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The electromagnetic form factors of the proton and the neutron are computed within lattice QCD using
simulations with quark masses fixed to their physical values. Both connected and disconnected
contributions are computed. We analyze two new ensembles of Nf ¼ 2 and Nf ¼ 2þ 1þ 1 twisted
mass clover-improved fermions and determine the proton and neutron form factors, the electric and
magnetic radii, and the magnetic moments. We use several values of the sink-source time separation in the
range of 1.0 to 1.6 fm to ensure ground state identification. Disconnected contributions are calculated to an
unprecedented accuracy at the physical point. Although they constitute a small correction, they are non-
negligible and contribute up to 15% for the case of the neutron electric charge radius.
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I. INTRODUCTION

Nucleons being composite particles have a nontrivial
internal structure that can be probed by measuring their
electromagnetic form factors. These fundamental quantities
have been extensively studied both theoretically and
experimentally. However, open issues still persist and there
are ongoing experimental efforts to determine them at
higher precision and over a wider range of momentum
transfers and to describe them theoretically. The proton
electric form factor is extracted to high precision from
electron proton scattering [1]. Its slope at vanishing
momentum transfer squared yields the proton charge
root-mean-square (rms) radius. Prior to 2010, the charge
rms radius of the proton was considered a well-determined
quantity (see Ref. [2] for a recent review). A pioneering
experiment using Lamb shifts in muonic hydrogen surpris-
ingly found a value smaller by 5 standard deviations [3],
triggering the so-called proton radius puzzle. The origin
of this discrepancy is not yet understood, and potential
systematic uncertainties related to the analysis method-
ologies in the two types of experiments have not been

excluded. Another quantity of interest is the neutron electric
form factor [4], which is accessed indirectly experimentally
through electron-deuteron or electron-helium scattering and
therefore remains poorly known. It is of substantial impor-
tance to compute these fundamental quantities from first
principles using lattice QCD, which provides an ideal
formulation for such an investigation and with simulations
at physical values of the QCD parameters.
Within this work, we compute the proton and neutron

electromagnetic form factors including light quark dis-
connected contributions. We use an ensemble of twisted
mass fermions with two degenerate light quarks, a strange,
and a charm quark (Nf ¼ 2þ 1þ 1) with masses fixed
to their physical value (referred to hereafter as physical
point). A clover term is added to the action to suppress
isospin breaking effects that come quadratically with the
lattice spacing. Details on the simulation can be found in
Ref. [5]. We will refer to this ensemble as cB211.072.64.
In addition, we present an analysis of a twisted mass
ensemble of two degenerate light quarks with masses fixed
to their physical values (Nf ¼ 2) to assess finite volume
artifacts by comparing to previous results obtained using
an Nf ¼ 2 ensemble with a smaller volume and same
pion mass and lattice spacing [6,7]. Comparison between
Nf ¼ 2 and Nf ¼ 2þ 1þ 1 also sheds light on any
possible unquenching effect of the strange and charm
quarks. The momentum dependence of the form factors
is fitted using two Ansätze, namely either a dipole or the
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Galster-like parametrization [8] and the model-independent
z-expansion [9]. The fits allow for the extraction of the
magnetic moment and the electric and magnetic rms radii of
the proton and neutron and provide a measure of the
systematics due to the choice of the fit method.
A crucial component of our analysis is the use of

hierarchical probing [10] combined with deflation of the
lower-lying eigenvalues [11] that enables us to calculate
the light quark disconnected contributions to the form
factors at an unprecedented accuracy at the physical point.
This allows us to obtain the proton and neutron form factors
at the physical point without neglecting disconnected
contributions.
The remainder of this paper is organized as follows:

In Sec. II, we describe the nucleon matrix elements required
to extract the electromagnetic form factors and in Sec. III
we provide details on the lattice QCD techniques employed
for the computation of the connected and disconnected
diagrams. In Sec. IV, we discuss the analysis of the data
paying particular attention to the identification of the
ground state matrix element. In Sec. V we include an
assessment of finite volume and unquenching effects using
results from the analysis of the two Nf ¼ 2 ensembles. In
Sec. VI, we fit the isovector and isoscalar form factors to
extract the magnetic moments and radii. We compare to
other lattice QCD studies using simulations close to physical
pion masses in Sec. VII [12–15]. Our final results for the
proton and neutron electromagnetic form factors are given in
Sec. VIII. Finally, in Sec. IX, we summarize our findings and
conclude. For completeness, we summarize in Appendix A
the decomposition of the nucleonmatrix elements in terms of
the form factors and in Appendix B we provide a Table VI
with the numerical results for the electric and magnetic form
factors as a function of the momentum transfer squared.

II. ELECTROMAGNETIC FORM FACTORS

The nucleon matrix element of the electromagnetic
current is parametrized in terms of the Dirac (F1) and
Pauli (F2) form factors given in Minkowski space by

hNðp0; s0ÞjjμjNðp; sÞi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
N

ENðp⃗0ÞENðp⃗Þ

s

× ūNðp0; s0Þ
�
γμF1ðq2Þ þ

iσμνqν

2mN
F2ðq2Þ

�
uNðp; sÞ: ð1Þ

Nðp; sÞ is the nucleon state with initial (final) momentum
p (p0) and spin s (s0), with energy ENðp⃗Þ (ENðp⃗0Þ) and
mass mN . q2 ≡ qμqμ is the momentum transfer squared
qμ ¼ ðp0

μ − pμÞ and uN is the nucleon spinor. The local
vector current jμ is given by

jμ ¼
X
f

efj
f
μ ¼

X
f

efq̄fγμqf; ð2Þ

where qf is the quark field of flavor f and ef its electric
charge, and the summation runs over all the quark flavors.
Instead of the local vector current, we instead use the
symmetrized lattice conserved vector current given by

jfμðxÞ ¼ 1

4
½q̄fðxþ μ̂ÞU†

μðxÞð1þ γμÞqfðxÞ
− q̄fðxÞUμðxÞð1 − γμÞqfðxþ μ̂Þ
þ q̄fðxÞU†

μðx − μ̂Þð1þ γμÞqfðx − μ̂Þ
− q̄fðx − μ̂ÞUμðx − μ̂Þð1 − γμÞqfðxÞ�;

which, unlike the local vector current, does not need
renormalization. The electric and magnetic Sachs form
factors GEðq2Þ and GMðq2Þ are alternative Lorentz invari-
ant quantities and are expressed in terms of F1ðq2Þ and
F2ðq2Þ via the relations,

GEðq2Þ ¼ F1ðq2Þ þ
q2

4m2
N
F2ðq2Þ; ð3Þ

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ: ð4Þ

In the isospin limit, where the up and down quarks are
degenerate, we consider the isovector combination hpjjuμ −
jdμjpi that gives the difference between the proton and
neutron form factors and the isoscalar combination hpjjuμ þ
jdμjpi=3 for the sum of the proton and neutron form factors.
The electric form factor at zero momentum yields the
nucleon charge, i.e., Gp

Eð0Þ ¼ 1 and Gn
Eð0Þ ¼ 0 which,

when using the lattice conserved current, holds by sym-
metry, even prior to gauge averaging. The magnetic form
factor at q2 ¼ 0 gives the magnetic moment, while the radii
can be extracted from the slope of the electric and magnetic
form factors as q2 → 0, namely,

hr2i ¼ 6

Gð0Þ
∂Gðq2Þ
∂q2

����
q2¼0

: ð5Þ

III. CALCULATION ON THE LATTICE

A. Nucleon matrix element

Extraction of nucleon matrix elements within the lattice
QCD formulation requires the evaluation of two- and three-
point correlation functions in Euclidean space. We thus
give all quantities in Euclidean space from here on. We use
the standard nucleon interpolating field

JNðx⃗; tÞ ¼ ϵabcuaðxÞ½ub⊺ðxÞCγ5dcðxÞ�; ð6Þ

C. ALEXANDROU et al. PHYS. REV. D 100, 014509 (2019)

014509-2



where u and d are up- and down-quark spinors and C ¼
γ0γ2 is the charge conjugation matrix. The two-point
function in momentum space is given by

CðΓ0; p⃗; ts; t0Þ
¼

X
x⃗s

Tr½Γ0hJNðts; x⃗sÞJ̄Nðt0; x⃗0Þi�e−iðx⃗s−x⃗0Þ·p⃗; ð7Þ

and the three-point function is given by

CμðΓν; q⃗; p⃗0; ts; tins; t0Þ
¼

X
x⃗ins;x⃗s

eiðx⃗ins−x⃗0Þ·q⃗e−iðx⃗s−x⃗0Þ·p⃗0

× Tr½ΓνhJNðts; x⃗sÞjμðtins; x⃗insÞJ̄Nðt0; x⃗0Þi�: ð8Þ

The initial position and time, x0, is referred to as the source,
the position and time of the current jμ couples to a quark is
denoted by xins and referred to as the insertion, and the final
position, xs, as the sink. Γν is a projector acting on spin
indices, with Γ0 ¼ 1

2
ð1þ γ0Þ yielding the unpolarized and

Γk ¼ Γ0iγ5γk the polarized matrix elements. Inserting
complete sets of states in Eq. (8), one obtains the nucleon
matrix element as well as additional matrix elements of
higher energy states with the quantum numbers of the
nucleon multiplied by overlap terms and time-dependent
exponentials. For large enough time separations, the
excited state contributions are suppressed compared to
the nucleon ground state and one can then extract the
desired matrix element. In order to increase the overlap
with the nucleon state and decrease overlap with excited
states we use Gaussian smeared quark fields [16,17] for the
construction of the interpolating fields:

qasmearðt;xÞ ¼
X
y

Fabðx; y;UðtÞÞqbðt; yÞ;

F ¼ ð1þ αHÞn;

Hðx; y;UðtÞÞ ¼
X3
i¼1

½UiðxÞδx;y−ι̂ þ U†
i ðx − ι̂Þδx;yþι̂�: ð9Þ

In addition, we apply Array Processor Experiment (APE)
smearing to the gauge fields Uμ entering the hopping
matrix H.
The Gaussian smearing parameters are optimized using

the nucleon two-point function. We set α ¼ 0.2 and n ¼
125 [18]. The values are α ¼ 4.0 and n ¼ 50, 70, and 90 for
β ¼ 3.9, 4.05, and 4.2 respectively. For the APE smearing
[19] we use 50 iteration steps and αAPE ¼ 0.5.
An optimized ratio [20–22] of the three-point function

over a combination of two-point functions is used to cancel
time-dependent exponentials and overlaps given by

