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In this work, we employ the heavy hadron chiral perturbation theory to calculate the ΣcD̄ð�Þ potentials to
the next-to-leading order. The contact, the one-pion exchange, and the two-pion exchange interactions
are all included in the calculation along with the mass splittings between the heavy quark spin symmetry
partner states. Our result shows that neglecting the heavy quark symmetry violation effect may be
misleading to predict the potentials between the charmed hadrons. We perform numerical analysis with
three scenarios. In the first scenario, we relate the low-energy constants (LECs) in the contact terms of
ΣcD̄ð�Þ to those of nucleon systems and reproduce the Pcð4312Þ and Pcð4440Þ as loosely bound states. In
the second scenario, we vary the unknown LECs and find a small parameter region in which Pcð4312Þ,
Pcð4440Þ and Pcð4457Þ can coexist as molecular states. In the third scenario, we include the coupled-
channel effect on the basis of scenario II and notice that the three Pc states can be reproduced as molecular
states simultaneously in a large region of parameters. Our analytical results can be used for the chiral
extrapolations in lattice QCD. With the lattice QCD results in the future as inputs, the identification of the
Pc states and predictions for other systems would be more reliable.
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I. INTRODUCTION

The multiquark state has been a very important topic in
hadron physics for a long time (for recent reviews, see
Refs. [1–5]). Since 2003, many “XYZ” states have been
observed as the candidates of tetraquark states [6–9]. In
2015, the LHCb Collaboration discovered two pentaquark
candidates Pcð4380Þ and Pcð4450Þ in the J=ψp invariant
mass spectrum of Λb → J=ψKp [10]. Very recently, the
LHCb Collaboration reported the new results about penta-
quarks [11]. The previously reported Pcð4450Þ was
resolved into two narrow states Pcð4440Þ and Pcð4457Þ.
In addition, a new state Pcð4312Þ was observed with 7.3σ
significance, and these three states are all measured to
be narrow. The masses of these resonances lie below the
thresholds of ΣcD̄ and ΣcD̄�, respectively. Thus, they are

good candidates of the molecular states. Before the dis-
covery of Pc states, several groups predicted the existence
of hidden charm molecular states with five quarks [12–14].
Although there are several alternative explanations, like
tightly bound pentaquarks [15–18] and kinetic effects [19],
the molecular state explanation is more favorable. The
recent QCD sum rules [20], the one-boson-exchange
(OBE) model [21,22], the local hidden gauge approach
[23], and the quark delocalization color screening model
[24] calculations also support the molecule explanation for
the Pcð4312Þ, Pcð4440), and Pcð4457Þ states. The pro-
ductions and decays of the newly observed pentaquark
states were also investigated in Refs. [25–27].
The OBE model is widely used to study the nuclear force

[28,29]. For instance, the deutron was well established as a
hadronic molecular state in the framework of the OBE
model [29]. Additionally, in the heavy flavor sector, the
molecules with four quarks, five quarks, and six quarks
were investigated with the OBE model [30–34].
Chiral perturbation theory (ChPT) is used to build the

modern the nuclear force [35,36]. The idea was proposed
by Weinberg [37,38]. The chiral expansion is performed
to obtain the interaction kernel, which is iterated to all
orders by solving the Lippmann-Schwinger equation or
Schrödinger equation. Compared with the OBE model, the
ChPT has more consistent power counting. The potential is
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calculated order by order, and thus, the error is estimable
and controllable. The same idea on nuclear force was also
applied to the heavy hadron systems. The interactions
between two heavy mesons were studied with the ChPT
by taking the heavy quark symmetry (HQS) into account
[39–44]. The Xð3872Þ and two Zb states were obtained as
bound states under this framework.
The HQS was also used to predict the partner states of

Pcð4312Þ, Pcð4440), and Pcð4457Þ [45,46]. The HQS is a
good approximation when the heavy quark masses approach
infinity. As we know, the heavy quark spin symmetry
(HQSS) violation effect will lead to mass splittings in the
charmed sector between the HQSS multiplets. The impacts
of the HQS breaking effect on the heavy molecular states
are rarely estimated. The molecular states are very shallow
bound states and affected by subtle changes to the behaviors
of the potentials. Thus, the effect of HQSS violation on the
interactions between two heavy hadrons needs to be care-
fully considered, especially in the charmed sector.
In this work, we derive the potentials between Σc and

D̄ð�Þ in the framework of the heavy hadron chiral pertur-
bation theory (HHCPT). We try to reproduce the newly
observed Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ as the
molecular states. In Sec. II, we discuss Weinberg’s for-
malism and construct the Lagrangians. In Sec. III, we
perform the Feynman diagrams calculation in the frame-
work of the HHChPTand obtain the analytical results of the
effective potentials between Σc and D̄ð�Þ to the next-to-
leading order. We give some discussions about the ΣcD̄ð�Þ
potentials in the heavy quark limit in Sec. IV. In Sec. V, we
use three scenarios to give the numerical results. A brief
summary is given in Sec. VI. In the Appendix A, we list the
matrix elements of some of the operators. In Appendix B,
we present the loop integral functions we used.

II. WEINBERG’S FORMALISM AND
EFFECTIVE LAGRANGIANS

In the framework of the HHChPT, the amplitudes are
expanded in powers of ϵ ¼ q=Λχ , where q is either the
momenta of Goldstone bosons or the residual momenta of
the matter fields, and Λχ is the chiral symmetry breaking
scale. For the singly heavy hadrons, the mass splitting δ
between the heavy quark multiplets is not vanishing in the
chiral limit. Thus, we adopt the small scale expansion in
this work [47], where the mass spitting δ is regarded as
another small scale. The amplitudes are also expanded in
powers of δ=mc, where mc is the heavy quark mass, which
is treated as another large scale.
The expansion is organized according to the power

counting given by Weinberg [37,38]. The order of a
diagram ν reads

ν ¼ 2Lþ 2 −
En

2
þ
X

ViΔi; Δi ¼ di þ ni=2 − 2; ð1Þ

where L and En are the number of loops and external lines
of matter fields, respectively. For the ΣcD̄ð�Þ potential,
En ¼ 2. Vi is the number of the vertices with an orderΔi. di
and ni are the numbers of the derivatives and matter field
lines, respectively.
In the Weinberg’s formalism, only two particle irreduc-

ible (2PIR) graphs are considered. The amplitudes of the
box diagrams would be enhanced by the pinch singular-
ities, which would destroy the power counting in Eq. (1).
The pinch singularity originates from the two intermediate
on shell matter fields. Thus, one can recover the power
counting by excluding the two particle reducible (2PR)
contributions. The amplitudes we get in this way serve
as the kernel of the Lippmann-Schwinger equation or
Schrödinger equation. The tree level one-pion exchange
diagrams would be iterated to generate the 2PR contribu-
tions automatically by solving the Lippmann-Schwinger
equation or Schrödinger equation.
In order to remove the 2PR contributions in the

box diagrams, Ordonez et al. adopted the time-ordered
perturbation theory [48], while Kaiser et al. removed the
contributions from the poles of the intermediate matter
fields when performing the loop integrals [49]. Here, we
use the principal integral method, which is equivalent to
the scheme used in Ref. [49]. The details can be found in
Appendix B.
In order to construct the chiral Lagrangians, we intro-

duce the pion fields,

ϕ ¼
ffiffiffi
2

p � π0ffiffi
2

p πþ

π− − π0ffiffi
2

p

�
; U ¼ u2 ¼ exp

�
i
ϕðxÞ
F0

�
: ð2Þ

The chiral connection Γμ and the axial vector current uμ are
defined as

Γμ ¼
1

2
½u†; ∂μu�; uμ ¼

i
2
fu†; ∂μug: ð3Þ

The multiplets of Σð�Þ
c are denoted as

Σc ¼

0
B@Σþþ

c
Σþ
cffiffi
2

p

Σþ
cffiffi
2

p Σ0
c

1
CA; Σ�μ

c ¼

0
B@Σ�þþ

c
Σ�þ
cffiffi
2

p

Σ�þ
cffiffi
2

p Σ�0
c

1
CA

μ

: ð4Þ

Their chiral covariant derivative is DμΣ
ð�Þ
c ¼ ∂μΣ

ð�Þ
c þ

ΓμΣ
ð�Þ
c þ Σð�Þ

c ΓT
μ . The leading order chiral Lagrangians

for the Σð�Þ
c read
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Lð0Þ
Σ�
cϕ

