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We consider the quarkonium diffusion, dissociation, and recombination inside quark-gluon plasma.
We compute scattering amplitudes in potential nonrelativistic QCD for relevant processes. These processes
include the gluon absorption/emission at the order gr, inelastic scattering at the order g2r, and elastic
scattering with medium constituents at the order g2r2. We show these amplitudes satisfy the Ward identity.
We also consider one-loop corrections. The dipole interaction between the color singlet and octet is
not running at the one-loop level. Interference between the tree-level gluon absorption/emission and its
thermal loop corrections cancels the collinear divergence in the t-channel inelastic scattering. The inelastic
scattering has no soft divergence because of the finite binding energy of quarkonium. We write out
the diffusion, dissociation, and recombination terms explicitly for a Boltzmann transport equation and
define the dissociation and recombination rates. Furthermore, we calculate the diffusion coefficient of
quarkonium. We find our result of the diffusion coefficient differs from a previous calculation by 2 to 3
orders of magnitude. We explain this and can reproduce the previous result in a certain limit. Finally, we
discuss two mechanisms of quarkonium energy loss inside quark-gluon plasma.
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I. INTRODUCTION

Since the early study of static screening on quarkonium
[1], the bound state of a heavy quark-antiquark pair,
quarkonium has been used as a probe of quark-
gluon plasma (QGP) in heavy ion collisions. In a high-
temperature QGP, the attractive potential between the
heavy quark-antiquark pair QQ̄ is significantly suppressed,
and thus the bound state cannot exist. The screening effects
have been widely investigated by computing the free
energy of QQ̄ [2,3] or spectral functions [4,5] on a lattice
at finite temperature.
In addition to the static screening effect, the dynamical

screening effect also exists inside QGP. It is the dissocia-
tion of quarkonium caused by collisions with medium
constituents. The dissociation process at leading order in
the coupling constant is the gluon absorption process
gþH → Qþ Q̄, where H indicates a quarkonium state.
It was first investigated by using large-Nc expansions
[6,7]. At next-leading order, inelastic scattering between
quarkonium and medium constituents contributes to the

dissociation lðl̄;gÞþH→ lðl̄;gÞþQþQ̄, where l denotes a
light quark. The inelastic scattering was first studied in the
quasifree limit at which the Q and Q̄ are treated as free
particles and each of them scatters independently with
medium constituents [8]. Later, the interference effect was
taken into account. This leads to a dependence of the
dissociation rate on the relative position of the heavy quark-
antiquark pair [9,10]. This maps into a dependence of the
inelastic scattering on the bound-state wave function [11],
as in the case of gluon absorption. The dissociation rate can
be interpreted as an imaginary part of the QQ̄ potential.
One can also interpret the dissociation as a decoherence of
the quarkonium wave function in the language of open
quantum systems [12]. More recently, these dissociation
rates were studied from the thermal loop corrections of
the singlet propagator in potential nonrelativistic QCD
(pNRQCD) [13–15] by systematic weak coupling and
nonrelativistic expansions. Anisotropic corrections to dis-
sociation rates have also been considered [16–18].
To describe the transport of quarkonium inside QGP, one

also needs to consider the in-medium recombination from
unbound QQ̄ pairs [19]. This can be modeled by detailed
balance and a phenomenological factor controlling howmuch
open heavy quarks are thermalized [20]. Recombination from
parametrized nonequilibrium heavy quark distributions has
also been investigated [21]. For practice, one needs heavy
quark distributions from real in-medium dynamics. To this
end, one can couple the transport equations of quarkonium
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with those of heavy quarks [22]. The inverse of the gluon
absorption, the gluon emission, Qþ Q̄ → gþH has been
simulated inRef. [22]with dynamically evolvingheavyquark
distributions, and the approach to detailed balance and
equilibrium was demonstrated.
Besides dissociation and recombination, quarkonium

can also diffuse inside QGP because it is approximately
a color dipole and thus not exactly color neutral. It may
elastically scatter with medium constituents. The diffusion
coefficient of quarkonium has been estimated in both the
weak and strong coupling limits [23]. However, the
diffusion has not been included in phenomenological
studies using transport equations.
In this paper, we consider the dissociation, recombination,

and diffusion of quarkonium in the same theoretical frame-
work.We apply pNRQCD to calculate the relevant terms in a
Boltzmann transport equation. The transport equation can be
derived from first principles by using the open quantum
system formalism and effective field theory pNRQCD
[24]. The use of open quantum system formalism to study
quarkonium in-medium dynamics has been widely inves-
tigated recently [25–29]. We compute directly the scattering
amplitudes of gluon absorption/emission, inelastic scatter-
ing, and elastic scattering in pNRQCD, in contrast to
previous studies of dissociation rates that use the optical
theorem and loop corrections to the forward amplitudes
[13–15]. By writing out the amplitudes explicitly, we can
show these amplitudes satisfy the Ward identities, which has
not been explicitly shown before. We also consider the loop
correction to the gluon absorption/emission. We demonstrate
that the t-channel inelastic scattering is infrared safe.
Furthermore, we compute the diffusion coefficient of quar-
konium and reproduce a previous result in a certain limit.
Finally, we discuss two mechanisms of quarkonium energy
loss inside QGP: one through diffusion and the other via
dissociation first and then recombination later.
The paper is organized as follows. In Sec. II, we briefly

introduce the Boltzmann transport equation of quarkonium.
Then, in Sec. III, we explain the effective field theory
pNRQCD used in the calculations. The calculation results
of dissociation, recombination, and diffusion are shown in
the following Secs. IVand V. In Sec. V, two mechanisms of
quarkonium energy loss are also discussed. Finally, the
conclusions are drawn in Sec. VI.

II. BOLTZMANN TRANSPORT EQUATIONS

The dynamical evolution of quarkonium inside QGP can
be described by Boltzmann transport equations for the
distribution function of each quarkonium state with the
quantum number nl and spin s,

∂
∂t fnlsðx; p; tÞ þ v ·∇xfnlsðx; p; tÞ

¼ Cþnlsðx; p; tÞ − C−nlsðx; p; tÞ þ Cnlsðx; p; tÞ: ð1Þ

The three collision terms Cþnls, C
−
nls, and Cnls represent the

recombination, dissociation, and diffusion of quarkonium
in the medium, respectively. In the following, when we
compute the square of the scattering amplitudes, we will
average over the polarizations of non–S wave quarkonium
states. So, we omit the quantum number m throughout the
paper. The Boltzmann transport equation can be derived
from QCD by using the open quantum system formalism
and effective field theory under the assumption of the
Markovian process and weak coupling between the quar-
konium and the medium [24]. When the quarkonium size
is smaller than the screening length of the medium, the
weak coupling assumption is valid. Both the nonrelativi-
sitic and weak coupling expansion parameters are smaller
for bottomonium than charmonium. This implies that the
leading-order results are more reliable for bottomonium.
In the following sections, we will compute these colli-

sion terms in pNRQCD.