RμðΓν; p⃗0; p⃗; ts; tinsÞ ¼
CμðΓν; p⃗0; p⃗; ts; tinsÞ

CðΓ0; p⃗0; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΓ0; p⃗; ts − tinsÞCðΓ0; p⃗0; tinsÞCðΓ0; p⃗0; tsÞ
CðΓ0; p⃗0; ts − tinsÞCðΓ0; p⃗; tinsÞCðΓ0; p⃗; tsÞ

s
; ð10Þ

where ts and tins are taken to be relative to the source t0
for simplicity. In the limit of large-time separations,
ðts − tinsÞ ≫ 1 and tins ≫ 1, the lowest state dominates
and the ratio becomes time independent

RμðΓν; p⃗0; p⃗; ts; tinsÞ⟶
ts−tins≫1

tins≫1
ΠμðΓν; p⃗0; p⃗Þ: ð11Þ

GEðQ2Þ and GMðQ2Þ are extracted from linear combi-
nations of ΠμðΓν; p⃗0; p⃗Þ as expressed in Appendix A, with
Q2 ≡ −q2 the Euclidean momentum transfer squared.
Contracting the quark fields in Eq. (8) gives rise to two

types of diagrams depicted in Fig. 1, namely the so-called
connected and disconnected contributions. In the case of
the connected diagram, the insertion operator couples to a
valence quark and an all-to-all propagator arises between
sink and insertion. We use sequential inversions through the
sink that require keeping the sink-source time separation ts,
the projector, and the sink momentum p⃗0 fixed. We perform
additional sets of inversions to compute the three-point
function for several values of ts, for both the unpolarized
and polarized projectors. We set p⃗0 ¼ 0⃗. We use an
appropriately tuned multigrid algorithm [23–25] for the
efficient inversion of the Dirac operator entering in the
computation of the connected diagram. The disconnected
diagram involves the disconnected quark loop correlated
with the nucleon two-point correlator. The disconnected
quark loop is given by

0 0

j

0 0

j

FIG. 1. Connected (upper panel) and disconnected (lower
panel) contributions to the nucleon three-point function, with
the source at x0, the sink at xs, and the current insertion (jμ)
at xins.
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Lðtins; q⃗Þ ¼
X
x⃗ins

Tr½D−1ðxins; xinsÞG�eiq⃗·x⃗ins ; ð12Þ

where D−1ðxins; xinsÞ is the quark propagator that starts and
ends at the same point xins and G is an appropriately chosen
γ structure. For the local vector current, which we use for
the disconnected diagram, G ¼ γμ. A direct computation of
quark loops would need inversions from all spatial points
on the lattice, making the evaluation unfeasible for our
lattice size. We therefore employ stochastic techniques to
estimate it combined with dilution schemes [26] that take
into account the sparsity of the Dirac operator and its decay
properties. Namely, in this work, we employ the hierar-
chical probing technique [10], which provides a partition-
ing scheme that eliminates contributions from neighboring
points in the trace of Eq. (12) up to a certain coloring
distance 2k. Using Hadamard vectors as the basis vectors
for the partitioning, one needs 2d�ðk−1Þþ1 vectors, where
d ¼ 4 for a four-dimensional partitioning. Note that the
computational resources required are proportional to the
number of Hadamard vectors, and therefore in d ¼ 4 the
dimensions increase 16-fold each time the probing distance
2k doubles. Contributions entering from points beyond the
probing distance are expected to be suppressed due to the
exponential decay of the quark propagator and are treated
with standard noise vectors which suppress all off-diagonal
contributions by 1=

ffiffiffiffiffiffi
Nr

p
, i.e.,

1

Nr

X
r

jξrihξrj ¼ 1þO
�

1ffiffiffiffiffiffi
Nr

p
�
; ð13Þ

where Nr is the size of the stochastic ensemble.
Hierarchical probing has been employed with great success
in previous studies [27,28] for an ensemble with a pion
mass of 317 MeV. For simulations at the physical point, it is
expected that a larger probing distance is required since the
light quark propagator decays more slowly at smaller quark
masses. We avoid the need of increasing the distance by
combining hierarchical probing with deflation of the low
modes [11]. Namely, we construct the low mode contri-
bution to the light quark loops by computing exactly the
200 smallest eigenvalues and corresponding eigenvectors
of the squared Dirac operator and combine them with the
contribution from the remaining modes, which are esti-
mated using hierarchical probing. Additionally, we employ
the one-end trick [29] used in our previous studies [30–33]
and fully dilute in spin and color.

B. Gauge ensembles and statistics

For the extraction of the electromagnetic form factors we
analyze oneNf ¼ 2þ 1þ 1 [5] and oneNf ¼ 2 ensemble.
For both ensembles the quark masses are tuned to their
physical values. The fermion action is the twisted mass
fermion action with a clover term. Automatic OðaÞ

improvement is achieved by tuning to maximal twist
[34,35]. The Nf ¼ 2þ 1þ 1 cB211.072.64 ensemble is
simulated using a lattice of size 643 × 128 with Lmπ ¼
3.62 [5], where L is the spatial extent of the lattice. We
determine the nucleon mass by fitting the effective mass
in the large-time limit where the ground state dominates.
The final value is chosen within a fit range where the value
extracted is within half a standard deviation from the one
determined by including in the fit the first excited state
(two-state fit). The ratio of the nucleon to pion mass is
mN=mπ ¼ 6.74ð3Þ compared to the physical ratio of 6.8.
Therefore, we use directly the average proton and neutron
mass of 0.9389 GeV to set the scale. We find a ¼
0.0801ð4Þ fm. For the pion mass we find mπ ¼
0.1393ð7Þ MeV consistent with the average physical pion
mass. Our current value of the lattice spacing is an update
compared to the one given in Ref. [5] using higher statistics
where the values are consistent.
To assess finite volume effects, we use two Nf ¼ 2

ensembles, which only differ in their volume; namely one
has Lmπ ¼ 2.98 and the other Lmπ ¼ 3.97. We will refer to
them as the cA2.09.48 and cA2.09.64 ensembles, respec-
tively. We note that since the pion mass is not exactly at the
physical value we interpolate to the physical pion mass
using one-loop chiral perturbation theory. We include a
systematic error on the extracted lattice spacing determined
as the difference in the mean value obtained using one-loop
chiral perturbation theory and heavy baryon chiral pertur-
bation theory. This systematic error on the lattice spacing
appears for the two Nf ¼ 2 ensembles, while it is absent in
the case of the cB211.072.64 ensemble. Results on the form
factors for the Nf ¼ 2 ensemble with Lmπ ¼ 2.98 are from
Ref. [7] while results for the other two ensembles are
reported here for the first time. The simulation parameters
of all three ensembles considered in this work are tabulated
in Table I.
For the analysis of the cB211.072.64 ensemble we use

750 configurations separated by four trajectories. For the
connected contributions we evaluate the three-point func-
tion for five sink-source time separations in the range 0.96
to 1.60 fm increasing the number of source positions per
configuration as we increase the time separation so as to
keep the statistical error approximately constant. In Table II
we give the statistics used in the calculation of the
connected three-point functions.
For the evaluation of the disconnected contributions

we use Nsrcs ¼ 200 source positions to generate the
nucleon two-point functions that are correlated with the
quark loop to produce the disconnected contribution to
the three-point function. We find that the volume is
sufficiently large so that the data extracted from this
large number of randomly distributed source positions
on the same configuration are statistically independent.
Nevertheless, we average over all source positions for each
configuration and take the averaged correlation function as
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one statistic in our jackknife error analysis. As mentioned
in the previous section, for the evaluation of the light quark
loops we use the first 200 low modes of the squared Dirac
operator to reconstruct exactly part of the loop. The
contribution from the high modes is estimated stochasti-
cally using one noise vector per configuration combining
hierarchical probing, one-end trick, and spin-color dilution.
For the hierarchical probing we use distance eight coloring
resulting in 512 Hadamard vectors, which when combined
with spin-color dilution leads to 6144 inversions per
configuration. We note that the next coloring distance
would demand 8192 Hadamard vectors, resulting in
98304 inversions per configuration after combining with
spin-color dilution, making such a computation more than
an order of magnitude more expensive.

For the computation of the disconnected contributions
for the Nf ¼ 2 cA2.09.48 ensemble computed previously
we used only the one-end trick and 2250 noise vectors for
the calculation. Two-point functions were computed for
100 source positions. More details can be found in Ref. [6].
In Table III we summarize the parameters for the compu-
tation of the disconnected three-point functions.
The cA2.09.64 ensemble is used to check for finite

volume effects, comparing the connected contributions to
those of the cA2.09.48 ensemble. For the latter, the setup is
reported in Ref. [7] and summarized in Table I. For the
larger lattice size ensemble, we analyze three sink-source
time separations in the range of 1.1 to 1.5 fm. We fix the
number of source positions per configuration to 16 and we
use more configurations for the larger time separations to
control statistical error. In Table IV we summarize the
statistics for both Nf ¼ 2 ensembles.

C. Excited states contamination

Assessment of excited state effects is imperative for the
proper extraction of the desired nucleon matrix element.
However, ensuring ground state dominance is a delicate
process due to the exponentially increasing statistical noise
with increasing sink-source separation. We use four meth-
ods to study the effect of excited states and identify the final
results based on a critical comparison among these meth-
ods. Only by employing these different methods can one

TABLE II. Statistics for the evaluation of the connected three-
point functions for the Nf ¼ 2þ 1þ 1 cB211.072.64 ensemble.
Columns from left to right are the sink-source time separations,
the number of configurations analyzed, the number of source
positions per configuration chosen randomly, and the total
number of measurements for each time separation.

ts=a Ncnfs Nsrcs Nmeas

12 750 4 3000
14 750 6 4500
16 750 16 12000
18 750 48 36000
20 750 64 48000

TABLE I. Simulation parameters for the Nf ¼ 2þ 1þ 1 [5] and Nf ¼ 2 [36] ensembles used in this work. When two errors are
given, the first error is statistical and the second is systematic. The systematic error in the lattice spacing of the Nf ¼ 2 ensembles is
obtained as described in the text, while the systematic error in the pion mass provided in physical units is propagated from the lattice
spacing.

