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Diffusion, dissociation, recombination, and energy loss

Xiaojun Yao and Berndt Miiller’
Department of Physics, Duke University, Durham, North Carolina 27708, USA

® (Received 12 December 2018; published 8 July 2019)

We consider the quarkonium diffusion, dissociation, and recombination inside quark-gluon plasma.
We compute scattering amplitudes in potential nonrelativistic QCD for relevant processes. These processes
include the gluon absorption/emission at the order gr, inelastic scattering at the order g*r, and elastic
scattering with medium constituents at the order g?r>. We show these amplitudes satisfy the Ward identity.
We also consider one-loop corrections. The dipole interaction between the color singlet and octet is
not running at the one-loop level. Interference between the tree-level gluon absorption/emission and its
thermal loop corrections cancels the collinear divergence in the t-channel inelastic scattering. The inelastic
scattering has no soft divergence because of the finite binding energy of quarkonium. We write out
the diffusion, dissociation, and recombination terms explicitly for a Boltzmann transport equation and
define the dissociation and recombination rates. Furthermore, we calculate the diffusion coefficient of
quarkonium. We find our result of the diffusion coefficient differs from a previous calculation by 2 to 3
orders of magnitude. We explain this and can reproduce the previous result in a certain limit. Finally, we

discuss two mechanisms of quarkonium energy loss inside quark-gluon plasma.
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I. INTRODUCTION

Since the early study of static screening on quarkonium
[1], the bound state of a heavy quark-antiquark pair,
quarkonium has been used as a probe of quark-
gluon plasma (QGP) in heavy ion collisions. In a high-
temperature QGP, the attractive potential between the
heavy quark-antiquark pair QQ is significantly suppressed,
and thus the bound state cannot exist. The screening effects
have been widely investigated by computing the free
energy of QQ [2,3] or spectral functions [4,5] on a lattice
at finite temperature.

In addition to the static screening effect, the dynamical
screening effect also exists inside QGP. It is the dissocia-
tion of quarkonium caused by collisions with medium
constituents. The dissociation process at leading order in
the coupling constant is the gluon absorption process
g+H — Q-+ Q, where H indicates a quarkonium state.
It was first investigated by using large-N, expansions
[6,7]. At next-leading order, inelastic scattering between
quarkonium and medium constituents contributes to the
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dissociation I(1,g) +H — I(1,g) + Q + O, where [ denotes a
light quark. The inelastic scattering was first studied in the
quasifree limit at which the Q and Q are treated as free
particles and each of them scatters independently with
medium constituents [8]. Later, the interference effect was
taken into account. This leads to a dependence of the
dissociation rate on the relative position of the heavy quark-
antiquark pair [9,10]. This maps into a dependence of the
inelastic scattering on the bound-state wave function [11],
as in the case of gluon absorption. The dissociation rate can
be interpreted as an imaginary part of the QQ potential.
One can also interpret the dissociation as a decoherence of
the quarkonium wave function in the language of open
quantum systems [12]. More recently, these dissociation
rates were studied from the thermal loop corrections of
the singlet propagator in potential nonrelativistic QCD
(pPNRQCD) [13-15] by systematic weak coupling and
nonrelativistic expansions. Anisotropic corrections to dis-
sociation rates have also been considered [16—18].

To describe the transport of quarkonium inside QGP, one
also needs to consider the in-medium recombination from
unbound QQ pairs [19]. This can be modeled by detailed
balance and a phenomenological factor controlling how much
open heavy quarks are thermalized [20]. Recombination from
parametrized nonequilibrium heavy quark distributions has
also been investigated [21]. For practice, one needs heavy
quark distributions from real in-medium dynamics. To this
end, one can couple the transport equations of quarkonium
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with those of heavy quarks [22]. The inverse of the gluon
absorption, the gluon emission, Q + Q — g + H has been
simulated in Ref. [22] with dynamically evolving heavy quark
distributions, and the approach to detailed balance and
equilibrium was demonstrated.

Besides dissociation and recombination, quarkonium
can also diffuse inside QGP because it is approximately
a color dipole and thus not exactly color neutral. It may
elastically scatter with medium constituents. The diffusion
coefficient of quarkonium has been estimated in both the
weak and strong coupling limits [23]. However, the
diffusion has not been included in phenomenological
studies using transport equations.

In this paper, we consider the dissociation, recombination,
and diffusion of quarkonium in the same theoretical frame-
work. We apply pNRQCD to calculate the relevant terms in a
Boltzmann transport equation. The transport equation can be
derived from first principles by using the open quantum
system formalism and effective field theory pNRQCD
[24]. The use of open quantum system formalism to study
quarkonium in-medium dynamics has been widely inves-
tigated recently [25-29]. We compute directly the scattering
amplitudes of gluon absorption/emission, inelastic scatter-
ing, and elastic scattering in pNRQCD, in contrast to
previous studies of dissociation rates that use the optical
theorem and loop corrections to the forward amplitudes
[13-15]. By writing out the amplitudes explicitly, we can
show these amplitudes satisfy the Ward identities, which has
not been explicitly shown before. We also consider the loop
correction to the gluon absorption/emission. We demonstrate
that the r-channel inelastic scattering is infrared safe.
Furthermore, we compute the diffusion coefficient of quar-
konium and reproduce a previous result in a certain limit.
Finally, we discuss two mechanisms of quarkonium energy
loss inside QGP: one through diffusion and the other via
dissociation first and then recombination later.

The paper is organized as follows. In Sec. II, we briefly
introduce the Boltzmann transport equation of quarkonium.
Then, in Sec. III, we explain the effective field theory
pNRQCD used in the calculations. The calculation results
of dissociation, recombination, and diffusion are shown in
the following Secs. [V and V. In Sec. V, two mechanisms of
quarkonium energy loss are also discussed. Finally, the
conclusions are drawn in Sec. VI.