III. POTENTIAL NRQCD

The effective field theory pNRQCD can be systemati-
cally derived from QCD under the separation of scales:
M ≫ Mv ≫ Mv2 [30]. Here, M denotes the mass of the
heavy quark, assumed to be large, and v is the typical
relative velocity between the heavy quark-antiquark pair
inside a quarkonium. For charmonium, v2 ∼ 0.3, while for
bottomonium, v2 ∼ 0.1 [31]. To derive pNRQCD, one
integrates out the scalesM andMv in sequence and applies
a double expansion in the heavy quark velocity v (non-
relativistic expansion) and the interquark distance r ∼ 1

Mv
(multipole expansion). For quarkonium inside QGP, two
additional scales appear: the plasma temperature T and
Debye massmD. Depending on where T andmD fit into the
vacuum separation of scales M ≫ Mv ≫ Mv2, one can
have different versions of the theory. Here, we focus on the
following hierarchy of scales,M ≫ Mv ≫ Mv2 ≳ T ≳mD,
where T andmD are on the same order as the typical binding
energy Mv2. In this hierarchy, a bound quarkonium state
can be well defined. If T and mD are on the order
of Mv, the Debye screening will be so strong that the
potential cannot support any bound state. In cases with
rT ∼ rmD ∼ 1, the multipole expansion also breaks down.
The Lagrangian density of pNRQCD is given by

LpNRQCD ¼
Z

d3rTr

�
S†ði∂0 −HsÞSþ O†ðiD0 −HoÞO

þ VAðO†r · gESþ H:c:Þ

þ VB

2
O†fr · gE;Og þ � � �

�
þ Llight quark þ Lgluon; ð2Þ

where E represents the chromoelectric field and D0O ¼
∂0O − ig½A0;O�. The gluon and light quark parts are just
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QCD with momenta ≲Mv. The degrees of freedom are the
color singlet SðR; r; tÞ and color octet OðR; r; tÞ, where R
denotes the c.m. position and r denotes the relative
coordinate. We will assume the medium is translationally
invariant so the existence of the medium does not break
the separation into the c.m. and relative motions. The
color singlet and octet Hamiltonians are expanded in
powers of 1=M:

Hs ¼
ði∇cmÞ2
4M

þ ði∇relÞ2
M

þ Vð0Þ
s þ Vð1Þ

s

M
þ Vð2Þ

s

M2
þ � � � ð3Þ

Ho ¼
ðiDcmÞ2
4M

þði∇relÞ2
M

þVð0Þ
o þVð1Þ

o

M
þVð2Þ

o

M2
þ��� : ð4Þ

We will work to the lowest order in the expansion of v.

By the virial theorem, p2rel=M ∼ Vð0Þ
s;o ∼Mv2. Higher-order

terms of the potentials including the relativistic corrections
and spin-orbital and spin-spin interactions are suppressed
by extra powers of v. In the QQ̄ pair (bound or unbound)
rest frame, the initial c.m. momentum is zero. If the
medium is static with respect to the QQ̄ pair, the final
c.m. momentum after a scattering is of order approximately
T. Since in our power counting T ≲Mv2, the c.m. kinetic
energy is of order approximately Mv4 and thus suppressed
by v2.1 Therefore,

Hs;o ¼
ði∇relÞ2

M
þ Vð0Þ

s;o: ð5Þ

The potentials and Wilson coefficients VA;B in the chromo-
electric dipole vertices can be obtained by matching
pNRQCD with NRQCD [30,32,33]. Up to order g2r,

Vð0Þ
s ¼−CF

αs
r
; Vð0Þ

o ¼ 1

2Nc

αs
r
; VA¼VB¼1: ð6Þ

The chromomagnetic vertices are suppressed by powers
of v. The potential is Coulomb, which is approximately
valid inside QGP since the confining part is flattened. One
can improve the potentials by doing nonperturbative
matching calculations at finite temperature.
Under a gauge transformation UðR; tÞ,

SðR; r; tÞ → SðR; r; tÞ ð7Þ

OðR; r; tÞ → UðR; tÞOðR; r; tÞU†ðR; tÞ ð8Þ
Dμ

cm → UðR; tÞDμ
cmU†ðR; tÞ; ð9Þ

therefore, the Lagrangian density is invariant under a
gauge transformation associated with the c.m. motion.
It is worth noting that the relative motion is not gauged
due to the multipole expansion. The potentials may be
gauge dependent at the matching calculation.
To make the wave function associated with the relative

motion explicit, we do a change of basis in the relative
motion by defining

SðR; r; tÞ ¼ 1ffiffiffiffiffiffi
Nc

p SðR; r; tÞ≡ 1ffiffiffiffiffiffi
Nc

p hrjSðR; tÞi ð10Þ

OðR; r; tÞ ¼ 1ffiffiffiffiffiffi
TF

p OaðR; r; tÞTa ≡ 1ffiffiffiffiffiffi
TF

p hrjOaðR; tÞiTa;

ð11Þ

whereNc ¼ 3 and TF ¼ 1
2
. We define the quadratic Casimir

of the fundamental representation CF ≡ TF
Nc
ðN2

c − 1Þ for
later use. Then, the Lagrangian density of the singlet and
octet can be written as [33]

LpNRQCDðR; tÞ ¼ Lkin;s þ Lkin;o þ Lint;so þ Lint;oo þ � � �
ð12Þ

Lkin;s ¼hSðR; tÞjði∂0 −HsÞjSðR; tÞi ð13Þ

Lkin;o ¼hOaðR; tÞjði∂0 −HoÞjOaðR; tÞi ð14Þ

Lint;so ¼
ffiffiffiffiffiffiffi
TF

NC

s
ðhOaðR; tÞjr · gEaðR; tÞjSðR; tÞi þ H:c:Þ

ð15Þ
Lint;oo ¼ ifabchOaðR; tÞjgAb

0ðR; tÞjOcðR; tÞi
þ dabchOaðR; tÞjgr · EbðR; tÞjOcðR; tÞi þ � � �

ð16Þ
The bra-ket notation saves us from writing the integral over
the relative position explicitly. The singlet and octet
composite fields are quantized by

jSðR; tÞi ¼
Z

d3pcm

ð2πÞ3 e
−iðEt−pcm·RÞ

�X
nl

jψnlianlðpcmÞ

þ
Z

d3prel

ð2πÞ3 jψprelibprelðpcmÞ
�

ð17Þ

jOaðR;tÞi¼
Z

d3pcm

ð2πÞ3 e
−iðEt−pcm·RÞ

Z
d3prel

ð2πÞ3 jΨprelicaprelðpcmÞ;

ð18Þ
where E is the eigenenergy of the state under the
Hamiltonians, Eq. (5). The whole Hilbert space factorizes
into two parts: one for the c.m. motion and the other for the
relative motion. The wave functions of the relative motion

1If the medium is moving with respect to the QQ̄ pair at a
velocity vmed, the c.m. kinetic energy is still suppressed at least by
one power of v if vmed ≲

ffiffiffiffiffiffiffiffiffiffiffi
1 − v

p
. We assume the medium is static

with respect to the QQ̄ pair in this paper. Generalization to the
case of a moving medium with vmed ≲

ffiffiffiffiffiffiffiffiffiffiffi
1 − v

p
can be easily

worked out.
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can be obtained by solving Schrödinger equations, which
are part of the equations of motion of the free composite
fields. They can be hydrogenlike wave functions jψnli for
bound singlets with the eigenenergy −jEnlj, or Coulomb
scattering waves jψpreli and jΨpreli for unbound singlets and
octets with the eigenenergy p2rel=M. No bound state exists in
the octet channel due to the repulsive potential. As we will
explain later [see expression (26)], we will average over the
third component of the angular momentum of non–S wave
quarkonium states. So, we omit the quantum number ml of

the bound singlet state. The operators að†Þnl ðpcmÞ, bð†ÞprelðpcmÞ
and cað†Þprel ðpcmÞ act on the Fock space to annihilate (create) a
composite particle with c.m. momentum pcm and corre-
sponding quantum numbers in the relative motion. These
annihilation and creation operators satisfy the following
commutation rules:

