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We explore the perspectives of machine learning techniques in the context of quantum field theories. In
particular, we discuss two-dimensional complex scalar field theory at nonzero temperature and chemical
potential—a theory with a nontrivial phase diagram. A neural network is successfully trained to recognize
the different phases of this system and to predict the values of various observables, based on the field
configurations. We analyze a broad range of chemical potentials and find that the network is robust and able
to recognize patterns far away from the point where it was trained. Aside from the regressive analysis,
which belongs to supervised learning, an unsupervised generative network is proposed to produce new
quantum field configurations that follow a specific distribution. An implicit local constraint fulfilled by the
physical configurations was found to be automatically captured by our generative model. We elaborate on
potential uses of such a generative approach for sampling outside the training region.
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I. INTRODUCTION

Deep learning with a hierarchical structure of artificial
neural networks is a branch of machine learning aiming at
understanding and extracting high-level representations of
big data [1]. It is particularly effective in tackling complex
nonlinear systems with a high level of correlations that
cannot be captured easily by conventional techniques.
Traditionally employed for tasks like pattern recognition
in images or speech, automated translation, or board game
playing, applications of deep learning have been found
recently in many areas of physics including nuclear [2–5],
particle [6–10], and condensed matter [11–20] physics.
Significant progress has been made in utilizing machine

learningmethods for condensedmatter systems like classical
or quantum spin models. Specific tasks in these settings
include the discrimination between certain phases and the
identification of phase transitions [11–15], the compressed
representation of quantum wave functions [16], or the
acceleration of Monte Carlo algorithms [17–19]. Recently,
deep neural networks have also been considered in particle
physics, for the processing of experimental heavy-ion
collision datasets [2] and in the context of algorithmic

development for numerical lattice field theory simulations
[21–23].
Pattern recognition, especially in classification and

regression tasks, has been discussed previously in interact-
ing many-body systems for condensed matter physics. In
the present paper, we generalize the application of deep
learning for the classification of phases in a lattice quantum
field theoretical setting. We further demonstrate the
capability of deep neural networks in learning physical
observables, even with highly nonlinear dependence on the
field configurations and with only limited training data—
providing an effective high-dimensional nonlinear regres-
sion method. In addition, we proceed by implementing, for
the first time, a generative adversarial network (GAN) [24]
for lattice field theory to generate field configurations
following and generalizing the training set distribution.
This is an unsupervised learning framework that uses
unlabeled data to perform representation learning. Such
a GAN-powered approach is not a full-fledged alternative
to the Monte Carlo algorithm, which possesses desired
properties like ergodicity, reversibility, and detailed bal-
ance. However, it can result in a one-pass direct sampling
network where no Markov chain is needed. Our aim here is
to provide a proof of principle that generative networks, if
trained adequately, are capable of capturing and represent-
ing the distribution of configurations in a strongly corre-
lated quantum field theory. On the practical side, generative
networks would prove useful when combined with tradi-
tional approaches to accelerate simulation algorithms, e.g.,
by improving decorrelation for proposals in a Markov chain
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process. Further potential use of such setups would be for
reducing large ensembles of field configurations into a
single (highly trained) network as an efficient representa-
tion for the quantum statistical field ensembles, thereby
significantly reducing storage requirements.

II. OBSERVABLES IN SCALAR FIELD THEORY

We consider a complex scalar field ϕ with mass m and
quartic coupling λ in (1þ 1)-dimensional Euclidean space-
time at nonzero temperature T. This system is studied in the
grand canonical approach, introducing a chemical potential
μ that controls how the charge density n fluctuates. For low
temperatures, two different regimes of the parameter space
can be distinguished: At low μ the density is suppressed,
called the “silver blaze” behavior [25], whereas above a
threshold μ > μth the density increases considerably.1 It is
widely believed that the QCD phase diagram also exhibits
such a behavior in the region at low temperatures and
medium to high densities [25].
This interesting behavior is a nonperturbative phenome-

non and cannot be observed directly, as the action becomes
complex for μ ≠ 0, hindering standard simulations in terms
of the field ϕ. However, using the worldline formalism, the
partition function can be reexpressed using dual variables
and the action rendered real and positive [26–28]. The dual
variables are the integers kνðxÞ and lνðxÞ that are associated
with the links starting at the point x ¼ ðx1; x2Þ and lying in
the direction ν ¼ 1 (space) or ν ¼ 2 (time). The total
number of variables is therefore N ≡ 2 × 2 × N1 × N2,
whereNν denotes the number of lattice sites in the direction
ν. While the l-integers can take arbitrary values, the k-
integers satisfy a zero-divergence-type constraint and thus
always form closed loops,

