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Z1ð4050Þ and Z2ð4250Þ observed in B̄0 → χc1K−πþ by the Belle Collaboration are candidates of
charged charmoniumlike states that minimally include two quarks and two antiquarks. While Z1ð4050Þ and
Z2ð4250Þ have been interpreted as tetraquark states previously, we propose a completely different scenario
based on a kinematical effect called the triangle singularity. We demonstrate that the triangle singularities
cause in the χc1πþ invariant mass distribution resonancelike bumps that fit very well the Belle data. If these
bumps are simulated by the Z1ð4050Þ and Z2ð4250Þ resonance excitations, the spin-parity of them are
predicted to be 1− for Z1ð4050Þ and 1þ or 1− for Z2ð4250Þ. The bump corresponding to Z1ð4050Þ has a
highly asymmetric shape, which the Belle data exactly indicate. We show that the asymmetric shape
originates from an interplay between the triangle singularity and the opening of the Xð3872Þπþ channel
near the triangle-singularity energy. This characteristic lineshape could be used to discriminate different
interpretations of Z1ð4050Þ. An interesting prediction from interpreting Z1ð4050Þ and Z2ð4250Þ as the
triangle singularities is that similar bumps caused by the same mechanisms possibly appear also in B̄0 →
J=ψK−πþ data; the already observed Zcð4200Þ corresponds to Z2ð4250Þ of JP ¼ 1þ.
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I. INTRODUCTION

Z1ð4050Þ and Z2ð4250Þ (Xð4050Þ and Xð4250Þ in the
Particle Data Group (PDG) notation [1]) were observed in
the Belle experiment as resonancelike structures in the
χc1π

þ invariant mass distribution of B̄0 → χc1K−πþ [2].1

It was not possible to determine the spin (J)-parity (P) of
these states. The following analysis in the BABAR experi-
ment [3] did not confirm them because the resonance-like
signals were only barely discernible and insignificant.
Z1ð4050Þ and Z2ð4250Þ are clearly candidates of charged
charmoniumlike states that minimally include four quarks
and thus not belonging to the conventional quark model
picture. In order to understand the QCD dynamics and its
consequence in the nonperturbative regime, it is highly
desirable to establish their existence with higher statistics
data in the experimental side, and to clarify their identities
such as tetraquark, hadron molecule, or kinematical effect
in the theoretical side.
Previous theoretical interpretations of Z1ð4050Þ and

Z2ð4250Þ are mainly categorized into tetraquark and

hadron-molecule. Within the tetraquark picture: (1) a
diquark-antidiquark state is [not] assigned to Z2ð4250Þ
[Z1ð4050Þ] [4]; (2) Z1ð4050Þ is described by a molecular-
like tetraquark picture [5]; (3) Z1ð4050Þ and Z2ð4250Þ are
described with tetraquarks based on a color flux-tube
model [6]; (4) JPC ¼ 0þþ diquark-antidiquark state is
not assigned to Z1ð4050Þ and Z2ð4250Þ using QCD sum
rule (QCDSR) [7]; (5) a tetraquark state is assigned to
Z2ð4250Þ using QCDSR [8]. Meanwhile, within the
hadron-molecule picture: (1) meson-exchange models dis-
favor hadron-molecule pictures for Z1ð4050Þ and Z2ð4250Þ
[9–11]; (2) D1D̄ molecule state is assigned to Z2ð4250Þ
based on QCDSR [12]. For a more complete summary,
see reviews [13,14].
In this work, we propose a completely different inter-

pretation of Z1ð4050Þ and Z2ð4250Þ. This is to associate
Z1ð4050Þ and Z2ð4250Þ with triangle singularities (TS)
[15–17], which is a kinematical effect, arising from triangle
diagrams depicted in Figs. 1(a) and 1(b) (we refer to them
as the triangle diagrams A and B hereafter), respectively.
The diagrams consist of experimentally well-established
hadrons including Xð3872Þ (χc1ð3872Þ in the PDG). The
TS can occur only when three particles in the loop go
through a classically allowed kinematics (on-shell and
collinear in the center-of-mass (CM) frame) at the same
time, and can generate a resonance-like spectrum bump; see
an illustrative discussion in Ref. [18] for a mathematical
detail. Applications of TS to phenomenology have become
popular these days [18–30], such as explaining isospin
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violations in ηð1405=1475Þ → 3π [19,20], and interpreting
recently discovered hidden charm pentaquark Pcð4450Þþ
[18,21,22] and a1ð1420Þ [23,24].
Recently we also applied TS [31] to interpreting