Ensemble cSW β Nf a (fm) Vol. amπ mπL amN mN=mπ mπ (GeV) L (fm)

cB211.072.64 1.69 1.778 2þ 1þ 1 0.0801(4) 643 × 128 0.05658(6) 3.62 0.3813(19) 6.74(3) 0.1393(7) 5.12(3)
cA2.09.64 1.57551 2.1 2 0.0938(3)(1) 483 × 96 0.06208(2) 2.98 0.4436(11) 7.15(2) 0.1306(4)(2) 4.50(1)
cA2.09.48 1.57551 2.1 2 0.0938(3)(1) 643 × 128 0.06193(7) 3.97 0.4421(25) 7.14(4) 0.1303(4)(2) 6.00(2)

TABLE III. Details on the setup for the evaluation of the light
disconnected diagrams. Ncnfs is the number of configurations
analyzed, Ndef is the number of low modes we deflate, Nr the
number of noise vectors, and NHad the number of Hadamard
vectors. Nsc corresponds to spin-color dilution and Ninv=conf is
the total number of inversions per configuration. Nsrcs is the
number of randomly distributed smeared point sources per
configuration used to obtain the nucleon two-point functions
and Nmeas the total number of measurements.

Loops Two point

Ensemble Ncnfs Ndef Nr NHad Nsc Ninv=conf Nsrcs Nmeas

cB211.072.64 750 200 1 512 12 6144 200 150000
cA2.09.48 2120 … 2250 … … 2250 100 212000

TABLE IV. Statistics for the evaluation of the connected three-
point functions for the cA2.09.64 and cA2.09.48 ensembles. For
the latter, for ts=a ¼ 16, 18 the connected three-point functions
have been computed only for the unpolarized projector. The
notation is as in Table II.

ts=a Ncnfs Nsrcs Nmeas

cA2.09.64: Nf ¼ 2 643 × 128 ensemble

12 333 16 5328
14 515 16 8240
16 1040 16 16640

cA2.09.48: Nf ¼ 2 483 × 96 ensemble

10,12,14 578 16 9248
16 530 88 46640
18 725 88 63800
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reach a reliable assessment of excited state contributions
and extract the nucleon matrix element of interest. The
methods employed are as follows:
Plateau method: In this method we use the ratio in

Eq. (10) and identify a time-independent window (plateau)
as we increase ts. The converged plateau value then yields
the desired matrix element.
Two-state method: Within this method we fit the two-

and three-point functions considering contributions up to
the first excited state using the expressions

Cðp⃗; tsÞ ¼ c0ðp⃗Þe−E0ðp⃗Þts þ c1ðp⃗Þe−E1ðp⃗Þts ; ð14Þ

CμðΓν; p⃗0; p⃗; ts; tinsÞ
¼ Aμ

00ðΓν; p⃗0; p⃗Þe−E0ðp⃗0Þðts−tinsÞ−E0ðp⃗Þtins

þ Aμ
01ðΓν; p⃗0; p⃗Þe−E0ðp⃗0Þðts−tinsÞ−E1ðp⃗Þtins

þ Aμ
10ðΓν; p⃗0; p⃗Þe−E1ðp⃗0Þðts−tinsÞ−E0ðp⃗Þtins

þ Aμ
11ðΓν; p⃗0; p⃗Þe−E1ðp⃗0Þðts−tinsÞ−E1ðp⃗Þtins : ð15Þ

In Eqs. (14) and (15) E0ðp⃗Þ and E1ðp⃗Þ are the energies of
the ground and first excited states with total momentum p⃗,
respectively. The ground state corresponds to a single
particle state and therefore one can use the continuum
dispersion relation, E0ðp⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

N

p
, with p⃗ ¼ 2π

L n⃗
with n⃗ a lattice vector with components ni ∈ ð− L

2a ;
L
2a�.

The continuum dispersion relation is satisfied for all Q2

values considered in this work. The first excited state, on
the other hand, can be a two-particle state. We, thus, fit
simultaneously the two-point functions with momenta p⃗
and p⃗0 and the three-point function involving in total 11
parameters. Note that for nonzero momentum transfer,
Aμ
01ðΓν; p⃗0; p⃗Þ ≠ Aμ

10ðΓν; p⃗0; p⃗Þ. This allows us to extract
the matrix element given by

ΠμðΓν; p⃗0; p⃗Þ ¼ Aμ
00ðΓν; p⃗0; p⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðp⃗0Þc0ðp⃗Þ

p : ð16Þ

Summation method: Summing over tins in the ratio of
Eq. (10) yields a geometric sum [37,38] from which we
obtain

Rsum
μ ðΓν; p⃗0; p⃗; tsÞ ¼

Xts−a
tins¼a

RμðΓν; p⃗0; p⃗; ts; tinsÞ

¼ cþ ΠμðΓν; p⃗0; p⃗Þ × ts þ � � � ð17Þ

where the ground state contribution, ΠμðΓν; p⃗0; p⃗Þ, is
extracted from the slope of a linear fit with respect to ts.
The sink-source time separation ts considered in the
fit should be large enough to suppress higher order
contributions.

Derivative summation method: Instead of performing a
linear fit in Eq. (17) to extract the matrix element, one can
take finite differences to the summed ratio [39] as follows:

dRsum
μ ðΓν; p⃗0; p⃗; tsÞ

¼ Rsum
μ ðΓν; p⃗0; p⃗; ts þ dtsÞ − Rsum

μ ðΓν; p⃗0; p⃗; tsÞ
dts

ð18Þ

and fit to a constant to extract the desired matrix
element.

IV. ANALYSIS OF LATTICE RESULTS

A. Isovector and connected isoscalar form factors

The isovector combination gives the difference between
the proton and neutron form factors, and in this case, only
the connected diagram contributes since disconnected
contributions cancel, up to cutoff effects of Oða2Þ. For
the connected diagram we use a frame where the nucleon
final momentum is zero, thus q⃗ ¼ −p⃗. In Figs. 2 and 3
we show the ratios defined in Eq. (10) as a function of the
sink-source time separation, and for three values of the
momentum transfer squared, that is for Q2 ¼ 0.057 GeV2,
Q2 ¼ 0.219 GeV2, and Q2 ¼ 0.554 GeV2. In a frame
where the final momentum of the nucleon p⃗0 is zero, the
expressions in Appendix A given by Eqs. (A1) and (A2)
reduce to Eqs. (A4)–(A6), giving separately the electric and
magnetic form factors. We note that for the electric form

FIG. 2. Ratio yielding the isovector electric form factor. The
sink-source time separations are ts=a ¼ 14 (right triangles),
ts=a ¼ 16 (triangles), ts=a ¼ 18 (squares), and ts=a ¼ 20

(circles). We present the ratio for three Q2 values, namely
0.057, 0.219, and 0.554 GeV2, from top to bottom.
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factor Eq. (A4) leads to much more precise results
compared to Eq. (A5) and therefore we use only
Eq. (A4). In the case of the ratio determining Gu−d

E ðQ2Þ,
as ts increases, the plateau value decreases with larger
deviations as Q2 increases. This shows that at larger Q2

values contamination due to excited states is more severe.
In the case of GMðQ2Þ, excited states are suppressed and
only a small variation with ts is observed.
We further investigate effects due to excited states by

employing the summation and two-state fits. In Fig. 4 we
show linear fits to the summed ratio for three different
values of Q2. The slope gives the nucleon matrix element.
All three momenta follow well the linear behavior, within
the statistical error, indicating that contributions from
higher order terms are suppressed. In the right panel of
Fig. 4, we demonstrate the plateaus for the derivative
summation method, fitting to a constant to extract the
matrix element of the ground state. Within statistical
accuracy all three momenta are indeed flat, and are thus
described well by a constant.
In Fig. 5 we show the results extracted using two-state

fits for both electric and magnetic form factors. The data
correspond to the ratio of Eq. (10) and the curves are
obtained by fitting simultaneously the three- and two-point

FIG. 3. Ratio yielding the isovector magnetic form factor. The
notation is the same as in Fig. 2.

FIG. 4. We define R̃ðts; tinsÞ≡P
q⃗∈Q2Ru−d

0 ðΓ0; q⃗; ts; tinsÞ and R̄ðts; tinsÞ≡P
q⃗∈Q2

ϵijk

qk
Ru−d
i ðΓk; q⃗; ts; tinsÞ. Left panel: The summed

ratio of Eq. (17) as a function of the sink-source time separation for three momenta, namely n2q ¼ 1 (blue circles), n2q ¼ 4 (green
squares), and n2q ¼ 10 (red triangles) corresponding toQ2 ¼ 0.057, 0.219, and 0.554 GeV2 for the isovector electric (top) and isovector
magnetic (bottom) form factors. The bands are fits to a linear form. Right panel: The derivative of the summed ratio as in Eq. (18), using
the same notation as that of the left panel. The bands are fits to a constant.
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functions to Eqs. (15) and (14). The gray horizontal band
shows the nucleon matrix element value and error extracted
from the two-state fit as in Eq. (16). For the electric form
factor, the ratio shows a trend towards lower values as we
increase the sink-source separation, with ts=a ¼ 20 becom-
ing compatible with the value extracted from the two-state
fit. In the case of the magnetic form factor, the value
extracted from the two-state fit is compatible with the ratio
for all time separations considered confirming the weak
dependence of the matrix element on the sink-source time
separation observed in the plateau method.
In Fig. 6 we show the extracted values for the matrix

element yielding the isovector electromagnetic form fac-
tors. We compare the plateau, summation, derivative
summation, and two-state fit methods. For the plateau
method we show the value extracted from the constant fit
for all sink-source separations available. For the other cases
we vary the lower fit range, keeping the upper range fixed
to ts=a ¼ 20. We seek the earliest agreement between the
plateau method and the other three cases. As already
pointed out, the isovector electric form factor shows more
severe excited state effects for large Q2 values and we
therefore take the largest time separation for the plateau
method to fulfill our criterion for agreement with the other
methods. For the isovector magnetic form factor, although
excited state effects are mild, we still observe a shift to

larger values for the smallest Q2 and, therefore, we
conservatively use the largest time separation available
also in this case. An additional observation is that the
summation and derivative summation methods produce
compatible results with similar accuracy, as can be seen in
Fig. 6, and thus from now on we will restrict to showing
results only from the summation method.
In Fig. 7, we present our results for Gu−d