II. BOLTZMANN TRANSPORT EQUATIONS

The dynamical evolution of quarkonium inside QGP can
be described by Boltzmann transport equations for the
distribution function of each quarkonium state with the
quantum number n/ and spin s,

0
&fnls(x’p’ [) +v- vxfnls(xJ,v t)

= Cs(x.p. 1) = Coy(x.p. 1) + Cps (x.p. 7). (1)

The three collision terms C,, C., , and C,;, represent the
recombination, dissociation, and diffusion of quarkonium
in the medium, respectively. In the following, when we
compute the square of the scattering amplitudes, we will
average over the polarizations of non—S wave quarkonium
states. So, we omit the quantum number m throughout the
paper. The Boltzmann transport equation can be derived
from QCD by using the open quantum system formalism
and effective field theory under the assumption of the
Markovian process and weak coupling between the quar-
konium and the medium [24]. When the quarkonium size
is smaller than the screening length of the medium, the
weak coupling assumption is valid. Both the nonrelativi-
sitic and weak coupling expansion parameters are smaller
for bottomonium than charmonium. This implies that the
leading-order results are more reliable for bottomonium.

In the following sections, we will compute these colli-
sion terms in pNRQCD.

III. POTENTIAL NRQCD

The effective field theory pNRQCD can be systemati-
cally derived from QCD under the separation of scales:
M > Mv > Mv? [30]. Here, M denotes the mass of the
heavy quark, assumed to be large, and v is the typical
relative velocity between the heavy quark-antiquark pair
inside a quarkonium. For charmonium, v? ~ 0.3, while for
bottomonium, »*~ 0.1 [31]. To derive pNRQCD, one
integrates out the scales M and Mv in sequence and applies
a double expansion in the heavy quark velocity v (non-
relativistic expansion) and the interquark distance r ~ Miv
(multipole expansion). For quarkonium inside QGP, two
additional scales appear: the plasma temperature 7' and
Debye mass mp. Depending on where T and m, fit into the
vacuum separation of scales M > Mv > Mv?, one can
have different versions of the theory. Here, we focus on the
following hierarchy of scales, M > Mv > Mv> 2 T = mp,
where T and mp, are on the same order as the typical binding
energy Mv>. In this hierarchy, a bound quarkonium state
can be well defined. If 7 and mj, are on the order
of Mwv, the Debye screening will be so strong that the
potential cannot support any bound state. In cases with
rT ~ rmp ~ 1, the multipole expansion also breaks down.

The Lagrangian density of pNRQCD is given by

LNrQeD = / d3rTr (ST(iGO - H,)S +0'(iby— H,)O
+ V4(O'r- gES +H.c.)
-l—%OT{r- gE,O} + - )
+ Liight quark + Letuons (2)

where E represents the chromoelectric field and DyO =
000 — ig[Ag, O]. The gluon and light quark parts are just
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QCD with momenta <Mwv. The degrees of freedom are the
color singlet S(R,r,t) and color octet O(R, r, t), where R
denotes the c.m. position and r denotes the relative
coordinate. We will assume the medium is translationally
invariant so the existence of the medium does not break
the separation into the c.m. and relative motions. The
color singlet and octet Hamiltonians are expanded in
powers of 1/M:

(chm)z (ivrel)2 (0) Vﬁl) VEZ)
H, = Vs 3
s aM + M + + M * M? (3)
(iDcm>2 (ivrel)2 (0) 571) E) )
H = VO 4
¢ aM + M + + M * M? o (4)

We will work to the lowest order in the expansion of v.
By the virial theorem, p2,/M ~ v\% ~ Mv?. Higher-order
terms of the potentials including the relativistic corrections
and spin-orbital and spin-spin interactions are suppressed
by extra powers of v. In the QQ pair (bound or unbound)
rest frame, the initial c.m. momentum is zero. If the
medium is static with respect to the QQ pair, the final
c.m. momentum after a scattering is of order approximately
T. Since in our power counting 7 < Mv?, the c.m. kinetic
energy is of order approximately Mv* and thus suppressed
by 22 ! Therefore,

(ivrel)2 0

(
H,,6 = + Vso. 5
s5,0 M » ( )

The potentials and Wilson coefficients V4 p in the chromo-
electric dipole vertices can be obtained by matching
pNRQCD with NRQCD [30,32,33]. Up to order ¢°r,

‘,(0) A ‘,(0) 1 A
s ’ o — ) ‘ - [’ — 1.
CF r ZNL r A B (6)

The chromomagnetic vertices are suppressed by powers
of v. The potential is Coulomb, which is approximately
valid inside QGP since the confining part is flattened. One
can improve the potentials by doing nonperturbative
matching calculations at finite temperature.

Under a gauge transformation U(R, 1),

S(R.r, 1) > S(R,r, 1) (7)
O(R.r.1) > UR.1)OR.r, 1)U (R, 1) (8)
Dy = U(R, t)DiyUT (R, 1); (9)

'If the medium is moving with respect to the QQ pair at a
velocity v,eq4, the c.m. kinetic energy is still suppressed at least by
one power of v if v,eq < V1 — v. We assume the medium is static
with respect to the QQ pair in this paper Generalization to the
case of a moving medium with v, < V1 — v can be easily
worked out.

therefore, the Lagrangian density is invariant under a
gauge transformation associated with the c.m. motion.
It is worth noting that the relative motion is not gauged
due to the multipole expansion. The potentials may be
gauge dependent at the matching calculation.