Zcð4430Þ [32–34] and Zcð4200Þ [35], charged charmo-
niumlike state candidates, observed in B̄0 → ψð2SÞK−πþ
and J=ψK−πþ. We successfully explained their properties
(JP, mass, width, Argand plot) extracted in the experi-
ments. The presence [absence] of Zcð4200Þ[Zcð4430Þ]-like
contribution in Λ0

b → J=ψpπ− [36] was also explained in
terms of the TS.
The present work shows that Z1ð4050Þ and Z2ð4250Þ

can also be consistently interpreted as TS, provided the
TS have experimentally detectable strengths. We demon-
strate that the triangle diagram A [B] creates a Z1ð4050Þ
[Z2ð4250Þ]-like bump in the χc1π

þ invariant mass (mχc1π)
distribution of B̄0 → χc1K−πþ. Simulating the bumps with
the Z1ð4050Þ and Z2ð4250Þ resonance excitations, JP ¼ 1−

and 1� are predicted, respectively. The Breit-Wigner
masses and widths fitted to the bumps agree very well
with those of Z1ð4050Þ and Z1ð4250Þ from the Belle
analysis [2]. The Z1ð4050Þ-like bump has a highly asym-
metric shape as the Belle data exactly indicates. We clarify
that the opening of the Xð3872Þπþ channel near the TS
energy of mχc1π ∼ 4.02 GeV is responsible for it. This
characteristic bump shape could discriminate different
interpretations of Z1ð4050Þ. We point out that the triangle
singularities for Z1ð4050Þ and Z2ð4250Þ could also gen-
erate similar bumps in B̄0 → J=ψK−πþ; the already
observed Zcð4200Þ corresponds to Z2ð4250Þ of JP ¼ 1þ.

II. MODEL

We calculate the B̄0 → χc1K−πþ decay amplitudes due
to the triangle diagrams A and B of Fig. 1. A general
formula for the decay amplitude is given by

Tabc;H ¼
Z

dp1
vab;23ðpa; pb; p2; p3ÞΓ3c;1ðp3; pc; p1Þ
E − E2ðp2Þ − E3ðp3Þ − EcðpcÞ þ iϵ

×
1

E − E1ðp1Þ − E2ðp2Þ
Γ12;Hðp1; p2; pHÞ; ð1Þ

where we have used the particle labels and their momenta
in Fig. 1(c). Spin states of the intermediate particles are
implicitly summed. The total energy in the CM frame is
denoted by E, while the energy of a particle x is ExðpxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þm2

x

p
− iΓx=2 with the mass mx, momentum px, and

width Γx; Γx ≠ 0 only for unstable intermediate particles
1 and 2. We use the mass and width values of the PDG
average [1]. Because Xð3872Þ has a very small width
(ΓðXð3872Þ < 1.2 MeV), we set it to zero in calculations.
The pion-charmonium interaction is denoted by vab;23 in

Eq. (1). The particles 2 is either Xð3872Þ [JP ¼ 1þ] or
ψð3770Þ½1−�, the particle a is χc1½1þ�, and the particles 3
and b are pions ½0−�. In calculating the triangle diagram A,
we use an s-wave interaction:

vðAÞab;23ðpa; pb; p2; p3Þ ¼ f01abðpabÞf0123ðp23Þϵ�a · ϵ2; ð2Þ
where polarization vectors for the particles a and 2 are
denoted by ϵa and ϵ2, respectively. The quantities f01abðpabÞ
and f0123ðp23Þ are form factors that will be defined in Eq. (6);
the momentum of the particle i in the ij-CM frame is
denoted by pij and pij ¼ jpijj. This interaction leaves an
s-wave χc1πþ pair in the final state. Therefore, if a spectrum
bump is created by the triangle diagram A in the mχc1π

distribution and is simulated by a resonance-excitation, the
resonance has JP ¼ 1−.
Regarding vab;23 for the triangle diagram B, where the

intrinsic parity is different between the incoming and
outgoing states, we use

vðBÞab;23ðpa; pb; p2; p3Þ ¼ f11abðpabÞf0123ðp23Þϵ�2 · ϵa × pab; ð3Þ
which converts s-wave ψð3770Þπþ into p-wave χc1π