E ðQ2Þ and
Gu−d

M ðQ2Þ as a function of the momentum transfer squared
Q2. We limit the plot up to Q2 ¼ 0.5 GeV2 to make
visible the values extracted using the plateau at the four
largest separations, the summation, and the two-state fit
approaches. For the summation and two-state fit we show
the values indicated by the filled symbols in Fig. 6. As can
be seen, for the electric form factor the effects of excited
states are small for small values of Q2 but become more
severe for higher Q2 values, with the extracted value
decreasing with increasing time separation in line with
the observation made in Fig. 2. For Gu−d

M ðQ2Þ, excited state
effects are small for larger Q2 values whereas for smaller
Q2 values there is a systematic increase in the values of the
form factor with the time separation.
For the extraction of the connected isoscalar form factors

we follow a similar analysis procedure as in the isovector
case. In Fig. 8 we present the connected contribution to
isoscalar electric and magnetic form factors comparing the
plateau, summation, and two-state fit methods. Excited
states have a smaller effect on the isoscalar form factors
being detectable only for the magnetic form factor at small
values of Q2 where the two-state fit yields systematically
larger values. Given that there is agreement between the
plateau values for the largest time separation and the two-
state fit we will use the plateau value as the final result for
the form factors. The deviation from the values determined
from the two-state fits are then taken as an estimate of the
systematic error due to excited states. Since we will be
using the plateau values in the case of the disconnected
contribution since two-state fits are not stable in that case
we do the same for the connected contribution for
consistency.

B. Disconnected contributions

A major component of this work is the evaluation of the
disconnected contributions shown diagrammatically in
Fig. 1 that enter in the evaluation of the isoscalar as well
as in the proton and neutron form factors.
The disconnected quark loops are computed using the

formalism described in Sec. III B with the statistics
summarized in Table III. As already discussed, the hier-
archical probing method combined with deflation of the
low eigenmodes provides an accurate determination of the
diagonal of the quark propagator entering in the evaluation
of the quark loops. It is thus preferable to use the local
vector current for the evaluation of the disconnected

FIG. 5. Ratio yielding the isovector electric (top) and the
isovector magnetic (bottom) form factors, for the three largest
sink-source separations, following the notation of Fig. 2. The
curves show the result of the two-state fit method, while the gray
horizontal band is the extracted value of the nucleon matrix
elements and its error. We show the case for Q2 ¼ 0.219 GeV2.
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contributions since the conserved current includes non-
diagonal terms. We therefore need the renormalization
function ZV , which is determined nonperturbatively, in
the RI0-MOM scheme, employing momentum sources. We
perform a perturbative subtraction of Oðg2a∞Þ terms, as
described in Refs. [40,41], which subtracts the leading
cutoff effects leaving only a weak dependence on the
renormalization scale ðaμÞ2, as shown in Fig. 9. We find a
value of ZV ¼ 0.728ð1Þ where the error is statistical.
Alternatively, ZV can be determined at Q2 ¼ 0, by taking
the ratio of Gu−d

E ð0Þ computed with the local current to
Gu−d

E ð0Þ computed using the lattice conserved current. This
ratio yields a value of 0.715(3). Although this is 2% smaller
than ZV as determined from the vertex function, the
difference between them is still an order of magnitude
smaller as compared to the statistical errors for the
disconnected contributions. In what follows we use ZV ¼
0.728ð1Þ to renormalize the matrix elements computed
using the local current, since this determination has taken
into account higher order cutoff effects as compared to the
one determined from the ratio. We note that ZV only enters
in the disconnected three-point function. A more detailed

description of the renormalization procedure including
other renormalization functions will be provided in a future
publication.
Disconnected quark loops are evaluated for every

time slice allowing us to compute the three-point function
for every combination of ts and tins. As in the case of
the connected contributions, we are seeking a reasonable
window in ts to extract the nucleon matrix elements,
where excited states are sufficiently suppressed and noise
is not prohibitively large. In contrast to the connected
diagram, where we have results only for the case p⃗0 ¼ 0⃗,
for the disconnected diagrams we have all sink momenta
at no additional cost. We analyze, besides p⃗0 ¼ 0⃗, the
matrix element for the six final momenta with p⃗0 ¼
� 2π

L n̂, with n̂ ¼ x̂, ŷ, or ẑ, i.e., the unit vector in one of
the three spatial directions. Given that the statistical
errors in the case of the disconnected diagrams are larger
as compared to the connected diagrams, we restrict
ourselves in using the plateau method for different
values of ts in order to check for ground state dominance.
This is because the two-state fits are problematic
given the larger errors of the disconnected diagrams.

FIG. 6. Results for the matrix element yielding Gu−d
E (upper panel) and Gu−d

M (lower panel), for Q2 ¼ 0.057 GeV, Q2 ¼ 0.219 GeV,
andQ2 ¼ 0.554 GeV2 from top to bottom. In the left column we show the extracted values using the plateau method (blue circles) for all
five separations analyzed, while in the right panel we show the values extracted using the summation (green squares), derivative
summation (red upper triangles), and two-state fit (purple left triangles) approaches as we change the lower fit range (tls=a) keeping the
upper fit range fixed to ts=a ¼ 20. The filled circle and band show the value and statistical error used to quote our final result, while the
other filled symbols show the fit ranges for the two-state fit and summation methods that will be used in the figures that follow.
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Whenever they work they yield large errors and are
consistent with the plateau extraction.
In Fig. 10 we present our results for the disconnected

contributions to Guþd
E ðQ2Þ and Guþd

M ðQ2Þ up to Q2 ¼
1 GeV2 for three time separations, ts ¼ 0.96, 1.12, and
1.28 fm. We can achieve a relative statistical error that is
less than 20% for up to ts ¼ 14a ∼ 1.12 fm, which is
unprecedented given that we are using a physical pion mass
ensemble. As we increase the time separation from ts=a ¼
12 to ts=a ¼ 14 we observe, for both Guþd

E ðQ2Þ and
Guþd

M ðQ2Þ, that there is a trend for larger values, while
the results extracted for ts=a ¼ 16 are in a very good
agreement with those extracted for ts=a ¼ 14 for most Q2

values, albeit with larger errors. We, therefore, take as our
final result for the disconnected contribution the value
extracted using ts=a ¼ 14 for both Guþd

E ðQ2Þ and

Guþd
M ðQ2Þ. We use the difference between the central value

of the results at ts ¼ 14a and ts ¼ 16a as an estimate of the
systematic error from excited state effects when we quote
quantities that include disconnected contributions.

FIG. 7. The isovector electric (upper panel) and magnetic
(lower panel) form factors as a function of Q2. We show the
values extracted from fitting the plateau for the four largest ts
values, namely ts=a ¼ 14 (right triangles), ts=a ¼ 16 (triangles),
ts=a ¼ 18 (squares), and ts=a ¼ 20 (circles), compared to the
summation method (diamonds) and using two-state fits (stars).
Results from different methods are slightly shifted to the right for
clarity.

FIG. 8. Connected contribution to the isoscalar electric (upper
panel) and magnetic (lower panel) form factors. The notation is
the same as in Fig. 7.

FIG. 9. The renormalization constant ZV as a function of the
renormalization scale squared ðaμÞ2 before (blue circles) and
after (orange squares) performing the subtraction of the Oðg2a∞Þ
terms. The dashed line is a linear fit to the latter and the point at
ðaμÞ2 ¼ 0 (black square) is the result of the fit.
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V. ASSESSMENT OF LATTICE ARTIFACTS

We collectively discuss here lattice artifacts that may
lead to systematic errors. Since we use simulations with
physical values of the light quark masses no chiral
extrapolation is needed eliminating an uncontrolled uncer-
tainty present in past lattice QCD computations of these
quantities.

(i) Disconnected contributions: The main novelty
of this work is the accurate computation of the
light quark disconnected contributions using
simulations with quark masses tuned to their
physical values. This enables us, for the first time,
to eliminate this systematic uncertainty in the
determination of the proton and neutron form
factors at the physical point. Strange quark loops
contribution is not included in this study, but we
know from previous studies [6,27,42] that it is

much smaller compared to the statistical error of
the connected contribution.

(ii) Quenching effects: The analysis of the Nf ¼ 2þ
1þ 1 ensemble and two Nf ¼ 2 ensembles allows
us to check for unquenching effects due to the
strange and charm quarks. In Figs. 11 and 12 we
compare results of using the Nf ¼ 2 cA2.09.48
ensemble to the Nf ¼ 2þ 1þ 1 cB211.072.64
ensemble. The results are extracted from the plateau
method with time separation ts ¼ 1.3 fm for both
isovector and isoscalar electric and magnetic form
factors. We observe consistent results between the
two ensembles. Therefore, to the accuracy of our
data, no quenching effects due the strange and charm
quarks can be detected. This corroborates our
previous study where we found consistent results
when comparing an Nf ¼ 2 and an Nf ¼ 2þ 1þ 1

ensemble at a pion mass of about 370 MeV [21].
(iii) Isolation of ground state matrix element: An analy-

sis of excited state contributions is carried out by

FIG. 10. The disconnected contributions to Guþd
E (top) and

Guþd
M (bottom) using the plateau method for ts=a ¼ 12 (left

triangles), ts=a ¼ 14 (right triangles), and ts=a ¼ 16 (upright
triangles). Points from closely spaced Q2 have been averaged for
demonstration, and results from different time separations have
been slightly shifted to the right for clarity.