To make the wave function associated with the relative
motion explicit, we do a change of basis in the relative
motion by defining

1

S(R,r, 1) S(R,r,1) = (r|S(R, 1)) (10)

1
_—NC

- 3

OR.r. 1) O“(R,r,1)T* = —— (r|0°(R, 1)) T

(11)

where N, =3 and Ty = % We define the quadratic Casimir
1) for
later use. Then, the Lagrangian density of the singlet and
octet can be written as [33]

1
=

5

of the fundamental representation Cp = % (N2 -

Lonroep (R. 1) = Lyn s + Liino + Lingso + Lintoo +

(12)
Lyins =(S(R, 1)|(i09 — H,)|S(R, 1)) (13)
Liino =(0“(R.1)|(i0o — H,)|O*(R. 1)) (14)

Lineso = \/E(W“(R 0)lr-gE*(R, 1)|S(R. 1)) + H.c.)
Nc

(15)
Linoo = if*"*(0°(R. 1)|gAJ (R, 1)|O°(R. 1))
+ d®(0%(R,1)|gr - E*(R,1)|O°(R, 1)) + - -~
(16)
The bra-ket notation saves us from writing the integral over

the relative position explicitly. The singlet and octet
composite fields are quantized by

|S(R, t)> _/C(lzi)[;m _l Bpen R <Z|l//nl nl(pcm

d3 Ic
+/ (25)%1 pre]> prel(pcm)) (17)
3 3
|0a(R,t)>:/(22Z;?e_i(m_p“m'm/((1217;631 pml> prel(pcm)

(18)
where E is the eigenenergy of the state under the
Hamiltonians, Eq. (5). The whole Hilbert space factorizes
into two parts: one for the c.m. motion and the other for the
relative motion. The wave functions of the relative motion
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Feynman rules in pNRQCD. The single solid line represents the bound color singlet, while double solid lines represent the

unbound color octet. The gray blob indicates the dipole interaction. The vertex with no gray blob means the gauge coupling in the c.m.

motion. The unbound singlet propagator will not be used throughout the paper and is not shown here. The octet wave function |¥),

)isa

Coulomb scattering wave, and thus the effect of the octet potential has been resummed in the octet propagator. In principle, there is also
an octet-octet-gluon-gluon vertex at the order g”r. But it is irrelevant in the current study and neglected here.

can be obtained by solving Schrodinger equations, which
are part of the equations of motion of the free composite
fields. They can be hydrogenlike wave functions |y,,;) for
bound singlets with the eigenenergy —|E,;|, or Coulomb
scattering waves |y, ) and |¥, ) for unbound singlets and
octets with the eigenenergy pfel /M. No bound state exists in
the octet channel due to the repulsive potential. As we will
explain later [see expression (26)], we will average over the
third component of the angular momentum of non—S wave
quarkonium states. So, we omit the quantum number m; of

the bound singlet state. The operators afj,')(pcm), b,(,B (Pem)

and ch> (Pem) act on the Fock space to annihilate (create) a
composite particle with c.m. momentum p_,, and corre-
sponding quantum numbers in the relative motion. These
annihilation and creation operators satisfy the following
commutation rules:

[anlll (pcml)v al;zlz (PcmZ)] = (2”)363@cm1 _pcm2)5n1n261112

(19)
[bpren (pcml )’ b;relZ (pcmZ)]
= (2”)653 (Pemi —Pem2)® (Prett = Prei) (20)
[cgrlen (pcml )’ Cgrzjz (pcmZ)]
= (2ﬂ)653(pcm1 _pcm2)53(prell _preIZ)éalaz- (21)

All other commutators are zero. The Feynman rules
are summarized in Fig. 1. We use the notation
a'b'=y",a'b' =a;b; to denote Euclidean summation and
" =0 when u = 0.
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IV. DISSOCIATION AND RECOMBINATION

In this section, we consider the contributions to the
dissociation and recombination terms in the Boltzmann
equation at the orders gr and g°r. All contributing Feynman
diagrams are shown in Fig. 2.

A. Contributions at the order gr

At the order gr, only the diagram in Fig. 2(a) contributes.
It is a gluon absorption process for dissociation and a
gluon emission process for recombination. The scattering
amplitude is given by

. T *1 [ ) a
iM, —g\/NC(qO —q'e) W, |rly.,)5  (22)

=i (./\/l(a)) (23)

u

The gluon is on shell, so ¢° =
can be easily verified:

lg| = q. The Ward identity

7" (M), =0. (24)

So, we can compute the amplitude in any gauge we want. In
Coulomb gauge, we define the square of the amplitude
magnitude, summed over the gluon and octet colors a, b
and the gluon polarizations e,

> IM@P=D M

a,b.e
=g Crq* (87 =4'@) (Wl [y ) (Lo, |1 W)
(25)
|
Fhw = / &k &py dpy  dPq
nse) =9+ | (2m)3 (22)° (21) 2(2n)°

As mentioned earlier, we average over the third component
of angular momentum of quarkonium for / > 0, so we omit
the quantum number m,;. Here, we will show explicitly how
the average simplifies the calculation. To this end, we
temporarily restore the quantum number m; in the bound-
state wave function. When integrating over the relative
momentum of the heavy quark-antiquark pair from the
dissociation, the average leads to

2l+1 Z /d Prel l//nlm1|r| p,el><qlp,el|rj‘l//nlml>

1. 1
551 21+1 mZ—l/d3prel|<\Pprel |r|l//”lm/>|2

1
Eg /d prel|< Prel

7 (26)

This allows us to write

S 1M =3 2Crg |, iyl P (27)

To simplify the notation of the dissociation and recom-
bination terms for a quarkonium state nls in the Boltzmann
equation, we define’

(1+ng(q)fo(xp.Po:1)fo(Xp.Pp. 1)

2
< 208k + 0 =)o (|l + 0 =50 ) S Mo P (28)

_ _/ d3k d3pcm d3prel d3q
F nls(a) = 3 3 3 3
(27)° (27)° (27)° 2q(2x)

where np is the Bose-Einstein distribution function, g, = #gs, and g, is the multiplicity factor in spin: g

2
nB(‘])fnls(x’k’ t)(2”)453(k +q _pcm)é(_|Enl| +q- %) Z |M(a)|2ﬂ (29)

=3 for a

are the c.m.

quarkonium with spin s = 1 and ; ! for spin s = 0. In the definition of nis(a)> Pem = pgsz

Po +ppandp =
and relative momenta of a pair 0f heavy quark and antiquark with momenta p, and pg,.
We further define a “§ derivative” symbol, first introduced in Ref. [34],

In FF

nis(a) , the positions in the heavy quark and antiquark distributions can be different. See the derivation of this term in Ref. [24].
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FIG. 2. Feynman diagrams contributing to the dissociation and recombination terms in the Boltzmann equation. The single solid line

represents the bound color singlet, while double solid lines represent the unbound color octet. The short dashed line indicates the light
quark, while the long dashed line is the ghost. The gray blob indicates the dipole interaction.
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d3

(I’l,I’zy . 9pn)

5p,/H

pi=pP

where the second 6 denotes the standard functional varia-
tion and k(py,p,, ...,p,) and w(p;) are arbitrary indepen-
dent smooth functions. Then, the Cf, terms in the
Boltzmann equation (1) can be written as

G 1) — 2 (31)
nls(a) x.p,t

( 3k iy

For Cnls (a)» We further require 1(xg +xp) =x, ie., the

position of a recombined quarkonium is given by the c.m.
position of the heavy quark-antiquark pair. Recombinations
from the heavy quark-antiquark pairs with a distance much
larger than the Bohr radius |x, — x| > ag can be shown
to be negligible [24]. In practical numerical simulations, a

L Q Fo~xo| may be applied [22].

