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We use lattice QCD to investigate the spectrum of the b̄b̄ud four-quark system with quantum numbers
IðJPÞ ¼ 0ð1þÞ. We use five different gauge-link ensembles with 2þ 1 flavors of domain-wall fermions,
including one at the physical pion mass, and treat the heavy b̄ quark within the framework of lattice
nonrelativistic QCD. Our work improves upon previous similar computations by considering in addition to
local four-quark interpolators also nonlocal two-meson interpolators and by performing a Lüscher analysis
to extrapolate our results to infinite volume. We obtain a binding energy of ð−128� 24� 10Þ MeV,
corresponding to the mass ð10476� 24� 10Þ MeV, which confirms the existence of a b̄b̄ud tetraquark
that is stable with respect to the strong and electromagnetic interactions.
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I. INTRODUCTION

Mesons, i.e., hadrons with integer spin, were first envi-
sioned by Gell-Mann and Zweig [1,2] to be built from one,
two or more quark-antiquark pairs. However, systems that
manifestly contain more than a single quark-antiquark pair
were found only relatively recently, primarily in the heavy-
quark sector [3–8]. Exotic mesons can be characterized as
having JPC quantum numbers that cannot be constructed in
the simple quark-antiquark model, or as having a manifestly
exotic quark flavor content. In this work, we consider an
example for the latter, a b̄b̄ud tetraquark.1

It can be shown that QCD-stable Q̄Q̄qq tetraquarks must
exist in the limit mQ → ∞ [9–11]. In this limit, the two
heavy antiquarks form a color-triplet object with a size of
order ðαsmQÞ−1 and a binding energy of order α2smQ due to

the attractive Coulomb potential at short distances. The
doubly-heavy Q̄Q̄qq tetraquarks then become related to
singly-heavy Qqq baryons, just like doubly-heavy Q̄Q̄q̄
baryons become related to singly-heavy Qq̄ mesons
[12–15]. The question is whether the physical bottom
quark is heavy enough for b̄b̄qq bound states to exist
below the b̄q − b̄q two-meson thresholds. Studies based on
potential models, effective field theories, and QCD sum
rules suggest that this is indeed the case [9–11,16–30].
Possible experimental search strategies for bottomness-2
tetraquarks are discussed in Refs. [31–33].
Within lattice QCD, b̄b̄qq four-quark systems were

explored for the first time using static b̄ quarks and the
Born-Oppenheimer approximation. A stable b̄b̄ud tetra-
quark with quantum numbers IðJPÞ ¼ 0ð1þÞ around
30…90 MeV below the BB� threshold as well as a
b̄b̄ud tetraquark resonance with quantum numbers IðJPÞ ¼
0ð1−Þ around 15 MeV above the BB threshold were
predicted [34–38]. Effects from the heavy-quark spin
were investigated for the stable IðJPÞ ¼ 0ð1þÞ tetraquark
by solving a coupled-channel Schrödinger equation in
Ref. [37]. Moreover, several flavor combinations were
explored and no stable b̄b̄qq tetraquarks with qq ¼ ss
and qq ¼ cc were found in this approach [39]. Recently,
the same b̄b̄qq four-quark systems have been investigated
with b̄ quarks of finite mass treated within nonrelativistic
QCD (NRQCD). A stable b̄b̄ud tetraquark with quantum
numbers IðJPÞ ¼ 0ð1þÞ was also seen in two such
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1In the literature, the term “tetraquark” is somewhat ambigu-
ous. In certain papers it exclusively refers to a diquark-anti-
diquark structure, while in other papers it is used more generally
for arbitrary bound states and resonances with a strong four-quark
component, including, e.g., mesonic molecules. Throughout this
paper we follow the latter convention. Moreover, the b̄b̄ud
system is a tetraquark in a fully rigorous sense, since it contains
four net quark flavors.
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computations [40,41], but there is a quantitative difference
by a factor ≈2…3 in the binding energy between
Refs. [40,41] and Ref. [37], which is not yet understood.
Moreover, Q̄Q̄qq systems with further flavor combinations
Q̄Q̄ ∈ fb̄b̄; b̄c̄; c̄c̄g and q ∈ fu; d; s; cg have been inves-
tigated and some indication has been obtained that systems
with JP ¼ 1þ and Q̄Q̄qq∈fb̄b̄us;b̄b̄uc;b̄b̄sc;b̄c̄ud;c̄c̄udg
are stable as well [41,42].
In this paper we perform a lattice QCD study of the b̄b̄ud

four-quark system with quantum numbers IðJPÞ ¼ 0ð1þÞ,
using NRQCD b̄ quarks and domain-wall light quarks
(results obtained at an early stage of this project have been
presented in Ref. [43]). We make use of both local
interpolating fields (in which the four quarks are jointly
projected to zero momentum) and nonlocal interpolating
fields (in which each of the two quark-antiquark pairs
forming a color-singlet is projected to zero momentum
individually). It has been shown in previous studies of other
systems [44,45] that including both types of interpolating
fields is required to reliably determine ground-state ener-
gies in exotic channels. In this way we expand on the works
of Refs. [40–42], where nonlocal interpolating fields were
not considered. Having both local and nonlocal interpolat-
ing fields allows us to determine the ground-state and first-
excited-state energy in the IðJPÞ ¼ 0ð1þÞ channel and
perform a Lüscher analysis of BB� scattering.
The paper is structured as follows. In Sec. II we

summarize our lattice setup, including the computation of
quark propagators. In Sec. III we discuss the interpolating
operators and the corresponding correlation functions. The
extraction of the energy levels on the lattice is discussed in
Secs. IVand V. In Sec. VI we present the scattering analysis,
and in Sec. VII we perform a fit of the pion-mass dependence
of the binding energy and estimate systematic uncertainties.
Our conclusions are given in Sec. VIII.

II. LATTICE SETUP

A. Gauge-link configurations and
light-quark propagators

We performed the computations presented here using
gauge-link configurations generated by the RBC and

UKQCD collaborations [46,47] with 2þ 1 flavors of
domain-wall fermions [48–51] and the Iwasaki gauge
action [52]. We use the five ensembles listed in Table I,
which differ in the lattice spacing a≈0.083 fm…0.114 fm,
the lattice size (spatial extent ≈2.65 fm…5.48 fm), and the
pion mass mπ ≈ 139 MeV…431 MeV. Ensemble C00078
uses the Möbius domain-wall action [51] with length of the
fifth dimensionN5 ¼ 24, while the other ensembles use the
Shamir action [50] with N5 ¼ 16. The lattice spacings
listed in the Table were determined in Ref. [47].
Our calculation uses smeared point-to-all propagators for

the up and down quarks (the smearing parameters are given
in Sec. III A). The computational cost of generating these
propagators was reduced using the all-mode-averaging
technique [53,54]. On each configuration, a small number
of samples of “exact” correlation functions is combined
with a large number of samples of “sloppy” correlation
functions in such a way that the expectation value is equal
to the exact expectation value, but the variance is reduced
significantly due to the large number of sloppy samples
[53,54]. The exact correlation functions are generated from
light-quark propagators computed with high precision
(relative solver residual of 10−8), while the sloppy corre-
lation functions are generated from approximate light-
quark propagators. We used the conjugate gradient (CG)
solver combined with low-mode deflation, where in the
case of the approximate propagators the CG iteration
count is fixed to a smaller value, NCG;sl, than needed for
the exact propagators. The lowest NEV eigenvectors of the
domain-wall operator were computed using Lanczos with
Chebyshev-polynomial acceleration. The values of NEV
andNCG;sl are also listed in the table. On a given gauge-link
configuration, the different samples were obtained by
displacing the source locations on a four-dimensional grid,
with a randomly chosen overall offset.

B. Bottom-quark propagators

The heavy b quarks are treated with the framework of
lattice nonrelativistic QCD (NRQCD) [55,56]. We use the
same lattice NRQCD action and parameters as in Ref. [57].
This action includes all quark-bilinear operators through

TABLE I. Gauge-link ensembles [46,47] and light-quark propagators used in this work. Ns, Nt: number of lattice sites in spatial and
temporal directions; a: lattice spacing; amu;d: bare up and down quark mass; ams: bare strange quark mass; mπ : pion mass. We use all-
mode-averaging [53,54] with 32 or 64 sloppy (sl) and 1 or 2 exact (ex) measurements per configuration; the column titled “Nmeas” gives
the total numbers of sloppy and exact light-quark propagators used on each ensemble. The values NEV and NCG;sl are the numbers of
eigenvectors used for the deflation of the light-quark solver, and the conjugate-gradient counts used for the sloppy propagators.