FIG. 11. Comparison of the isovector electric (top panel) and
magnetic (lower panel) form factors between the Nf ¼ 2
cA2.09.48 ensemble [7] (green triangles) and the Nf ¼2þ1þ1

cB211.072.64 ensemble (red circles). Results are extracted using
the plateau method for sink-source time separation ts ≃ 1.3 fm.
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performing the calculation using several time sep-
arations ts. For the target Nf ¼ 2þ 1þ 1 ensemble
we use five values of ts tabulated in Table II. We
probe convergence to the ground state matrix
element by demanding that the matrix element
extracted using the plateau and two-state fits is
consistent, as explained in detail in Sec. III C.
The value of ts ∼ 1.6 fm is the largest utilized in
this study and to our knowledge in any other study at
the physical point. We increase the statistics as ts
increases to keep the errors under control so that a
meaningful analysis can be performed to isolate the
ground state matrix element. For all of our results we
observe agreement between the values extracted
using the plateau and two-state fits. Despite this
agreement, residual contamination can still lead to a
systematic error within our current statistics. We
give an estimate of such a systematic error by
comparing the values obtained with the plateau
and two-state fits.

(iv) Finite volume effects: For the assessment of finite
volume effects we compare the two Nf ¼ 2 physical
point ensembles cA2.09.48 and cA2.09.64 that yield
respectively mπL ≃ 3 [7] and mπL ≃ 4. The lattice
spacing and pion mass are the same for these two
ensembles. We also use the same time separation ts
for each observable when comparing the two en-
sembles. The isovector electric and magnetic form
factors extracted using the plateau method are shown
in Fig. 13. The results fall on the same curve
indicating no significant finite volume effects be-
tween the two volumes of mπL ≃ 3 and mπL ≃ 4.
The same behavior is observed for the isoscalar form
factors shown in Fig. 14. We would like to stress
once more that our statement of detecting no volume
effects can only be made within the current accuracy
and some residual volume effects can still lead to a
systematic effect. One complication as the volume

FIG. 12. Comparison of the connected contribution to the
isoscalar electric (top panel) and magnetic (lower panel) form
factors between the Nf ¼ 2 [7] and Nf ¼ 2þ 1þ 1 ensembles.
The notation is the same as in Fig. 11.

FIG. 13. The isovector electric (top panel) and magnetic (lower
panel) form factors for two different physical spatial volumes.
With green triangles we show the results for the cA2.09.48 with
mπL ≃ 3 [7] and with blue squares the cA2.09.64 with mπL ≃ 4.
Results are extracted using the plateau method for sink-source
separation ts ≃ 1.5 fm for the electric and ts ≃ 1.3 fm for the
magnetic form factors.
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increases is the contamination due to higher excited
states, since the number of multihadron states allowed
increases [43]. Such multihadron states are not
expected to affect results at larger pion masses but
are expected to be more severe at the physical pion
mass. Such effects can be modeled within chiral
perturbation theory for the axial form factors [43]. For
the electromagnetic form factors these effects are not
known but an interplay between volume and excited
state effects may account for the deviations observed
between lattice QCD data and experimental values.

(v) Finite lattice spacing, a: Since in this work we are
using the twisted mass formulation at maximal twist
our results are automaticallyOðaÞ improved without
any need to improve the current. This is different
from clover fermions where the current must be
improved in order to eliminate order a contributions.
Therefore, our results only have corrections of
Oða2Þ. Continuum extrapolation cannot be per-
formed given that we have analyzed only one Nf ¼
2þ 1þ 1 ensemble. The two Nf ¼ 2 ensembles
analyzed have the same lattice spacing thus finite

lattice spacing effects cannot be assessed. Previous
studies done using ensembles with pion mass span-
ning about 460 to 260 MeV and three values of the
lattice spacings have indeed demonstrated that the
Oða2Þ correction is negligible [21]. We thus do not
expect large systematic cutoff effects on our results.
However, an analysis of cutoff effects will need to be
carried out in the future when additional ensembles
are available.

In summary, there maybe a slow convergence as a function
of the volume in conjunction with residual excited state
effects. This may explain the few σ discrepancy observed
between lattice QCD results and the experimental values. In
particular, we note that the electric form factors have
increasing excited state effects for larger values of Q2,
whereas for GM these effects are bigger at small Q2. As we
will see these are the ranges of momenta where we see
discrepancies with the experimental values.

VI. Q2 DEPENDENCE OF THE ISOVECTOR
AND ISOSCALAR FORM FACTORS

In this section we discuss theQ2 dependence of the form
factors using standard parametrizations as described in the
next section.

A. Parametrizations of the Q2 dependence

Assuming vector meson pole dominance forQ2 < 0, one
expects that for small Q2 > 0 the behavior will be
dominated by the poles in the timelike region. One would
then expect a dipole form given by [44]

GðQ2Þ ¼ Gð0Þ
ð1þ Q2

M2Þ2
; ð19Þ

where M is the mass of the vector meson that parametrizes
the Q2 dependence. The value of the form factor at zero
momentum transfer gives the electric charge in the case of
the electric form factor and the magnetic moment in the
case of the magnetic form factor. Combining Eqs. (19) and
(5) one can relate M to the mean square radius as

hr2i ¼ 12

M2
: ð20Þ

The neutron electric form factor and disconnected
contributions to the electric form factors are zero for Q2 ¼
0 and we treat them as special cases, fitting them using the
Galster-like parametrization [8,45] given by

GðQ2Þ ¼ Q2A
4m2

N þQ2B
1

ð1þ Q2

0.71 GeV2Þ2
; ð21Þ

with A and B fit parameters. In this case the radius is
given by

FIG. 14. The isoscalar electric (top panel) and magnetic (lower
panel) form factors for two different physical spatial volumes.
The notation is as in Fig. 13.
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hr2i ¼ −
3A
2m2

N
: ð22Þ

Another fit form, which has been applied recently to
experimental data of both electromagnetic and axial form
factors, is the model-independent z-expansion [9]. In this
case, the form factor is expanded in a series given by

GðQ2Þ ¼
Xkmax

k¼0

akzk; ð23Þ

where

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p ð24Þ

and tcut is the timelike cut of the form factor. We take tcut ¼
4m2

π for the isovector combination Gu −Gd and tcut ¼ 9m2
π

for the isoscalar combination Gu þ Gd [9]. For conver-
gence of the truncated series of Eq. (23), the coefficients ak
should be bounded in size and convergence should be
demonstrated by increasing kmax. The interested reader is
referred to Ref. [6] for details about our procedure. The
mean square radius is given by

hr2i ¼ −
3a1

2a0tcut
; ð25Þ

while the value of the form factor at zero momentum
transfer is Gð0Þ ¼ a0.

B. Fits to lattice QCD results

We consider first the isovector form factors where only
the connected diagram contributes. In Figs. 15 and 16 we

show fits using the dipole form, comparing between results
from the plateau method at ts=a ¼ 20 and from two-state
fits for Gu−d

E ðQ2Þ and Gu−d
M ðQ2Þ, respectively. As can be

seen, fits using the plateau and two-state methods are fully
consistent and do not show any significant systematic effect
on the determination of the Q2 dependence of the form
factors, indicating that excited states are sufficiently

FIG. 15. Gu−d
E ðQ2Þ from the plateau method for ts=a ¼ 20

(circles) and two-state fits (stars). The dashed (dotted) curve and
corresponding band is a dipole fit to the plateau (two-state) fit
results, which overlap.

FIG. 16. Gu−d
M ðQ2Þ from the plateau method for ts=a ¼ 20

(circles) and two-state fits (stars). The rest of the notation is as
in Fig. 15.

FIG. 17. The isovector electric form factor as a function of Q2

(circles). We show fits to our results using a dipole form (top) and
using the z-expansion (bottom) for kmax ¼ 4. Black crosses are
experimental results taken from the A1 Collaboration [1] for the
proton and from Refs. [4,46–59] for the neutron.
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suppressed. Since results are in agreement, from now on we
will use the plateau method at ts=a ¼ 20 to extract final
results on the form factors, rms radii, and magnetic
moment. We will use the results extracted from the two-
state fits to estimate the systematic error due to excited
states.
In Figs. 17 and 18, we show fits to Gu−d

E ðQ2Þ and
Gu−d

M ðQ2Þ, respectively using the dipole form and the z-
expansion of Eq. (23) and compare to experiment. For the
z-expansion, we check convergence by increasing kmax.
The resulting magnetic moment and rms radii are shown in
Fig. 19, where we observe convergence for kmax ¼ 4. For
Gu−d

E ðQ2Þ, we see from Fig. 17 that the slope of the lattice
QCD data is less as compared to the experimental values.
Therefore, although both dipole form and z-expansion
describe very well our data shown in separate panels for
clarity, they lie consistently above the experimental values.
A study using a larger volumewith a careful examination of
excited state effects is planned to understand the origin of
this remaining discrepancy. In extracting the rms radius, we
see from Fig. 19 that results obtained from using the dipole
fit and z-expansion are compatible, and yield

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Eiu−d

q
¼ 0.796ð19Þð12Þð12Þ fm; ð26Þ

where the central value and the statistical error are taken
from the dipole fit, the second error is systematic computed

as the difference in the mean values between dipole and z-
expansion for kmax ¼ 4, and the third error is the systematic
error due to excited states obtained from the difference
when fitting the form factor extracted from the plateau and
from the two-state fit method. Subsequent quantities given
in the paper will have statistical and systematic errors
quoted using the same convention as in Eq. (26).
For Gu−d

M shown in Fig. 18, we observe that our results
are in agreement with the experimental values for
Q2 > 0.2 GeV2, whereas for small Q2 they tend to be
lower. A possible explanation for this discrepancy is that
effects from the pion cloud expected to be prominent for
small momenta [60] are suppressed in our calculation due
to our finite volume. The fact that we have seen no volume
effects when we increase the volume from Lmπ ≃ 3 to
Lmπ ≃ 4 for our two Nf ¼ 2 ensembles may indicate that
pion cloud suppression may not be detectable for these
volume sizes requiring larger volumes to unfold. Indeed,
preliminary results by PACS using a physical point
ensemble with Lmπ ≃ 7.4 [61] finds a higher value that
may point to a finite volume effect. This would need further
investigation to confirm.
The isovector magnetic moment and mean square

magnetic radii are shown in Fig. 19. As can be seen,
the mean values extracted for μu−d using the dipole and
z-expansion are compatible, while for hr2Miu−d the z-
expansion produces a slightly higher mean value, which,
however, is consistent within errors. Quoting the values
from the dipole fit, we find

μu−d ¼ 3.97ð15Þð2Þð5Þ
�1
0

	
; ð27Þ

FIG. 18. The isovector magnetic form factor fitted using a
dipole form (top) and using the z-expansion (bottom) with the
notation of Fig. 17.