½an1l1ðpcm1Þ; a†n2l2ðpcm2Þ� ¼ ð2πÞ3δ3ðpcm1 − pcm2Þδn1n2δl1l2
ð19Þ

½bprel1ðpcm1Þ; b†prel2ðpcm2Þ�
¼ ð2πÞ6δ3ðpcm1 − pcm2Þδ3ðprel1 − prel2Þ ð20Þ

½ca1prel1ðpcm1Þ; ca2†prel2ðpcm2Þ�
¼ ð2πÞ6δ3ðpcm1 − pcm2Þδ3ðprel1 − prel2Þδa1a2 : ð21Þ

All other commutators are zero. The Feynman rules
are summarized in Fig. 1. We use the notation
aibi≡P

ia
ibi¼aibi to denote Euclidean summation and

rμ ¼ 0 when μ ¼ 0.

FIG. 1. Feynman rules in pNRQCD. The single solid line represents the bound color singlet, while double solid lines represent the
unbound color octet. The gray blob indicates the dipole interaction. The vertex with no gray blob means the gauge coupling in the c.m.
motion. The unbound singlet propagator will not be used throughout the paper and is not shown here. The octet wave function jΨpreli is a
Coulomb scattering wave, and thus the effect of the octet potential has been resummed in the octet propagator. In principle, there is also
an octet-octet-gluon-gluon vertex at the order g2r. But it is irrelevant in the current study and neglected here.
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IV. DISSOCIATION AND RECOMBINATION

In this section, we consider the contributions to the
dissociation and recombination terms in the Boltzmann
equation at the orders gr and g2r. All contributing Feynman
diagrams are shown in Fig. 2.

A. Contributions at the order gr

At the order gr, only the diagram in Fig. 2(a) contributes.
It is a gluon absorption process for dissociation and a
gluon emission process for recombination. The scattering
amplitude is given by

iMðaÞ ¼ g

ffiffiffiffiffiffi
TF

Nc

s
ðq0ϵ�i − qiϵ�0ÞhΨprel jrijψnliδab ð22Þ

≡iϵ�μðMðaÞÞμ: ð23Þ

The gluon is on shell, so q0 ¼ jqj≡ q. The Ward identity
can be easily verified:

qμðMðaÞÞμ ¼ 0: ð24Þ

So, we can compute the amplitude in any gauge we want. In
Coulomb gauge, we define the square of the amplitude
magnitude, summed over the gluon and octet colors a, b
and the gluon polarizations ϵ,X

jMðaÞj2≡
X
a;b;ϵ

jMðaÞj2

¼g2CFq2ðδij− q̂iq̂jÞhψnljrijΨprelihΨprel jrjjψnli:
ð25Þ

As mentioned earlier, we average over the third component
of angular momentum of quarkonium for l > 0, so we omit
the quantum numberml. Here, we will show explicitly how
the average simplifies the calculation. To this end, we
temporarily restore the quantum number ml in the bound-
state wave function. When integrating over the relative
momentum of the heavy quark-antiquark pair from the
dissociation, the average leads to

1

2lþ 1

Xl

ml¼−l

Z
d3prelhψnlml

jrijΨprelihΨprel jrjjψnlml
i

¼ 1

3
δij

1

2lþ 1

Xl

ml¼−l

Z
d3preljhΨprel jrjψnlml

ij2

≡ 1

3
δij

Z
d3preljhΨprel jrjψnlij2: ð26Þ

This allows us to write

X
jMðaÞj2 ≡ 2

3
g2CFq2jhΨprel jrjψnlij2: ð27Þ

To simplify the notation of the dissociation and recom-
bination terms for a quarkonium state nls in the Boltzmann
equation, we define2

Fþ
nlsðaÞ ≡ gþ

Z
d3k
ð2πÞ3

d3pQ

ð2πÞ3
d3pQ̄

ð2πÞ3
d3q

2qð2πÞ3 ð1þ nBðqÞÞfQðxQ; pQ; tÞfQ̄ðxQ̄; pQ̄; tÞ

× ð2πÞ4δ3ðkþ q − pcmÞδ
�
−jEnlj þ q −

p2
rel

M

�X
jMðaÞj2 ð28Þ

F−
nlsðaÞ ≡

Z
d3k
ð2πÞ3

d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

2qð2πÞ3 nBðqÞfnlsðx; k; tÞð2πÞ
4δ3ðkþ q − pcmÞδ

�
−jEnlj þ q −

p2
rel

M

�X
jMðaÞj2; ð29Þ

where nB is the Bose-Einstein distribution function, gþ ¼ 1
N2

c
gs, and gs is the multiplicity factor in spin: gs ¼ 3

4
for a

quarkonium with spin s ¼ 1 and 1
4
for spin s ¼ 0. In the definition of Fþ

nlsðaÞ, pcm ¼ pQ þ pQ̄ and prel ¼ pQ−pQ̄
2

are the c.m.

and relative momenta of a pair of heavy quark and antiquark with momenta pQ and pQ̄.
We further define a “δ derivative” symbol, first introduced in Ref. [34],

2In Fþ
nlsðaÞ, the positions in the heavy quark and antiquark distributions can be different. See the derivation of this term in Ref. [24].
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FIG. 2. Feynman diagrams contributing to the dissociation and recombination terms in the Boltzmann equation. The single solid line
represents the bound color singlet, while double solid lines represent the unbound color octet. The short dashed line indicates the light
quark, while the long dashed line is the ghost. The gray blob indicates the dipole interaction.
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δ

δpi

Z Yn
j¼1

d3pj

ð2πÞ3 hðp1; p2;…; pnÞ
����
pi¼p

≡ δ

δwðpÞ
Z Yn

j¼1

d3pj

ð2πÞ3 hðp1; p2;…; pnÞwðpiÞ

¼
Z Yn

j¼1;j≠i

d3pj

ð2πÞ3 hðp1; p2;…; pi−1; p; piþ1;…; pnÞ; ð30Þ

where the second δ denotes the standard functional varia-
tion and hðp1; p2;…; pnÞ and wðpiÞ are arbitrary indepen-
dent smooth functions. Then, the C�nls terms in the
Boltzmann equation (1) can be written as

C�nlsðaÞðx; p; tÞ ¼
δF�

nlsðaÞ
δk

����
k¼p

: ð31Þ

For CþnlsðaÞ, we further require 1
2
ðxQ þ xQ̄Þ ¼ x, i.e., the

position of a recombined quarkonium is given by the c.m.
position of the heavy quark-antiquark pair. Recombinations
from the heavy quark-antiquark pairs with a distance much
larger than the Bohr radius jxQ − xQ̄j ≫ aB can be shown
to be negligible [24]. In practical numerical simulations, a

Gaussian dependence on
jxQ−xQ̄j

aB
may be applied [22].