Ensemble N3
s × Nt a [fm] amu;d ams mπ [MeV] Nmeas NEV NCG;sl

C00078 483 × 96 0.1141(3) 0.00078 0.0362 139(1) 2560 sl, 80 ex 500 400
C005 243 × 64 0.1106(3) 0.005 0.04 340(1) 9952 sl, 311 ex 400 100
C01 243 × 64 0.1106(3) 0.01 0.04 431(1) 9056 sl, 283 ex 400 100
F004 323 × 64 0.0828(3) 0.004 0.03 303(1) 8032 sl, 251 ex 400 120
F006 323 × 64 0.0828(3) 0.006 0.03 360(1) 14144 sl, 442 ex 400 120
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order v4 in the heavy-heavy power counting, and order
Λ2=m2

b in the heavy-light power counting. The bare heavy-
quark mass was tuned on the C005 and F004 ensembles
such that the spin-averaged bottomonium kinematic mass
agrees with experiment, using the lattice spacing determi-
nations of Ref. [58]. We use the same masses also on the
other coarse and fine ensembles, respectively, as shown in
Table II. The matching coefficients c1, c2, c3 were set to
their tree-level values ð¼ 1Þ, while for c4 we use a result
computed at one loop in lattice perturbation theory [59].
The gauge links entering the NRQCD action are divided by
the mean link u0L in Landau gauge to achieve tadpole
improvement [60,61].
Since we focus on the computation of the energy

spectrum in this work, it is sufficient to use the leading-
order, tree-level relation between the full-QCD bottom-
quark field b and the two-spinor NRQCD quark and
antiquark fields ψ and χ when constructing the hadron
interpolating fields. In the Dirac gamma matrix basis, and
omitting the phase factor that produces the tree-level energy
shift, this amounts to

b ¼
�
ψ

χ

�
; b̄ ¼ ðψ†; −χ† Þ; ð1Þ

and the bottom-quark propagator becomes

Gbðx; t;x0; t0Þ ¼ Θðt − t0Þ
�
Gψðx; t;x0; t0Þ 0

0 0

�

− Θð−tþ t0Þ
�
0 0

0 Gχðx; t;x0; t0Þ
�
; ð2Þ

with the two-spinor NRQCD quark and antiquark propa-
gators Gψ and Gχ .

III. INTERPOLATING OPERATORS AND
CORRELATION FUNCTIONS

A. b̄b̄ud four-quark system

We are interested in the spectrum of the doubly-
bottomed system with quantum numbers IðJPÞ ¼ 0ð1þÞ.
The lowest two thresholds in this channel correspond to
the meson pairs BB� and B�B�. The lowest three-meson
threshold is BBπ, which is approximately 44 MeV
above B�B�. From Ref. [57] we can see that the Ξ̄bbN

antibaryon-baryon threshold is already much higher than
the B�B� threshold: 11.1 GeV for Ξ̄bbN compared to
10.6 GeV for B�B�.
The JP ¼ 1þ quantum numbers appear in the Tg

1

irreducible representation (irrep) of the Oh point group
[62]. To determine the low-lying spectrum in this irrep we
make use of two types of interpolating operators: local and
nonlocal. The first three operators are local operators, in
which all four (smeared) quark fields are multiplied at the
same space-time point and the product is projected to zero
momentum (in the following we omit the time coordinate):

O1 ¼ O½BB��ð0Þ

¼
X
x

ðb̄ðxÞγ5dðxÞÞðb̄ðxÞγjuðxÞÞ − ðd ↔ uÞ ð3Þ

O2 ¼ O½B�B��ð0Þ

¼ ϵjkl
X
x

ðb̄ðxÞγkdðxÞÞðb̄ðxÞγluðxÞÞ − ðd ↔ uÞ ð4Þ

O3 ¼ O½Dd�ð0Þ

¼
X
x

ðϵabcb̄ðxÞbγjCb̄c;TðxÞÞðϵadedd;TðxÞCγ5ueðxÞÞ

− ðd ↔ uÞ: ð5Þ

Operators four and five are nonlocal operators, where each
color singlet is projected to zero momentum individually:

O4 ¼ OBð0ÞB�ð0Þ

¼
�X

x

b̄ðxÞγ5dðxÞ
��X

y

b̄ðyÞγjuðyÞ
�
− ðd ↔ uÞ

ð6Þ

O5¼OB�ð0ÞB�ð0Þ

¼ ϵjkl

�X
x

b̄ðxÞγkdðxÞ
��X

y

b̄ðyÞγluðyÞ
�
−ðd↔uÞ:

ð7Þ
Above, a; b; c;… denote color indices, j, k, l spatial vector
indices, and C ¼ γ0γ2 is the charge-conjugation matrix.
We expect that operators O1 to O3 generate sizable

overlap to a tetraquark state. O1 is an obvious choice in
studying this channel. Our reason to include O2 is a bit
more subtle. Since two B� mesons are around 45 MeV
heavier than a B and a B� meson, one might expect that
O½B�B��ð0Þ will have less overlap with the ground state than
O½BB��ð0Þ. However, a previous investigation with static
quarks (see Ref. [37] and Fig. 3 therein) has determined the
wave functions for both BB� and B�B� contributions and
found that both spin structures are of similar importance.
The inclusion of the color-triplet diquark-antidiquark

TABLE II. Parameters used in the NRQCD action for the
bottom quarks.

Ensemble amb u0L c4

C00078 2.52 0.8432 1.09389
C005, C01 2.52 0.8439 1.09389
F004, F006 1.85 0.8609 1.07887
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interpolator O3 is motivated by the heavy-quark limit, in
which the two heavy antiquarks are expected to form a
compact color-triplet object, and the tetraquark becomes
equivalent to a singly heavy baryon [9–11]. The importance
of diquark operators was also discussed in Refs. [63,64].
Note that in exotic channels it is typically difficult to

properly resolve the ground state due to the coupling to
nearby thresholds. An example of this phenomenon is the
positive-parity Ds spectrum, where the authors of
Refs. [44,45] had to include nonlocal interpolating operators
to resolve the Ds0ð2317Þ mass puzzle. Previous studies of
the IðJPÞ ¼ 0ð1þÞ, bottomness-2 sector [40,41] did not
include multihadron operators, which might have affected
their results. To make our determination of the spectrum
more robust, we include operators O4 and O5, which are
nonlocal meson-meson scattering operators built from two
color-singlets separately projected to zero momentum. We
expect them to generate sizable overlap with the nearby first
excited state, which will help us isolate the ground state in
the multiexponential fits of the correlation matrices.
To improve the overlap to the low-lying states, we

employ standard smearing techniques. The quark fields
in O1 to O5 are Gaussian-smeared using

qsmeared ¼
�
1þ σ2Gauss

4NGauss
Δ
�

NGauss

q; ð8Þ

where Δ is the nearest-neighbor gauge-covariant spatial
Laplacian. For the up and down quarks, the gauge links in
Δ are spatially APE-smeared [65], while the unsmeared
gauge links are used for the bottom quark. The smearing
parameters are collected in Table III.
To determine the spectrum we compute the temporal

correlation functions of the interpolating operatorsO1 toO5,

CjkðtÞ ¼ hOjðtÞO†
kð0Þi; ð9Þ

where h…i denotes the path integral expectation value. The
corresponding nonperturbative quark-field Wick contrac-
tions in a given gauge-field configuration are shown in
Fig. 1. Because the calculation of the light-quark propagators
is computationally expensive, we reuse existing smeared
point-to-all propagators. With such propagators we are
limited to operators O1, O2, O3 at the source, which have
only a single momentum projection, allowing us to remove
the summation over x at the source (using translational
symmetry). Thus, we do not determine the elements C44ðtÞ,
C45ðtÞ, C54ðtÞ, and C55ðtÞ of the correlation matrix, where
two momentum projections are needed both at the source
and at the sink. For a detailed discussion of this approach,
see, e.g., Refs. [67,68].
The correlation matrix has analytical properties that

follow from the symmetries of lattice QCD, in particular
time reversal and charge conjugation. These symmetries
imply that ðCjkðtÞÞ� ¼ CkjðtÞ and that all CjkðtÞ are real.
Moreover, one can relate CjkðþtÞ and Cjkð−tÞ. We
exploit these analytical findings to improve our lattice
QCD results, by averaging related correlation functions

TABLE III. Parameters for the smearing of the quark fields in
the interpolating operators. The Gauss smearing is defined in
Eq. (8). A single sweep of APE smearing [65] with parameter
αAPE is defined as in Eq. (8) of Ref. [66], and we apply NAPE such
sweeps.