þ.
A resonance that simulates a χc1π

þ spectrum bump from
the triangle diagram B has JP ¼ 1þ. In Eqs. (2) and (3), the
incoming 23-pair is in s-wave and can create a sharp TS
bump, being free from the centrifugal barrier. For the
triangle diagram B, however, we also examine an inter-
action of p-wave ψð3770Þπþ going to s-wave χc1π

þ
because the ψð3770Þπþ threshold is rather below the TS
energy (∼4.25 GeV) and the centrifugal barrier would not
be so effective. Such an interaction is

(a) (b) (c)

FIG. 1. Triangle diagrams contributing to B̄0 → χc1K−πþ (a,b). The triangle singularity from the diagram (a) [(b)] generates a
Z1ð4050Þ [Z2ð4250Þ]-like bump in the χc1πþ invariant mass distribution. A generic triangle diagram (c) defines particle labels and, in
the parentheses, their momenta.
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vðB
0Þ

ab;23ðpa; pb; p2; p3Þ ¼ f01abðpabÞf1123ðp23Þϵ�2 · ϵa × p23; ð4Þ

and the χc1πþ pair seems to be from a JP ¼ 1− resonance.
The R → ij vertex function, Γij;R in Eq. (1), is given by

Γij;Rðpi; pj; pRÞ ¼
X
LS

fLSij ðpijÞðsiszi sjszjjSSzÞ

× ðLMSSzjSRSzRÞYLMðp̂ijÞ; ð5Þ

with YLM being spherical harmonics. Clebsch-Gordan
coefficients are ðabcdjefÞ in which the spin of a particle
x is denoted by sx and its z-component szx. We use the form
factor fLSij ðpijÞ in the form of

fLSij ðpÞ ¼ gLSij
pLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EiðpÞEjðpÞ
p

�
Λ2

Λ2 þ p2

�
2þðL=2Þ

; ð6Þ

which is parametrized with a coupling gLSij and a cutoff Λ.
For the 1 → 3c and 23 → ab interactions, a nonzero value
of gLSij is allowed for only one set of fL; Sg. While the
actual values of gLSij for the 1 → 3c processes can be
determined using the K�ð892Þ and K�

2ð1430Þ decay widths,
experimental and Lattice QCD inputs are currently missing
to determine the couplings for the 23 → ab interactions.
Experimentally, Xð3872Þ → χc1π

þπ− has not yet been seen
[37], perhaps because Xð3872Þ has a very small width and
the phase-space for this final state is small; ψð3770Þ →
χc1ππ is not kinematically allowed. Here we assume that
these couplings are strong enough and set them arbitrary.
Regarding the weak vertices for the H → 12 decays,

gLSij ≠ 0 is allowed for several sets of fL; Sg but their values
are currently difficult to estimate due to the lack of data.
However, the details of these vertices would not be crucial
in this work because the main conclusions are essentially
determined by the kinematical effects once the structure of

vab;23 is fixed as Eqs. (2)–(4). Thus we assume simple
structures and detectable strengths. We set gLSij ≠ 0 only for
S ¼ js1 − s2j [exception: S ¼ 2 when using Eq. (4)] and
the lowest allowed L; gLSij ¼ 0 for the other fL; Sg. We use
the cutoff Λ ¼ 1 GeV in Eq. (6) throughout unless other-
wise stated.
The interactions of Eqs. (2)–(5), evaluated in the CM

frame of the two-body subsystem, are further multiplied by
kinematical factors to account for the Lorentz transforma-
tion to the total three-body CM frame; see Appendix C of
Ref. [38]. The Dalitz plot distribution for H → abc is
calculated with Tabc;H of Eq. (1) following the procedure
detailed in Appendix B of Ref. [38].