FIG. 19. Results for the isovector charge radius hr2Eiu−d,
magnetic moment μu−d, and magnetic radius hr2Miu−d from the
plateau method using ts=a ¼ 20 as extracted from a dipole fit
(green square) and z-expansion (red triangles). The latter are
shown as a function of kmax. The green band is the statistical error
on the value extracted from the dipole fit.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Miu−d

q
¼ 0.712ð27Þð87Þð5Þ

�
1

0

�
fm: ð28Þ

Here we have included a fourth systematic error computed
as the difference in the values of μu−d and hr2Miu−d when
fitting Gu−d

M ðQ2Þ including and excluding the lowest Q2

value from the fit. The error is asymmetric, since the
expectation is that pion cloud effects will increase the value
of the magnetic form factor. It is also small compared to the
systematic error due to excited states. In what follows we
will not include this fourth systematic error.
Before presenting fits to the total isoscalar form factors

we discuss separately the Q2 dependence of the discon-
nected contributions. In Fig. 20 we show the disconnected
contribution to the isoscalar electric form factor Guþd

E
accompanied by fits to the Galster-like parametrization
and z-expansion. We note that in the case of the z-
expansion we take a0 ¼ 0, since Guþd

E ð0Þ ¼ 0 for the
disconnected contribution. Both parametrizations describe
well our results with the z-expansion yielding a larger error
for the larger Q2 values.
The disconnected contribution to Guþd

M ðQ2Þ is shown in
Fig. 21. We find that both dipole and z-expansion are in
good agreement. In particular, they yield compatible values
at zero momentum transfer. Like in the case of the
disconnected contribution to Guþd

E ðQ2Þ, for large Q2 the
dipole fit has a smaller error band as compared to

the z-expansion. The values extracted from fitting the
disconnected contributions alone are

hr2EiuþdðDiscÞ ¼ −0.071ð6Þð4Þð6Þ fm2; ð29Þ

μuþdðDiscÞ ¼ −0.134ð17Þð1Þð10Þ; ð30Þ

hr2MiuþdðDiscÞ ¼ −0.136ð30Þð2Þð12Þ fm2; ð31Þ

where we have not normalized with the value of the form
factor at zero momentum transfer; i.e., the radii are extracted

from hr2i ¼ −6 ∂GðQ2Þ
∂Q2 jQ2¼0 rather than from Eq. (5).

In Fig. 22 we show the isoscalar form factors when
including and excluding disconnected contributions.
Although the effect is small for both Guþd

E ðQ2Þ and
Guþd

M ðQ2Þ there is a systematic shift affecting the param-
eters of the fits. This comparison shows that disconnected
contributions although small are important to include and
that their omission would result in an uncontrolled sys-
tematic error comparable to the statistical uncertainty. Such
systematics need to be under control for precision results
required for distinguishing e.g., the two experimental
determinations of the charge radius of the proton.
In Figs. 23 and 24 we show the fits of the total isoscalar

electric and magnetic form factors using the dipole form
and z-expansion. Both fits describe well the data with the
dipole fit being more precise at larger Q2, a behavior also
observed for the isovector form factors. For intermediate

FIG. 21. Disconnected contributions to the isoscalar magnetic
form factor. The notation is the same as in Fig. 20.

FIG. 20. Disconnected contributions to the isoscalar electric
form factor (circles) as a function of Q2. The fits using the
Galster-like parametrization of Eq. (21) and the z-expansion for
kmax ¼ 3 are shown in the upper and lower panels, respectively.
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Q2 values our results are systematically higher compared to
experiment, which is then reflected in the fit bands. Since
for low Q2 there is agreement, the extracted value for the
isoscalar magnetic moment agrees with the experimental
value. On the other hand, the slope of our lattice data is not
as steep as in the experimental results, which leads to a
smaller value for the corresponding radii.
In the top panel of Fig. 25 we show the isoscalar electric

square radius. As can be seen, the z-expansion fit yields

FIG. 23. Isoscalar electric form factor (circles) as a function of
Q2. We combine the connected contribution from the plateau for
ts=a ¼ 20 with the disconnected contribution for ts=a ¼ 14. The
remaining notation is as in Fig. 17.

FIG. 24. Isoscalar magnetic form factor. The notation is as in
Fig. 23.

FIG. 22. Comparison of the connected (open circles) and total
(filled circles) contributions to the isoscalar electric (top) and
magnetic (bottom) form factors. Dipole fits to the connected and
total contributions are shown with the dotted and dashed curves
respectively.

FIG. 25. Results for the isoscalar charge square radius, mag-
netic moment, and magnetic square radius. The notation is as
in Fig. 19.
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values that are within errors for kmax > 1 but with twice
larger errors than the dipole. In Fig. 25 we also show results
for the magnetic moment and the magnetic radius where
convergence of the z-expansion is observed already for
kmax ¼ 2. In general, there is agreement between the results
extracted from the dipole and z-expansion. In what follows
wewill quote the values determined from the dipole fits and
quote as a systematic error the difference between the mean
values of the dipole and the z-expansion fits. We find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Eiuþd

q
¼ 0.691ð9Þð7Þð14Þ fm; ð32Þ

μuþd ¼ 2.66ð13Þð9Þð9Þ; and ð33Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Miuþd

q
¼ 0.695ð33Þð80Þð13Þ fm: ð34Þ

Note that from our definition of the isoscalar combination,
the proton plus neutron magnetic moment is obtained
by μp þ μn ¼ μuþd=3.

VII. COMPARISON WITH OTHER STUDIES

Before we discuss our final results for the proton and
neutron form factors we compare with the results from
other groups using different lattice QCD ensembles and
discretization schemes. These mainly exist for the isovector
electromagnetic form factors allowing us to qualitatively
assess lattice artifacts. This is useful since most groups use
a single ensemble and thus infinite volume and continuum
extrapolations are lacking. We summarize the lattice QCD
discretized actions used by different groups for the com-
putation of the electromagnetic form factors, restricting
ourselves only to published works and results that were
obtained using simulations with pion mass less than
170 MeV:

(i) LHPC analyzed one ensemble of Nf ¼ 2þ 1 with
two levels of HEX-smeared clover fermions with
mπ ¼ 149 MeV, lattice spacing a ¼ 0.116 fm, and
Lmπ ¼ 4.21 at three sink-source time separations
from 0.93 to 1.39 fm [13]. They give as their final
results the ones extracted using the summation
method, which leads to larger statistical errors.
Additionally, they analyzed an Nf ¼ 2þ 1 ensem-
ble with two levels of HEX-smeared clover fermions
with mπ ¼ 135 MeV, lattice spacing a ¼ 0.093 fm,
and Lmπ ¼ 4 [14]. They analyzed three lattice
separations from 0.93 to 1.5 fm and they have
extracted results using the summation method. A
momentum derivative method has been used to
extract the magnetic moment and the electric radius
directly from the correlation functions avoiding a
fitting procedure.

(ii) The PACS Collaboration analyzed an ensemble of
Nf ¼ 2þ 1 stout-smeared clover fermions with

mπ ¼ 146 MeV, a ≃ 0.085 fm, and a spatial extent
of 8.1 fm or Lmπ ≃ 6 allowing access to relatively
small momenta [15,61]. PACS has computed three-
point functions for one sink-source time separation
of 1.27 fm and they used the plateau method to
identify the ground state matrix element.

(iii) The χQCD Collaboration [62] computed only the
disconnected contributions to the nucleon electro-
magnetic form factors using a hybrid action of
overlap valence quarks and Nf ¼ 2þ 1 domain
wall sea quarks produced by RBC/UKQCD. Their
analysis includes an ensemble with pion mass
mπ ¼ 139 MeV, a ¼ 0.1141ð2Þ fm, and Lmπ ¼
3.86. They computed nucleon two-point functions
stochastically using Z3-noise grid sources and dis-
connected quark loops with Z4-noise grids applying
even-odd and time dilution as well as low-mode
average.

(iv) Our results obtained using the three ensembles
of Table I simulated by the Extended Twisted Mass
Collaboration (ETMC). These include the two
analyses of this work, namely the Nf ¼ 2þ 1þ 1
ensemble withmπ¼139MeV, a¼0.0801ð4Þð3Þ fm,
and Lmπ ≃ 3.6 and the Nf ¼ 2 cA2.09.64 ensemble
with mπ ¼ 130ð1Þ MeV, a ¼ 0.0938ð3Þð1Þ fm, and
Lmπ ≃ 4 as well as our results from Refs. [6,7],
which were obtained using the Nf ¼ 2 cA2.09.48
ensemble with Lmπ ≃ 3 and the same pion mass and
lattice spacing.