Up and down quarks Bottom quarks

Ensemble NGauss σGauss NAPE αAPE NGauss σGauss

C00078 100 7.171 25 2.5 10 2.0
C005, C01 30 4.350 25 2.5 10 2.0
F004, F006 60 5.728 25 2.5 10 2.0

FIG. 1. Nonperturbative quark-field Wick contractions for the different elements of the correlation matrix.M1 andM2 represent the B
and B� mesons that are separately projected to momentum zero, while T represents the jointly projected operators. The black lines
represent b-quark propagators and the red lines represent light-quark propagators.
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appropriately and by setting all imaginary parts (which are
pure noise) to zero.

B. B and B� meson

Since we will compare the energy levels of the b̄b̄ud
four-quark system to the BB� threshold, we need to
determine the energies of the B and B� mesons within
the same setup. We use the interpolating operators

OBðpÞ ¼
X
x

eipxb̄ðxÞγ5uðxÞ; ð10Þ

OB� ðpÞ ¼
X
x

eipxb̄ðxÞγjuðxÞ; ð11Þ

where we also consider nonzero momenta p ¼ 2πn=L,
n ∈ Z3, to allow the determination of the kinetic masses
(needed for the scattering analysis in Sec. VI). The quark
fields are smeared with the same parameters as in Table III.
We compute the correlation functions hOBðp; tÞO†

Bðp; 0Þi
and hOB� ðp; tÞO†

B� ðp; 0Þi. As discussed in Sec. III A, we
perform the summation over x at the sink only.

IV. ENERGIES AND KINETIC MASSES
OF THE B AND B� MESONS

We determined the energies of the B and B� mesons from
single-exponential fits of the two-point functions; the
results are listed in Table IV. An example of a correspond-
ing effective-energy plot is shown in Fig. 2. The energy of a
state containing nb bottom quarks is shifted by nb times the
NRQCD energy shift, which at tree-level would be equal to
−mb. This energy shift is not known with high precision,
but cancels in energy differences with matching numbers
of bottom quarks, including the quantities of interest in
the following sections: En − EB − EB� , where En is the nth
energy level of the b̄b̄ud system.
For the scattering analysis in Sec. VI (and to assess the

tuning of the b-quark mass), we also need the momentum-
dependence of the B and B� energies. We find that within
statistical uncertainties our results are consistent with the
form

EBðpÞ ¼ EBð0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B;kin þ p2

q
−mB;kin ð12Þ

EB� ðpÞ ¼ EB� ð0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B�;kin þ p2
q

−mB�;kin ð13Þ

up to the highest momenta we computed (p2 ¼ 3ð2π=LÞ2).
The kinetic masses given in Table IV were extracted using

mkin ¼
p2 − ½EðpÞ − Eð0Þ�2
2½EðpÞ − Eð0Þ� ð14Þ

with the smallest possible nonvanishing momentum,
p2 ¼ ð2π=LÞ2. To test whether the B and B� energies at
higher momenta still satisfy the dispersion relations (12)
and (13) with the same parameters, we computed the square
of the “speed of light” via

c2 ¼ ½EðpÞ − Eð0Þ þmkin;1�2 −m2
kin;1

p2
; ð15Þ

FIG. 2. Effective energy plot of the B and B� two-point
functions at zero momentum computed on the C005 ensemble.
The effective energy is defined as aEeffðtþ a=2Þ ¼ ln½CðtÞ=
Cðtþ aÞ�. The horizontal lines show the results of single-
exponential fits to the two-point functions in the range
t=a ¼ 8…20.

TABLE IV. Energies of the B and B� mesons at rest and kinetic masses computed using one quantum of momentum. Also given are the
hyperfine splittings and spin-averaged kinetic masses (mkin;spinav ¼ 1

4
mB;kin þ 3

4
mB�;kin) in physical units. All uncertainties are statistical

only.

Ensemble aEBð0Þ aEB� ð0Þ amB;kin amB�;kin EB� ð0Þ − EBð0Þ [MeV] mkin;spinav [GeV]

C00078 0.4582(45) 0.4820(46) 3.03(14) 3.10(13) 41.2(5.1) 5.33(22)
C005 0.4647(14) 0.4944(16) 3.002(40) 2.993(42) 53.2(1.7) 5.346(73)
C01 0.4742(12) 0.5061(16) 3.034(38) 3.030(40) 57.0(1.8) 5.409(69)
F004 0.3750(11) 0.3975(12) 2.323(21) 2.323(25) 51.3(1.8) 5.536(57)
F006 0.37655(87) 0.3985(10) 2.320(20) 2.311(23) 52.3(1.5) 5.513(54)
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where mkin;1 are the kinetic masses computed with one unit
of momentum. The results for c2 are listed in Table V and
are found to be consistent with 1 within their statistical
uncertainties of 0.3% or smaller.
On the C00078 and C005 ensembles, the spin-averaged

kinetic masses mkin;spinav ¼ 1
4
mB;kin þ 3

4
mB�;kin agree with

the experimental value of 5.28272(2) GeV [69]. On the
other ensembles, the lattice results are up to 5% higher,
which can be attributed mainly to the following:

(i) The tuning of the bare b-quark mass was performed
using bottomonium; the results here are affected by
the heavier-than-physical light-quark masses and by
discretization errors.

(ii) The tuning was performed using a different deter-
mination of the lattice spacing (that of Ref. [58],
while here we use the lattice spacing determinations
of Ref. [47] to convert to physical units).

However, the effect of a possible ≲5% mistuning of the b-
quark mass is expected to be even smaller in the energy
differences En − EB − EB� due to partial suppression by
heavy-quark symmetry. The hyperfine splittings EB� − EB
are of order Λ=mb, and are therefore affected by the same
relative error as the b-quark mass, which corresponds to an
absolute error of ≲2.5 MeV. Our results for the hyperfine
splittings are also shown in Table IV. The value from the
physical-pion-mass ensemble C00078 is consistent with
the experimental value of 45.3(2) MeV [69]. We find a
trend of increasing hyperfine splitting as the light-quark
mass is increased.

V. THE LOWEST ENERGY LEVELS
OF THE b̄b̄ud SYSTEM

A. Multiexponential matrix fitting

The spectral decomposition of the correlation matrix (9)
reads

CjkðtÞ ¼
X∞
n¼0

hΩjOjjnihnjO†
kjΩie−Ent; ð16Þ

where jΩi denotes the vacuum state, jni are the energy
eigenstates of the b̄b̄ud system in the Tg

1 irrep and for
isospin I ¼ 0, and En are the corresponding energy

eigenvalues. Equation (16) assumes an infinite time extent
of the lattice, which is a good approximation in our case. As
discussed in Sec. III A, all CjkðtÞ are real and, thus, so are
the overlap factors

Zn
j ¼ hΩjOjjni: ð17Þ

To extract the energies En from our numerical results for
CjkðtÞ, we perform fully correlated, least-χ2, multiexpo-
nential fits using a truncated version of (16),

CjkðtÞ ≈
XN−1

n¼0

Zn
jZ

n
ke

−Ent; ð18Þ

where we must choose the time range tmin ≤ t ≤ tmax such
that contributions from higher excited states are negligible.
To enforce the ordering of the En returned from the fit, for
n > 0 we actually use the logarithms of the energy
differences, ln ¼ lnðaEn − aEn−1Þ, as our fit parameters.
Furthermore, we rewrote the overlap factors for n > 0 as
Zn ¼ BnZ0 and used Bn as the fit parameters. Note that
CjkðtÞ does not need to be a square matrix. In particular,
the multiexponential matrix fit method allows us to also
include correlation matrix elements CjkðtÞ with j ¼ 4; 5
and k ¼ 1; 2; 3, i.e., the scattering operatorsO4 andO5. An
example of such a (5 × 3) matrix fit is shown in Fig. 3.
On each ensemble, we performed fits to the full matrix as
well as to various submatrices, for different fit ranges and
different numbers of states. The results are listed in
Tables VIII–XII in Appendix A.