III. RESULTS

In Fig. 2, we present the χc1π
þ invariant mass distribu-

tions for B̄0 → χc1K−πþ. The triangle diagram A [B] gives
the red [blue and magenta] solid curve in Fig. 2(a) [2(b) and
2(c)]. We also show the phase-space distributions (black
dotted curves). The triangle singularity creates clear res-
onancelike peaks at mχc1π ∼ 4.02 GeV in panel (a) and
mχc1π ∼ 4.22 GeV in panels (b) and (c). It is interesting to
observe in Fig. 2(a) that the bump has a significantly
asymmetric shape.
We examine how the spectrum shapes shown in Fig. 2

depend on the cutoff Λ of the form factor in Eq. (6). In
Fig. 3, the spectrum shapes calculated with Λ ¼ 1, 1.5, and
2 GeVare shown. The resonancelike peak structures due to
the kinematical singularities are clearly stable over the
reasonable cutoff range. In particular, the peak positions of
the spectra from the triangle diagram A are, as in Fig. 3(a),
almost the same; the width is somewhat broadened as Λ
increases. The peak position and width of the spectrum
from the triangle diagram B are more dependent on Λ. This
would be related to the fact that the unstable particles in the
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FIG. 2. χc1π
þ invariant mass distributions for B̄0 → χc1K−πþ. The red (blue and magenta) solid curve in the panel (a) [(b) and (c)] is

obtained from the triangle diagram A [B]. The interactions vab;23 of Eqs. (2), (3), and (4) are used for (a), (b), and (c), respectively.
The green dash-dotted curves are from Breit-Wigner amplitudes fitted to the solid curves. The dotted curves are the phase-space
distributions. The solid and dotted curves are normalized to give unity when integrated with respect tomχc1π . The scale for the panels (b)
and (c) has been doubled.
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triangle diagram B have wider widths than those in the
triangle diagram A, thereby pushing the exact TS further
away from the physical region.
Now we simulate the spectra using the conventional

resonance-excitation mechanisms, and determine the
masses and widths of the fake resonances. The Dalitz plot
distributions from the triangle diagrams A and B are fitted
with the mechanism of B̄0 → ZK− followed by Z → χc1π

þ.
The Breit-Wigner form of Ref. [33] is used for the Z
propagation. This Z-excitation mechanism includes fitting
parameters such as the Breit-Wigner mass, width, and also
the cutoff in Eq. (6) that describes the vertices. The
kinematical region included in the fit covers the Dalitz
plot distribution larger than 10% of the peak height. The
obtained fits are shown by the green dash-dotted curves in
Fig. 2. The highly asymmetric bump, the red solid curve in
Fig. 2(a), is not well fitted with the Breit-Wigner form,
while the bumps in Figs. 2(b) and 2(c) are reasonably fitted.
We generate the Dalitz plot distributions forΛ ¼ 1, 1.5, and
2 GeVas in Fig. 3, fit them as described above, and present
the resulting ranges of the Breit-Wigner parameters in
Table I along with those of Z1ð4050Þ and Z2ð4250Þ from
the Belle analysis [2]. The agreement is quite good for
Z1ð4050Þ. Meanwhile, the Z2ð4250Þ mass and width from
theBelle analysis have rather large errors, and thus our results
for both JP ¼ 1� assignments easily agree with them.
Let us superimpose the spectra from the triangle dia-

grams A and B on the Belle data (Fig. 14 of Ref. [2]) as
shown in Fig. 4. Although this is a qualitative comparison
where any interferences among different mechanisms are
not taken into account, the spectrum bumps from the
triangle diagrams capture characteristic features of the
data. In particular, the asymmetric shape from the triangle
diagram A, which has a very sharp rise and a moderate
fall-off, is exactly what the data show. In the Belle analysis
[2] where the Breit-Wigner form was used to simulate this
bump, their model does not seem to fit this sharp peak of