The dissociation rate of the quarkonium state nls from
the diagram in Fig. 2(a) is given by

Gaussian dependence on

Cnl s(a) <x p, )
f nls (x 2 ) .
The recombination rate of a heavy quark into the quarko-

nium state nls surrounded by heavy antiquarks with the
distribution f5(xp.pp. 1) is given by

I‘*dlsso

n[s(a) (x’p’ t) = (32)

Frecom( t) ! 5]::1‘ (a) (33)
nls(a x,p, = ’
Is(a) fQ(xQ’pQ’ 1) opo Xo=X,po=p

B. Contributions at the order g*r

1. Contributions from diagram 2b

Figure 2(b) depicts the inelastic scattering with light
quarks (up and down) in the medium. The light quarks are
assumed massless. First, we check the amplitude is inde-
pendent of the gauge choice. The gauge invariance reflects
in the invariance of the amplitude when the ¢, in the gluon
propagator is replaced with €, + g,. It has been shown in
the last section (Sec. IVA) that the dipole interaction
between the singlet and octet is invariant under such a
replacement, by virtue of the Ward identity, Eq. (24). What
remains to be shown is the invariance of the vertex of the
light quark. This is guaranteed by the Dirac equation:

5 n d3 .
Ew/]‘:{#h(ﬂl»l’z"wpn)w(l’i)

_/'_

n d3p]
H (2 ) (pl’pZ" "pi—lvp’pH»lv'“’pn)’ (30)
J=1j#i
|
iy, (P2)7" T uy (p1)qy = iy, (p2) (P — P2)Tuy (p1) = 0.
(34)
In Coulomb gauge,
. Tr
iMp =g VM/N 7
0(51{[ qkql)
X [m it, (p2)Y' T u, (py)
q a
(T ()] (35)

We define | M ;)|* summed over the octet color a; the spins
s1, 8o; colors i, j; and flavors of the incoming and outgoing
light quarks and include also the contribution from anti-
quarks as

2 MwP=>> > Myl

a,i,j $1.52 u,i,d.d

(36)

16
=3 AVATCr (Y,
{Plpz +Pp1-P2
X 2
q
2(¢°)*(pip2—P1-q P2+ Q)
((¢°)* — ¢* + ie)? .

Prel r|Wnl> |

+ (37)

Next, we check the infrared sensitivity of the term
inside the square brackets. The energy-momentum con-
servation gives ° = pi—p> = |py |~ pal = |E,i| + p2,/M,
q =P — P> = Pem — k. Assume the angle between p, and
P> is 0. We have

PiP2+p1-pP2  pipa+ pipacosd g
2 ) 2 (38)
q Py + p5—2pipycosf
2(¢°)*( -p1-q-p2- Q)
q ) \P1P2—P1°49 D2 g
((4°)* = ¢* + ie)?
_ PR+ P =2pipy PT+ p3+ pipa(l—coso)
2p1pa(1 —cos@) P+ p3—2pipycosf
(39)
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In both terms, there is no soft divergence because the
binding energy |E,;| serves as a soft regulator:
pi+p3—2p1pacos® > (py — py)* > |E,|*. The first
term has no collinear divergence, either. The collinear
divergence happens in the second term when cosf — 1.
Physically, this occurs when the momenta of both the
incoming and outgoing light quarks are in the same
direction. The transferred gluon is on shell. In this case,
the inelastic scattering cannot be distinguished from the
real gluon process shown in Fig. 2(a). As we show below
in Sec. IV B4, the interference between the diagram in
Fig. 2(a) and its thermal loop correction in Fig. 2(1) cancels
this collinear divergence.

2. Contributions from Figs. 2(c)-2(f)

The processes of inelastic scattering with gluons in the
medium are depicted in Figs. 2(c)-2(f). All four diagrams

are needed for the gauge invariance. First, we consider the
gauge transformation of the internal gluon line in Fig. 2(c).
If we cut the diagram into two halves by cutting the internal
gluon line, we need to show that both the upper and lower
parts vanish when contracted with ¢g,. For the dipole
interaction in the lower part, this has been shown by the
Ward identity, Eq. (24). For the three-gluon vertex in the
upper part, it can be shown that

— gf (1) () [ (q2 — @) + (g + 1)

+9*(-01 — 2)]q, = 0. (40)
by using g, -€; =g, €, =0.

Next, we consider the gauge transformation of the
external gluon line. We fix the internal gluon line to be
in the Lorentz gauge,

; ; v * T abc [ vp D, v v 0
iM) = iMG (e1),(e2), = = Vay /N—F g (g2 — )" + ¢ (q + q1)" + ¢ (—q1 — 42)")]

~1Yps i _ iso i «
x mw% = q'8) Py, ') (€7) (€2, (41)
. . Vo % . T abce * i *\1 i

iMgy = iMig (er),(e), = lgsz\/ATF Pel(€1)(e2)" = (e1)"(e2) "Ny, |F ) (42)

; ; Vo x T abc *\ 1 (% i
t/\/l(e)EIM’ZK)(Q),,(Q)FQZVM/VF P<(€2)°[(q1)°(€e1) = (q1)" (1) Wpo 7" W) s (43)

c Ep—%—ﬁ km qz +l€

i i MMV (* abe i i i

leElM’(f)(el),t(ez)y:ngM/ f P<(e1)°1(92)°(€2)" = (q2)"(€2) ") (B, |7 [ ) e L (44)
Ep_ql_nr;l cm ¢1| +l€
We show the Ward identity by replacing (e;), with (¢,),,
: v : r abc i i
(00, ML (€2), = iV [ a0 + g e2) )%y ) (45)
. v : T abc i i i
l(ql)ﬂM’(d>(€z)y=lngM/Nl "“[(q1)°(e2)" = (1) (€2) 1By, |7 [wur) (46)
i(Ql)ﬂMl(t:)(ez)lj =0 (47)
abe (q1)" Py, 7" [wmr)
i(q1), M} (e2), = ig?Va N—F P[(42)°(e2) = (42) (€2)°] —— Zzll o l_ql)z
V E, - g =t = Pt
. Tr ) ) .