TABLE V. Results for the B and B� meson “speed of light”
squared, defined in Eq. (15), for p2 ¼ 2ð2π=LÞ2 and p2 ¼
3ð2π=LÞ2.
Ensemble c2Bð2Þ c2Bð3Þ c2B� ð2Þ c2B� ð3Þ
C00078 0.9999(13) 0.9998(26) 1.0007(12) 1.0014(24)
C005 1.0019(14) 1.0036(28) 1.0014(13) 1.0026(28)
C01 1.0015(12) 1.0032(25) 1.0000(15) 1.0002(30)
F004 1.00005(78) 1.0001(16) 1.00063(85) 1.0014(17)
F006 1.00032(64) 1.0007(13) 1.00030(78) 1.0005(16)

FIG. 3. Example of a multiexponential matrix fit for the C005
ensemble. This fit has N ¼ 3, tmin=a ¼ 11, tmax=a ¼ 24, and
gives χ2=d:o:f: ≈ 1.08.
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The matrix fits have a large number of degrees of
freedom, and the covariance matrix, whose inverse enters
in χ2, can become poorly determined or singular if the
number of statistical samples used to estimate this matrix is
not much larger than the number of degrees of freedom.
This is particularly problematic when using all-mode-
averaging (or, more generally, covariant-approximation-
averaging, CAA), where the samples are given by [53,54]

ðCAA sampleÞe ¼ ðexact sampleÞe − ðsloppy sampleÞe;0

þ 1

Nsloppy

XNsloppy−1

s¼0

ðsloppy sampleÞe;s:

ð19Þ

Here, e labels the exact samples (gauge-link configuration
and source location), and the different sloppy samples,
computed from quark propagators with reduced solver
precision, in our case originate from applying many
space-time displacements s to the initial source location e,
with s ¼ 0 corresponding to no displacement. As shown in
Table I, the number of exact samples, and hence CAA
samples, is as low as 80 in the case of the C00078
ensemble. To obtain a meaningful χ2 even for large
numbers of degrees of freedom, we use a “modified
CAA” (MCAA) procedure, given by

ðMCAA sampleÞe;s ¼ ðexact sampleÞe− ðsloppy sampleÞe;0
þðsloppy sampleÞe;s: ð20Þ

This procedure provides Nsloppy (¼ 32 in our case) times as
many samples as the standard CAA procedure, without
changing the overall average, and allows robust matrix
fits even in the (5 × 3) case. The drawback is that there
are autocorrelations between the different choices of s,
introduced by the constant (but very small) term
ðexact sampleÞe − ðsloppy sampleÞe;0 and by any possible
autocorrelations between the different sloppy samples on
the same configuration. As a result of these autocorrela-
tions, the uncertainties of parameters obtained from fits
based on the MCAA procedure are initially slightly under-
estimated. We correct for these autocorrelations by rescal-
ing all uncertainties in the fitted En with a factor estimated
for each ensemble using the simple B meson two-point
functions. The factor is given by the ratio of uncertainties of
the B meson energies obtained from single-exponential fits
using the CAA and MCAA procedures. The factors range
from 1.08 to 1.27. The uncertainties of all results shown in
this paper are already corrected with these factors.
The condition numbers of the data covariance matrices

range from approximately 106 to 1015, depending on how
many interpolating operators are included and on the fit
range. We always computed the full inverse using LU
decomposition. The minimization of χ2 was performed

using the Levenberg-Marquardt algorithm, with initial
guesses for the fit parameters obtained as described in
Sec. V B of Ref. [70]. The fit results were stable under
variations of the initial guesses within reasonable ranges.
As a cross-check of the multiexponential matrix fitting

method, we also determined the spectrum using the
variational approach, which involves solving the general-
ized eigenvalue problem (GEVP) [71–73]. We found that
the GEVP method, where applicable, gives results con-
sistent with the direct multiexponential matrix fits. The
comparison of the two methods is presented in Appendix B.

B. Dependence of the fit results on the choices
of interpolating fields

Even though the actual energy levels for a chosen set
of quantum numbers are independent of the interpolating
operators used in the two-point functions, in practice the
numerical results depend on these choices, due to limited
statistical precision. In Fig. 4 we present the two lowest
energy levels relative to the BB� threshold as determined on
ensemble C005 using multiexponential matrix fitting. The
interpolators used are indicated by the five bars below each
column. The three black bars at the bottom correspond to
the local interpolatorsO1,O2,O3, while the two red bars at
the top correspond to the nonlocal interpolatorsO4 andO5.
A filled bar indicates that an interpolator is included, an
empty bar that it is not included. Two things are evident
from Fig. 4: first, stable results for the two lowest energy
levels are only obtained once the nonlocal two-meson
interpolators are included in the analysis; second, once the
nonlocal interpolators are included, the estimates of both
the ground-state energy and the first excited energy drop
significantly. Both observations clearly indicate the impor-
tance of the nonlocal interpolators for our study of the b̄b̄ud
system. Note that the first excited energy is close to the BB�
threshold, while the ground state energy is significantly
below threshold. This is a first indication that the ground
state corresponds to a stable tetraquark, while the first
excitation corresponds to a meson-meson scattering state.
Similar plots for the other four ensembles are collected in
Appendix A.

C. Overlap factors

For a given j, the overlap factors Zn
j indicate the relative

importance of the energy eigenstates jni when expanding
the trial state O†

j jΩi in terms of energy eigenstates,

O†
j jΩi ¼

X∞
n¼0

jnihnjO†
j jΩi ¼

X∞
n¼0

Zn
j jni: ð21Þ

Therefore, the overlap factors Zn
j provide certain informa-

tion about the composition and quark arrangement of the
energy eigenstates jni. In particular, if the overlap factor Zm

j

for one state jmi is significantly larger than all other Zn
j ,
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n ≠ m, this might be a sign that jmi is quite similar
to O†

j jΩi.
It is convenient to consider rescaled squared overlap

factors,

jZ̃n
j j2 ¼

jZn
j j2

maxmðjZm
j j2Þ

; ð22Þ

which are normalized such that maxmðjZ̃m
j j2Þ ¼ 1 for each

trial state O†
j jΩi. Here, the indices n and m can take on

values from 0 to N − 1, where N is the number of states
included in the fit. The results for jZ̃n

j j2 obtained from our
fits are qualitatively similar for all ensembles, and do not
strongly depend on the temporal fit range tmin ≤ t ≤ tmax.
In Fig. 5 we show the normalized overlap factors

obtained on ensemble C005 using the full 5 × 3 correlation
matrix for N ¼ 2 and N ¼ 3, with fit ranges of 14 ≤ t=a ≤
24 and 12 ≤ t=a ≤ 24, respectively. One can see that for the
trial state created by the diquark-antidiquark operator O3,
the ground-state overlap is significantly larger than the
overlap to the first excited state. Vice versa, for the two trial
states created by the nonlocal meson-meson operators O4

and O5, the overlaps to the first excited state are larger
than the ground-state overlaps. This supports our above

interpretation concerning the composition of the lowest two
energy eigenstates: the ground state j0i seems to be a four-
quark bound state and the first excitation j1i a meson-
meson scattering state. Finally, it is interesting to note
that in the three-exponential fit, the local meson-meson
operatorsO1 andO2 appear to produce a large overlap with
the second excited state, while the diquark-antidiquark
operator O3 and the nonlocal operators O4 and O5 do not
(also note that the large values of jZ2

1j2=jZ0
1j2 ¼ 4� 5,

jZ2
2j2=jZ0

2j2 ¼ 8� 9 substantially change the normalization
of the plots for O1 and O2 when going from N ¼ 2 to
N ¼ 3). What appears in the fit as the “second excited
state” (with a rather high energy and large uncertainty, as
shown in Table IX) is likely an admixture of the dense
spectrum of all the scattering states above threshold, which
are all created with similar weights by the local operators
O1 and O2, while the nonlocal operators O4 and O5 mostly
create the lowest-lying scattering state.

D. Final results for the lowest two energy levels
on each ensemble

To obtain final results for the energy differencesΔE0 and
ΔE1 on each ensemble, we select a subset of fits that we
deem reliable, based on the discussion in the previous two
subsections and based on χ2=d:o:f: All of these fits, which

FIG. 4. Results for the lowest two b̄b̄ud energy levels relative to the BB� threshold, ΔEn ¼ En − EB − EB� , as determined on ensemble
C005 from several different fits. The five bars below each column indicate the interpolators used, as explained in the main text. Above each
column, we give the number of exponentials, the fit range, and the value of χ2=d:o:f: The shaded horizontal bands correspond to our final
estimates of ΔE0 and ΔE1, obtained from a bootstrap average of the subset of fits that are shown with filled symbols.
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are indicated with filled symbols in Fig. 4 and Figs. 9–12,
include at least one of the nonlocal interpolating operators
O4 andO5. We then repeat all selected fits for 500 bootstrap
samples, where each bootstrap sample consists of randomly
drawn gauge-link configurations and source locations
(using the same random numbers for the different types
of fits to preserve correlations). This produces 500 samples
for ΔE0 and ΔE1 for each type of fit (and on each
ensemble). We then average these values over the different
types of fits with equal weights, bootstrap sample by
bootstrap sample. Finally, we compute the mean and
standard deviation (rescaled again by the MCAA autocor-
relation correction factors; see the discussion in Sec. VA)
of these new 500 samples. The results for ΔE0 and ΔE1

obtained in this way are listed in Table VI and are indicated
with the horizontal lines and shaded uncertainty bands in
Fig. 4 and Figs. 9–12.