¼ Tr½Σ̄cði=D −MΣc
ÞΣc� þ Tr½Σ̄�μ

c ½−gμνði=D −MΣ�
c
Þ

þ iðγμDν þ γνDμÞ − γμði=DþMΣ�
c
Þγν�Σ�ν

c �
þ g1Tr½Σ̄cγ

μγ5uμΣc� þ g3Tr½Σ̄�μ
c uμΣc� þ H:c:

þ g5Tr½Σ̄�ν
c γμγ5uμΣ�

cν�; ð5Þ

where Tr½…� represents the trace in flavor space. Since the
Σc and Σ�

c are the degenerate states in the heavy quark limit,
we can define the superfield as

ψμ ¼ B�μ −
ffiffiffi
1

3

r
ðγμ þ vμÞγ5B;

ψ̄μ ¼ B̄�μ þ
ffiffiffi
1

3

r
B̄γ5ðγμ þ vμÞ; ð6Þ

where B� stands for the Σð�Þ
c fields after heavy baryon

reduction. The leading order Lagrangian in Eq. (5) can be
rewritten as

Lð0Þ
Σcϕ

¼ −Tr½ψ̄μiv ·Dψμ� þ igaϵμνρσTr½ψ̄μuρvσψν�

þ i
δa
2
Tr½ψ̄μσμνψ

ν�: ð7Þ

The third term in Eq. (7) accounts for the HQS violation
effect for the charmed baryons. δa ¼ MΣ�

c
−MΣc

denotes
the mass splitting. Comparing Eq. (7) with Eq. (5), one can
easily get

g1 ¼ −
2

3
ga; g3 ¼ −

ffiffiffi
1

3

r
ga; g5 ¼ ga: ð8Þ

We introduce the superfield H̃ to denote the D̄ and D̄�
fields,

H̃ ¼ ðP̃�
μγ

μ þ iP̃γ5Þ
1 − =v
2

;

¯̃H ¼ 1 − =v
2

ðP̃�†
μ γμ þ iP̃†γ5Þ; ð9Þ

P̃ ¼
�
D̄0

D̄−

�
; P̃�μ ¼

�
D̄�0

D̄�−

�
; ð10Þ

where we use the “X̃” to label the antiparticles. The P̃ and
P̃�
μ are the reduced heavy meson D̄ and D̄� fields,

respectively, which can be related to the relativistic Dð�Þ

fields Φð�Þ by the following relations:

ffiffiffiffiffi
M

p
Φð�Þ ¼ eiMv·xP̃ð�Þ†;ffiffiffiffiffi

M
p

Φð�Þ† ¼ e−iMv·xP̃ð�Þ; ð11Þ

where M is the Dð�Þ meson mass. Their chiral covariant
derivative is DμP̃ð�Þ ¼ ∂μP̃ð�Þ þ ΓμP̃ð�Þ. The leading order
Lagrangians for D̄ and D̄� are

Lð0Þ
D̄ϕ

¼ −ih ¯̃Hv ·DH̃i þ gbh ¯̃Huμγμγ5H̃i − δb
8
h ¯̃HσμνH̃σμνi;

ð12Þ

where h…i denotes the trace in spinor space. The third term
in Eq. (12) represents the HQS violating effect for the
charmed mesons. δb ¼ MD̄� −MD̄ is the mass splitting
between D̄� and D̄.
Apart from Eqs. (7) and (12), the leading order

Lagrangians also contain the contact terms,

Lð0Þ
contact ¼ D1h ¯̃H H̃iTrðψ̄μψμÞ

þ iD2ϵσμνρvσh ¯̃Hγργ5H̃iTrðψ̄μψνÞ
þ D̃1h ¯̃HτiH̃iTrðψ̄μτiψμÞ
þ iD̃2ϵσμνρvσh ¯̃Hγργ5τ

iH̃iTrðψ̄μτiψνÞ: ð13Þ

In this work, the values of the parameters [50] are
taken as

mπ ¼ 0.139 GeV; Fπ ¼ 0.092 GeV;

δa ¼ 0.064 GeV; δb ¼ 0.141 GeV; λ ¼ 1 GeV;

ð14Þ

where λ is the large scale we used to perform the small scale
expansion. The ga and gb are determined by the partial
decay widths of D� and Σ�

c [50–52], respectively.

ga ¼ −1.47; gb ¼ −0.59: ð15Þ

The signs of ga and gb are determined by the quark model.
The low-energy constants (LECs) in the contact terms will
be estimated in Sec. V.

III. EFFECTIVE POTENTIALS

In order to obtain the effective potential, we calculate
the scattering amplitude M first. If we use the standard
normalization and Feynman rules in the relativistic quan-
tum field theory, the effective potential VðqÞ in the
momentum space reads

VðqÞ ¼ −
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M12M22M32M4

p ; ð16Þ

whereM1;…;4 are the masses of the scattering particles. The
potential in coordinate space can be obtained by making the
Fourier transformation to the VðqÞ. In order to regularize
the divergence in the Fourier transformation, we introduce
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the Gauss regulator, F ðqÞ ¼ expð−q2n=Λ2nÞ [36,48,53].
The potential in the coordinate space reads

VðrÞ ¼ 1

ð2πÞ3
Z

d3qeiq·rVðqÞF ðqÞ: ð17Þ

In this work, we set n ¼ 2 and vary the cutoff Λ from
0.5 GeV to 0.8 GeV.

A. ΣcD̄ system

The leading order [Oðϵ0Þ] potential of the ΣcD̄ system
comes from the contact diagram in Fig. 1. There is no one-
pion exchange diagram due to the vanishing D̄ D̄ π vertex.
This vertex is forbidden by the parity and angular momen-
tum conservation. Thus, the leading order potential of
ΣcD̄ reads

VX1.1

ΣcD̄
¼ −D1 − D̃1ð2I1 · I2Þ; ð18Þ

where I1 · I2 is the isospin-isospin operator. The superscript
is the label of the Feynman diagram while the subscript
denotes the physical system.

There are large amounts of contact terms contributing to
the effective potential at the next-to-leading order [Oðϵ2Þ]
[44]. The LECs of these vertices can be divided into the
infinite part and finite part. The infinite part can be used to
absorb the divergence in the Oðϵ2Þ loop diagrams. The
renormalized vertices (the finite part) will contribute to the
effective potential. In our calculations, we neglect the finite
part of these vertices since we have no experimental data as
input to determine the LECs at Oðϵ2Þ.
There are loop diagrams contributing to the next-to-

leading order potential, which can be divided into two
types. The first type is the vertex correction and wave
function renormalization diagrams in Fig 2. Their contri-
butions can be included when we use the physical values of
the parameters in the Lagrangians. Another type is the two-
pion exchange diagrams in Fig. 3, including one football
diagram, three triangle diagrams, two box diagrams, and
two crossed box diagrams. The two-pion vertices in these
diagrams stem from the chiral connection terms in Eqs. (7)
and (12). The one-pion vertices arise from the axial
coupling terms. In the calculation, we keep the mass
splittings from the HQS violation effect in the propagators.
The analytical results of these diagrams read

VF1.1

ΣcD̄
¼ JF22

F4
π
ðI1 · I2Þ; ð19Þ

VT1.1

ΣcD̄
¼ðI1 ·I2Þ

g2b
F4

½JT34ðd−1Þ−ðJT33þJT24Þq2�ð−δbÞ; ð20Þ

VT1.2

ΣcD̄
¼ðI1 ·I2Þ

−g21
4F4

π
½ð1−dÞJT34þðJT33þJT24Þq2�ð0Þ;

ð21Þ

FIG. 1. The leading order diagram for the ΣcD̄. At this order,
only the contact diagram X1.1 contributes to the effective
potential. The thick solid and solid lines represent Σc and D̄,
respectively.