= —ig’Va [ 1(q2)(€2)" = (92)(€2) "Wy, |F W) + O(v?), (48)

(\.2
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where in the last line we have used E,, = % +1f7“,} and kept
only the relative kinetic energy of the octet by neglecting
the c.m. kinetic energy. This is consistent with our power
counting. Since ¢* = ¢ — ¢}, the Ward identity is satisfied
up to v? corrections

(1), ML + M+ M+ M (e), =0, (49)

Therefore, we can compute these diagrams in any gauge we
want. In Coulomb gauge, the zero component of the gauge
field is not dynamical. So, we only need to compute the
diagram in Fig. 2(c),

|

a,b,c €1,6;

1
((90)* — ¢* + i€)?

1+ (41 - 40)*

1
S Mo = 3 1Mool = 3 VACH v P

lM(C) - _QZVA _F(ef)ﬂ (62)bfabc [gl//)(qz - q)”

+ 9" (g +q1)" + (=91 — 42)']
i(6;i = 4,;4;) i
X 6,9 J—/.— qi—5 <‘P
{ pJ O(qo)z_q2+ ic 0 q2 Prel

ri|l/’nl>'

(50)

We define the square of the amplitude magnitude, summed
over all color indices and polarizations,

(41 + ¢2)*
7 :

Pz?:iz(ql)P}“,jz(qZ)PZ]kz (@) (9,6, (92 = @), + 9ri (@ +q1)j, + i, (a1 — @2),)

(91 (42 = @i, + G0+ 1), + G (a1 — q2>k2>} , (51)

where the transverse polarization tensor is defined as
Pl(q) = 6;;— 4;q; and P{, = P(; = P}y = 0. As in the
process of inelastic scattering with light quarks, the first
term in the square brackets is infrared safe because of the
finite binding energy. The second term is collinear diver-
gent when the momenta of the incoming and outgoing
gluons are in the same direction. In that case, the transferred
gluon is on shell. As will be shown in Sec. IV B 4, the
interference between the diagrams in Figs. 2(a) and 2(m)
will cancel this divergence.

3. Contributions from Figs. 2(g)-2(k)

The diagrams in Figs. 2(g)-2(k) describe the processes
of I+1+H < Q+Q and g+g+H < Q+ Q. They
can be computed similarly as in Secs. [VB 1 and IV B 2.
However, their contributions to the dissociation and
recombination in the Boltzmann equation are much
smaller than those from Figs. 2(b)-2(f) because of the
limited phase space of the incoming particles. In
Coulomb gauge, we only need to consider Figs. 2(g)
and 2(h). The energy transferred via the internal
gluon is fixed by ¢° = |E,|+p2,/M and p.~ Mo,
otherwise, the dipole transition between wave functions
[(¥,._,|rilw,)|* vanishes. The phase spaces constrained by
p1 + pa = ¢° in Fig. 2(g) and ¢q; + ¢, = ¢° in Fig. 2(h)
are much smaller than those of p; — p, = ¢° in Fig. 2(b)
and ¢, — g, = ¢° in Fig. 2(c). The suppression of proc-
esses with two incoming light quarks or gluons has been
noted before [21].

I
4. Contributions from diagrams 2(1)-2(o)

These diagrams are the one-loop corrections of the gluon
propagator. If resummed, they will give a thermal mass to the
in-medium gluon. The loop correction is at the order ¢?, so
the whole diagram is at the order g*r. Their interference with
the diagram in Fig. 2(a) will give contributions equivalent to
amplitudes at the order g?r. We will show the interference
cancels the collinear divergence in Egs. (36) and (51). Thus,
there is no need to resum these diagrams here.

In Coulomb gauge,

. T * .
iMg = gVa N*F.CIOGI' (W, |rily.) 6 (52)

, Tp .
iMy = gVay |56 (P

igo(6:. — GG
% {il‘[g) QOZ(_/k . qulk)
qo—9q° + i€

rk|l//nl>5ab

() 1q
- lHEo)q_zk . (53)

where we set g = |q| = ¢ for the on-shell massless particle

and H,gl,} is the time-ordered gluon polarization tensor
contributed from the fermion loop. The time-ordered gluon
propagator and polarization at finite temperature cannot be
directly obtained by analytically continuing the imaginary
time propagator and polarization. The time-ordered propa-
gators and polarizations can only be obtained from the
retarded and advanced ones via the relations

014008-9
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D*(q9.9))

N G + ng(qo)) (D®(qo.q)

(D%(q0.9) +

l\)l>—‘

DT(QO»Q)

_DA(CIO,‘I))

(54)

:%(HR(qo,q)+HA(610,q))

(3 m(a)) (00 - (@00). (55)

HT(QOﬂq)

We will focus on the first term because this
term contributes to the dissociation rate when the gluon is
|

D®(q0.9)+D*(40.9)
2

(g0 =q.9) = ¢Tr Yy

flavor

4E,E,
1

/ &1 Te(yi (1 + 4D)rvif) {(1 — np(E,) —nF(Ez))<

on shell. The second term contributes to the dissociation
rate when the gluon has spacelike momentum, which
corresponds to the inelastic scattering and has been
accounted for above. For a more detailed discussion on
this, see Ref. [15]. The fermion loop gives,