X

ν

½kνðxÞ − kνðx − aν̂Þ� ¼ 0; ð1Þ

where ν̂ is the unit vector in the ν direction, and a is the
lattice spacing.
We consider a low-temperature ensemble N1 × N2 ¼

10 × 200 (the dimensionality of the configuration space is
therefore N ¼ 8000) generated with mass m ¼ 0.1, cou-
pling λ ¼ 1.0 and a range of chemical potentials 0.91 ≤
μ ≤ 1.05 around the threshold value μth ≈ 0.94 (all dimen-
sionful quantities are understood in lattice units). For
μ < μth, hni is almost zero and hϕ2i is constant. In contrast,
both observables rise approximately linearly beyond the
threshold. This is demonstrated in Fig. 1.

III. SCALAR FIELD THEORY
IN A NEURAL NETWORK

In the following section, we will apply deep neural
networks for the complex scalar field configurations
generated with the dualization approach using standard
Monte Carlo methods.

A. Classification of phases

We first use the network to detect the transition between
the low- and high-density phases of the system by perform-
ing a classification task. In particular, we train the neural
network to identify the threshold chemical potential μth
without specific physical guidance. We train a convolu-
tional neural network (CNN) to target at a binary classi-
fication: the configurations are either in the low-density
“silver blaze” region (hni ≈ 0) or in the condensed region
(hni ≠ 0). To perform a semisupervised training, we
feed the lattice configurations at μ ¼ 0.91 ≪ μth and at
μ ¼ 1.05 ≫ μth as input to the CNN. The training points
are also highlighted in Fig. 1.
Once trained, we test the CNN by scanning through the

configurations at different values of the chemical potential
0.91 < μ < 1.05. The output of the network for each
configuration is identified as the probability P that the
configuration in question corresponds to the condensed
phase. In Fig. 2, we show the expectation value of P
predicted by the network as a function of the chemical
potential. We observe that along with increasing chemical
potential, the first nonzero point of hPi reveals the
transition at μ ¼ μth. More interestingly, we find that the
number density’s nonzero value is perfectly indicated by
the nonzero probability P from the trained network.
The particle number is given by the sum of all the k2

variables. This simple pattern might be easily learned by

FIG. 1. The expectation values of the density and of the squared
field, as functions of the chemical potential, connected by lines to
guide the eye. The dashed vertical line marks the threshold
chemical potential μth. The filled symbols indicate ensembles that
are used in the training of our neural network (see details
in the text).

1In the following, we will refer to the pronounced change in the
density at the threshold as a transition, keeping in mind that—in
accordance with the Mermin-Wagner theorem—it is not con-
nected to spontaneous symmetry breaking.
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the network. We thus perform the same binary classifica-
tion task with a restricted training input, including only one
of the remaining three variable sets: either k1, l1, or l2. The
results for the three restricted inputs are visualized in Fig. 2.
Clearly, the network succeeded in learning the same
features also using the restricted inputs, as hPi starts to
rise at around the same threshold chemical potential μth ≈
0.94 for all four cases. This inspires us to analyze the
correlation between the number density and the similarly
defined observables involving either k1, l1, or l2. To this
end we consider the normalized correlation coefficient

R½A;B�≡ hABi − hAihBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2i − hAi2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2i − hBi2

p ; ð2Þ

which vanishes for decorrelated data and equals unity for
complete correlation. As shown in Fig. 3,

P
l1,

P
l2, and

also jϕj2 are all strongly correlated with n, while
P

k1 is
fully decorrelated. Still, the machine succeeds in classify-
ing the configurations based only on k1, as indicated in
Fig. 2. Here the alternating sum Σxð−1Þxk1ðxÞ is also
scrutinized, which equals−Σxð−1Þxk2ðxÞ due to the closed-
loop constraint in Eq. (1), but it is not correlated with n
either. With conventional techniques, neither of the physi-
cal observables (n and jϕj2) sensitive to the transition can
be constructed using only the k1 variables. The excellent
performance of our CNN, shown in Fig. 2, indicates the
existence of strong hidden features in the k1 variables that
correlate with the phase of the system. According to these
results, the network can decode these hidden correlations in
a highly effective manner.