The dissociation rate of the quarkonium state nls from
the diagram in Fig. 2(a) is given by

Γdisso
nlsðaÞðx; p; tÞ≡

C−nlsðaÞðx; p; tÞ
fnlsðx; p; tÞ

: ð32Þ

The recombination rate of a heavy quark into the quarko-
nium state nls surrounded by heavy antiquarks with the
distribution fQ̄ðxQ̄; pQ̄; tÞ is given by

Γrecom
nlsðaÞðx; p; tÞ≡

1

fQðxQ; pQ; tÞ
δFþ

nlsðaÞ
δpQ

����
xQ¼x; pQ¼p

: ð33Þ

B. Contributions at the order g2r

1. Contributions from diagram 2b

Figure 2(b) depicts the inelastic scattering with light
quarks (up and down) in the medium. The light quarks are
assumed massless. First, we check the amplitude is inde-
pendent of the gauge choice. The gauge invariance reflects
in the invariance of the amplitude when the ϵμ in the gluon
propagator is replaced with ϵμ þ qμ. It has been shown in
the last section (Sec. IVA) that the dipole interaction
between the singlet and octet is invariant under such a
replacement, by virtue of the Ward identity, Eq. (24). What
remains to be shown is the invariance of the vertex of the
light quark. This is guaranteed by the Dirac equation:

ūs2ðp2ÞγμTaus1ðp1Þqμ ¼ ūs2ðp2Þð=p1 − =p2ÞTaus1ðp1Þ ¼ 0:

ð34Þ

In Coulomb gauge,

iMðbÞ ¼ g2VA

ffiffiffiffiffiffi
TF

Nc

s
hΨprel jrkjψnli

×
�
−q0ðδkl − q̂kq̂lÞ
ðq0Þ2 − q2 þ iϵ

ūs2ðp2ÞγlTaus1ðp1Þ

þ qk

q2
ūs2ðp2Þγ0Taus1ðp1Þ

�
: ð35Þ

We define jMðbÞj2 summed over the octet color a; the spins
s1, s2; colors i, j; and flavors of the incoming and outgoing
light quarks and include also the contribution from anti-
quarks asX

jMðbÞj2 ≡
X
a;i;j

X
s1;s2

X
u;ū;d;d̄

jMðbÞj2 ð36Þ

¼ 16

3
g4V2

ATFCFjhΨprel jrjψnlij2

×

�
p1p2 þ p1 · p2

q2

þ 2ðq0Þ2ðp1p2 − p1 · q̂ · p2 · q̂Þ
ððq0Þ2 − q2 þ iϵÞ2

�
: ð37Þ

Next, we check the infrared sensitivity of the term
inside the square brackets. The energy-momentum con-
servation gives q0¼p1−p2¼jp1j− jp2j¼ jEnljþp2

rel=M,
q ¼ p1 − p2 ¼ pcm − k. Assume the angle between p1 and
p2 is θ. We have

p1p2 þ p1 · p2
q2

¼ p1p2 þ p1p2 cos θ
p2
1 þ p2

2 − 2p1p2 cos θ
ð38Þ

2ðq0Þ2ðp1p2 − p1 · q̂ · p2 · q̂Þ
ððq0Þ2 − q2 þ iϵÞ2

¼ p2
1 þ p2

2 − 2p1p2

2p1p2ð1 − cos θÞ ×
p2
1 þ p2

2 þ p1p2ð1 − cos θÞ
p2
1 þ p2

2 − 2p1p2 cos θ
:

ð39Þ

QUARKONIUM INSIDE THE QUARK-GLUON PLASMA: DIFFUSION… PHYS. REV. D 100, 014008 (2019)

014008-7



In both terms, there is no soft divergence because the
binding energy jEnlj serves as a soft regulator:
p2
1 þ p2

2 − 2p1p2 cos θ ≥ ðp1 − p2Þ2 ≥ jEnlj2. The first
term has no collinear divergence, either. The collinear
divergence happens in the second term when cos θ → 1.
Physically, this occurs when the momenta of both the
incoming and outgoing light quarks are in the same
direction. The transferred gluon is on shell. In this case,
the inelastic scattering cannot be distinguished from the
real gluon process shown in Fig. 2(a). As we show below
in Sec. IV B 4, the interference between the diagram in
Fig. 2(a) and its thermal loop correction in Fig. 2(l) cancels
this collinear divergence.

2. Contributions from Figs. 2(c)–2(f)
The processes of inelastic scattering with gluons in the

medium are depicted in Figs. 2(c)–2(f). All four diagrams

are needed for the gauge invariance. First, we consider the
gauge transformation of the internal gluon line in Fig. 2(c).
If we cut the diagram into two halves by cutting the internal
gluon line, we need to show that both the upper and lower
parts vanish when contracted with qρ. For the dipole
interaction in the lower part, this has been shown by the
Ward identity, Eq. (24). For the three-gluon vertex in the
upper part, it can be shown that

− gfabcðϵ�1Þμðϵ2Þν½gνρðq2 − qÞμ þ gρμðqþ q1Þν
þ gμνð−q1 − q2Þρ�qρ ¼ 0; ð40Þ

by using q1 · ϵ1 ¼ q2 · ϵ2 ¼ 0.
Next, we consider the gauge transformation of the

external gluon line. We fix the internal gluon line to be
in the Lorentz gauge,

iMðcÞ ≡ iMμν
ðcÞðϵ�1Þμðϵ2Þν ¼ −g2VA

ffiffiffiffiffiffi
TF

Nc

s
fabc½gνρðq2 − qÞμ þ gρμðqþ q1Þν þ gμνð−q1 − q2Þρ�

×
−igρσ

ðq0Þ2 − q2 þ iϵ
ðq0δσi − qiδσ0ÞhΨprel jrijψnliðϵ�1Þμðϵ2Þν ð41Þ

iMðdÞ ≡ iMμν
ðdÞðϵ�1Þμðϵ2Þν ¼ ig2VA

ffiffiffiffiffiffi
TF

Nc

s
fabc½ðϵ�1Þ0ðϵ2Þi − ðϵ�1Þiðϵ2Þ0�hΨprel jrijψnli ð42Þ

iMðeÞ≡ iMμν
ðeÞðϵ�1Þμðϵ2Þν¼ g2VA

ffiffiffiffiffiffi
TF

Nc

s
fabcðϵ2Þ0½ðq1Þ0ðϵ�1Þi−ðq1Þiðϵ�1Þ0�hΨprel jrijψnli

i

Ep−q2−
p2rel
M − ðpcm−q2Þ2

4M þ iϵ
ð43Þ

iMðfÞ≡ iMμν
ðfÞðϵ�1Þμðϵ2Þν¼g2VA

ffiffiffiffiffiffi
TF

Nc

s
fabcðϵ�1Þ0½ðq2Þ0ðϵ2Þi−ðq2Þiðϵ2Þ0�hΨprel jrijψnli

i

Ep−q1−
p2rel
M − ðpcm−q1Þ2

4M þ iϵ
: ð44Þ

We show the Ward identity by replacing ðϵ1Þμ with ðq1Þμ,

iðq1ÞμMμν
ðcÞðϵ2Þν ¼ ig2VA

ffiffiffiffiffiffi
TF

Nc

s
fabc½−q0ðϵ2Þi þ qiðϵ2Þ0�hΨprel jrijψnli ð45Þ

iðq1ÞμMμν
ðdÞðϵ2Þν ¼ ig2VA

ffiffiffiffiffiffi
TF

Nc

s
fabc½ðq1Þ0ðϵ2Þi − ðq1Þiðϵ2Þ0�hΨprel jrijψnli ð46Þ

iðq1ÞμMμν
ðeÞðϵ2Þν ¼ 0 ð47Þ

iðq1ÞμMμν
ðfÞðϵ2Þν ¼ ig2VA

ffiffiffiffiffiffi
TF

Nc

s
fabc½ðq2Þ0ðϵ2Þi − ðq2Þiðϵ2Þ0�

ðq1Þ0hΨprel jrijψnli
Ep − q1 −

p2rel
M − ðpcm−q1Þ2

4M

¼ −ig2VA

ffiffiffiffiffiffi
TF

Nc

s
fabc½ðq2Þ0ðϵ2Þi − ðq2Þiðϵ2Þ0�hΨprel jrijψnli þOðv2Þ; ð48Þ
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where in the last line we have used Ep ¼ p2rel
M þ p2cm