4
Y / d*l

flavor

Tr(V,,(l +4r.])
(5= P)*((lo+ q0)* = I+ q)*)*

(1
i (40, q)

(56)

In the imaginary time formalism of thermal field theory, the
integral over [, is a summation in Matsubara frequency.
After the summation,

1 1
q—El—Ez_CI+E1+E2)

— (np(Ey) = np(Ey)) <q +E —-E

where E, = |l +¢|,
HR(qo-q);H"wo,q)

E, =l
= RI* (g, q), and we do not need to ana-
lytically continue. We can just plug it into (53). To see the
cancellation of collinear divergence, we define the interfer-
ence term summed over colors and gluon polarizations

Here, we only need

D (M My + My M)

=2 >_MiyMu + MMy (58)
€ ab
2 505 251‘1‘—511'51;‘ (1)

= _59 ViCrasl( Yy Flwn) |- 2P 1I;; (59)

d3P2

1
_q—E1+E2>]’

(57)

and consider the following integral that is used in
the dissociation in the case of two flavors (up and down
quarks):

dq ) *
= /2q(2 B n(4) Y (MM +MMy,).  (60)

We focus on the term with (ny(E;) — ng(E,)) in the square
brackets in Eq. (57). Under a change of variablesp; =1 + ¢,
P = l’

_ d’p,
I :/2p1(2ﬂ')3/2p2(27[)3 ng(|p1 =p2l)(ne(p1) — np(p2))

2(191 - P2)|I’1

—P2|

6
x —g*"ViTrCr

((p1 = P2)2 -

where - - -

p2 = |p1 = pa|- With np(p,
the collinear divergence in

/ d3P1 d3P2
2p; (2”) 2P2(2”)

where |/\/l<b) |? is given in Eq. (36). This is for the dissociation contribution from |M(b)

divergence in the recombination can be shown similarly.

np(p1)(1 = np(p2)) Z |M(b) 2

2,))? (Pip2=P1-aP2-q) + -, (61)
-p2

means the first term in the square brackets in Eq. (57). In the collinear limit, p, and p, are in the same direction, so
= p2)(np(p1) —np(p2)) = —np(p1)(1 = np(p,)), one immediately sees that I, cancels

(62)

|2. The cancellation of the collinear
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We next consider the interference between the diagrams in Figs. 2(a) and 2(m). The amplitude iM,,) is exactly the same

as iM;) under the replacement of ¢ with 107 H(',’f ) is the gluon polarization tensor in Fig. 2(m). After summing over the

Matsubara frequencies,

1

1 a0 = 0.0) = 32T [ ot PLL 0+ 0P, 01+ na(E0) )

2 (2z)4E\E, "™

1

1 1
Q+E1+E2_CI—E1—E2>
1

- () = ma )

C]+E1—E2_(I—E1+E2

)} [9,,i(l = q);, + 9i1, 2g + 1);, + gi,j, (=g — 21),]

x[g;,;,(1 = q);, + 9ji, 2 + 1);, + 94,,(—=q = 21) ], (63)

where Ty = N, E|, = |l +¢q| and E, = |I|. We will focus
on the term with (nz(E,) — ng(E,)) and neglect the other
term. Under a change of variables ¢, =1+ ¢q, g, =1, we
can show that the collinear divergence of the integral

d*q . .
I, = /W"B(Q) Z(M(Q)M(m) + M(a)M(m))

(64)
cancels the collinear divergence in

d? &
/291 (;1;5)3 26]2(6212)3 ng(q1)(1 +ng(q2)) Z Mo,

(65)

by the virtual of ng(q —q2)(np(q1) —np(qa)) =
—ng(q1)(1 +ng(q,)). Cancellation of the divergence in

the recombination process can be similarly shown.

5. Contributions from Figs. 2(p)-2(s)

These diagrams are the one-loop corrections to the dipole
interaction between the singlet and the octet. The correction
is at the order ¢°r, but its interference with the diagram in
Fig. 2(a) gives contributions equivalent to amplitudes at the
order ¢*r. In Lorentz gauge and dimensional regularization
d = 4 — ¢ (the € in the dimensional regularization should
be distinguished from the incoming gluon polarization €*#),

X <€*Oqi _ e*qu) 4+ (66)
; 393 r a i
lM(‘I) = 1672¢ VaTy HN_IZ(S d<lPPre1 r |l//nl>
X (e*Oql e*qu) + (67)
1M<r> =0+ (68)
lM(Y) =0+ ) (69)

|

where T4 = N, and the off-shell scheme has been used to
extract the logarithmic divergence. Only the terms with the
€ poles are shown. Finite terms and corrections at higher
orders in v? are omitted. Therefore,

0
iMp) + Mg +iMey +iMy = -+, (70)

which means the dipole interaction term between the
singlet and octet is independent of scale at the one-loop
level:

d
@VA(/‘) =0. (71)

This has been already noted in Ref. [35]. From the
matching condition, Eq. (6), we may set V4, =1 in the
following, no matter the scale involved.

6. Contributions from Fig. 2(t)

The diagram in Fig. 2(t) describes the one-loop correc-
tion to the octet propagator at the order g>. The whole
diagram is at the order ¢°r, but its interference with
Fig. 2(a) is equivalent to an amplitude at the order ¢*r.
The one-loop correction to the octet propagator is given by

L = 2fabcfcbd/ d* =i
o=9 (2r)* 3 -1 + ie
i
X - , (72)
E,—lo—" - Pall | e

2 2
where E, = pfﬁ‘ + £ is the energy of the external octet
field. We first integrate over /, by closing the contour in the
lower half-plane,

&1 1
L,=i@N 5% / 73
g i (P Py a7
PN 5M [ +4M + 2P
- 192207 di lnﬁ. (74)
4Py, I +4M—-2P,,
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If we expand the integrand in powers of 1/M (in our power counting, v> ~ %) and use dimensional regularization,3 we find

L, =0+ O(v?). (75)

The power divergence is proportional to »> and neglected here, consistent with the power counting.