VI. SCATTERING ANALYSIS

The energies En determined in a spectroscopy compu-
tation can be related to the infinite-volume scattering
amplitude using Lüscher’s method [74] and its generaliza-
tions [75–82]; see Ref. [83] for a recent review. Here, we
apply Lüscher’s method to the lowest two energy levels

of the b̄b̄ud system in the Tg
1 irrep, assuming that these

energy levels can be described in terms of the elastic
S-wave B − B� scattering amplitude (and its analytic
continuation below threshold). We neglect higher
partial waves and the coupling to other channels, such
as B�B�. Thus, we obtain the S-wave B − B� scattering
amplitude for the two scattering momenta k0 and k1 that
correspond to E0 and E1. Having only these two points
limits the choice of parametrization of the scattering
amplitude to a function with two parameters, for which
we use the effective-range expansion (ERE). The ERE

FIG. 5. The normalized overlap factors jZ̃n
j j2 as determined on ensemble C005, indicating the relative contributions of the energy

eigenstates jni to the trial state O†
j jΩi. The upper row corresponds to a two-exponential fit with 14 ≤ t=a ≤ 24, while the lower row

corresponds to a three-exponential fit with 12 ≤ t=a ≤ 24. The mean values and variances of the jZ̃n
j j2 were evaluated using bootstrap

resampling of the fits, which explains why the mean of the largest factor can be smaller than 1.

TABLE VI. Final results for the lowest two energy levels of the
b̄ b̄ ud system on each ensemble, in lattice units and in MeV. All
results are given relative to the BB� threshold, i.e., ΔEn ¼
En − EB − EB� .

Ensemble aΔE0 aΔE1 ΔE0 [MeV] ΔE1 [MeV]

C00078 −0.075ð16Þ 0.001(21) −129ð27Þ 2(36)
C005 −0.069ð19Þ 0.015(30) −123ð34Þ 27(53)
C01 −0.061ð15Þ −0.014ð22Þ −109ð26Þ −26ð39Þ
F004 −0.051ð11Þ −0.011ð15Þ −122ð25Þ −25ð37Þ
F006 −0.037ð12Þ 0.025(32) −88ð29Þ 61(76)
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parametrization then allows us to determine the infinite-
volume bound-state energy.

A. Relation between finite-volume energy levels
and infinite-volume phase shifts

We define the scattering momentum kn corresponding to
the nth energy level of the b̄b̄ud system En through the
equation

En ¼ EB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B;kin þ k2n
q

−mB;kin þ EB�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B�;kin þ k2n
q

−mB�;kin; ð23Þ

where EB ¼ EBð0Þ and EB� ¼ EB�ð0Þ are the energies of
the single-B meson and single-B� meson states at zero
momentum. Solving for k2n gives

k2n ¼
ΔEnðΔEn þ 2mB;kinÞðΔEn þ 2mB�;kinÞðΔEn þ 2mB;kin þ 2mB�;kinÞ

4ðΔEn þmB;kin þmB�;kinÞ2
; ð24Þ

where

ΔEn ¼ En − EB − EB� : ð25Þ

The mapping between the finite-volume scattering
momentum in the rest frame and the infinite-volume
scattering amplitude expressed as the S-wave scattering
phase shift δ0 is

cot δ0ðknÞ ¼
2Z00ð1; ðknL=2πÞ2Þ

π1=2knL
; ð26Þ

where Z00 is the generalized zeta function [74]. The
scattering amplitude is given by

T0ðkÞ ¼
1

cot δ0ðkÞ − i
: ð27Þ

B. Effective-range expansion and determination
of the bound-state pole

On each ensemble, we use the lattice QCD results for
the energy differences ΔE0 and ΔE1 combined with the
corresponding results for the B and B� meson energies and
kinetic masses to calculate k2n for n ¼ 0 and n ¼ 1 using
Eq. (24), and we determine the corresponding kn cot δ0ðknÞ
using Eq. (26). We parametrize the scattering amplitude
using the effective-range expansion (ERE),

k cot δ0ðkÞ ¼
1

a0
þ 1

2
r0k2 þOðk4Þ; ð28Þ

and determine the two parameters a0 (the S-wave scattering
length) and r0 (the S-wave effective range). Bound states
correspond to poles in the scattering amplitude (27)
below threshold, where −ik > 0. Such a pole occurs for
cot δ0ðkBSÞ ¼ i, where kBS is the (imaginary) bound-state
momentum. Combining this condition with the ERE then
gives

−jkBSj ¼
1

a0
−
1

2
r0jkBSj2; ð29Þ

where terms of OðjkBSj4Þ are neglected. We solve Eq. (29)
for jkBSj and obtain the binding energy via

Ebinding ¼ EBS − EB − EB�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B;kin þ k2BS

q
−mB;kin

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B�;kin þ k2BS

q
−mB�;kin

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B;kin − jkBSj2
q

−mB;kin

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B�;kin − jkBSj2
q

−mB�;kin: ð30Þ

This approach was previously utilized in Refs. [44,45,
84,85]. Determining masses of bound states in this way is
equivalent to taking the infinite-volume limit up to expo-
nentially small finite-volume corrections proportional to
e−jkBSjL (for more details, see, e.g., Refs. [86,87]).

C. Numerical results

In Fig. 6 we show k cot δ0ðkÞ ¼ 1=a0 þ r0k2=2 as a
function of the scattering momentum k together with the
corresponding lattice data points, for the five different
ensembles. One can see that k cot δ0ðkÞ is consistent with
zero within uncertainties at k ¼ 0, which implies an inverse
scattering length also consistent with zero. The results for
the inverse scattering length 1=a0, the effective range r0,
the binding momentum jkBSj, and the binding energy
Ebinding are given in Table VII. The binding energies are
essentially identical to the finite-volume energy differences
ΔE0 collected in Table VI. This supports our interpretation
of the ground state as a stable tetraquark. We also applied
the consistency check proposed in Ref. [88], but our
statistical uncertainties are too large to reach a definitive
conclusion.
As indicated in Fig. 6, the first excited state is close to the

inelastic B�B� threshold for some of the data sets, which
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means that the single-channel analysis performed here
is not well justified. A coupled-channel analysis is not
feasible with the data we have, but is unlikely to signifi-
cantly affect the results for the bound state.

VII. FIT OF THE PION-MASS DEPENDENCE
AND ESTIMATES OF SYSTEMATIC

UNCERTAINTIES

Given the statistical uncertainties in our results for
Ebinding (shown in Table VII), we cannot resolve any
significant dependence on the lattice spacing or pion mass.
We expect lattice discretization errors to be at the level of a
few MeV, as discussed further below. Since this is well
below our statistical uncertainties, we choose to perform a
fit of the pion-mass dependence of our results from all

ensembles without including a-dependence. We consider a
quadratic pion-mass dependence, corresponding to linear
dependence on the light-quark mass,

EbindingðmπÞ ¼ Ebindingðmπ;physÞ þ cðm2
π −m2

π;physÞ; ð31Þ

where we use mπ;phys ¼ 135 MeV for the physical pion
mass in the isospin-symmetric limit. The fit gives

Ebindingðmπ;physÞ ¼ ð−128� 24Þ MeV;

c ¼ ð1.5� 2.3Þ × 10−4 MeV−2; ð32Þ

and has χ2=d:o:f: ¼ 0.27. A plot of the fit function together
with the data is shown in Fig. 7. Given that, (i), the fit has
excellent quality, (ii), the resulting coefficient c is con-
sistent with zero, and (iii), the result for Ebindingðmπ;physÞ is
nearly identical with the result from the C00078 ensemble
with mπ ¼ 139ð1Þ MeV, we conclude that any remaining
systematic uncertainties associated with the extrapolation
to mπ;phys are negligible.
The lattice discretization errors associated with our

light-quark and gluon actions and are expected to be at
the 1% level for the fine lattices, and at the 2% level for
the coarse lattices [47]; multiplying by the QCD scale of
Λ ∼ 300 MeV yields 3 MeV to 6 MeV. The NRQCD action
introduces additional systematic uncertainties. For our
choice of lattice discretization and matching coefficients,

FIG. 6. Plots of the effective-range-expansions. Here, a denotes the lattice spacing. The straight red line going through the data points
corresponds to the ERE parametrization of ak cot δðkÞ. Below the BB� threshold (which is located at k ¼ 0), we also show the curves
ak cot δðkÞ þ jakj [again using the ERE parametrization for ak cot δðkÞ], whose lowest zero gives the binding momentum. The vertical
green lines show the location of the inelastic B�B� threshold.

TABLE VII. The inverse scattering length 1=a0, the effective
range r0, the binding momentum jkBSj, and the binding energy
Ebinding for all ensembles.