B. Nonlinear regression of observables

Supervised learning is applied with a CNN to regress the
thermodynamic observables of the system, including the

particle number density and the squared field, based on the
lattice configurations. As in Sec. III A, the training dataset
consists of configurations at μ ¼ 0.91 and μ ¼ 1.05. The
generalization ability of the machine is investigated by
testing the network predictions on previously unseen
configurations at different values of the chemical potential.
The results for the density and for the squared field are
plotted in Fig. 4, showing the true values of the observables
(from physical formula) against the network predictions.
Notice that the density, being an average of integers, only
takes discrete values on a finite lattice.
As is visible in Fig. 4, the network performs well over a

broad range of chemical potentials, predicting n and jϕj2
accurately, the maximal deviation being around 5% for the
density and around 7% for the squared field. The training
was performed using only two far-away segments of the
range of the target observables, corresponding to configu-
rations at μ ¼ 0.91 and μ ¼ 1.05 (the expectation values of
the observables for these ensembles are also indicated in the
plots). On the one hand, the high quality of the regression
for the density may seem natural owing to the linear
dependence of n on the individual variables. On the other
hand, the squared field is a highly nonlinear function of the
high-dimensional input (R200×10×4 → R1)—even if jϕj2
and n are correlated (see Fig. 3), the squared field is not
discrete, and thus its fluctuations are not completely
captured by those of the density. This makes the excellent
predictive ability of the network nontrivial and surprising.
Put differently, using limited training data (covered small
range of the target domain), our CNN network can correctly
reproduce the whole target space mapping, which is curved
and even dramatically changing (close to the transition
point). This means that the network has effectively encoded
the configuration into a plainer and a more abstract latent
space (intermediate layers in the network). A linear
interpolation in these layers can result in nonlinear regres-
sion in the final output layer.

FIG. 3. The normalized correlation coefficient [Eq. (2)] of the
number density and various observables including jϕj2 and the
sum of the k1, l1, l2 variables or Σxð−1Þxk1ðxÞ over all
lattice sites.

FIG. 2. The expectation value hPi of the condensation prob-
ability as a function of the chemical potential using full and
restricted inputs. The error bar shows the statistical error in one
ensemble. The dashed vertical line marks the threshold chemical
potential, and the lines connecting the points serve to guide
the eye.
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C. Configuration production using the generative
adversarial network

The generative adversarial network (GAN) [24] is a
deep generative model that aims to learn the distribution
of input variables from the training data. It belongs to the
unsupervised learning category within deep learning
approaches. Such generative modeling-assisted approaches
have been tested in various scientific contexts, including
medicine [29,30], particle physics [31–33], cosmology
[34–36], and condensed matter physics [37,38]. Here we
employ, for the first time, the generative modeling GAN
application in strongly correlated quantum field theory. To
ensure training stability, we consider the Wasserstein-GAN
architecture [39] with gradient penalty (WGAN-gp) [40] in
this study.
To verify the effectiveness of our GAN and, in particular,

whether the generated configurations are indeed physical,
we will first check the divergence-type constraint [Eq. (1)]
for the complex scalar field. As shown in Fig. 5, the
absolute divergence per site for the generated outputs is not

exactly zero but is decreasing and converges to zero as the
number of training epochs grows. Equation (1) represents a
highly implicit physical constraint inside the training
dataset, which is not provided as supervision to the training
of the GAN. Instead, the network automatically recognized
this constraint for the configurations in a converging way.
The generation time for a single configuration using the
GAN (on an Nvidia TitanXp GPU) is 0.2 ms.
Next, we turn to the distribution of observables in the