7. Summary

To write the dissociation and recombination terms in the Boltzmann equations explicitly, we define F nils(

_7:+

d3P2

nls(b

&k d’py d3pQ d*p,
= g+ (

X (2”)453(k +P1 —Pem _p2)5(_|Enl| + P

d3
F- Pi

27)* (2r)° (27)* 21 (27)* 2p5 (27)°

and F*

nls(c)
np(p2)(1 =np(pi))fo(xp.Po:-1)fo(xp.Pp. 1)

2
pre
- A4l_'p2> > M (76)

— d3k d3pcm d3prel
(b) = (

nls

d3P2
227 (2x) (2x) 201 (20 2y 20 "

1)1 =ngp(p2))fus(x. k. 1)

2
Dre §
X <2ﬂ)453(k +P1—Pem _p2)5(_|Enl| +p1 - Ml - p2> |-/\/l(b)|2 (77)

f+ d3k d3pQ d3pQ d3q1

d? q>

0= 9+ | o (o o T T B

< (278 (k + q1 - Pen —q2>5(—Enz fai-

d3‘12

ik ng(q2)(1 +ng(q1))fo(xg.po-)fp(xp.Pp: 1)

) S M (78)

nls(c

Pk Pp, Ppy &
Fre = /( P Prel qi

X 27)*8* (k + gy —pem — 42)8 (—

The g, factor and the relation between p.,, Pt and po, pg
are defined in Sec. IV A. The collinear divergent parts in the
square of amplitudes have been shown to be canceled by
the interference between the tree-level process of gluon
absorption/emission and its one-loop corrections. After
regularization, we can drop the terms that are originally
collinear divergent if they are small, so we can write (by
setting V4, = 1)

PiP2+P1P
Z|M =3 4TFCF|< Wy Il P22 po =
(80)

Z|M =3 4CF|< p,el|"|l//n1>|

1+ (41 - 4
xwmlmﬂ 81)

’A similar argument has been used in Ref. [31]. See the
Appendix therein.

27)* (27)° (27)° 24,(27)° 24,(27)°

ng(q)(1+ng(q2)) fus(x. k., 1)

2
Dy
Bl + =2 - 43) 1Mo (19)

The dissociation and recombination terms in the Boltzmann
equation from the inelastic scattering with light quarks and
gluons are given by

5F 5F:
ct . p.t) = nls(b nls(c) 82
nls,lnel(x p ) Sk kmp Sk k=p ( )
For C} i..» we further require x = ; 2 as in the case of

real gluon absorption. The dissociation rate of the quarko-
nium state nls from the inelastic scattering is given by

fnls(x’p’ t)
The recombination rate of a heavy quark into the quarko-

nium state nls surrounded by heavy antiquarks with the
distribution f5(xp.pp. 1) is given by

Fdlsso

nls, mel(x’p’ t) = (83)

Lsine (X P 1)
_ 1 (F:l\ + fnls L ) (84)
fQ <xQ’pQ’ ) 5PQ Xo=X,po=p
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q, €, q2, €2, q, 6,0

NS

ki, nl ko, nl ki, nl

(a)

FIG. 3.

G2, €2, Ay Ay Ay A

ko, nl
Pcms Prel, @

(b) ()

Feynman diagrams contributing to the quarkonium diffusion term in the Boltzmann equation. The first two diagrams are the

processes at the order ¢g?r2. The last diagram is schematic and shows that the virtual octet propagator can, in principle, obtain an infinite

series of momentum “kicks” from the medium.

V. DIFFUSION AND ENERGY LOSS

The quarkonium diffusion cannot happen at the order r
because the singlet has to turn to an octet at this order. The
diffusion process starts to happen at the order 7> because
the singlet can turn to an octet and then become a singlet
again. At the order ¢’r?, contributing diagrams are shown
in Fig. 3(a) and 3(b). They are from the dipole vertex at the
second order in perturbation theory.* The amplitudes satisfy
the Ward identity by virtue of Eq. (24). In Coulomb gauge,
the amplitudes of Figs. 3(a) and 3(b) are

5ab(€ )i(e )jQIQZ

= 92
% /d Prel (<Wnl|rj| pml>< p,el ‘Wnl>
(27[) - |Enl| - Lel + i€
+ <Wnl|r]| Prel>< 17,51 |Wnl>> (85)
|Enl| _il—’— e

When ¢, > |E,|, the first term in the big parentheses has a
pole. At the pole, the term becomes imaginary. Physically,
this happens when the intermediate octet state becomes on
shell so the process becomes the quarkonium dissociation.
Therefore, we should take the principal value of the integral
P d*p,. One can show the principal value is well
defined; i.e., the divergent contributions from both sides
of the pole cancel out.

During the lifetime of the virtual octet, its momentum
may change due to a number of collisions that transfer a
small momentum, as depicted in Fig. 3(c). These processes
are at the order 7, so not suppressed by the multipole
expansion. The virtual octet diffuses as if it were an open
heavy quark. Since the contributions cancel out near the
pole of the octet propagator the octet behaves like a state
with lifetime Az ~ W The rate of transferring the square

*At the order gzr we need to consider new terms that show up
in the Lagrangian in the multipole expansion. A quadrupole term
of the form g*S'r;r;S contracted with E; or A; can contribute at
the first order in perturbation theory. However, such a term has a
vanishing matching coefficient [36].

of momentum is about a27> [37]. So, the square of

momentum transferred during its lifetime is abou M <
a2T? since we assume 7 < Mv?. The momentum trans-
ferred is about ;7. The c.m. momentum of the octet is at
least g; ~T > a,T. So, the effect from the virtual octet
diffusion is small, and there is no need to resum gA into the
virtual octet.
We define the square of the total amplitude, summed

over colors and polarizations of gluons,

STIMPE=DN M

a,b €.