(d)(a) (b) (c) (e) (g) (h)(f)

FIG. 2. The vertex correction and the wave function renormalization diagrams at the next-to-leading order. Every graph represents a
type of Feynman diagrams with the same topological structure. Some diagrams do not contribute due to the vanishing D̄ D̄ π vertex.

FIG. 3. The two pion exchange diagrams for the ΣcD̄. There are one football diagram (F1.1), three triangle diagrams (T1.i), two box
diagrams (B1.i), and two crossed box diagrams (R1.i). The solid, thick solid, double solid, double thick solid, and dashed lines represent
D̄, Σc, D̄�, Σ�

c, and pion, respectively.
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VT1.3

ΣcD̄
¼ðI1 ·I2Þ

g23
4F4

π

�
JT34ðd−2ÞþðJT33þJT24Þ

2−d
d−1

q2
�
ð−δaÞ;

ð22Þ

VB1.1

ΣcD̄
¼ ð1 − I1 · I2Þ

−g21g2b
2F4

π

�
JB41

ðdþ 1Þð1 − dÞ
4

þ ðJB42 þ JB31Þ
dþ 1

2
q2 þ JB21

1

4
q2

þ ðJB43 þ 2JB32 þ JB22Þ
�
−
1

4
q4
��

ð0;−δbÞ; ð23Þ

VB1.2

ΣcD̄
¼ ð1 − I1 · I2Þ

g23g
2
b

8F4
π

�
JB41ðd − 2Þðdþ 1Þ

þ ðJB42 þ JB31Þq2
2ðdþ 1Þð2 − dÞ

d − 1
þ JB21q

2 2 − d
d − 1

þ ðJB43 þ 2JB32 þ JB22Þ
d − 2

d − 1
q4
�
ð−δa;−δbÞ; ð24Þ

V
Ri;j

ΣcD̄
¼ V

Bi;j

ΣcD̄
jJBx→JRx ;I1·I2→−I1·I2 ; ð25Þ

where JTij are the loop integrals defined in Appendix B.
They are the functions of mπ , q2, and the mass splittings
δa;b. We omit the mπ , q2 for conciseness and give the
specific mass splittings at the end of every expression.
The q is the transferred three-momentum in the diagrams,
and d is the dimension in the dimensional regularization.
Since we focus on the S-wave interactions, we take the
replacement,

qiqj ↣ δij
1

d − 1
q2: ð26Þ

B. ΣcD̄� system

For the ΣcD̄� system, the leading order potential is
generated from both the contact terms and the one-pion
exchange diagram in Fig. 4. The analytical results read

VX2.1

ΣcD̄� ¼ −
�
D1 þ

1

3
D2σ · T

�

−
�
D̃1 þ

1

3
D̃2σ · T

�
ð2I1 · I2Þ; ð27Þ

VH2.1

ΣcD̄� ¼ −
gbg1
2F2

ðσ · qÞðT · qÞ
q2 þm2

ðI1 · I2Þ; ð28Þ

where σ is the Pauli matrix. The T ≡ iϵ�4 × ϵ2 is propor-
tional to the spin operator of D̄�. Thus, the σ · T terms are

the spin-spin interaction. For the S-wave potential, we can
make the following replacements in the effective potentials:

ϵ�4 · ϵ2 ↣ 1; qiqj ↣ δij
1

d − 1
q2: ð29Þ

Then, only the central terms and spin-spin terms survive in
the potential.
For the next-to-leading order potential, we neglect the

finite part from the Oðϵ2Þ contact terms again. The renorm-
alizations of the vertices, wave functions, and masses are
included by using the physical values of the coupling
constants, decay constants, and masses just like we did in
the previous subsection.
At Oðϵ2Þ, there are twelve two-pion exchange diagrams

which contribute to the effective potential in Fig. 5. Their
analytical results read

VF2.1

ΣcD̄� ¼ JF22
F4
π
ðI1 · I2Þ; ð30Þ

VT2.1

ΣcD̄� ¼ðI1 · I2Þ
g2b
F4
π

�
2JT34 −

d − 2

d − 1
q2ðJT33 þ JT24Þ

�
ð0Þ;

ð31Þ

VT2.2

ΣcD̄� ¼ðI1 · I2Þ
−g2b
F4
π

�
−JT34 þ ðJT33 þ JT24Þ

1

d − 1
q2
�
ðδbÞ;

ð32Þ

VT2.3

ΣcD̄� ¼ðI1 · I2Þ
−g21
4F4

π
½ð1 − dÞJT34 þ ðJT33 þ JT24Þq2�ð0Þ;

ð33Þ

VT2.4

ΣcD̄� ¼ ðI1 · I2Þ
g23
4F4

π

�
JT34ðd − 2Þ

þ ðJT33 þ JT24Þ
�
2 − d
d − 1

�
q2
�
ð−δaÞ; ð34Þ

FIG. 4. The leading order diagrams for the ΣcD̄� system. At this
order, the contact diagram X2.1 and the one-pion exchange
diagram H2.1 contributing to the effective potential. Notations
are the same as those in Fig. 3.
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VB2.1

ΣcD̄� ¼ ð1 − I1 · I2Þ
−g21g2b
8F4

�
JB41ð2ð3 − 2dÞ þ ðJB42 þ JB31Þq2

�
4
d − 2

d − 1
þ d

�
þ JB21

d − 2

d − 1
q2

þ ðJB43 þ 2JB32 þ JB22Þ
�
−
d − 2

d − 1
q4
�
þ JB21

1

d − 1
q2T · σ

�
ð0; 0Þ; ð35Þ

VB2.2

ΣcD̄� ¼ ð1 − I1 · I2Þ
g21g

2
b

2F4
π

�
JB41

dþ 1

4
þ ðJB42 þ JB31Þq2

dþ 1

2ð1 − dÞ þ JB21
−1

4ðd − 1Þ q
2

þ ðJB43 þ 2JB32 þ JB22Þ
1

4ðd − 1Þ q
4 þ JB21

−1
4ðd − 1Þ q

2T · σ

�
ð0; δbÞ; ð36Þ

VB2.3

ΣcD̄� ¼ ð1 − I1 · I2Þ
g23g

2
b

32F4
π

�
JB41

�
8
d2 − 2dþ 2

d − 1

�
þ ðJB42 þ JB31Þq2

�
−16

�
d − 2

d − 1

�
2

− 4
d − 2

d − 1
d

�
þ JB21

�
−4

�
d − 2

d − 1

�
2
�
q2

þ ðJB43 þ 2JB32 þ JB22Þ
8ðd − 2Þ
ðd − 1Þ2 q

4 þ JB21
4

ðd − 1Þ2 q
2T · σ

�
ð−δa; 0Þ; ð37Þ

VB2.4

ΣcD̄� ¼ ð1 − I1 · I2Þ
−g23g2b
8F4

π

�
JB41

�
2

d − 1
− d

�
þ ðJB42 þ JB31Þ

2ðd − 2Þðdþ 1Þ
ðd − 1Þ2 q2 þ JB21

ðd − 2Þ
ðd − 1Þ2 q

2

þ ðJB43 þ 2JB32 þ JB22Þ
2 − d

ðd − 1Þ2 q
4 − JB21

1

ðd − 1Þ2 q
2T · σ

�
ð−δa; δbÞ; ð38Þ

V
Ri;j

ΣcD̄� ¼ V
Bi;j

ΣcD̄�

			
JBx→JRx ; I1·I2→−I1·I2; σ·T→−σ·T

; ð39Þ

where the notations are the same as those for the ΣcD̄ system.