4M and kept
only the relative kinetic energy of the octet by neglecting
the c.m. kinetic energy. This is consistent with our power
counting. Since qμ ¼ qμ1 − qμ2, the Ward identity is satisfied
up to v2 corrections

iðq1Þμ½Mμν
ðcÞ þMμν

ðdÞ þMμν
ðeÞ þMμν

ðfÞ�ðϵ2Þν ¼ 0: ð49Þ

Therefore, we can compute these diagrams in any gauge we
want. In Coulomb gauge, the zero component of the gauge
field is not dynamical. So, we only need to compute the
diagram in Fig. 2(c),

iMðcÞ ¼ −g2VA

ffiffiffiffiffiffi
TF

Nc

s
ðϵ�1Þμðϵ2Þνfabc½gνρðq2 − qÞμ

þ gρμðqþ q1Þν þ gμνð−q1 − q2Þρ�

×

�
δρjq0

iðδji − q̂jq̂iÞ
ðq0Þ2 − q2 þ iϵ

− δρ0qi
i
q2

�
hΨprel jrijψnli:

ð50Þ

We define the square of the amplitude magnitude, summed
over all color indices and polarizations,

X
jMðcÞj2 ≡

X
a;b;c

X
ϵ1;ϵ2

jMðcÞj2 ¼
1

3
g4V2

ACFjhΨprel jrjψnlij2
�
1þ ðq̂1 · q̂2Þ2

q2
ðq1 þ q2Þ2

þ 1

ððq0Þ2 − q2 þ iϵÞ2 P
T
i1i2

ðq1ÞPT
j1j2

ðq2ÞPT
k1k2

ðqÞðgj1k1ðq2 − qÞi1 þ gk1i1ðqþ q1Þj1 þ gi1j1ð−q1 − q2Þk1Þ

× ðgj2k2ðq2 − qÞi2 þ gk2i2ðqþ q1Þj2 þ gi2j2ð−q1 − q2Þk2Þ
�
; ð51Þ

where the transverse polarization tensor is defined as
PT
ijðqÞ ¼ δij − q̂iq̂j and PT

00 ¼ PT
0i ¼ PT

i0 ¼ 0. As in the
process of inelastic scattering with light quarks, the first
term in the square brackets is infrared safe because of the
finite binding energy. The second term is collinear diver-
gent when the momenta of the incoming and outgoing
gluons are in the same direction. In that case, the transferred
gluon is on shell. As will be shown in Sec. IV B 4, the
interference between the diagrams in Figs. 2(a) and 2(m)
will cancel this divergence.

3. Contributions from Figs. 2(g)–2(k)
The diagrams in Figs. 2(g)–2(k) describe the processes

of lþ l̄þH ↔ Qþ Q̄ and gþ gþH ↔ Qþ Q̄. They
can be computed similarly as in Secs. IV B 1 and IV B 2.
However, their contributions to the dissociation and
recombination in the Boltzmann equation are much
smaller than those from Figs. 2(b)–2(f) because of the
limited phase space of the incoming particles. In
Coulomb gauge, we only need to consider Figs. 2(g)
and 2(h). The energy transferred via the internal
gluon is fixed by q0 ¼ jEnlj þ p2rel=M and prel ∼Mv,
otherwise, the dipole transition between wave functions
jhΨprel jrijψnlij2 vanishes. The phase spaces constrained by
p1 þ p2 ¼ q0 in Fig. 2(g) and q1 þ q2 ¼ q0 in Fig. 2(h)
are much smaller than those of p1 − p2 ¼ q0 in Fig. 2(b)
and q1 − q2 ¼ q0 in Fig. 2(c). The suppression of proc-
esses with two incoming light quarks or gluons has been
noted before [21].

4. Contributions from diagrams 2(l)–2(o)
These diagrams are the one-loop corrections of the gluon

propagator. If resummed, they will give a thermal mass to the
in-medium gluon. The loop correction is at the order g2, so
the whole diagram is at the order g3r. Their interference with
the diagram in Fig. 2(a) will give contributions equivalent to
amplitudes at the order g2r. We will show the interference
cancels the collinear divergence in Eqs. (36) and (51). Thus,
there is no need to resum these diagrams here.
In Coulomb gauge,

iMðaÞ ¼ gVA

ffiffiffiffiffiffi
TF

Nc

s
q0ϵ�i hΨprel jrijψnliδab ð52Þ

iMðlÞ ¼ gVA

ffiffiffiffiffiffi
TF

Nc

s
ϵ�i hΨprel jrkjψnliδab

×

�
iΠðlÞ

ij

iq0ðδjk − q̂jq̂kÞ
q20 − q2 þ iϵ

− iΠðlÞ
i0
iqk
q2

�
; ð53Þ

where we set q0 ¼ jqj≡ q for the on-shell massless particle

and ΠðlÞ
μν is the time-ordered gluon polarization tensor

contributed from the fermion loop. The time-ordered gluon
propagator and polarization at finite temperature cannot be
directly obtained by analytically continuing the imaginary
time propagator and polarization. The time-ordered propa-
gators and polarizations can only be obtained from the
retarded and advanced ones via the relations
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DTðq0; qÞ ¼
1

2
ðDRðq0; qÞ þDAðq0; qÞÞ

þ
�
1

2
þ nBðq0Þ

�
ðDRðq0; qÞ −DAðq0; qÞÞ

ð54Þ

ΠTðq0;qÞ¼
1

2
ðΠRðq0;qÞþΠAðq0;qÞÞ

þ
�
1

2
þnBðq0Þ

�
ðΠRðq0;qÞ−ΠAðq0;qÞÞ: ð55Þ

We will focus on the first term DRðq0;qÞþDAðq0;qÞ
2

because this
term contributes to the dissociation rate when the gluon is

on shell. The second term contributes to the dissociation
rate when the gluon has spacelike momentum, which
corresponds to the inelastic scattering and has been
accounted for above. For a more detailed discussion on
this, see Ref. [15]. The fermion loop gives,

iΠðlÞ
μν ðq0; qÞ ¼ −g2TF

X
flavor

Z
d4l
ð2πÞ4

×
Trðγμð=lþ =qÞγν=lÞ

ðl20 − l2Þ2ððl0 þ q0Þ2 − ðl þ qÞ2Þ2 . ð56Þ

In the imaginary time formalism of thermal field theory, the
integral over l0 is a summation in Matsubara frequency.
After the summation,