4 ,Tp -,
= §g4N_CCF|€l

x (,P/d3prel |<‘Ppm|r|l//ill>|2(‘Enl| +%)>2
3 2 :
@a) (Bl + 57 - &

= 12,22
619195

(86)

To write the diffusion term in the Boltzmann equation
explicitly, we define

_ d3kl d3k2 d3q1
F i =/(27[)3/<2”)3/2C]1<27{)3
d392
X /WHB(%)(I +ng(q2)) frs(x. Ky, 1)

— 49 §:|/Vl|2

(87)

x (2m)*5* (ky + q1 — ko —

The diffusion term in the Boltzmann equation (1) can be
written as

5’Fnls
5k,

oF nls
Sk,

Cnls('x’p’ t) - (88)

ki=p ky=p

We can also define the diffusion coefficient as the square of
momentum transferred per unit time:
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FIG. 4. 7Y(1S) diffusion coefficient : (a) as a function of temperature, the solid line is the exact result from Eq. (90), while the dashed
line is the approximate result from Eq. (91); (b) mass dependence, the lower, middle, and upper lines correspond to k(M) /x(M;) with

i =1, 2, 3, respectively.

d3612

3 3
ez [ [t [ a1+ ) @ = 427Ky + a1~k = )6l = ) Y IMP.

After some simplifications,

= 72977

For the 1S state, if the ¢> in the denominator inside the
integral over p., is neglected and the octet relative wave
function is a plane wave, one can show

T*(aTap)° 50176z 2.
N 1215 ¢

k(1) = (91)

2
a,CrM*

approximation, Cr = 3/2, and multiplies the expression
(91) by a factor of 9/8 (because when we sum over colors,
there is a factor of 8, and in large N, the factor is 9), then
Eq. (91) agrees with the previous estimate using perturba-
tive calculations in another effective field theory in which
the octet is integrated out [23]. The approximate result
scales as ¥’ o« T°. Both the exact result, Eq. (90), and the
approximate result, Eq. (91), are shown in Fig. 4 for T(1S)
with M = 4.65 GeV and a; = 0.3. The two results differ
by 2 to 3 orders of magnitude. The approximate result,
Eq. (91), is only valid when T < Mv?, so one can neglect
the ¢> ~ T? in the denominator.” However, for real QGP,
T Z 160 MeV, it is not a good approximation even for the

where the Bohr radius az = If one takes the large-N ..

5Inzfact, if one expands the integrand of (90) in powers of

! [ rand
=T T3, ONe obtams an asymptotic series.
(En[+p2 /M) ymp

o / dgq®np(q)(1 +n3(61))<7’ / dPrel

(89)

PR, Py PO E ] +2)\ 2
re Prel M > . (90)

2
(|Enl| +%)2 - q2

bottom quark with Mv? ~450 MeV. One should also
notice that the typical value of g can be a few times larger
than T because of the high power ¢® in the phase space
integral. This makes the approximation less valid. At high
temperatures Mv > T > Mv? (the first inequality assures
our power counting), the ¢” in the denominator dominates
over Mv?, and we expect k  T°. Furthermore, if we
assume the octet relative wave function is a plane wave,

%(aBprel)2

0+ (s 02

|<\Ppml rlyis) > = 1024x

we expect k(1S) o« (Ma%)? o« M~2 at high temperatures.
The mass dependence of « is also plotted for three differ-
ence heavy quark masses. At high temperature, the mass
scaling is approximately valid.

In principle, a quarkonium has two ways to lose energy
inside QGP. One way is the elastic scattering or diffusion.
The other way is to dissociate first, lose energy as an
unbound heavy quark-antiquark pair, and then recombine
later. The former mechanism only works when the quar-
konium is a well-defined bound state inside QGP. So, it
only makes sense when the temperature is below the
quarkonium melting temperature. As shown in Fig. 4,
the rate of momentum transfer due to the diffusion is very
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slow for Y(1S), compared with that of open heavy quarks
(x/T? of heavy quarks is on the order of 1 or 10 [38]). This
is also true for J/y, because we expect its diffusion
coefficient is ten times larger than that of Y(1S) from
the mass scaling. But J/y has a lower melting temperature,
so the diffusion coefficient would probably only make
sense when T is below 300 MeV. Therefore, the latter
mechanism (dissociation followed by energy loss and
recombination) probably dominates the quarkonium energy
loss, even though not every quarkonium finally observed
has to go through this sequence of processes. Some of the
primordially produced quarkonia may survive the in-
medium evolution and lose almost no energy.

VI. CONCLUSION

In this paper, we calculated the dissociation, recombi-
nation, and diffusion terms in the Boltzmann transport
equation of quarkonium. We considered the processes of
gluon absorption/emission, inelastic scattering, and elastic
scattering with medium constituents. We computed scatter-
ing amplitudes directly in pNRQCD and showed they
satisfy the Ward identities. Loop corrections were also
considered. The dipole interaction is not running at the one-
loop level. The interference between the gluon absorption/
emission and its thermal loop corrections cancels the
collinear divergence in the inelastic scattering. The inelastic
scattering amplitude is infrared safe.

By choosing the Coulomb gauge, we explicitly wrote
down expressions for the dissociation rate of quarkonium,
the recombination rate of a heavy quark with an arbitrary
heavy antiquark distribution, and the diffusion coefficient
of quarkonium. We found that the diffusion coefficient of

quarkonium is much smaller than that of the heavy quark.
This implies that the dominant energy loss mechanism of
quarkonium inside QGP is not diffusion but rather a
sequence of processes: first dissociation, then energy loss
as unbound heavy quarks, and later recombination.

The calculations presented here can be generalized to
study the effect of a turbulent plasma on quarkonium in the
early stage of heavy ion collisions, as is done for heavy
quarks [39]. For a complete description of quarkonium
production in heavy ion collisions, the quarkonium trans-
port equation needs to be coupled with transport equations
of heavy quarks. The Boltzmann equations of heavy
quarks have been constructed and used in phenomenology
[40-42]. By coupling these transport equations, the recom-
bination of quarkonium will be calculated from the real-
time dynamical heavy quark distributions rather than
phenomenological models. The coupled Boltzmann trans-
port equations have been used to study Upsilon production
at both the Relativistic Heavy Ion Collider and LHC and
can describe the experimental data [43]. In future work, we
will solve the coupled Boltzmann equations and study
charmonium production in heavy ion collisions.
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