IV. THE HEAVY QUARK SYMMETRY

In Secs. II and III, the LECs can be related to one another by adopting the HQS. The HQS violation effect is introduced
through the mass splittings. If we ignore these mass splittings in the loop diagrams, the HQS manifests itself.
The manifestation of the HQS could be clearer at the quark level. In the heavy quark limit, the potential between the Σc

and D̄ð�Þ arises from the interactions of their light degrees of freedom (d.o.f.). The heavy d.o.f. are spectators. Their
interactions are suppressed by the heavy quark mass. The S-wave interactions between the light diquark in the Σc and the
light quark in the D̄ð�Þ can be expressed as

FIG. 5. The two-pion exchange diagrams for the ΣcD̄� system at the next-to-leading order. There is one football diagram (F2.1), four
triangle diagrams (T2.i), four box diagrams (B2.i), and four crossed box diagrams (R2.i). Notations are the same as those in Fig. 3.
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VHQS
quark−level ¼ Va þ Ṽal1 · l2; ð40Þ

where l1 and l2 are the spin operators of their light d.o.f.
Since we concentrate on the S-wave interactions, only the
spin-spin interaction and the central potential exist. We can
parametrize the potential at the hadron level as

VΣcD̄ ¼ V1;

VΣcD̄� ¼ V2 þ Ṽ2S1 · S2;

VΣ�
cD̄ ¼ V3;

VΣ�
cD̄� ¼ V4 þ Ṽ4S1 · S2: ð41Þ

With the quark level interaction in the HQS, we can relate
the hadron level potentials with each other as follows:

V1 ¼ V2 ¼ V3 ¼ V4 ¼ Va;

Ṽ2 ¼
2

3
Ṽa; Ṽ4 ¼

1

3
Ṽa: ð42Þ

We give the matrix elements of l1 · l2 and S1 · S2 in Table I
and the calculation details in Appendix A. Our analytical
results indeed satisfy the above expressions when d → 4
and δa;b → 0.
With Eq. (40), we can get the potentials of the Σ�

cD̄,
Σ�
cD̄� and even the inelastic channels in the heavy quark

limit without calculating the loop diagrams. We first extract
the Va and Ṽa from the ΣcD̄� potentials as in Eq. (42).
Then, we calculate the matrix elements of l1 · l2 for the
corresponding channels. The potential can then be derived
from the quark-level interaction in Eq. (40). In our
framework, the leading order potentials satisfy the HQS;

i.e., the leading order potentials we derived from the above
procedures are equal to those from Feynman diagrams.
In the heavy quark limit, the analytical results of the box

diagrams become more concise. All the mass splittings
between heavy quark multiplets vanish with the HQS,
and all the box diagrams with the pinch singularities
become the 2PR diagrams. With the expression of JBx in
Appendix B, there exists the relation JBx ¼ −JRx when
δa ¼ δb ¼ 0. The total potentials of the box diagrams
and crossed box diagrams are

VR þ VB ¼ VCðI1 · I2Þ þ VSðσ · TÞ: ð43Þ

The results are similar to those for the nuclear force [36].
However, the HQS is still an approximation when the

heavy quark mass is not infinite. Whether the HQS is good
enough in calculating the heavy hadron potential to obtain
the bound states needs to be considered carefully. In our
calculation, we keep the mass differences stemming from
the HQS breaking effect. For the triangle diagrams, there is
no spin-spin interaction. Thus, in the heavy quark limit, the
ΣcD̄ and ΣcD̄� should have the same potential. We give the
potentials of the triangle diagrams for the I ¼ 1

2
systems in

Fig. 6, from which we see that the ΣcD̄� potential in the
heavy quark limit is very close to its real potential.
However, the ΣcD̄ potential in the heavy quark limit
deviates alot from its real potential. Similar results are
obtained for the crossed box diagrams in Fig. 6 as well.
For the ΣcD̄� system, the potential in the HQS is a good
approximation of its real potential. However, the real ΣcD̄
attractive potential becomes repulsive when the HQS is
adopted. In the triangle or crossed box diagrams of the ΣcD̄
system, ignoring the HQS violation effect will make the

TABLE I. Matrix elements of l1 · l2 and S1 · S2 operators in the Σð�Þ
c D̄ð�Þ wave functions. J denotes the total spins

of the two hadrons.

Σ̄ð�Þ
c D̄ð�Þ; J ΣcD̄; 1

2
ΣcD̄�; 1

2
ΣcD̄�; 3

2
Σ̄�
cD̄; 3

2
Σ̄�
cD̄�; 1

2
Σ̄�
cD̄�; 3

2
Σ̄�
cD̄�; 5

2

hl1 · l2i 0 − 2
3

1
3

0 − 5
6

− 1
3

1
2

hS1 · S2i 0 −1 1
2

0 − 5
2

−1 3
2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.005

0.000

0.005

0.010

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.000

0.005

0.010

0.015

0.020

FIG. 6. The potentials of triangle diagrams and crossed box diagrams. The δ ¼ 0 in the legends denotes that we ignore the mass
splittings, which corresponds to the result in the heavy quark limit. The δ ≠ 0 denotes that we keep the mass splittings from the HQS
violation effect.
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potential in the coordinate space change by about
0.02–0.03 GeV. Our numerical results in Sec. V indicate
that the minimum of the potential function that generates
the loosely bound state is from −0.06 GeV to −0.15 GeV.
The correction from the HQS violation is not negligible.
Therefore, it may be misleading to adopt the HQS in
calculating the charmed hadron potentials, at least for the
ΣcD̄ system.
We notice that the HQS violation effect is more signifi-

cant for the ΣcD̄ system than that in the ΣcD̄� case. We take
the triangle diagrams as an example to illustrate the reason.
In Fig. 3, the graphs (T1.1) and (T1.3) are two diagrams with
the HQS violation effect for the ΣcD̄ system. Their
intermediate states are Σ�

c and D̄�, respectively, which
are both heavier than the corresponding external particles.
The HQS violation effect will deviate the potential in
the same direction. Thus, the HQS violation effect from
different diagrams are constructive. For the ΣcD̄� system,
the intermediate state can be either heavier or lighter than
its corresponding external field. The HQS breaking
(HQSB) effect would cancel with each other. Thus, we
can infer that the HQS violation effect from mass splittings
is also significant for the Σ�

cD̄� system.
The HQS violation effect can also be investigated at the

quark level. To this end, we present this effect as follows:

VHQSB
quark−level ¼

Vc

mc
l1 · h2 þ

Vd

mc
l2 · h1 þ

Ve

m2
c
h1 · h2; ð44Þ

where Vc, Vd, and Ve are the functions used to parametrize
the potential. The first and second terms are the interaction
between the light and heavy d.o.f., which are suppressed by
the 1=mc. The third term is the interaction between the
heavy d.o.f., which is the higher order contribution in the
heavy quark expansion. For the ΣcD̄ system, we calculate
the matrix elements of three spin-spin operators in Eq. (44),

hl1 · h2i ¼ hl2 · h1i ¼ hh1 · h2i ¼ 0: ð45Þ

The HQS violation effect vanishes, which seems to be
contradictory with the conclusion from directly calculating
the Feynman diagrams. The HQS violation effect in
calculating the loop diagrams arises from the mass split-
tings in the propagators. It is hard to include this effect in
the quark model. The quark model can only give the
analytical terms which are the polynomials of m2

π or δ.
However, the loop diagrams in ChPT can generate the
nonanalytical structures such as the logarithmic terms. The
quark level HQS violation effect in Eq. (44) is more likely
to appear in the LECs at the hadron level.
The heavy quark limit for the box diagrams is more

tricky. When the intermediate states of the box diagrams are
the HQS partner states of the external fields, we calculate
these diagram directly. They have no pinch singularities
due to the existence of the mass splittings. If we decrease

the mass splittings to zero, these amplitudes will blow up
and these diagrams become two particle reducible. One
way to eliminate these singularities is to remove the 2PR
contributions. Meanwhile, we shall solve the coupled-
channel Schrödinger equation as illustrated in Fig. 7.
The one-pion exchange inelastic scattering diagrams at
the tree level will be iterated to generate the 2PR con-
tributions automatically. Thus, it is illegitimate to take the
mass splittings in our analytical results of the box diagrams
to zero directly.