Ensemble 1=a0 ½fm−1� r0 [fm] jkBSj [MeV] Ebinding [MeV]

C00078 −0.7ð11.0Þ 0.4(1.3) 824(89) −129ð28Þ
C005 0.2(7.2) 0.51(88) 808(110) −123ð34Þ
C01 −1.24ð77Þ 0.35(12) 765(91) −109ð26Þ
F004 −1.28ð76Þ 0.33(10) 819(85) −122ð25Þ
F006 −0.9ð10.9Þ 0.4(1.8) 697(113) −88ð29Þ
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the most significant systematic errors in the energy of a
heavy-light hadron are expected to be the following:

(i) Four-quark operators, which arise at order α2s in the
matching to full QCD, are not included in the action.
The analysis of Ref. [89] suggests that their effects
could be as large as 3 MeV.

(ii) Thematching coefficient c4 of the operator−
g

2mb
σ · B

was computed to one loop. Missing higher-order
corrections to this coefficient introduce systematic
errors of order

α2sΛ2=mb ≈ 2 MeV: ð33Þ

(iii) The matching coefficients of the operators of order
ðΛ=mbÞ2 were computed at tree-level only. The
missing radiative corrections to these coefficients
introduce systematic errors of order

αsΛ3=m2
b ≈ 0.4 MeV: ð34Þ

These estimates are appropriate for EB and EB� , which
contribute to our calculation of the binding energy via
Ebinding ¼ EBS − EB − EB� . For the tetraquark energy EBS,
the power counting is more complicated due to the presence
of two bottom quarks. Conservative estimates of the sys-
tematic errors can be obtained by replacing the scaleΛ in the
heavy-light power counting by the binding momentum
jkBSj ∼ 800 MeV, which suggests systematic errors of order
10 MeV. It is likely that there is a partial cancellation of the
systematic errors in Ebinding ¼ EBS − EB − EB� . Therefore,
we estimate the overall discretization and heavy-quark
systematic errors to be not larger than 10 MeV (in future
work, the estimates of the heavy-quark errors could be made
more precise by numerically investigating the dependence of
Ebinding on the lattice NRQCD matching coefficients). Our
final results for the tetraquark binding energy and mass are
therefore

Ebindingðmπ;physÞ ¼ ð−128� 24� 10Þ MeV;

mtetraquarkðmπ;physÞ ¼ ð10476� 24� 10Þ MeV; ð35Þ

where mtetraquark is obtained by adding the experimental
values of the B and B� masses [69] to Ebinding.

VIII. CONCLUSIONS

In this work we computed the low-lying spectrum in the
bottomness-2 and IðJPÞ ¼ 0ð1þÞ sector. Using both local
and nonlocal interpolating operators, we determined the two
lowest energy levels for five different ensembles of lattice
gauge-link configurations, including one with approximately
physical light-quark masses. We carried out a Lüscher
analysis for the first time in this sector and used the
effective-range expansion to find the infinite-volume binding
energies (but we found these to be nearly identical to the
finite-volume binding energies). Our calculation confirms
the existence of a b̄b̄ud bound state that is stable under the
strong and electromagnetic interactions.
In Fig. 8 we compare our result (35) for the binding

energy with several previous determinations. These include
direct lattice QCD calculations that also treated the heavy b̄
quarks with NRQCD [40,41], calculations in the Born-
Oppenheimer approximation using static b̄b̄ potentials (in
the presence of u and d valence quarks) computed on
the lattice [34,35,37], as well as the studies of Refs. [9,11,
16–26,28–30], which are based on quark models, effective
field theories, or QCD sum rules.
The calculations using static b̄b̄ potentials from lattice

QCD [34,35,37] consistently give a binding energy that is
about a factor of 2 smaller than our result (35), but this
disagreement might be due the approximations used there, in
particular the neglect of 1=mb corrections to the potentials.
The two previous direct lattice QCD calculations

[40,41] employed only local four-quark interpolating oper-
ators. According to our observations, the lack of nonlocal
operators can affect the reliability of the extracted ground-
state energy, as the local operators are not well suited to
isolate the lowest BB� threshold state. While the result of
Ref. [41] agrees with ours, Ref. [40] gives a significantly
larger binding energy. Apart from the lack of nonlocal
interpolating operators, another possible source of this
discrepancy might be the use of ratios of correlation
functions as input to the generalized eigenvalue problem
in Ref. [40]. It is interesting to observe that the effec-
tive energies shown in Refs. [40,41] approach the ground
state from below, corresponding to a decrease in the
magnitude of the extracted binding energy as the time
separation is increased. Both of these studies used wall
sources for the quark fields, while we use Gaussian-
smeared sources. These two types of sources can behave
quite differently with regard to excited-state contamination
[90]. Furthermore, the excited-state spectrum of B − B� and
B� − B� scattering states above threshold is very dense,

FIG. 7. Fit of the pion-mass dependence of Ebinding. The vertical
dashed line indicates the physical pion mass.
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because the changes in the kinetic energy when increasing
the back-to-back momenta are suppressed by the heavy-
meson masses. For example, on a lattice with L ¼ 6 fm, the
energy difference between the threshold and next scattering
state is only around 8 MeV. In the context of two-nucleon
systems, it has been argued that the dense spectrum can
lead to “fake plateaus” at short time separations in the
effective energies from ratios of correlation functions [91];
see Ref. [92] for a critical discussion of this issue.
Even though our work has improved upon previous

studies of the b̄b̄ud system by including nonlocal meson-
meson scattering operators at the sink, our fits still require
rather large time separations, leading to large statistical
uncertainties. As demonstrated for the case of the H
dibaryon in Ref. [68], the results can be vastly improved
by including nonlocal operators at both source and sink, and
by including additional back-to-back momenta to map out a
larger region of the spectrum. This requires more advanced
techniques [67,93] for constructing the correlation functions.
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FIG. 8. Comparison of results for the binding energy of the b̄ b̄ ud tetraquark with IðJPÞ ¼ 0ð1þÞ (black: this work, using lattice
NRQCD; blue: previous work using lattice NRQCD [40,41]; red: lattice QCD computations of static b̄ b̄ potentials and solving the
Schrödinger equation [34,35,37]; green: quark models, effective field theories, and QCD sum rules [9,11,16–26,28–30].
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APPENDIX A: THE TWO LOWEST ENERGY LEVELS FOR ALL ENSEMBLES

In Figs. 9–12 we show the two lowest energy levels for the ensembles C00078, C01, F004, and F006. The style is
identical to Fig. 4, where the same energy levels are shown for ensemble C005, and which is discussed in detail in Sec. V C.
The numerical results of the fits for all ensembles are given in Tables VIII–XII.

FIG. 9. Like Fig. 4, but for the C00078 ensemble.

FIG. 10. Like Fig. 4, but for the C01 ensemble.
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FIG. 11. Like Fig. 4, but for the F004 ensemble.

FIG. 12. Like Fig. 4, but for the F006 ensemble.
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TABLE VIII. Multiexponential matrix fit results from the C00078 ensemble.

Matrix N Fit range χ2=d:o:f. En − EB − EB� [MeV]

ðO1; O2Þ × ðO1; O2Þ 2 7…10 1.05 −159ð31Þ, þ61ð77Þ
ðO1; O2Þ × ðO1; O2Þ 2 7…17 1.42 −136ð27Þ, þ100ð75Þ
ðO1; O3Þ × ðO1; O3Þ 2 7…10 0.82 −144ð35Þ, þ137ð85Þ
ðO1; O3Þ × ðO1; O3Þ 2 7…17 1.63 −116ð30Þ, þ204ð84Þ
ðO2; O3Þ × ðO2; O3Þ 2 7…10 1.32 −151ð38Þ, þ104ð82Þ
ðO2; O3Þ × ðO2; O3Þ 2 7…17 1.29 −106ð33Þ, þ168ð81Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 8…10 0.96 −181ð40Þ, þ66ð129Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 8…17 1.24 −125ð34Þ, þ142ð123Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 6…17 1.41 −93ð24Þ, þ245ð55Þ, þ612ð328Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 6…24 1.28 −86ð23Þ, þ260ð55Þ, þ651ð337Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 7…10 0.98 −165ð31Þ, þ63ð77Þ, þ6283ð3782Þ
ðO1; O4Þ × ðO1Þ 1 11…17 0.84 −169ð96Þ
ðO2; O5Þ × ðO2Þ 1 11…15 0.84 −133ð128Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 11…13 0.90 −181ð110Þ, −104ð199Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 9…15 1.81 −125ð51Þ, þ86ð98Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 9…24 1.52 −129ð53Þ, þ79ð94Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 10…16 1.72 −217ð85Þ, þ327ð187Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 5…10 1.29 −169ð35Þ, þ13ð28Þ, þ516ð100Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 7…10 1.34 −175ð159Þ, −75ð143Þ, þ253ð538Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 5…16 1.55 −169ð35Þ, þ7ð28Þ, þ479ð89Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 5…24 1.47 −168ð35Þ, þ8ð27Þ, þ483ð88Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 7…16 1.55 −250ð120Þ, −76ð58Þ, þ312ð207Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 7…24 1.46 −237ð97Þ, −70ð52Þ, þ372ð233Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 8…24 1.30 −124ð36Þ, þ0ð62Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 10…24 1.30 −182ð116Þ, þ290ð173Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 5…10 1.52 −146ð36Þ, þ5ð31Þ, þ510ð105Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 7…10 1.99 −163ð55Þ, −19ð111Þ, þ520ð708Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 5…16 1.40 −134ð36Þ, þ2ð31Þ, þ452ð95Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 5…24 1.13 −138ð37Þ, −2ð30Þ, þ450ð92Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 10…16 1.34 −102ð60Þ, −54ð70Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 10…24 1.28 −119ð57Þ, −63ð71Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 3 6…16 2.61 −122ð28Þ, −21ð31Þ, þ406ð254Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 3 6…24 2.11 −143ð54Þ, −34ð30Þ, þ359ð225Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 3 7…16 1.74 −155ð27Þ, −78ð39Þ, þ1736ð1580Þ