the data very well, as seen in Fig. 14 of the reference,
perhaps because the Breit-Wigner shape is not what the
data call for. As seen in Fig. 2(a), the spectrum shape from
the triangle diagram A is significantly different from the
Breit-Wigner.
It would be worthwhile to address how this peculiar

asymmetric shape comes about from the triangle diagram
A. By closely observing the spectrum shown in Fig. 2(a) or
an enlarged one shown by the red solid curve in Fig. 5, the
sharp rise of the spectrum starts from an abrupt bend at
mχc1π ∼ 4.01 GeV where the Xð3872Þπþ channel opens.
This implies that the sharp rise is assisted by the opening of
the Xð3872Þπþ channel. We indeed confirm this idea, as
shown by the black dash-two-dotted curve in Fig. 5, by
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FIG. 3. Cutoff (Λ) dependence of the spectrum shapes gen-
erated by triangle diagrams. The panels (a) and (b) correspond to
the triangle diagrams A and B, respectively. The red and blue
solid curves are the same as those in Fig. 2(a) and 2(b),
respectively, where Λ ¼ 1 GeV. The green dashed, and black
dash-dotted curves are obtained with Λ ¼ 1.5, and 2 GeV,
respectively. All the curves are normalized as in Fig. 2.

TABLE I. Spin-parity JP (third row), Breit-Wigner mass in
MeV (fourth row), and width in MeV (fifth row) for Z1ð4050Þ
and Z2ð4250Þ. The Breit-Wigner parameters for Z1ð4050Þ
[Z2ð4250Þ] are extracted by fitting the Dalitz plot distributions
for B̄0→χc1K−πþ generated by triangle diagramof Fig. 1(a) [1(b)].
The parameter ranges are from the cutoff dependence. The
parameters from the Belle analysis [2] are also shown; the first
(second) errors are statistical (systematic).

Z1ð4050Þ Z2ð4250Þ
Fig. 1(a) Belle [2] Fig. 1(b) Belle [2]

1− ?? 1þ 1− ??

4041� 1 4051� 14þ20
−41 4247� 53 4309� 116 4248þ44þ180

−29−35
115� 17 82þ21þ47

−17−22 345� 67 468� 90 177þ54þ316
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FIG. 4. χc1π
þ invariant mass distributions for B̄0 → χc1K−πþ.

The red, blue, and magenta solid curves in Figs. 2(a–c) are
modified to include only the contributions in 1.0 GeV2 <
m2

K−πþ < 1.75 GeV2, and superimposed on the Belle data (Fig. 14
of Ref. [2]) from the same kinematical constraint. Each of the
curves is multiplied by a constant factor and an incoherent
constant background is added to fit the data.
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turning off the on-shell Xð3872Þπþ contribution arising
from þiϵ in the denominator of Eq. (1).
The proximity of the Xð3872Þπþ threshold to the TS

energy (∼4.025 GeV) is also important to create the large
asymmetry. To see this, we change the Xð3872Þ and
K�ð892Þ masses to lower the Xð3872Þπþ threshold while
keeping the spectrum peak position almost the same. We
use, in unit of MeV, ðmXð3872Þ; mK�ð892ÞÞ ¼ ð3822; 1084Þ,
(3772, 1218), and (3722, 1330) to lower the threshold by
50, 100, and 150 MeV, respectively. The spectra calculated
with these altered masses, presented in Fig. 5, show that the
rise of the bump becomes significantly more moderate as
the threshold is lowered. In this way, the Z1ð4050Þ-bump
shape observed in the Belle data is explained with well-
founded physics, TS and the channel opening near the TS
energy, included in the triangle diagram A.
The asymmetric Z1ð4050Þ-bump shape could sensitively

discriminate different interpretations of Z1ð4050Þ. A com-
pelling model should explain not only the mass, width, and
JP of Z1ð4050Þ, but also its characteristic spectrum shape.
So far, only our model has successfully addressed this
question. It is also highly desirable to establish the
spectrum shape with higher statistics data, considering that
the Belle data still have large error bars.
It would be interesting to discuss the possibility of finding