V. NUMERICAL RESULTS

In our analytical results, there are four unknown LECs
from the contact terms, D1, D2, D̃1, and D̃2. These LECs
should be determined by fitting the experimental data.
However, there does not exist any Σc and D̄ð�Þ scattering
data now. Therefore, we choose three scenarios to present
the numerical results in this section. In scenario I, we
determine these LECs from the nucleon scattering with the
help of the quark model. In scenario II, we will assume the
three structures observed in LHCb corresponding to three
molecular states and check whether they can coexist in our
framework. In scenario III, we will include the coupled-
channel effect on the basis of scenario II.

A. Scenario I

There are two motivations for introducing the contact
terms. First, some heavy mesons exchanged between Σc

and D̄ð�Þ, such as ρ and ω, are integrated out, and their
contributions are included in the contact terms. Second,
the contact terms will absorb the divergence in the loops
and remove the scale dependence. The contact terms will
cancel the infinity in the loop diagrams. Thus, the values of

FIG. 7. The different treatments to the boxed diagram in single-
channel and coupled-channel calculations.
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renormalized contact terms depend on chiral truncation
order. Meanwhile, the contact terms will make the potential
scale independent. The values of the contact terms will
depend on the regularization schemes, types of regulator,
and values of cutoff. The specific values of the contact
terms for the nucleon system in the literature also vary due
to above reasons [36,48,54].
For the nucleon system, the leading order contact

Lagrangian and the potential are written as

Lð0Þ
NN ¼ −

1

2
CSN̄NN̄N −

1

2
CTN̄σN · N̄σN; ð46Þ

VNN ¼ CS þ CTσ · σ: ð47Þ

There are two independent LECs, CS and CT . The isospin-
isospin interaction is absorbed through a Fierz rearrange-
ment. Since we use the dimensional regularization in
calculations, we choose the values determined in
Ref. [36], in which the same regularization scheme was
used. We take the values,

CS ¼ −99.43 GeV−2; CT ¼ 6.95 GeV−2: ð48Þ

In order to relate the contact terms in the nucleon system
to those of the ΣcD̄ð�Þ systems, we make use of the contact
interaction at the quark level,

Lquark ¼ −
1

2
csq̄qq̄q −

1

2
ctðq̄σqÞ · ðq̄σqÞ; ð49Þ

where q ¼ ðu; dÞT . cs and ct are the coupling constants at
the quark level. The interaction may arise from the heavy
meson exchange at the quark level. With the quark model,
we can get the values of the LECs for the ΣcD̄ð�Þ systems,

D1 ¼ −
2

9
CS ¼ 22.1 GeV−2; D2 ¼ 4CT ¼ 27.8 GeV−2;

D̃1 ¼ D̃2 ¼ 0: ð50Þ

With these LECs, we can solve the Schrödinger equation
to obtain some bound states. We vary the cutoff Λ from
0.4 GeV to 0.8 GeV. The binding solutions are given in
Fig. 8. For the I ¼ 1

2
system, we get the binding solutions

for the ½ΣcD̄�J¼1=2 and ½ΣcD̄��J¼1=2 systems. We reproduce
the masses of Pcð4312Þ and Pcð4440Þ when the cutoff is
0.5 GeV. We present the potentials in Fig. 9. The binding
energy and the root mean square radius (rms) for the
½ΣcD̄�J¼1=2 are −9.21 MeV and 1.36 fm, respectively.
For the ½ΣcD̄��J¼1=2, the binding energy and the rms are
−18.93 GeV and 1.16 fm, respectively.
However, in this scenario, we can not reproduce the

Pcð4457Þ. In fact, the potential of ½ΣcD̄��I¼1=2
J¼3=2 is repulsive

FIG. 8. The binding energies of the ΣcD̄ð�Þ system. The left plot and the right plot are the I ¼ 1
2
systems and I ¼ 3

2
systems,

respectively. The systems without binding solutions are not given.
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FIG. 9. The potentials for the ½ΣcD̄ð�Þ�I¼1=2 systems in scenario I. The cutoff parameter Λ ¼ 0.5 GeV. The LECs of the contact terms
are taken from Eq. (50).
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as shown in Fig. 9. The scheme we used to determine the
LECs is rather rough. Therefore, we can not rule out the
possibility of the Pcð4457Þ as a molecular state because of
the uncertainty of the LECs. For all three I ¼ 3

2
systems,

there exist loosely bound states when we vary the cutoff Λ
from 0.4 GeV to 0.8 GeV. We give the results in Fig. 8.

B. Scenario II

One can use other phenomenological methods to evalu-
ate the LECs, such as the heavy meson exchange model,
but they bring large uncertainties. Meanwhile, we drop out
the finite contributions from Oðϵ2Þ contact terms, which
may also influence our final results. In scenario II, we will
adopt the general form of contact terms and vary the LECs
to search for the bound solutions.
In this scenario, we will focus on the I ¼ 1=2 systems

since the three Pc states were all observed in the J=ψp

invariant mass spectrum. Thus, there are only two inde-
pendent contact terms. We parametrize the contact inter-
action of ½ΣcD̄ð�Þ�I¼1=2 as

VX1.1

ΣcD̄
¼ −D1; VX2.1

Σ�
cD

¼ −
�
D1 þ

1

3
D2σ · T

�
: ð51Þ

The isospin-isospin interaction and theOðϵ2Þ contact terms
are absorbed into D1 and D2.
We vary D1 and D2 in the range from −100 GeV−2 to

100 GeV−2, respectively. We show the parameter regions
in which there exist loosely bound states for ½ΣcD̄�I¼1=2

J¼1=2,

½ΣcD̄��I¼1=2
J¼1=2 and ½ΣcD̄��I¼1=2

J¼3=2 in Fig. 10, where we choose
Λ ¼ 0.5 GeV. Since the molecules are loosely bound
states, we adopt the binding energy E ¼ −30 MeV as
the lower limit. In Fig. 10, there is a small region in which
three bound states can coexist. In this region, the binding
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−100
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100

−20 0 20 40 60 80

−80

−60

−40
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FIG. 10. Parameter regions of the contact terms in which there are loosely bound states for I ¼ 1
2
system. We choose Λ ¼ 0.5 GeV.

The regions of ½ΣcD̄�I¼1=2
J¼1=2, ½ΣcD̄��I¼1=2

J¼1=2, and ½ΣcD̄��I¼1=2
J¼3=2 are surrounded by the dashed line, dotted line, and dot-dashed line,

respectively. Every band region corresponds to the binding energy −30 MeV − 0 MeV. The arrows give the directions that the bindings
become deeper. The solid lines are the sets of parameters corresponding to the three Pc states in Refs. [11]. The left and right graphs
represent the results of scenarios II and III, respectively.
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FIG. 11. The potentials for the ½ΣcD̄ð�Þ�I¼1=2 systems in single channel calculation in scenario II. The cutoff parameter Λ ¼ 0.5 GeV.
The LECs of contact terms are D1 ¼ 42 GeV−2 and D2 ¼ −25 GeV−2.
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energy ranges for ½ΣcD̄�I¼1=2
J¼1=2, ½ΣcD̄��I¼1=2

J¼1=2, and ½ΣcD̄��I¼1=2
J¼3=2

are ½−30;−25�, ½−11; 0�, and ½−8;−4� MeV, respectively.
We choose one set of parameters in the overlap

region of three bands in Fig. 10, D1 ¼ 42 GeV−2 and
D2 ¼ −25 GeV−2. The potentials are displayed in Fig. 11,
where the potentials for all three channels are attractive.
For the ½ΣcD̄�I¼1=2

J¼1=2 system, the potential from the contact
terms and two-pion exchange are both attractive. The
binding energy is also deeper than that of Pcð4312Þ as a
ΣcD̄ bound state. For the ½ΣcD̄��I¼1=2

J¼1=2 system, the inter-
action of the two-pion exchange is very weak. The
attractive one-pion exchange and contact interactions
generate a loosely bound state. For the ½ΣcD̄��I¼1=2

J¼3=2

system, both one-pion exchange and two-pion exchange
are repulsive. The loosely bound state arises from the
very attractive contact interaction. The bound state of
½ΣcD̄��I¼1=2

J¼3=2 we calculated is dominated by the short-
distance contact interaction, which may arise from the
vector meson ρ and ω exchange in the OBE mode.
We draw the binding energies of threes Pc states as three

solid lines in Fig. 10 if we assume they are molecular states.
There are three cross points in which two of the three states
can coexist. The three cross points are not very close. In
other words, if we restrict the binding energies to the
experimental values, it is hard to reproduce the three states
simultaneously.