In Fig. 26 we show a comparison of lattice QCD results
for Gu−d

E ðQ2Þ up to Q2 ¼ 0.5 GeV2 from the analyses
mentioned above. As can be seen, the ETMC and PACS
results are in good agreement but systematically higher
than the experimental values. LHPC results were obtained
using the summation method and in general have larger
statistical errors making them compatible with both our
results and the experimental values.
In Fig. 26, we also show the corresponding results

for Gu−d
M ðQ2Þ. The ETMC results of this work are the

most precise and in good agreement with those obtained
from other studies. We note the very good agreement of
lattice QCD results and experiment for Q2 > 0.2 GeV2. As
pointed out, the underestimation of lattice QCD results
compared to experimental values at smaller Q2 may
indicate that a larger spatial volume is required to develop
fully the pion contributions. Although our study using
two ensembles of Nf ¼ 2 showed no detectable volume
effects when we increase the spatial extent from 4.5 to 6 fm
(or equivalently from Lmπ ∼ 3 to Lmπ ∼ 4) the volume
dependence could be weak and require a larger volume
to manifest itself. The new PACS results may indicate such
a trend [61]. A conclusion that we can, however, draw from
these lattice QCD studies is that there is agreement among
them for both the electric and magnetic form factors.
Given the different discretization schemes employed, this
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agreement indicates that cutoff effects are smaller than the
statistical errors.
In Fig. 27 we show a comparison of the disconnected

contributions to Guþd
E and Guþd

M using results obtained
from our Nf ¼ 2þ 1þ 1 and Nf ¼ 2 twisted mass
ensembles and from the hybrid action as analyzed by
the χQCD Collaboration [62]. We would like to stress the
accuracy of the results of the current work using the
Nf ¼ 2þ 1þ 1 twisted mass ensemble. In our previous
evaluation of the disconnected contributions for the
Nf ¼ 2 twisted mass ensemble we used 2120 configu-
rations with 100 source positions for the computation of
the two-point functions and 2250 stochastic vectors for
the disconnected loops [6]. This is approximately the
same number of inversions (and thus cost) as for the
Nf ¼ 2þ 1þ 1 ensemble (see Table III), which demon-
strates the effectiveness of the hierarchical probing
method employed in the current analysis of the Nf ¼
2þ 1þ 1 ensemble.
The proton and neutron form factors can be extracted

from the isovector and isoscalar form factors discussed in
Sec. VI, using the linear combinations

GpðQ2Þ ¼ 1

2

�
GuþdðQ2Þ

3
þ Gu−dðQ2Þ

�
; ð35Þ

GnðQ2Þ ¼ 1

2

�
GuþdðQ2Þ

3
− Gu−dðQ2Þ

�
: ð36Þ

In Fig. 28, we show lattice QCD results for the proton
electromagnetic form factors. To extract these, one needs
both the isovector and isoscalar combinations. The latter
includes disconnected contributions, which have only been
computed by ETMC for ensembles with physical pion
masses. We still provide a comparison with the lattice
results by LHPC which however do not include these
disconnected contributions. We use filled symbols to
indicate lattice QCD results that include disconnected
contributions. For both the proton electric and magnetic
form factors the LHPC results are in agreement with ours,
with the LHPC results exhibiting larger errors due to the
usage of the summation method. The accurate ETMC
results are higher than the experimental values for
Gp

EðQ2Þ, while for Gp
MðQ2Þ they are in agreement except

for the two lowest Q2 values. Unfortunately, LHPC results
carry large errors and in general are compatible both with
our values and the experimental ones prohibiting any

FIG. 27. Comparison of the disconnected contributions toGuþd
E

(top) and Guþd
M (bottom) from the twisted mass ensemble using

Nf ¼ 2þ 1þ 1 from this work (circles) compared to the twisted
mass ensemble ofNf ¼ 2 results of Ref. [6] (up triangles) and the
results from the χQCD Collaboration (down triangles) from
Ref. [62].

FIG. 26. Comparison of results for Gu−d
E ðQ2Þ (upper panel) and

Gu−d
M ðQ2Þ (lower panel) from the Nf ¼ 2þ 1þ 1 twisted mass

ensemble of this work (red circles), the Nf ¼ 2 twisted mass
ensemble with mπL ≃ 4 of this work (blue squares), the Nf ¼ 2

twisted mass ensemble with mπL ≃ 3 from Ref. [7] (green
triangles), LHPC using Nf ¼ 2þ 1 stout-smeared clover fer-
mions from Ref. [13] (left purple triangles) and Ref. [14] (right
yellow triangles), and from PACS using Nf ¼ 2þ 1 stout-
smeared clover fermions from Ref. [15] (cyan rhombuses).
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definite conclusions as to the nature of the discrepancy with
the experimental values. As discussed volume and residual
excited state effects may lead to a slow convergence of the
lattice data that can account for the discrepancies with the
experimental values.
Results for the neutron electromagnetic form factors are

only provided by the ETMC for pion masses below
170 MeV. They are compared to the experimental values
in Fig. 29. We observe that results for the electric form
factor extracted from the cB211.072.64 ensemble that
includes disconnected contributions are in agreement
with the experimental values. This is also true for the
cA2.09.48 ensemble that includes disconnected contribu-
tions although they carry larger errors. For the cA2.09.64
ensemble, where disconnected contributions have not been
included, the electric neutron form factor is underestimated.
This clearly indicates the significance of including dis-
connected contributions, especially for this quantity, an
observation consistent with the conclusion reached also in
Ref. [62]. For the magnetic form factor, the results using the
cB211.072.64 twisted mass ensemble with disconnected
contributions are closer to experiment as to compared to the
Nf ¼ 2 ensembles, but there is still a discrepancy with the
experiment for small Q2 values that needs to be further
investigated.

In Fig. 30, we compare the lattice QCD values of the
isovector rms radii

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Eiu−d

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Miu−d

p
finding

agreement among them. As expected by the less steep
falloff of the electric isovector form factor, lattice QCD
results are systematically lower than the experimental
values. We note that the ETMC results have errors that
are already the same as the difference between the two
experimental determinations showing that the statistical
accuracy required can be achieved. A high-statistics dedi-
cated study to better assess the remaining systematics can
thus yield valuable insights on the rms charge radius from a
first principles calculation. In the case of hr2Miu−d the errors
are larger and lattice QCD results are both in good
agreement among them and compatible with the Particle
Data Group (PDG) value [70].
In Fig. 31 we show the corresponding quantities for the

proton. Only the ETMC results include disconnected
contributions, which, although small, have a systematic
effect. We observe a similar behavior as for the isovector
case, namely smaller values for the electric and magnetic
rms radii. LHPC results extracted using the summation
method have larger errors and are thus compatible with

FIG. 29. Comparison of results for Gn
EðQ2Þ and Gn

MðQ2Þ using
the Nf ¼ 2þ 1þ 1 results of this work (red circles), using the
Nf ¼ 2 results with mπL ≃ 4 of this work (blue squares), and
using the Nf ¼ 2 ensemble with mπL ≃ 3 from Ref. [6] (green
triangles). Filled symbols are used for results that include
disconnected contributions and open symbols for results without
disconnected contributions. Crosses are experimental results
taken from Refs. [4,46–59] for the electric form factor and from
Refs. [63–68] for the magnetic form factor.

FIG. 28. Comparison of results for Gp
EðQ2Þ (upper panel) and

Gp
MðQ2Þ (lower panel) from ETMC and LHPC following the

notation of Fig. 26. Filled symbols are used for results that
include disconnected contributions and open symbols for results
without disconnected contributions. Black crosses are experi-
mental results from the A1 Collaboration [1].
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both the muonic and electron scattering determinations of
the rms radii. For the neutron radii we have only results
from ETMC and LHPC. They are displayed in Fig. 32.
ETMC results on the electric rms radius are determined at
high accuracy and include all contributions. Although they
are still smaller in magnitude than the experimental values,
the discrepancy is within 1 standard deviation. We note that
including disconnected contributions brings better agree-
ment in particular in the case of hr2Ein.

VIII. PROTON AND NEUTRON
ELECTROMAGNETIC FORM FACTORS

Having compared with other groups and with theNf ¼ 2
results from ETMC, we collect here our final results on the
proton and neutron form factors using the Nf ¼ 2þ 1þ 1

ensemble, which has the most accurate results at the
physical point. In Fig. 33 we show our results for the
proton electric and magnetic form factors compared to

FIG. 30. Isovector
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Eiu−d

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Miu−d

p
, and μu−d with lattice

QCD results following the notation of Fig. 26. The experimental
result extracted from muonic hydrogen [3] is shown by the
vertical dashed-dotted line and from CODATA [69] by the
dotted vertical line. The PDG value [70] is shown with
the dashed vertical line. The red vertical inner band denotes
the statistical error extracted using the Nf ¼ 2þ 1þ 1 twisted
mass ensemble of this work and the outer lighter band is the total
error adding statistical and systematic errors in quadrature.

FIG. 31. Results for
ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
and

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
using the same

notation as in Fig. 30. Filled symbols denote results that include
all contributions whereas open symbols are those where dis-
connected contributions are neglected. The rest of the notation
follows that of Fig. 30.

FIG. 32. Lattice QCD results for hr2Ein,
ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Min

p
, and μn. The

notation is as in Fig. 31.

FIG. 33. Proton electric (upper panel) and magnetic (lower
panel) form factors as a function of Q2. Filled circles show the
lattice QCD results of this work and black crosses are exper-
imental results from the A1 Collaboration [1]. The band is the fit
to our results using Eq. (19).
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experimental data. As expected from the behavior observed
for the isovector and isoscalar electric form factors, the
proton electric form factor is consistently higher than the
experimental results. The proton magnetic form factor
agrees with the experiment for all Q2 except the lowest
two. This may be due to finite volume or residual excited
state effects as discussed in Sec. V.
In Fig. 34 we show our results for the neutron form

factors. The determination of Gn
EðQ2Þ directly from lattice

QCD is very promising: We find good agreement with the
experimental values but more importantly, at low Q2, the
errors from lattice QCD are smaller by up to a factor of 4 in
some cases, allowing for a more precise description of its
Q2 dependence. The lattice QCD determination yields also
accurate results for Gn

MðQ2Þ that are in agreement with
experiment for Q2 > 0.2 GeV2. At small Q2 we observe
the same discrepancy as that observed for the isovector
case. Such an underestimation has also been seen for the
induced pseudoscalar form factor where leading order
chiral perturbation theory can show that it is due to
multihadron state contributions with pions. Whether this
is the explanation also for the neutron magnetic form factor
remains an open question.

Our results for the proton radii and magnetic moment, as
extracted from the dipole fit, are

ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

q
¼ 0.742ð13Þð9Þð14Þ fm;

μp ¼ 2.43ð9Þð1Þð3Þ
�1
0

	
;

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

q
¼ 0.710ð26Þð80Þð6Þ

�2
0

	
fm: ð37Þ

The corresponding quantities for the neutron using the
Galster-like parametrization for the electric and the dipole
forms for the magnetic moment are

hr2Ein ¼ −0.074ð16Þð16Þð8Þ fm2;

μn ¼ −1.54ð6Þð2Þð3Þ;ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Min

q
¼ 0.716ð29Þð44Þð24Þ fm: ð38Þ

As already explained, the first error is statistical, the second
is an estimate of the systematic due to the Ansätz chosen for
the fit, and the third an estimate of excited state effects. We
note here that disconnected contributions to hr2Ein are non-
negligible. If we were to neglect them we would obtain
hr2Ein;conn ¼ −0.063ð15Þ fm2, namely more than a 15%
shift in the mean value, i.e., comparable to the other quoted
systematic errors.