Z1ð4050Þ and Z2ð4250Þ-like bumps in other processes. We
point out that, actually, theZ2ð4250Þ (JP ¼ 1þ)-like bump in
B̄0 → χc1K−πþ and the Zcð4200Þ-like bump in B̄0 →
J=ψK−πþ [35,39] can be created by the same TS [31] from
the triangle diagram B and thus are very similar. Meanwhile,
if the Z1ð4050Þ-like bump in the B̄0 → χc1K−πþ data is
generated by the triangle diagram A, the same diagram but
χc1 replaced by J=ψ should contribute to B̄0 → J=ψK−πþ

because the Xð3872Þ → J=ψπþπ− coupling is known to
exist. We calculated the Z1ð4050Þ-like spectrum for B̄0 →
J=ψK−πþ using the modified triangle diagram A; the pion-
charmonium interaction is now given by Eq. (3). The
spectrum looks almost the same as the red solid curve of
Fig. 2(a). While a Z1ð4050Þ-like bump has not yet been
observed in B̄0 → J=ψK−πþ [35,39], the quality of the
current data still leaves a possibility of finding it in the J=ψπþ
spectrum data of higher statistics. Although the possibility
certainly depends on competitions with other mechanisms,
this is an interesting prediction from the TS-based interpre-
tation of the Z1ð4050Þ bump.
Finally, we present Argand plots from the triangle

diagrams A and B; we use Eq. (3) for the diagram B.
Because Z1 (Z2) andK− are relatively in p-wave, the angle-
independent part of the amplitude is

Aðm2
abÞ ¼

Z
dΩpc

dΩpab
Y�
1;−szχc1

ðp̂cÞY�
l0ðp̂abÞMabc;H; ð7Þ

with l ¼ 0 and 1 for the diagrams A and B, respectively;
szχc1 is the z-component of the χc1 spin and mab the ab
invariant mass. See Eq. (B3) of Ref. [38] for the relation
between the invariant amplitude Mabc;H and Tabc;H of
Eq. (1). Aðm2

abÞ is shown in Fig. 6 as Argand plots. Both the
triangle diagrams A and B create counterclockwise behav-
iors, seemingly similar to resonances.

IV. CONCLUSION

We demonstrated that triangle singularities (TS) from the
triangle diagrams of Figs. 1(a) and 1(b) cause the bumps in
the χc1π

þ invariant mass distribution of B̄0 → χc1K−πþ,
and that their positions and shapes, and thus Breit-Wigner
parameters fitted to the bumps, agree very well with those
found and named as Z1ð4050Þ and Z2ð4250Þ in the Belle
experiment [2]. Within the resonance-based simulation of
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þ invariant mass distributions for B̄0 → χc1K−πþ

calculated with the triangle diagram A. The red solid, blue
dashed, green dotted, and magenta dash-dotted curves are
calculated using the Xð3872Þπþ threshold energy smaller than
the PDG value by 0, 50, 100, and 150 MeV, respectively; see the
text for details. All these curves, being scaled, have the same peak
height. The black dash-two-dotted curve is obtained from the red
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FIG. 6. Argand plots from the triangle diagrams A (left) and B
(right), corresponding to the spectra of Fig. 2(a) and 2(b),
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these bumps, JP ¼ 1− is predicted for Z1ð4050Þ and JP ¼
1þ or 1− for Z2ð4250Þ. The highly asymmetric shape of
Z1ð4050Þ-like bump found by the Belle is well reproduced
by our model; the opening of the Xð3872Þπþ channel near
the TS energy causes the abrupt increase of the spectrum.
This characteristic lineshape, which could discriminate
different interpretations of Z1ð4050Þ, is yet to be accounted
for by any other hadron structure models. We also dis-
cussed the possibility of finding bumps, caused by the same
TS for Z1ð4050Þ and Z2ð4250Þ, in B̄0 → J=ψK−πþ;
Zcð4200Þ found in B̄0 → J=ψK−πþ can be identified with

Z2ð4250Þ of JP ¼ 1þ. The kinematic effects, TS and the
channel opening, essentially determine the shape and
position of the spectrum bumps, once the spin-parity of
the χc1π

þ system is specified by Eqs. (2)–(4); the uncer-
tainty of the remaining dynamical details would not largely
change the presented results.
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