C. Scenario III

In the above two scenarios, we only consider the
potentials of the elastic channels as shown in the upper
panel of Fig. 7. We include the HQS partner states of the
external lines as intermediate states. Only part of the
coupled-channel effects is taken into account. For example,
the contributions from the ladder diagrams generated by
the inelastic tree diagrams are dropped. In scenario III, we
improve our results by including the inelastic channels and
solving the coupled-channel Schrödinger equation.
For the J ¼ 1

2
and J ¼ 3

2
systems, four and three channels

can couple to one another, respectively, which are shown in
Table II. The ½ΣcD̄�J¼1=2, ½ΣcD̄��J¼1=2, and ½ΣcD̄��J¼3=2 are
the channels we are interested in. For the other channels, we
only include their leading order potentials. We can get these
potentials either from the tree diagram calculations or the
HQS analysis as illustrated in Sec. IV. Both approaches

lead to the same results. The matrix elements of the l1 · l2
for these channels read

hl1 · l2iJ¼1=2 ¼

0
BBBBB@

0 1ffiffi
3

p − 1ffiffi
6

p 0

1ffiffi
3

p − 2
3

− 1

3
ffiffi
2

p 0

− 1ffiffi
6

p − 1

3
ffiffi
2

p − 5
6

0

0 0 0 0

1
CCCCCA;

hl1 · l2iJ¼3=2 ¼

0
BBBBB@

1
3

1

2
ffiffi
3

p −
ffiffi
5

p
6

1

2
ffiffi
3

p 0
ffiffiffiffi
5
12

q
−

ffiffi
5

p
6

ffiffiffiffi
5
12

q
− 1

3

1
CCCCCA: ð52Þ

Since the off diagonal terms in the Hamiltonian only arise
from the l1 · l2 interaction, the forth channel of the J ¼ 1=2
system does not couple with the other three channels in the
leading order potentials.
For our channels of interest, we compute their potentials

up to the next-to-leading order. In the coupled-channel
calculations, we deal with the box diagrams in a different
way. As illustrated in Fig. 7, we have included the inelastic
tree diagrams at the leading order. These diagrams will be
iterated to generate the ladder diagrams. Thus, to avoid the
double counting of this contribution, we ignore the mass
splittings in the box diagrams and remove the 2PR
contributions.
We vary the two unknown LECs D1 and D2 as we

did in scenario II. The parameter regions in which the
three loosely bound states (with a binding energy
−30 MeV−0 MeV) can exist are shown in the second
graph of Fig. 10. Because of the coupled-channel effect,
the parameter regions are no longer bands with fixed width.
We notice that the overlap region in which three bound
states can coexist is much larger than that in scenario II.
Meanwhile, the three cross points of the three lines
corresponding to Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ are
much closer than those in scenario II. Therefore, the
coupled-channel effect is very important to reproduce
the three states simultaneously.
We chose one set of LECs in the region in which the

three molecular states can coexist to give numerical results,

TABLE II. The channels we considered in the coupled-channel
calculations. The bold ones are our channels of interest.

Channel 1 2 3 4

J ¼ 1
2

ΣcD̄ ΣcD̄� Σ�
cD̄� Σ�

cD̄

J ¼ 3
2

ΣcD̄� Σ�
cD̄ Σ�

cD̄�

TABLE III. The numerical results in the coupled-channel
calculations in scenario III. The Pi is the proportion of the
specific channel.

S-III
Experimental

(MeV)
Mass
(MeV)

rms
(fm)

P1

ð%Þ
P2

ð%Þ
P3

ð%Þ
Pcð4312Þ 4311.9� 0.7þ6.8

−0.6 4305 1.21 99.4 0.5 0.1

Pcð4440Þ 4440.3� 1.3þ4.1
−4.7 4446 1.22 1.0 98.0 0.9

Pcð4457Þ 4457.3� 1.3þ0.6
−4.1 4458 1.28 96.8 2.5 0.7
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where we takeD1 ¼ 55 GeV−2 andD2 ¼ −10 GeV−2. The
masses, the rms’s, and the proportion of each channel are
given in Table III. With this set of LECs, we reproduce the
three Pc states in the experiment as the molecular states
simultaneously. Among them, the coupled-channel effect is
more significant for the formation of Pcð4457Þ. We plot the
potentials of their dominant channels in Fig. 12. We notice
that the attractive interaction mainly stems from the contact
interaction, which is similar to that in scenario II. As we
discussed before, the dominant contact interaction may
arise from the vector meson ρ and ω exchange in the
OBE model.

VI. DISCUSSION AND SUMMARY

In summary, we calculate the effective potentials of the
ΣcD̄ð�Þ systems in the heavy hadron perturbation theory.
We adopt the small scale expansion to keep the mass
splittings between the HQS multiplets. We include the
contact interaction and one-pion exchange interaction at
the leading order. At the next-to-leading order, we take
the two-pion exchange interaction into consideration. The
renormalizations of vertices and wave functions are
included by taking the physical values of the parameters
in chiral Lagrangians.
We employ the quark model with heavy quark spin

symmetry to get some relations between different systems.
Our analytical results are consistent with these relations in
the heavy quark limit. Using these relations, we obtain
the potentials of the partner channels in the HQS without
calculating extra diagrams. We also show that the HQS
violation effect is not negligible in calculating the potentials
between the charmed hadrons. Since the molecular states
are very shallow bound states, their existence is very
sensitive to the potentials. The molecular states calculated
in the charmed sector in the heavy quark limit might be
misleading. For the box diagrams, taking the heavy quark
limit will make the original two particle irreducible dia-
grams reducible. An extra operation to remove the 2PR
contributions is needed. One should be cautious about the
uncertainty and trap of using the HQS to obtain the
potentials between the charmed hadrons.

Due to lack of experimental data, we can not determine
the four LECs in the contact terms precisely. We use three
scenarios to estimate the contact interactions. In the first
scenario, we assume a contact interaction at the quark level
phenomenologically and then relate the contact terms in
nuclear force to those in the ΣcD̄ð�Þ systems. With the
LECs, we reproduce the Pcð4312Þ and Pcð4440Þ and
predict three loosely bound states in the I ¼ 3

2
channels.

We are unable to reproduce Pcð4457Þ due to the large
uncertainty of LECs in the first scenario. In the second
scenario, we focus on the I ¼ 1

2
channels. There are only

two unknown independent LECs. We vary the two LECs
and search for the region in which three Pc states can
coexist as the loosely bound states. We do find a parameter
region in which we can reproduce the three Pc states
simultaneously. The region is very small. The solution
corresponding to the Pcð4457Þ seems slightly less natural,
since the attractions all arise from the short-range
contact interactions. In the third scenario, we consider
the coupled-channel effect in the leading order on the basis
of scenario II. To avoid the double counting, we neglect the
mass splittings in the box diagrams and remove their 2PR
contributions. Through the coupled-channel calculations in
scenario III, we obtain a large parameter region in which
the three Pc states can coexist as molecular states. The
attraction mainly comes from the contact interactions.
We have reproduced the three Pc states in our calcu-

lations. The uncertainties come from either the framework
or the LECs. In this work, we only take the S wave into
consideration. However, the S-D wave mixing plays an
important role in reproducing the binding energy of the
deutron. We do not consider the HQS violation effect in the
LECs. In order to reduce the number of LECs, we relate
them to each other through HQS. The approximation will
introduce errors, especially for the contact terms. The
physical information at the high energy scale is packaged
into the contact terms, in which the HQSS tends to be
broken. Finally, the coupled-channel effect can be consid-
ered more carefully. In this framework, we calculate the
potentials of the interested channels to the next-to-leading
order. However, for the other inelastic channels, we only
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FIG. 12. The potentials for the ½ΣcD̄ð�Þ�I¼1=2 systems in coupled-channel calculation in scenario III. We neglect the mass splittings
in the box diagrams and remove the 2PIR contribution. The cutoff parameter Λ ¼ 0.5 GeV. The LECs of contact terms are
D1 ¼ 55 GeV−2 and D2 ¼ −10 GeV−2.
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calculate their leading order potentials. The numerical
results could be improved if one calculates all potentials
to the next-to-leading or an even higher order.
In Ref. [55], Weinberg suggested an elegant criterion to

determine whether a particle is elementary or composite.
Weinberg’s analysis requires that the particles are stable or
have a very narrow width. In Refs. [56], the authors
generalized Weinberg’s approach to the case of unstable
particles. However, in both works, a small binding energy is
required,