TABLE IX. Multiexponential matrix fit results from the C005 ensemble.

Matrix N Fit range χ2=d:o:f. En − EB − EB� [MeV]

ðO1; O2Þ × ðO1; O2Þ 2 7…22 0.84 −58.7ð8.2Þ, þ187ð15Þ
ðO1; O2Þ × ðO1; O2Þ 2 14…24 0.87 −121ð57Þ, þ535ð464Þ
ðO1; O3Þ × ðO1; O3Þ 2 7…22 0.94 −59.1ð8.8Þ, þ194ð15Þ
ðO1; O3Þ × ðO1; O3Þ 2 14…24 0.75 −165ð70Þ, þ571ð459Þ
ðO2; O3Þ × ðO2; O3Þ 2 7…22 1.03 −60.6ð9.1Þ, þ189ð15Þ
ðO2; O3Þ × ðO2; O3Þ 2 14…24 0.99 −175ð65Þ, þ602ð475Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 11…24 0.90 −72ð22Þ, þ282ð79Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 14…24 0.80 −116ð58Þ, þ628ð505Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 6…24 0.88 −50.6ð7.3Þ, þ199ð11Þ, þ696ð74Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 8…24 0.90 −57ð11Þ, þ180ð20Þ, þ362ð264Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 14…24 0.78 −174ð93Þ, þ550ð466Þ, þ1220ð1642Þ
ðO1; O4Þ × ðO1Þ 1 13…24 0.77 −74ð39Þ
ðO1; O4Þ × ðO1Þ 2 7…24 0.50 −63ð43Þ, þ113ð74Þ

(Table continued)
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TABLE IX. (Continued)

Matrix N Fit range χ2=d:o:f. En − EB − EB� [MeV]

ðO2; O5Þ × ðO2Þ 1 13…24 0.90 −6ð52Þ
ðO2; O5Þ × ðO2Þ 2 7…24 0.75 −39ð34Þ, þ232ð84Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 12…24 1.07 −100ð26Þ, þ22ð45Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 13…24 0.89 −94ð35Þ, −8ð66Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 14…24 0.85 −161ð49Þ, þ13ð110Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 12…24 1.10 −92ð25Þ, þ6ð50Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 13…24 0.92 −93ð35Þ, þ11ð75Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 7…24 0.85 −59.2ð8.9Þ, þ9ð31Þ, þ193ð16Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 11…24 0.79 −106ð28Þ, −38ð161Þ, þ246ð119Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 14…24 1.01 −184ð57Þ, þ9ð126Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 15…24 0.92 −164ð78Þ, þ302ð276Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 6…24 1.00 −49.9ð7.8Þ, þ88ð28Þ, þ204ð21Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 8…24 0.98 −60ð11Þ, −15ð50Þ, þ178ð20Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 10…24 1.07 −65ð29Þ, −23ð141Þ, þ219ð47Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 11…24 1.25 −100ð19Þ, −8ð28Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 12…24 1.07 −93ð26Þ, þ25ð45Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 13…24 0.96 −82ð36Þ, þ9ð64Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 14…24 0.91 −148ð51Þ, þ22ð110Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 3 10…24 1.47 −89ð15Þ, þ40ð122Þ, þ215ð67Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 3 11…24 1.08 −97ð20Þ, þ136ð199Þ, þ288ð160Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 3 12…24 1.03 −90ð27Þ, −14ð231Þ, þ360ð199Þ

TABLE X. Multiexponential matrix fit results from the C01 ensemble.

Matrix N Fit range χ2=d:o:f. En − EB − EB� [MeV]

ðO1; O2Þ × ðO1; O2Þ 2 7…24 1.11 −37.6ð7.2Þ, þ203ð13Þ
ðO1; O2Þ × ðO1; O2Þ 2 14…24 1.03 −104ð47Þ, −57ð97Þ
ðO1; O3Þ × ðO1; O3Þ 2 7…24 1.04 −37.7ð7.5Þ, þ210ð13Þ
ðO1; O3Þ × ðO1; O3Þ 2 14…24 1.02 −108ð52Þ, −40ð91Þ
ðO2; O3Þ × ðO2; O3Þ 2 6…24 0.94 −29.0ð6.8Þ, þ218ð10Þ
ðO2; O3Þ × ðO2; O3Þ 2 14…24 0.80 −84ð51Þ, −55ð85Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 11…24 1.02 −58ð17Þ, þ88ð51Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 14…24 0.96 −104ð49Þ, −60ð66Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 6…24 0.99 −31.1ð6.5Þ, þ211ð10Þ, þ825ð69Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 8…24 1.04 −36.1ð8.5Þ, þ208ð18Þ, þ1281ð434Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 3 10…24 1.07 −50ð13Þ, þ156ð36Þ, þ2821ð3773Þ
ðO1; O4Þ × ðO1Þ 1 13…24 1.16 −96ð25Þ
ðO1; O4Þ × ðO1Þ 2 8…24 1.13 −114ð25Þ, þ240ð63Þ
ðO2; O5Þ × ðO2Þ 1 13…24 0.85 −70ð31Þ
ðO2; O5Þ × ðO2Þ 2 8…24 1.18 −66ð26Þ, þ394ð98Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 13…24 1.24 −96ð25Þ, −26ð41Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 14…24 1.10 −121ð30Þ, −90ð46Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 15…24 1.17 −116ð46Þ, −79ð84Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 13…24 1.17 −92ð24Þ, −12ð50Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 14…24 0.95 −138ð39Þ, −41ð66Þ
ðO1; O3; O4Þ × ðO1; O3Þ 3 7…24 1.19 −36.2ð6.9Þ, þ30ð25Þ, þ210ð11Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 12…24 1.21 −107ð22Þ, −56ð36Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 13…24 0.94 −79ð32Þ, −21ð55Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 6…24 1.11 −30.0ð7.5Þ, þ87ð26Þ, þ244ð38Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 8…24 1.10 −44ð12Þ, þ59ð32Þ, þ322ð74Þ
ðO2; O3; O5Þ × ðO2; O3Þ 3 10…24 1.01 −123ð64Þ, −26ð27Þ, þ241ð116Þ

(Table continued)
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TABLE XI. Multiexponential matrix fit results from the F004 ensemble.

Matrix N Fit range χ2=d:o:f. En − EB − EB� [MeV]

ðO1; O2Þ × ðO1; O2Þ 2 8…24 0.98 −31.4ð8.6Þ, þ288ð17Þ
ðO1; O2Þ × ðO1; O2Þ 2 13…24 0.90 −81ð21Þ, þ133ð79Þ
ðO1; O3Þ × ðO1; O3Þ 2 8…24 0.96 −37.0ð9.3Þ, þ300ð17Þ
ðO1; O3Þ × ðO1; O3Þ 2 13…24 0.70 −83ð25Þ, þ113ð79Þ
ðO2; O3Þ × ðO2; O3Þ 2 8…24 0.98 −36.2ð9.5Þ, þ302ð17Þ
ðO2; O3Þ × ðO2; O3Þ 2 13…24 0.95 −76ð28Þ, þ145ð80Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 12…24 0.90 −59ð17Þ, þ218ð56Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 13…24 0.85 −78ð21Þ, þ132ð78Þ
ðO1; O4Þ × ðO1Þ 1 14…24 1.20 −118ð24Þ
ðO1; O4Þ × ðO1Þ 2 6…24 0.71 −111ð14Þ, þ370ð24Þ
ðO2; O5Þ × ðO2Þ 1 14…24 0.82 −42ð29Þ
ðO2; O5Þ × ðO2Þ 2 5…24 0.82 −67ð11Þ, þ495ð20Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 14…22 0.99 −120ð22Þ, −55ð34Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 15…22 0.88 −119ð29Þ, −58ð37Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 14…24 0.81 −135ð26Þ, −5ð49Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 15…24 0.71 −135ð34Þ, þ12ð70Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 14…24 1.10 −68ð29Þ, −37ð51Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 14…24 1.00 −119ð21Þ, −61ð32Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 15…24 0.93 −115ð28Þ, −55ð34Þ

TABLE X. (Continued)

Matrix N Fit range χ2=d:o:f. En − EB − EB� [MeV]

ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 13…24 1.14 −93ð25Þ, −21ð43Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 14…24 1.07 −118ð30Þ, −95ð47Þ

TABLE XII. Multiexponential matrix fit results from the F006 ensemble.