ΠðlÞ
ij ðq0 ¼ q; qÞ ¼ g2TF

X
flavor

Z
d3l
ð2πÞ3

Trðγið=lþ =qÞγj=lÞ
4E1E2

�
ð1 − nFðE1Þ − nFðE2ÞÞ

�
1

q − E1 − E2

−
1

qþ E1 þ E2

�

− ðnFðE1Þ − nFðE2ÞÞ
�

1

qþ E1 − E2

−
1

q − E1 þ E2

��
; ð57Þ

where E1 ¼ jl þ qj, E2 ¼ jlj. Here, we only need
ΠRðq0;qÞþΠAðq0;qÞ

2
¼ ℜΠRðq0; qÞ, and we do not need to ana-

lytically continue. We can just plug it into (53). To see the
cancellation of collinear divergence, we define the interfer-
ence term summed over colors and gluon polarizationsX

ðM�
ðaÞMðlÞ þMðaÞM�

ðlÞÞ
≡X

ϵ

X
a;b

ðM�
ðaÞMðlÞ þMðaÞM�

ðlÞÞ ð58Þ

¼ −
2

3
g2V2

ACFq20jhΨprel jrjψnlij2
δij − q̂iq̂j
q20 − q2

ΠðlÞ
ij ð59Þ

and consider the following integral that is used in
the dissociation in the case of two flavors (up and down
quarks):

I1≡
Z

d3q
2qð2πÞ3nBðqÞ

X
ðM�

ðaÞMðlÞ þMðaÞM�
ðlÞÞ: ð60Þ

We focus on the term with ðnFðE1Þ − nFðE2ÞÞ in the square
brackets in Eq. (57). Under a change of variables p1 ¼ l þ q,
p2 ¼ l,

I1 ≡
Z

d3p1

2p1ð2πÞ3
Z

d3p2

2p2ð2πÞ3
nBðjp1 − p2jÞðnFðp1Þ − nFðp2ÞÞ

×
16

3
g4V2

ATFCF
2ðp1 − p2Þjp1 − p2j

ððp1 − p2Þ2 − ðp1 − p2Þ2Þ2
ðp1p2 − p1 · q̂p2 · q̂Þ þ � � � ; ð61Þ

where � � �means the first term in the square brackets in Eq. (57). In the collinear limit, p1 and p2 are in the same direction, so
p1 − p2 ¼ jp1 − p2j. With nBðp1 − p2ÞðnFðp1Þ − nFðp2ÞÞ ¼ −nFðp1Þð1 − nFðp2ÞÞ, one immediately sees that I1 cancels
the collinear divergence in

Z
d3p1

2p1ð2πÞ3
d3p2

2p2ð2πÞ3
nFðp1Þð1 − nFðp2ÞÞ

X
jMðbÞj2; ð62Þ

where jMðbÞj2 is given in Eq. (36). This is for the dissociation contribution from jMðbÞj2. The cancellation of the collinear
divergence in the recombination can be shown similarly.
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We next consider the interference between the diagrams in Figs. 2(a) and 2(m). The amplitude iMðmÞ is exactly the same

as iMðlÞ under the replacement ofΠðlÞ withΠðmÞ.ΠðmÞ
μν is the gluon polarization tensor in Fig. 2(m). After summing over the

Matsubara frequencies,

ΠðmÞ
ij ðq0 ¼ q; qÞ ¼ 1

2
g2TA

Z
d3l
ð2πÞ3

1

4E1E2

PT
i1i2

ðl þ qÞPT
j1j2

ðlÞ
�
ð1þ nBðE1Þ þ nBðE2ÞÞ

�
1

qþ E1 þ E2

−
1

q − E1 − E2

�

− ðnBðE1Þ − nBðE2ÞÞ
�

1

qþ E1 − E2

−
1

q − E1 þ E2

��
½gj1iðl − qÞi1 þ gii1ð2qþ lÞj1 þ gi1j1ð−q − 2lÞi�

× ½gj2jðl − qÞi2 þ gji2ð2qþ lÞj2 þ gi2j2ð−q − 2lÞj�; ð63Þ

where TA ¼ Nc, E1 ¼ jl þ qj and E2 ¼ jlj. We will focus
on the term with ðnBðE1Þ − nBðE2ÞÞ and neglect the other
term. Under a change of variables q1 ¼ l þ q, q2 ¼ l, we
can show that the collinear divergence of the integral

I2 ≡
Z

d3q
2qð2πÞ3 nBðqÞ

X
ðM�

ðaÞMðmÞ þMðaÞM�
ðmÞÞ

ð64Þ
cancels the collinear divergence inZ

d3q1
2q1ð2πÞ3

d3q2
2q2ð2πÞ3

nBðq1Þð1þ nBðq2ÞÞ
X

jMðcÞj2;

ð65Þ
by the virtual of nBðq1 − q2ÞðnBðq1Þ − nBðq2ÞÞ ¼
−nBðq1Þð1þ nBðq2ÞÞ. Cancellation of the divergence in
the recombination process can be similarly shown.

5. Contributions from Figs. 2(p)–2(s)
These diagrams are the one-loop corrections to the dipole

interaction between the singlet and the octet. The correction
is at the order g3r, but its interference with the diagram in
Fig. 2(a) gives contributions equivalent to amplitudes at the
order g2r. In Lorentz gauge and dimensional regularization
d ¼ 4 − ϵ (the ϵ in the dimensional regularization should
be distinguished from the incoming gluon polarization ϵ�μ),

iMðpÞ ¼ −
3g3

16π2ϵ
VATA

ffiffiffiffiffiffi
TF

Nc

s
δadhΨprel jrijψnli

× ðϵ�0qi − ϵ�iq0Þ þ � � � ð66Þ

iMðqÞ ¼
3g3

16π2ϵ
VATA

ffiffiffiffiffiffi
TF

Nc

s
δadhΨprel jrijψnli

× ðϵ�0qi − ϵ�iq0Þ þ � � � ð67Þ

iMðrÞ ¼ 0þ � � � ð68Þ

iMðsÞ ¼ 0þ � � � ; ð69Þ

where TA ¼ Nc and the off-shell scheme has been used to
extract the logarithmic divergence. Only the terms with the
ϵ poles are shown. Finite terms and corrections at higher
orders in v2 are omitted. Therefore,

iMðpÞ þ iMðqÞ þ iMðrÞ þ iMðsÞ ¼
0

ϵ
þ � � � ; ð70Þ

which means the dipole interaction term between the
singlet and octet is independent of scale at the one-loop
level:

d
dμ

VAðμÞ ¼ 0: ð71Þ

This has been already noted in Ref. [35]. From the
matching condition, Eq. (6), we may set VA ¼ 1 in the
following, no matter the scale involved.

6. Contributions from Fig. 2(t)

The diagram in Fig. 2(t) describes the one-loop correc-
tion to the octet propagator at the order g2. The whole
diagram is at the order g3r, but its interference with
Fig. 2(a) is equivalent to an amplitude at the order g2r.
The one-loop correction to the octet propagator is given by

Lo ≡ g2fabcfcbd
Z

d4l
ð2πÞ4

−i
l20 − l2 þ iϵ

×
i

Ep − l0 −
p2rel
M − ðpcm−lÞ2

4M þ iϵ
; ð72Þ

where Ep ¼ p2rel
M þ p2cm

4M is the energy of the external octet
field. We first integrate over l0 by closing the contour in the
lower half-plane,

Lo ¼ ig2Ncδ
ad

Z
d3l
ð2πÞ3

1

2l
1

lþðl2−2l ·PcmÞ=ð4MÞ ð73Þ

¼ ig2Ncδ
adM

4π2Pcm

Z
dl ln

lþ 4M þ 2Pcm

lþ 4M − 2Pcm
: ð74Þ
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If we expand the integrand in powers of 1=M (in our power counting, v2 ∼ Pcm
M ) and use dimensional regularization,3 we find

Lo ¼ 0þOðv2Þ: ð75Þ

The power divergence is proportional to v2 and neglected here, consistent with the power counting.