R≡ ð2μBÞ−1=2 ≫ 1

β
; ð53Þ

where μ and the B is the reduced mass and binding energy,
respectively. β is the range of force. In Ref. [55], Weinberg
took β ¼ mπ when he analyzed the deuteron. If we also
take β ¼ mπ for the Pc states, the condition in Eq. (53) is
equivalent to B ≪ 9 MeV. The Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ are below the thresholds 9 MeV, 22 MeV, and
6 MeV, respectively. Thus, the Weinberg’s approach may
not work well for the three Pc states.
The main uncertainty comes from the LECs of the

contact interactions. Thus, the lattice QCD simulation on

the Σð�Þ
c D̄ð�Þ scattering is called for. Our analytical results

can be used to do a chiral extrapolation for the lattice QCD.
With the lattice QCD results in the coming future, the LECs
for the contact interaction can be determined more pre-
cisely. Then the nature of the Pc states in an experiment can
be identified, and more reliable predictions for the other
systems can be given.
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APPENDIX A: MATRIX ELEMENTS

The matrix elements of the isospin-isospin operator are

hI1 · I2i ¼
1

2
½IðI þ 1Þ − I1ðI1 þ 1Þ − I2ðI2 þ 1Þ�; ðA1Þ

where I, I1, and I2 are the total isospin, isospin of Σc, and
isospin of D̄ð�Þ, respectively.
The T we defined is proportional to the spin operator S2

of D̄� as

T ¼ −S2: ðA2Þ

The matrix elements of the spin-spin operator S1 · S2 are

hS1 ·S2i¼
1

2
½JðJþ1Þ−S1ðS1þ1Þ−S2ðS2þ1Þ�; ðA3Þ

where J is the total spin of Σð�Þ
c D̄�.

The matrix elements of the l1 · l2 spin-spin operator in
the light d.o.f. can be calculated via the spin rearrangement.

Using the Wigner 9-J symbols, the Σð�Þ
c D̄ð�Þ states can be

related to the ones with a specific total light spin and a
heavy spin by the following relations:

jl1h1S1l2h2S2JMi
¼

X
L;H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2S1 þ 1Þð2S2 þ 1Þð2Lþ 1Þð2H þ 1Þ

p

×

8<
:

l1 l2 L

h1 h2 H

S1 S2 J

9=
;jl1l2Lh1h2HJMi; ðA4Þ

where li and hi are the light spin and heavy spin for Σð�Þ
c or

D̄ð�Þ, respectively. L and H are the total light spin and total
heavy spin for the two particle states, respectively. Thus,
the matrix elements of the l1 · l2 can be expressed as

hl1 · l2i ¼ hl1h1S1l2h2S2JMjl1 · l2jl1h1S1l2h2S2JMi
¼

X
L;H

½LðLþ 1Þ − l1ðl1 þ 1Þ − l2ðl2 þ 1Þ�

×
1

2
ð2S1 þ 1Þð2S2 þ 1Þð2Lþ 1Þð2H þ 1Þ

×

8<
:

l1 l2 L

h1 h2 H

S1 S2 J

9=
;

2

: ðA5Þ

APPENDIX B: INTEGRALS

1. Definitions of integral functions

We will use the “MxBy” to denote the integrals with x
light meson propagators and y heavy hadron propagators in
the following.

(i) M1B0

i
Z

ddlλ4−d

ð2πÞd
f1; lα; lαlβg
l2 −m2 þ iε

≡ fJc0; 0; gαβJc21gðmÞ;

ðB1Þ

(ii) M2B0

i
Z

ddlλ4−d

ð2πÞd
f1; lα; lαlβ; lαlβlγg

ðl2 −m2 þ iεÞ½ðlþ qÞ2 −m2 þ iε�
≡ fJF0 ; qαJF11; qαqβJF21 þ gαβJF22; ðg ∨ qÞJF31
þ qαqβqγJF32gðm; qÞ; ðB2Þ
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(iii) M1B1

i
Z

ddlλ4−d

ð2πÞd
f1; lα; lαlβ; lαlβlγg

ðv · lþ ωþ iεÞðl2 −m2 þ iεÞ≡ fJa0; vαJa11; vαvβJa21 þ gαβJa22; ðg ∨ vÞJa31 þ vαvβvγJa32gðm;ωÞ; ðB3Þ

(iv) M2B1

i
Z

ddlλ4−d

ð2πÞd
f1; lα; lαlβ; lαlβlγ; lαlβlγlδg

ðv · lþ ωþ iεÞðl2 −m2 þ iεÞ½ðlþ qÞ2 −m2 þ iε�
≡ fJT0 ; qαJT11 þ vαJT12; g

αβJT21 þ qαqβJT22 þ vαvβJT23 þ ðq ∨ vÞJT24; ðg ∨ qÞJT31 þ qαqβqγJT32 þ ðq2 ∨ vÞJT33
þ ðg ∨ vÞJT34 þ ðq ∨ v2ÞJT35 þ vαvβvγJT36; ðg ∨ gÞJT41 þ ðg ∨ q2ÞJT42 þ qαqβqγqδJT43 þ ðg ∨ v2ÞJT44
þ vαvβvγvδJT45 þ ðq3 ∨ vÞJT46 þ ðq2 ∨ v2ÞJT47 þ ðq ∨ v3ÞJT48 þ ðg ∨ q ∨ vÞJT49gðm;ω; qÞ; ðB4Þ

(v) M2B2

i
Z

ddlλ4−d

ð2πÞd
f1; lα; lαlβ; lαlβlγ; lαlβlγlδg

ðv · lþω1þ iεÞ½ðþ=−Þv · lþω2þ iε�ðl2−m2þ iεÞ½ðlþqÞ2−m2þ iε�
≡fJR=B0 ;qαJR=B11 þvαJR=B12 ;gαβJR=B21 þqαqβJR=B22 þvαvβJR=B23 þðq∨ vÞJR=B24 ;ðg∨ qÞJR=B31 þqαqβqγJR=B32

þðq2 ∨ vÞJR=B33 þðg∨ vÞJR=B34 þðq∨ v2ÞJR=B35 þvαvβvγJR=B36 ;ðg∨ gÞJR=B41 þðg∨ q2ÞJR=B42 þqαqβqγqδJR=B43

þðg∨ v2ÞJR=B44 þvαvβvγvδJR=B45 þðq3 ∨ vÞJR=B46 þðq2 ∨ v2ÞJR=B47 þðq∨ v3ÞJR=B48 þðg∨ q∨ vÞJR=B49 gðm;ω1;ω2;qÞ:
ðB5Þ

We use the representation X ∨ Y ∨ Z… to denote the
symmetrized tensor structure for concise. For example,

q ∨ v≡ qαvβ þ qβvα;

g ∨ q≡ gαβqγ þ gαγqβ þ gγβqα;

g ∨ g≡ gαβgγδ þ gαγgβδ þ gαδgβγ: ðB6Þ

2. Calculations of integral functions

In Ref. [44], the authors calculated these loop integrals
directly. While in this work, we calculate these loop
integrals through a different way. We take the Jax as an
example. We calculate the Ja0 directly as in Ref. [44]. Then,
we use vα to contract with the Ja1x terms, i.e.,