samples generated by the GAN and check to what extent it
agrees with the training distribution. In the top panel of
Fig. 6, we visualize the probability density distribution of
the number density n from the GAN after training with one
ensemble of configurations at μ ¼ 1.05. We observe that
the GAN has captured the discrete distribution of n well.
The ensemble average of the particle number density from
GAN is estimated (using 1000 random samples) to be
hniGAN ¼ 0.578, also close to the Monte Carlo value
hniMC ¼ 0.580. As mentioned earlier, the particle number
density is simply the average of the time component of the
k variables in the configuration. In contrast, the squared
field jϕj2 is highly nonlinear as a function of the input
variables. Nevertheless, the multimodal distribution of jϕj2
is also well reproduced by the generative network; see
the bottom panel of Fig. 6. The ensemble average
of jϕj2 from GAN (for the same 1000 samples above),
hϕ2iGAN ¼ 0.449, is also close to the Monte Carlo result
hϕ2iMC ¼ 0.447. Figures 5 and 6 demonstrate that the
generative adversarial network can be trained to capture the
statistical distribution of the field configurations even on
the level of physical observables.
The above GAN structure is designed to reproduce

certain distributions in the training dataset. Next, we
attempt to use the network to generalize the distribution

FIG. 5. The absolute divergence [using the lhs of Eq. (1)] per
site for configurations from the GAN generator as a function of
training epochs, with (blue) and without (red) rounding configu-
ration entries to its nearest discrete value.

FIG. 4. Comparison of the true values of the observables
(vertical axis) to the network predictions (horizontal axis) for
the particle density n (upper panel) and for the squared field jϕj2
(lower panel). Each filled circle represents one configuration, and
the dotted crosses indicate the expectation values of the observ-
ables on the training ensembles.
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that it was trained on. The discriminator is provided with
relevant labels (in this case, the value of the number density
n) for the training dataset to condition the network (cGAN)
[41]. Specifically, the training sample at μ ¼ 1.05 contains
the cases n ¼ 0.4, 0.5, 0.6, and 0.7. After the training, we
test the generalization ability of the network by specifying
desired number densities outside the above set of values.
Figure 7 shows the performance of the cGAN for this
generalization task. We stress that for the training only
0.4 ≤ n ≤ 0.7 values were provided, but the agreement
between the desired n (condition) and the measured n on
the generated configurations is spectacular over a broader
range of density values. This generalization task might be
viewed as converting the grand-canonical ensemble of
configurations (at fixed μ) to a series of canonical ensem-
bles (at various values of n).

IV. CONCLUSIONS

In this paper, we proposed a set of novel techniques for
the investigation of a lattice-regularized quantum field
theory by deep neural networks, including discovering
hidden correlations, learning observables, and producing
field configurations. Specifically, our analysis was carried
out for the dualized representation of complex scalar field
theory in 1þ 1 dimensions.
We first showed that a convolutional neural network

can be used in a semisupervised manner to detect the
phase transition in this strongly correlated quantum field
theory based on the microscopic configurations. We found
that the network is capable of recognizing correlations
in the system between various observables and phase
classifications without the specific knowledge guidance.
Interestingly, the network discovered a correlation beyond
the conventional analysis, which enabled it to use a
restricted subset of the input variables (in particular, the
k1 variables) alone to decode information about the phase
transition.
We continued by designing a regressive neural network

to learn physical observables (n and jϕj2) with limited
training samples. The network achieved remarkable agree-
ment with the physical observables and also revealed a great
generalization ability when tested at chemical potentials
beyond the training set. This approach provides an effective
high-dimensional nonlinear regression method even with
limited data points (compared to the huge Hilbert space, i.e.,
the number of possible configurations), where traditional
interpolationor regressionwould require higher statistics that
grow exponentially with input dimensionality.
Finally, we proposed to generate new configurations

following a specific distribution by adapting the modern
deep generative modeling technique GAN. We found that
the generator in the GAN has the ability of automatically
recognizing the implicit but crucial physical constraint
on the configurations in an unsupervised manner, and it
can represent the distribution of prominent observables

FIG. 6. The probability density distribution of the number
density n (top panel) and of the squared field jϕj2 (bottom panel)
from the GAN (green) along with the training data distribution
obtained from the Monte Carlo simulation (blue) for fixed
chemical potential μ ¼ 1.05 with 1000 samples.

FIG. 7. The mean particle number density on the configurations
generated by the cGAN with (blue) and without (red) rounding
configuration entries to the nearest discrete value, against the
specified condition values for n.
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with direct sampling. The generalization of configuration
production to different parameter domains, e.g., towards a
critical region, where conventional techniques slow down
considerably, is a fascinating feature that deserves further
investigation.
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