Z
K

0

dxFSQCDðxÞþ �� � ;

FSQCDðxÞ¼
22−x sinðπx

2
ÞΓð3

2
− x

2
Þ

π3=2xΓð2− x
2
Þ

�
2ð1−xÞdðGÞ

dðRÞ þ
C2ðGÞ
S2ðRÞ

�
:

ð22Þ

FIG. 4. Number of poles in each theory, ordered according to
Table I, versus the corresponding number of coefficients needed
to resolve the pole. We determine the number of coefficients as
the minimal number of terms needed to calculate the correspond-
ing residue with a precision of 10−3.

2A simple rescaling of the couplings does not change the
number of coefficients needed.
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Notice again that the integrand expression for QCD in
Eq. (17) agrees with the one for QED in Eq. (5) at the
Abelian limit. For each of the SUSY beta functions in
Eqs. (21) and (22), the integrand function FðxÞ has its first
singularity as a simple pole at x ¼ 3with a negative residue3;
see Table I. For example, this opposite sign explains the
different behavior of the beta function near the first singu-
larity, as shown in Fig. 1 for QED and SQED. Due to this
negative sign for SQED and SQCD, the associated loga-
rithmic singularity of the beta function cannot provide a
cancellation between the first two orders in the large-Nf

expansion [Eq. (3)], and therefore no nonperturbative fixed
point arises.
It is interesting to note that this conclusion holds also in the

Novikov-Shifman-Vainshtein-Zakharov (NSVZ) scheme,
which can be related toDREDby an order-by-order coupling
redefinition [29]; see also Ref. [30] for details on such a
relation. The well-known NSVZ beta function (see Ref. [31]
for a recent discussion) is

βNSVZðgÞ¼−
g3

ð4πÞ2
3C2ðGÞ−NfS2ðRÞð1− γNSVZðgÞÞ

1− 2g2

ð4πÞ2C2ðGÞ
:

ð23Þ

It admits a zero where the anomalous dimension takes
the value

γðg�Þ ¼ 1 −
1

Nf

3C2ðGÞ
S2ðRÞ

: ð24Þ

We dropped the NSVZ label, as this quantity is scheme
independent at the alleged fixed point. In the limitNf ≫ Nc,
the theory has lost asymptotic freedom, and therefore such a
fixed point has to develop in the UV. However, due to the
violation of the a theorem [25,32,33], it is disconnected from
the IR Gaussian fixed point. The absence of an UV fixed
point smoothly connected to the origin agrees with the

large-Nf result in the DRED scheme, where, in fact, no
UV fixed point is seen to complete the Gaussian.

IV. CONCLUSIONS

Our analysis of the convergence properties of the leading
1=Nf behavior of QED, QCD and their supersymmetric
cousins has revealed several interesting features. We
observe the emergence of a common analytic structure
stemming from the leading 1=Nf corrections, with the
important difference that the coefficient of the logarithmic
branch singularity is positive for QED and QCD, but it
switches sign for their supersymmetric counterparts. The
sign plays a crucial role when considering the UV fate of
these theories. For example, for the supersymmetric case it
implies that the theories are not fundamental, in agreement
with other nonperturbative analyses.
We have demonstrated, by direct comparison with the

full result, that the analysis of the large-order behavior of
the ’t Hooft coupling expansion is able to identify the
location and nature of the leading logarithmic singularities,
including the overall sign and magnitude of their coeffi-
cients. This suggests that a large-order analysis can be used
in the near future to tackle the next-to-leading order in the
1=Nf expansion, in the absence of a closed-form result.
These corrections are crucial to test the singular structure of
the leading 1=Nf result, with important consequences for
the UV fate of these theories.
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APPENDIX A: DARBOUX’S THEOREM AND
LARGE-ORDER BEHAVIOR OF EXPANSION

COEFFICIENTS

Darboux’s theorem says that for a convergent series
expansion, the behavior of the expansion in the vicinity of a
nearby singularity is determined by the large-order growth
of the expansion coefficients about another point (say
z ¼ 0) [20–22]. For example, suppose a function fðzÞ
has the following expansion in the vicinity of a point z0:

fðzÞ ∼ ϕðzÞ
�
1 −

z
z0

�
−p

þ ψðzÞ; z → z0; ðA1Þ

where ϕðzÞ and ψðzÞ are analytic near z0. Then the Taylor
expansion coefficients of fðzÞ near the origin have large-
order growth:

TABLE I. Poles and first residue of the 1=Nf resummed
integrand function FðxÞ for each theory considered.