Ja11v
2 ¼ i

Z
ddlλ4−d

ð2πÞd
v · l

ðv · lþ ωþ iεÞðl2 −m2 þ iεÞ

¼ i
Z

ddlλ4−d

ð2πÞd
1

ðl2 −m2 þ iεÞ
�
1 −

ω

ðv · lþ ωþ iεÞ
�

¼ Jc0 − ωJa0: ðB7Þ

Here, we get the relation of Ja11 with the known functions.
Third, we can use gαβ and vα to contact with the Ja2x terms,

Ja21v
2 þ dJa22

¼ i
Z

ddlλ4−d

ð2πÞd
l2

ðv · lþ ωþ iεÞðl2 −m2 þ iεÞ

¼ i
Z

ddlλ4−d

ð2πÞd
1

ðv · lþ ωþ iεÞ
�
1þ m2

ðl2 −m2 þ iεÞ
�

¼ m2Jc0; ðB8Þ

Ja21vβ þ Ja22vβ

¼ i
Z

ddlλ4−d

ð2πÞd
v · llβ

ðv · lþ ωþ iεÞðl2 −m2 þ iεÞ ...: ðB9Þ

Therefore, following these procedures, we can relate the
complicated integrals to the simple ones step by step. The
final results we get are equivalent to those in Ref. [44].
In the following, we give the results of some simple

integrals first. The complicated ones can be reexpressed with
them,

Jc0ðm; qÞ ¼ m2

16π2
ln
m2

λ2
þ 2m2L; ðB10Þ

JF0 ðm; qÞ ¼
Z

1

0

dz
1

16π2

�
1þ ln

Δ̄
λ2

�
þ 2LðλÞ; ðB11Þ

where Δ̄ðzÞ ¼ m2 þ q2ðz − 1Þz − iε. When q2 < 0, one get
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JF0 ðm; qÞ ¼ −
1

16π2

�
1 − ln

m2

λ2
− r ln

				 1þ r
1 − r

				
�
þ 2L; ðB12Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 4m2

q2 j
q

.

Ja0ðm;ω; qÞ ¼ 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2 − iε

p
þ
Z

0

−ω
dy

2

16π2

�
1þ ln

Δ̃ðyÞ
λ2

�
þ 4ωL; ðB13Þ

where Δ̃ðyÞ ¼ m2 þ y2 − ω2 − iε. The JTx used in this work reads

JT21ðm;ω; qÞ ¼ 2ðJa0 þ 2JF0ωÞ þ JT0 ð4m2 − q2 − 4ω2Þ
4ðd − 2Þ ; ðB14Þ

JT31ðm;ω; qÞ ¼ JT0 ð−4m2 þ q2 þ 4ω2Þ − 2ðJa0 þ 2JF0ωÞ
8ðd − 2Þ ; ðB15Þ

JT32ðm;ω; qÞ ¼ 6ðð3 − dÞJa0 þ 2JF0ωÞ þ JT0 ð−ðdþ 1Þq2 þ 12m2 − 12ω2Þ
8ðd − 2Þq2 ; ðB16Þ

JT33ðm;ω; qÞ ¼ 1

4ðd − 2Þðd − 1Þq2 ½−2ðd
2 − 4dþ 3ÞJa0ωþ 2d2Jc0 þ d2JF0 q

2 − 8dJc0 − 4dJF0m
2 − 2dJF0 q

2

þ 4dJF0ω
2 − ðd − 1ÞJT0ωððd − 1Þq2 − 4m2 þ 4ω2Þ þ 8Jc0 þ 8JF0m

2 − 4JF0ω
2�; ðB17Þ

JT34ðm;ω; qÞ ¼ 1

4ðd − 2Þðd − 1Þ ½−2ðd − 1ÞJa0ωþ 2dJc0 þ 4dJF0m
2 − dJF0 q

2 − 4dJF0ω
2 þ ðd − 1ÞJT0ωð−4m2 þ q2 þ 4ω2Þ

− 4Jc0 − 8JF0m
2 þ 2JF0 q

2 þ 4JF0ω
2�; ðB18Þ

JT36ðm;ω; qÞ ¼ 1

4ðd − 2Þðd − 1Þ ½2ðJ
F
0 ð2ðd2 − 1Þω2 − 4ðd − 2Þm2 þ ðd − 2Þq2Þ þ 3ðd − 1ÞJa0ω − 2ðd − 2ÞJc0Þ

þ ð1 − dÞJT0ωð4ðdþ 1Þω2 − 12m2 þ 3q2Þ�; ðB19Þ

JT41ðm;ω; qÞ ¼ 1

16ðd − 2Þðd − 1Þd ½2ðJ
a
0ð4ð2d − 3Þm2 − dq2 þ 4ð3 − 2dÞω2 þ q2Þ þ 2ωð4ðd − 2ÞJc0 þ JF0 ð4ð2d − 3Þm2

þ ð3 − 2dÞq2 − 4ðd − 1Þω2ÞÞÞ þ ðd − 1ÞJT0 ð−4m2 þ q2 þ 4ω2Þ2�; ðB20Þ

JT42ðm;ω; qÞ ¼ 1

16ðd − 2Þðd − 1Þdq2 ½2ð2ωðJ
F
0 ððd2 þ d − 3Þq2 þ ð12 − 8dÞm2 þ 4ðd − 1Þω2Þ þ 2ðd − 2Þ2Jc0Þ

þ ðd − 1ÞJa0ð4ðd − 3Þm2 þ ðdþ 1Þq2 − 4ðd − 3Þω2ÞÞ
þ ðd − 1ÞJT0 ð4m2 − q2 − 4ω2Þðdq2 − 4m2 þ q2 þ 4ω2Þ�; ðB21Þ

JT43ðm;ω; qÞ ¼ 1

16ðd − 2Þðd− 1Þdq4 ½2ððd
2 − 4dþ 3ÞJa0ð7dq2 − 12m2 þ q2 þ 12ω2Þ− 6ωðJF0 ðð2d2 − 3Þq2 þ ð12− 8dÞm2

þ 4ðd− 1Þω2Þ þ 2ðd− 2Þ2Jc0ÞÞ þ ðd− 1ÞJT0 ððd2 þ 4dþ 3Þq4 − 24m2ðdq2 þ q2 þ 4ω2Þ
þ 24ðdþ 1Þq2ω2 þ 48m4 þ 48ω4Þ�; ðB22Þ

JRx ðm;ω1;ω2; qÞ ¼
(
− 1

ω1−ω2
½JTx ðm;ω1; qÞ − JTx ðm;ω2; qÞ� if ω1 ≠ ω2

− ∂
∂ω JTx ðm;ω; qÞjω→ω1ðor ω2Þ if ω1 ¼ ω2

: ðB23Þ
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The results of JBx ðm;ω1;ω2; qÞ depend on whether we
remove the 2PR contributions or not. When ω1 ¼ −ω2,
there is a pinch singularity. We use the following proce-
dures to remove it:Z

dl0

ð2πÞ
fðl0; lÞ

ðv · lþ ω1 þ iεÞ½−v · l − ω1 þ iε�

¼
Z

dl0

ð2πÞ
−fðl0; lÞ

ðv · lþ ω1Þ2
; ðB24Þ

where fðl0; lÞ is the other part of the JBx integrals. In the
derivations, the principal integral is used, i.e.,

lim
ε→0þ

1

x� iε
¼ P

1

x
∓ iπδðxÞ: ðB25Þ

This procedure is equivalent to removing the contribu-
tions from the poles of the matter fields. When ω1 ≠ −ω2,
we calculate the JBx ðm;ω1;ω2; qÞ as before. The results
read

JBnx ¼
1

ω1 þ ω2

½JTnxðω1Þ þ JTnxðω2Þð−1Þnþnq �; ðB26Þ

where n and nq are the numbers of Lorentz indices and
momentum q in the Lorentz structures. nþ nq of all the
integrals involved in this work are even.
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