7. Summary

To write the dissociation and recombination terms in the Boltzmann equations explicitly, we define F�
nlsðbÞ and F

�
nlsðcÞ as

Fþ
nlsðbÞ ≡ gþ

Z
d3k
ð2πÞ3

d3pQ

ð2πÞ3
d3pQ̄

ð2πÞ3
d3p1

2p1ð2πÞ3
d3p2

2p2ð2πÞ3
nFðp2Þð1 − nFðp1ÞÞfQðxQ; pQ; tÞfQ̄ðxQ̄; pQ̄; tÞ

× ð2πÞ4δ3ðkþ p1 − pcm − p2Þδ
�
−jEnlj þ p1 −

p2
rel

M
− p2

�X
jMðbÞj2 ð76Þ

F−
nlsðbÞ ≡

Z
d3k
ð2πÞ3

d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3p1

2p1ð2πÞ3
d3p2

2p2ð2πÞ3
nFðp1Þð1 − nFðp2ÞÞfnlsðx; k; tÞ

× ð2πÞ4δ3ðkþ p1 − pcm − p2Þδ
�
−jEnlj þ p1 −

p2
rel

M
− p2

�X
jMðbÞj2 ð77Þ

Fþ
nlsðcÞ ≡ gþ

Z
d3k
ð2πÞ3

d3pQ

ð2πÞ3
d3pQ̄

ð2πÞ3
d3q1

2q1ð2πÞ3
d3q2

2q2ð2πÞ3
nBðq2Þð1þ nBðq1ÞÞfQðxQ; pQ; tÞfQ̄ðxQ̄; pQ̄; tÞ

× ð2πÞ4δ3ðkþ q1 − pcm − q2Þδ
�
−jEnlj þ q1 −

p2
rel

M
− q2

�X
jMðcÞj2 ð78Þ

F−
nlsðcÞ ≡

Z
d3k
ð2πÞ3

d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q1

2q1ð2πÞ3
d3q2

2q2ð2πÞ3
nBðq1Þð1þ nBðq2ÞÞfnlsðx; k; tÞ

× ð2πÞ4δ3ðkþ q1 − pcm − q2Þδ
�
−jEnlj þ q1 −

p2
rel

M
− q2

�X
jMðcÞj2: ð79Þ

The gþ factor and the relation between pcm, prel and pQ, pQ̄
are defined in Sec. IVA. The collinear divergent parts in the
square of amplitudes have been shown to be canceled by
the interference between the tree-level process of gluon
absorption/emission and its one-loop corrections. After
regularization, we can drop the terms that are originally
collinear divergent if they are small, so we can write (by
setting VA ¼ 1)

X
jMðbÞj2 ¼

16

3
g4TFCFjhΨprel jrjψnlij2

p1p2 þ p1 · p2
q2

ð80Þ
X

jMðcÞj2 ¼
1

3
g4CFjhΨprel jrjψnlij2

×
1þ ðq̂1 · q̂2Þ2

q2
ðq1 þ q2Þ2: ð81Þ

The dissociation and recombination terms in the Boltzmann
equation from the inelastic scattering with light quarks and
gluons are given by

C�nls;inelðx; p; tÞ ¼
δF�

nlsðbÞ
δk

����
k¼p

þ
δF�

nlsðcÞ
δk

����
k¼p

: ð82Þ

For Cþnls;inel, we further require x ¼ xQþxQ̄
2

as in the case of
real gluon absorption. The dissociation rate of the quarko-
nium state nls from the inelastic scattering is given by

Γdisso
nls;inelðx; p; tÞ≡

C−nls;inelðx; p; tÞ
fnlsðx; p; tÞ

: ð83Þ

The recombination rate of a heavy quark into the quarko-
nium state nls surrounded by heavy antiquarks with the
distribution fQ̄ðxQ̄; pQ̄; tÞ is given by

Γrecom
nls;inelðx; p; tÞ

≡ 1

fQðxQ; pQ; tÞ
δðFþ

nlsðbÞ þ Fþ
nlsðcÞÞ

δpQ

����
xQ¼x; pQ¼p

: ð84Þ3A similar argument has been used in Ref. [31]. See the
Appendix therein.
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V. DIFFUSION AND ENERGY LOSS

The quarkonium diffusion cannot happen at the order r
because the singlet has to turn to an octet at this order. The
diffusion process starts to happen at the order r2 because
the singlet can turn to an octet and then become a singlet
again. At the order g2r2, contributing diagrams are shown
in Fig. 3(a) and 3(b). They are from the dipole vertex at the
second order in perturbation theory.4 The amplitudes satisfy
the Ward identity by virtue of Eq. (24). In Coulomb gauge,
the amplitudes of Figs. 3(a) and 3(b) are

iM ¼ −g2
TF

Nc
δabðϵ�1Þiðϵ2Þjq1q2

×
Z

d3prel

ð2πÞ3
�hψnljrjjΨprelihΨprel jrijψnli

q1 − jEnlj − p2rel
M þ iϵ

þ hψnljrjjΨprelihΨprel jrijψnli
−q1 − jEnlj − p2rel

M þ iϵ

�
: ð85Þ

When q1 ≥ jEnlj, the first term in the big parentheses has a
pole. At the pole, the term becomes imaginary. Physically,
this happens when the intermediate octet state becomes on
shell so the process becomes the quarkonium dissociation.
Therefore, we should take the principal value of the integral
P
R
d3prel. One can show the principal value is well

defined; i.e., the divergent contributions from both sides
of the pole cancel out.
During the lifetime of the virtual octet, its momentum

may change due to a number of collisions that transfer a
small momentum, as depicted in Fig. 3(c). These processes
are at the order r0, so not suppressed by the multipole
expansion. The virtual octet diffuses as if it were an open
heavy quark. Since the contributions cancel out near the
pole of the octet propagator, the octet behaves like a state
with lifetime Δτ ∼ 1

Mv2. The rate of transferring the square

of momentum is about α2sT3 [37]. So, the square of

momentum transferred during its lifetime is about α2sT3

Mv2 ≲
α2sT2 since we assume T ≲Mv2. The momentum trans-
ferred is about αsT. The c.m. momentum of the octet is at
least q1 ∼ T ≫ αsT. So, the effect from the virtual octet
diffusion is small, and there is no need to resum gA0 into the
virtual octet.
We define the square of the total amplitude, summed

over colors and polarizations of gluons,

X
jMj2 ≡X

a;b

X
ϵ1;ϵ2

jMj2

¼ 4

9
g4

TF

Nc
CFjϵ⃗�1 · ϵ⃗2j2q21q22

×

�
P
Z

d3prel

ð2πÞ3
jhΨprel jrjψnlij2ðjEnlj þ p2rel

M Þ
ðjEnlj þ p2rel

M Þ2 − q21

�
2

:

ð86Þ

To write the diffusion term in the Boltzmann equation
explicitly, we define

F nls ≡
Z

d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

Z
d3q1

2q1ð2πÞ3

×
Z

d3q2
2q2ð2πÞ3

nBðq1Þð1þ nBðq2ÞÞfnlsðx; k1; tÞ

× ð2πÞ4δ3ðk1 þ q1 − k2 − q2Þδðq1 − q2Þ
X

jMj2:
ð87Þ

The diffusion term in the Boltzmann equation (1) can be
written as

Cnlsðx; p; tÞ ¼ −
δF nls

δk1

����
k1¼p

þ δF nls

δk2

����
k2¼p

: ð88Þ

We can also define the diffusion coefficient as the square of
momentum transferred per unit time:

FIG. 3. Feynman diagrams contributing to the quarkonium diffusion term in the Boltzmann equation. The first two diagrams are the
processes at the order g2r2. The last diagram is schematic and shows that the virtual octet propagator can, in principle, obtain an infinite
series of momentum “kicks” from the medium.