Poles R0

QED xn ¼ 3nþ 15
2
, n ≥ 0 28

45π2

QCD x0 ¼ 3 1
12

C2ðGÞ
S2ðRÞxn ¼ 3ðn − 1Þ þ 15

2
, n ≥ 1

SQED xn ¼ 3þ 2n, n ≥ 0 − 4
3π2

SQCD xn ¼ 3þ 2n, n ≥ 0 − 4
3π2

ðdðGÞdðRÞ −
1
4

C2ðGÞ
S2ðRÞÞ

3In our convention, the coupling K is twice the coupling
defined in the original works, where the pole appeared at
x ¼ 3=2.
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bn ∼
1

zn0

�
nþ p − 1

n

��
ϕðz0Þ −

ðp − 1Þz0ϕ0ðz0Þ
ðnþ p − 1Þ

þ ðp − 1Þðp − 2Þz20ϕ00ðz0Þ
2!ðnþ p − 1Þðnþ p − 2Þ − � � �

�
: ðA2Þ

This argument can be run in reverse, so that an analysis of
the large-order behavior of the coefficients bn enables us
first to determine the radius of convergence z0, and then
also the nature p of the singularity—for example, a pole, or
a branch cut, and what type of branch cut. The overall
factor determines ϕðz0Þ, and further subleading informa-
tion determines higher orders of the expansion of ϕðzÞ
about z0. If the singularity is logarithmic,

fðzÞ ∼ ϕðzÞ ln
�
1 −

z
z0

�
þ ψðzÞ; z → z0; ðA3Þ

where ϕðzÞ and ψðzÞ are analytic near z0, then the Taylor
expansion coefficients of fðzÞ near the origin have large-
order growth

bn∼
1

zn0

1

n

�
ϕðz0Þ−

z0ϕ0ðz0Þ
ðn−1Þ þ z20ϕ

00ðz0Þ
ðn−1Þðn−2Þ− � � �

�
: ðA4Þ

Once again, the large-order behavior of the convergent
expansion coefficients determines the nature of the singu-
larity and the fluctuations about it.

APPENDIX B: OBTAINING THE NUMERICAL
COEFFICIENTS OF THE BETA FUNCTIONS

The Oð1=NfÞ beta functions discussed in this work are
known in their resummed form, so we can reexpand them to
60 orders and perform a Padé analysis. The motivation for
this is to obtain an estimate of how many perturbative terms
are required in order to identify both the location and nature
of the leading singularity, with a view towards a direct
perturbative computation of the Oð1=N2

fÞ beta functions,
for which no resummed version is currently known. It is not
a priori clear whether one might need 10 terms, or several
hundred. Our work has shown that atOð1=NfÞ roughly 30–
40 perturbative terms are required, due to the lower-order

oscillatory behavior, which we have associated with the
appearance of the amplitude factor in Eq. (14). Since these
factors appear also in an Oð1=N2

fÞ computation, we expect
that at least the same number of perturbative coefficients
would be necessary in such a computation at a given higher
order in the 1=Nf expansion. We now comment briefly on
the steps required to make such a computation feasible at
higher orders in the 1=Nf expansion. To this end, we first
describe how the Oð1=NfÞ perturbative expansion is
obtained in the diagrammatic approach.
The diagrams that contribute to the beta function at the

order 1=Nf in QED and QCD are displayed, e.g., in Ref. [9].
For the contraction of the diagrams, one can use the
Mathematica package FeynCalc [34], which performs the
trace over Lorentz and Dirac indices in d dimensions.
Complicated diagrams can be traced with the symbolic
manipulation system FORM [35,36], as well as the
Mathematica package FormTracer [37]. The contracted
diagrams can be evaluated with standard multiloop tech-
niques along the lines ofRefs. [38–41]. The diagrams contain
fully dressed gauge propagators, and thus one has to apply
reduction formulas that only hit nondressed propagators.
This procedure can be extended to higher orders in the

1=Nf expansion to determine the perturbative coefficients
up to arbitrary order in the coupling but subleading in
1=Nf. At higher order in 1=Nf, the loop order and the
number of dressed propagators increases. Thus, at higher
order in 1=Nf, we expect that more efficient reduction
formulas will be required.
Another complication at higher order in 1=Nf is that at

any order, the integrated diagrams contain gamma and
hypergeometric functions, which need to be expanded in
ϵ ¼ d − 4. For the nth-loop coefficient, we need to expand
these functions up to ϵn−1. These expansions are slow, and
at higher order in 1=Nf, there will be more such factors to
expand. Analytic expansions are only known for specific
cases or only to low order. Thus, in our Oð1=NfÞ
computation, we used numerical expansion methods—in
particular, the package NumExp [42]. This numerical
precision will need to be balanced with the precision
required for the subsequent Padé analysis.
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