Matrix N Fit range χ2=d:o:f. En − EB − EB� [MeV]

ðO1; O2Þ × ðO1; O2Þ 2 9…24 0.92 −31.0ð6.8Þ, þ240ð13Þ
ðO1; O2Þ × ðO1; O2Þ 2 13…24 0.90 −50ð13Þ, þ205ð40Þ
ðO1; O3Þ × ðO1; O3Þ 2 9…24 0.96 −31.6ð7.2Þ, þ253ð13Þ
ðO1; O3Þ × ðO1; O3Þ 2 13…24 0.70 −62ð15Þ, þ192ð41Þ
ðO2; O3Þ × ðO2; O3Þ 2 9…22 1.08 −32.0ð7.5Þ, þ249ð14Þ
ðO2; O3Þ × ðO2; O3Þ 2 13…24 0.88 −64ð15Þ, þ208ð41Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 13…24 0.91 −47ð12Þ, þ199ð40Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ 2 15…24 0.86 −57ð19Þ, þ231ð80Þ
ðO1; O4Þ × ðO1Þ 1 17…24 1.11 −66ð28Þ
ðO1; O4Þ × ðO1Þ 2 7…24 0.99 −107ð10Þ, þ350ð21Þ
ðO2; O5Þ × ðO2Þ 1 17…24 0.73 −30ð36Þ
ðO2; O5Þ × ðO2Þ 2 6…24 0.99 −63.6ð8.9Þ, þ479ð18Þ
ðO1; O2; O4; O5Þ × ðO1; O2Þ 2 17…24 1.29 −88ð27Þ, þ28ð63Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 17…24 1.06 −84ð28Þ, þ7ð70Þ
ðO1; O3; O4Þ × ðO1; O3Þ 2 18…24 0.88 −89ð34Þ, þ74ð109Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 17…24 1.21 −92ð35Þ, þ109ð87Þ
ðO2; O3; O5Þ × ðO2; O3Þ 2 18…24 0.98 −89ð51Þ, þ67ð120Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 15…24 1.44 −95ð17Þ, þ24ð31Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 16…24 1.21 −93ð21Þ, þ32ð44Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 17…24 1.09 −83ð27Þ, þ19ð61Þ
ðO1; O2; O3; O4; O5Þ × ðO1; O2; O3Þ 2 18…24 0.93 −74ð34Þ, þ66ð92Þ
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APPENDIX B: COMPARISON OF
MULTIEXPONENTIAL MATRIX FITTING

AND SOLVING THE GEVP

In this section we compare the multiexponential matrix
fitting method, used in the main part of this work, to the
variational method [71–73]. The latter is based on the
generalized eigenvalue problem

CjkðtÞvnkðt; t0Þ ¼ λnðt; t0ÞCjkðt0Þvnkðt; t0Þ; ðB1Þ

whereCjkðtÞmust be a hermitian squarematrix. As discussed
in Sec. III A, our use of point-to-all propagators did not allow
us to compute the correlation matrix elements CjkðtÞ with
j; k ∈ f4; 5g, which means that we can only include the
operators O1 to O3 in the GEVP analysis (in contrast, the
multiexponential matrix fitting method does not require a
squarematrix and allows us to includeO4 andO5 at the sink).
For large time, the eigenvalues λnðt; t0Þ are expected to

satisfy

λnðt; t0Þ ∝ e−Ent; ðB2Þ

where En is the energy of the nth state. We define the
effective energy Eeff;nðtÞ as

Eeff;nðtÞ ¼
1

a
ln

�
λnðt; t0Þ

λnðtþ a; t0Þ
�
; ðB3Þ

which for large t should plateau at En. An example for
Eeff;nðtÞ is shown in Fig. 13. We determined En from
constant fits to Eeff;nðtÞ in a suitable range tmin ≤ t ≤ tmax

such that χ2=d:o:f:≲ 1. Alternatively, one can fit expo-
nential functions Ae−Ent to the eigenvalues λnðt; t0Þ. We
performed such fits as cross-checks and found consistent
energies and statistical uncertainties.
We compared the multiexponential matrix-fit method

and the GEVP method by determining the lowest two
energy levels with both methods in the following way:

(i) We used the same symmetric correlation matrices:
2 × 2 correlation matrices with operators ðO1; O2Þ,
ðO1; O3Þ and ðO2; O3Þ as well as the 3 × 3 corre-
lation matrix with operators ðO1; O2; O3Þ.

FIG. 13. Effective energies aEeff;n for n ¼ 0, 1 obtained for the
C005 ensemble by solving the GEVP for the 3 × 3 correlation
matrix CjkðtÞ containing operators O1 toO3. The horizontal lines
show the results of constant fits in the regions t=a ¼ 8…17
(n ¼ 0) and t=a ¼ 8…14 (n ¼ 1).

TABLE XIII. Comparison of the results for the two lowest b̄ b̄ ud energy levels (relative to the BB� threshold, i.e.,
ΔEn ¼ En − EB − EB� ) from multiexponential matrix fitting and from the GEVP, for the C005 ensemble.

Operators
Energy

difference

Multiexponential fitting GEVP

Fit range χ2=d:o:f: Fit range χ2=d:o:f:

ðO1; O2Þ × ðO1; O2Þ ΔE0 7…22 0.84 −58.7ð8.2Þ 7…20 0.70 −60.5ð11.4Þ
ΔE1 þ187ð15Þ 7…14 0.53 þ183ð19Þ

ðO1; O2Þ × ðO1; O2Þ ΔE0 14…24 0.87 −121ð57Þ 14…20 0.61 −129ð67Þ
ðO1; O3Þ × ðO1; O3Þ ΔE0 7…22 0.94 −59.1ð8.8Þ 7…20 0.80 −62.1ð12.1Þ

ΔE1 þ194ð15Þ 7…14 0.51 þ188ð19Þ
ðO1; O3Þ × ðO1; O3Þ ΔE0 14…24 0.75 −165ð70Þ 14…20 0.42 −160ð76Þ
ðO2; O3Þ × ðO2; O3Þ ΔE0 7…22 1.03 −60.6ð9.1Þ 7…20 0.86 −61.4ð12.3Þ

ΔE1 þ189ð15Þ 7…14 0.56 þ188ð19Þ
ðO2; O3Þ × ðO2; O3Þ ΔE0 14…24 0.99 −175ð65Þ 14…20 0.44 −164ð79Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ ΔE0 6…24 0.88 −50.6ð7.3Þ 6…17 1.32 −53.4ð10.2Þ

ΔE1 þ199ð11Þ 6…14 0.85 þ198ð14Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ ΔE0 8…24 0.90 −57ð11Þ 8…17 0.85 −62.8ð13.7Þ

ΔE1 þ180ð20Þ 8…14 0.57 þ176ð24Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ ΔE0 11…24 0.90 −72ð22Þ 11…17 0.73 −92ð29Þ
ðO1; O2; O3Þ × ðO1; O2; O3Þ ΔE0 14…24 0.78 −174ð93Þ 14…17 0.43 −156ð80Þ
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(ii) We used the same values for tmin (larger tmin leads to
a stronger suppression of excited states; we per-
formed a comparison for several values for tmin).

(iii) We used similar values for tmax (the results only
weakly depend on tmax; we chose tmax as the largest
temporal separation where the signal is not lost in
statistical noise).

(iv) We checked that the energy levels obtained by
solving the GEVP are independent of the parameter

t0 for t0=a ¼ 1; 2;…; 6 (results shown in the follow-
ing were obtained with t0=a ¼ 3).

This comparison is shown in Table XIII for the C005
ensemble. It is reassuring that the results obtained from
multiexponential matrix fits and from the GEVP are in
excellent agreement (when using the same operator bases).
The two methods were also compared extensively in the
study of ππ scattering in Ref. [70], where agreement was
also found.
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