4At the order g2r2, we need to consider new terms that show up
in the Lagrangian in the multipole expansion. A quadrupole term
of the form g2S†rirjS contracted with Ei or Ai can contribute at
the first order in perturbation theory. However, such a term has a
vanishing matching coefficient [36].
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3κ ≡
Z

d3k2
ð2πÞ3

Z
d3q1

2q1ð2πÞ3
Z

d3q2
2q2ð2πÞ3

nBðq1Þð1þ nBðq2ÞÞðq1 − q2Þ2ð2πÞ4δ3ðk1 þ q1 − k2 − q2Þδðq1 − q2Þ
X

jMj2:

ð89Þ

After some simplifications,

κ ¼ 32

729π5
α2s

Z
dqq8nBðqÞð1þ nBðqÞÞ

�
P
Z

dprel
p2
reljhΨprel jrjψnlij2ðjEnlj þ p2rel

M Þ
ðjEnlj þ p2rel

M Þ2 − q2

�
2

: ð90Þ

For the 1S state, if the q2 in the denominator inside the
integral over prel is neglected and the octet relative wave
function is a plane wave, one can show

κ0ð1SÞ ¼ T3ðπTaBÞ6
N2

c

50176π

1215

2

C2
F
; ð91Þ

where the Bohr radius aB ¼ 2
αsCFM

. If one takes the large-Nc

approximation, CF ¼ 3=2, and multiplies the expression
(91) by a factor of 9=8 (because when we sum over colors,
there is a factor of 8, and in large Nc, the factor is 9), then
Eq. (91) agrees with the previous estimate using perturba-
tive calculations in another effective field theory in which
the octet is integrated out [23]. The approximate result
scales as κ0 ∝ T9. Both the exact result, Eq. (90), and the
approximate result, Eq. (91), are shown in Fig. 4 for ϒð1SÞ
with M ¼ 4.65 GeV and αs ¼ 0.3. The two results differ
by 2 to 3 orders of magnitude. The approximate result,
Eq. (91), is only valid when T ≪ Mv2, so one can neglect
the q2 ∼ T2 in the denominator.5 However, for real QGP,
T ≳ 160 MeV, it is not a good approximation even for the

bottom quark with Mv2 ∼ 450 MeV. One should also
notice that the typical value of q can be a few times larger
than T because of the high power q8 in the phase space
integral. This makes the approximation less valid. At high
temperatures Mv ≫ T ≫ Mv2 (the first inequality assures
our power counting), the q2 in the denominator dominates
over Mv2, and we expect κ ∝ T5. Furthermore, if we
assume the octet relative wave function is a plane wave,

jhΨprel jrjψ1Sij2 ¼ 1024π
a5BðaBprelÞ2

ð1þ ðaBprelÞ2Þ6
; ð92Þ

we expect κð1SÞ ∝ ðMa2BÞ2 ∝ M−2 at high temperatures.
The mass dependence of κ is also plotted for three differ-
ence heavy quark masses. At high temperature, the mass
scaling is approximately valid.
In principle, a quarkonium has two ways to lose energy

inside QGP. One way is the elastic scattering or diffusion.
The other way is to dissociate first, lose energy as an
unbound heavy quark-antiquark pair, and then recombine
later. The former mechanism only works when the quar-
konium is a well-defined bound state inside QGP. So, it
only makes sense when the temperature is below the
quarkonium melting temperature. As shown in Fig. 4,
the rate of momentum transfer due to the diffusion is very

FIG. 4. ϒð1SÞ diffusion coefficient κ: (a) as a function of temperature, the solid line is the exact result from Eq. (90), while the dashed
line is the approximate result from Eq. (91); (b) mass dependence, the lower, middle, and upper lines correspond to κðM1Þ=κðMiÞ with
i ¼ 1, 2, 3, respectively.

5In fact, if one expands the integrand of (90) in powers of
q2

ðjEnljþp2rel=MÞ2, one obtains an asymptotic series.
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slow for ϒð1SÞ, compared with that of open heavy quarks
(κ=T3 of heavy quarks is on the order of 1 or 10 [38]). This
is also true for J=ψ, because we expect its diffusion
coefficient is ten times larger than that of ϒð1SÞ from
the mass scaling. But J=ψ has a lower melting temperature,
so the diffusion coefficient would probably only make
sense when T is below 300 MeV. Therefore, the latter
mechanism (dissociation followed by energy loss and
recombination) probably dominates the quarkonium energy
loss, even though not every quarkonium finally observed
has to go through this sequence of processes. Some of the
primordially produced quarkonia may survive the in-
medium evolution and lose almost no energy.

VI. CONCLUSION

In this paper, we calculated the dissociation, recombi-
nation, and diffusion terms in the Boltzmann transport
equation of quarkonium. We considered the processes of
gluon absorption/emission, inelastic scattering, and elastic
scattering with medium constituents. We computed scatter-
ing amplitudes directly in pNRQCD and showed they
satisfy the Ward identities. Loop corrections were also
considered. The dipole interaction is not running at the one-
loop level. The interference between the gluon absorption/
emission and its thermal loop corrections cancels the
collinear divergence in the inelastic scattering. The inelastic
scattering amplitude is infrared safe.
By choosing the Coulomb gauge, we explicitly wrote

down expressions for the dissociation rate of quarkonium,
the recombination rate of a heavy quark with an arbitrary
heavy antiquark distribution, and the diffusion coefficient
of quarkonium. We found that the diffusion coefficient of

quarkonium is much smaller than that of the heavy quark.
This implies that the dominant energy loss mechanism of
quarkonium inside QGP is not diffusion but rather a
sequence of processes: first dissociation, then energy loss
as unbound heavy quarks, and later recombination.
The calculations presented here can be generalized to

study the effect of a turbulent plasma on quarkonium in the
early stage of heavy ion collisions, as is done for heavy
quarks [39]. For a complete description of quarkonium
production in heavy ion collisions, the quarkonium trans-
port equation needs to be coupled with transport equations
of heavy quarks. The Boltzmann equations of heavy
quarks have been constructed and used in phenomenology
[40–42]. By coupling these transport equations, the recom-
bination of quarkonium will be calculated from the real-
time dynamical heavy quark distributions rather than
phenomenological models. The coupled Boltzmann trans-
port equations have been used to study Upsilon production
at both the Relativistic Heavy Ion Collider and LHC and
can describe the experimental data [43]. In future work, we
will solve the coupled Boltzmann equations and study
charmonium production in heavy ion collisions.
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