IX. SUMMARY AND CONCLUSIONS

The nucleon electromagnetic Sachs form factors are
computed using an Nf ¼ 2þ 1þ 1 ensemble of maximally
twisted mass fermions with quark masses tuned to their
physical values as well as an ensemble of Nf ¼ 2 twisted
mass fermions simulated at a pion mass of 130 MeV.
Comparing results calculated using Nf ¼ 2 and Nf ¼ 2þ
1þ 1 twisted mass ensembles leads to the conclusion that no
quenching effects are detected within the accuracy of the
results that is within a couple of a percentage.
A main novelty of this work is the computation to an

unprecedented accuracy of the disconnected light quark
contributions, allowing us to extract the individual proton
and neutron electromagnetic form factors. This is accom-
plished by using state-of-the-art techniques that combine
hierarchical probing and deflation of the lowest eigenmodes
and a large number of randomly distributed smeared point
sources in order to suppress gauge noise. In particular, we
find that disconnected contributions to the neutron electric
form factor are non-negligible and need to be taken into
account to bring agreement with the experimental values.
Excited states are thoroughly investigated using five

sink-source time separations in the range of [0.96–1.60] fm
allowing the identification of the ground state to good
precision and the determination of a systematic error due to
the excited states by comparing results from the plateau

FIG. 34. Neutron electric (upper panel) and magnetic (lower
panel) form factors as a function of Q2. Filled circles show the
lattice QCD results of this work and black crosses are experimental
results taken from Refs. [4,46–59] for the case of the electric form
factor and from Refs. [63–68] for the case of the magnetic form
factor. The fits to our results use Eq. (21) for the electric form factor
and Eq. (19) for the magnetic form factors.
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method with the two-state fit method. The summation
method is used as a confirmation of the results extracted
from the plateau and two-state fits.
Our values for the electric and magnetic rms radii as well

as the magnetic moments for the isovector, isoscalar,
proton, and neutron are collected in Table V. The results
are extracted using the dipole Ansätz or the Galster-like
parametrization and a systematic error on the parametriza-
tion used is extracted by comparing with the model-
independent z-expansion. Our result for the proton electric
rms radius is underestimated due to the slower decay of
Gp

EðQ2Þ. Similarly there is an underestimation of the
magnetic moments for the proton and neutron. The most
plausible explanation for these remaining discrepancies
may come from a combination of residual volume and
multihadron contributions. Finite volume effects are inves-
tigated in this work by comparing twoNf ¼ 2 twisted mass
ensembles with pion mass of 130 MeV with the same
lattice spacing but Lmπ ≃ 3 and Lmπ ≃ 4. Although we
observe consistent results between these two volumes, we
cannot exclude finite volume effects that may affect the
magnetic form factor for small Q2 values as well as the
electric form factor. A slow convergence of the results as a
function of the volume in combination with effects of
multihadron states maybe difficult to detect. A theoretical
investigation within chiral perturbation theory can shed
light on multihadronic contributions. Furthermore, a study
of a larger volume will also help to probe adequately
volume effects. Thus, further studies are required to be able
to take the infinite volume limit and make definite con-
clusions on the small Q2 behavior of the magnetic form

factor and on the slope of the electric form factor. Finite
lattice spacing effects, although they are expected to be
small, need to be investigated also. Before this program is
completed one cannot make final statements on the two
experimental results for the proton charge radius. The ETM
Collaboration is generating further ensembles in order to
enable the investigation of these issues that will require
large computational resources.
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APPENDIX A: EXPRESSIONS RELATING
NUCLEON VECTOR MATRIX ELEMENTS TO

ELECTROMAGNETIC FORM FACTORS

In this appendix we give a summary of the expressions
relating the Sachs form factors GE ≡GEðQ2Þ and GM ≡
GMðQ2Þ to the ratio of three-point and two-point functions.
The expressions are given for a general frame with initial
(final) momentum p⃗ (p⃗0) and initial (final) energy E (E0).
All expressions are given in Euclidean space,

ΠμðΓ0; p⃗0; p⃗Þ ¼ −iCGE

2mð4m2 þQ2Þ ððp
0
μ þ pμÞ½mðE0 þ EþmÞ − p0

ρpρ�Þ

þ CGM

4m2ð4m2 þQ2Þ ðδμ0ð4m
4 þm2Q2 þ 4m2p0

ρpρ þQ2p0
ρpρÞ

þ 2im2p0
μðE0 − EÞ − 2im3ðp0

μ þ pμÞ − iEQ2p0
μ − iE0Q2pμ

− imQ2ðp0
μ þ pμÞ − 2im2pμðE0 − EÞ − 2imp0

ρpρðp0
μ þ pμÞÞ; ðA1Þ

TABLE V. Our results for the electromagnetic radii and the
magnetic moment using the Nf ¼ 2þ 1þ 1 ensemble for the
isovector combination (p − n), isoscalar (pþ n), the proton, and
neutron. The first error is statistical, the second is a systematic
due to the fit Ansätz, and the third a systematic due to excited
states, derived as explained in the text.

ffiffiffiffiffiffiffiffiffi
hr2Ei

p
(fm)

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
(fm) μ

p − n 0.796(19)(12)(12) 0.712(27)(87)(5) 3.97(15)(2)(5)
pþ n 0.691(9)(7)(14) 0.695(36)(80)(13) 0.89(4)(3)(3)
p 0.742(13)(9)(14) 0.710(26)(80)(6) 2.43(9)(1)(3)
n hr2Ei (fm2) 0.716(29)(44)(24) −1.54ð6Þð2Þð3Þ−0.074ð16Þð16Þð8Þ
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ΠμðΓk; p⃗0; p⃗Þ ¼ −CGE

2mð4m2 þQ2Þ ðm
2εμk0ρðp0

ρ − pρÞ − iεμkρσp0
ρpσðE0 þ EÞ

þ εμ0ρσp0
ρpσðp0

k þ pkÞ − εμk0ρp0
σpσðp0

ρ − pρÞÞ −
CGM

4m2ð4m2 þQ2Þ
�
mεμk0ρðp0

ρ − pρÞð2m2 þQ2Þ

þ 2imεμkρσp0
ρpσ

�
2mþ E0 þ Eþ Q2

2m

�
− 2mεμ0ρσp0

ρpσðp0
k þ pkÞ þ 2mεμk0ρp0

σpσðp0
ρ − pρÞ

�
; ðA2Þ

where C is a kinematic factor given by

C ¼ 2m
EðEðp⃗0Þ þmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðEðp⃗0Þ þmÞ
Eðp⃗0ÞðEþmÞ

s
: ðA3Þ

In the case where p⃗0 ¼ 0⃗ the expressions simplify as
follows:

Π0ðΓ0; p⃗Þ ¼ C
Eþm
2m

GEðQ2Þ; ðA4Þ

ΠiðΓ0; p⃗Þ ¼ C
pi

2m
GEðQ2Þ; ðA5Þ

ΠiðΓk; p⃗Þ ¼ C
ϵijkpj

2m
GMðQ2Þ; ðA6Þ

and

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2

EðEþmÞ

s
: ðA7Þ

APPENDIX B: NUMERICAL RESULTS FOR THE ELECTROMAGNETIC FORM FACTORS

TABLE VI. Results for the electromagnetic form factors using the cB211.072.64 ensemble for the isovector
combination Gp

E;M − Gn
E;M , for the proton G

p
E;M, and neutron G

n
E;M , including the disconnected contributions for the

latter two form factors.

Q2ðGeV2Þ Gp−n
E ðQ2Þ Gp

EðQ2Þ Gn
EðQ2Þ Gu−d

M ðQ2Þ Gp
MðQ2Þ Gn

MðQ2Þ
0.000 0.997(3) 0.998(2) 0.001(1) NA NA NA
0.057 0.858(10) 0.874(6) 0.016(5) 3.516(101) 2.156(62) −1.361ð43Þ
0.113 0.752(11) 0.775(8) 0.023(5) 3.105(78) 1.903(48) −1.202ð33Þ
0.167 0.662(14) 0.694(9) 0.032(7) 2.801(80) 1.719(47) −1.082ð35Þ
0.219 0.601(17) 0.631(10) 0.030(8) 2.583(82) 1.580(50) −1.003ð35Þ
0.270 0.534(14) 0.575(9) 0.040(7) 2.430(62) 1.485(38) −0.945ð26Þ
0.320 0.482(16) 0.529(11) 0.046(7) 2.224(70) 1.367(43) −0.857ð29Þ
0.417 0.405(23) 0.450(16) 0.045(10) 1.943(78) 1.200(48) −0.743ð32Þ
0.464 0.374(21) 0.420(15) 0.047(9) 1.789(71) 1.104(44) −0.684ð29Þ
0.510 0.363(25) 0.404(18) 0.041(11) 1.655(69) 1.012(42) −0.644ð31Þ
0.554 0.345(27) 0.385(21) 0.040(11) 1.610(84) 0.994(50) −0.616ð37Þ
0.598 0.310(43) 0.351(33) 0.041(16) 1.472(127) 0.923(79) −0.549ð51Þ
0.642 0.291(33) 0.336(27) 0.045(13) 1.495(109) 0.926(67) −0.570ð44Þ
0.684 0.263(34) 0.308(27) 0.046(13) 1.386(112) 0.866(71) −0.521ð44Þ
0.767 0.239(60) 0.283(48) 0.043(27) 0.893(149) 0.532(90) −0.361ð65Þ
0.807 0.250(39) 0.278(31) 0.028(15) 0.942(101) 0.583(62) −0.361ð43Þ
0.847 0.213(43) 0.249(35) 0.035(16) 1.006(117) 0.605(70) −0.402ð51Þ
0.886 0.158(61) 0.203(51) 0.048(22) 1.028(211) 0.662(135) −0.367ð80Þ
0.925 0.150(58) 0.205(50) 0.056(24) 0.891(190) 0.539(115) −0.353ð79Þ
0.963 0.172(48) 0.200(41) 0.029(18) 0.765(153) 0.461(94) −0.302ð61Þ
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