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Thermodynamics of a gas of hadrons with attractive and repulsive interactions
within an S-matrix formalism
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We report the effect of including repulsive interactions on various thermodynamic observables calculated
using an S-matrix based hadron resonance gas (HRG) model applied to already available corresponding results
with only attractive interactions [A. Dash, S. Samanta, and B. Mohanty, Phys. Rev. C 97, 055208 (2018)].
The attractive part of the interaction is calculated by parametrizing the two-body phase shifts using the K-
matrix formalism, while the repulsive part is included by fitting to the experimental phase shifts which carry
the information about the nature of the interaction. We find that the bulk thermodynamic variables for a gas of
hadrons, such as energy density, pressure, entropy density, speed of sound, and specific heat, are suppressed
by the inclusion of repulsive interactions and are more pronounced for second- and higher-order correlations
and fluctuations, particularly for the observables χ2

Q, χ 2
B − χ 4

B , and CBS in the present model. We find a good
agreement between lattice QCD simulations and the present model for CBS . We have also computed two leading-
order Fourier coefficients of the imaginary part of the first-order baryonic susceptibility at imaginary baryon
chemical potential within this model and compared them with the corresponding lattice results. Additionally,
assuming that the value of interacting pressure versus temperature for a gas of hadrons calculated in the S-matrix
formalism is the same as that from a van der Waals HRG (VDWHRG) model, we have quantified the attractive
and repulsive interactions in our model in terms of attractive and repulsive parameters used in the VDWHRG
model. The values of parameters thus obtained are a = 1.54 ± 0.064 GeV fm3 and r = 0.81 ± 0.014 fm.

DOI: 10.1103/PhysRevC.99.044919

I. INTRODUCTION

One of the primary goals of observing relativistic heavy
ion collisions is the study of the QCD (quantum chromody-
namics) phase diagram [1]. There are at least two phases in
the phase diagram: one where the degrees of freedom are
quarks and gluons, called the quark gluon plasma (QGP)
phase, and other where the degrees of freedom are hadronic.
An approach to study the properties of the hadronic phase
formed by hadronization of the QGP is through a statistical
model of a gas of hadrons, called the hadron resonance
gas (HRG) model [2]. The hadron resonance gas [1,3–13]
models have successfully described the hadron multiplicities
produced in relativistic nuclear collisions over a wide range
of center-of-mass energies. The main result of such an in-
vestigation was the observation of a rise in the extracted
chemical freeze-out temperature values from lower energies
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to almost a constant value of temperature T � 155–165 MeV
at higher energies, supplemented with the decrease of the
baryon chemical potential (μB) with increasing energy [14].
The saturation of temperature supports Hagedorn’s limiting
temperature hypothesis [15], suggesting the possibility of a
phase boundary. Similarly, theoretical investigation of QCD
on lattice (LQCD) at vanishing μB indeed predicts a sharp
increase of thermodynamical quantities near deconfinement
temperature Tc [16–23]. The HRG model is also successful
in describing LQCD data related to the bulk properties of
hadronic matter in thermal and chemical equilibrium below
Tc [17,19,20,22–24].

The phenomenal success of the ideal HRG (IDHRG)
model in predicting the hadronic yields can be attributed
to a theorem by Dashen and Ma [25] which states that
the partition function of an interacting hadronic gas can be
decomposed into a free and an interacting part. Considering
that only resonances contribute to the interacting part, it can
be shown that in a narrow resonance width approximation
the net effect of the interacting part is equivalent to consider-
ing all such hadronic resonances as free particles. However,
relaxing the above assumptions by including resonances of
finite widths (both overlapping and nonoverlapping), it has
been seen that the variation of thermodynamic variables with
temperature changes substantially [26–30]. Further, it can be
argued that such interactions contribute only to the attractive
part of partition function, and the inclusion of a repulsive
part could partially negate the effect of the attractive part. For

2469-9985/2019/99(4)/044919(11) 044919-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.99.044919&domain=pdf&date_stamp=2019-04-29
https://doi.org/10.1103/PhysRevC.97.055208
https://doi.org/10.1103/PhysRevC.97.055208
https://doi.org/10.1103/PhysRevC.97.055208
https://doi.org/10.1103/PhysRevC.97.055208
https://doi.org/10.1103/PhysRevC.99.044919
https://creativecommons.org/licenses/by/4.0/


DASH, SAMANTA, AND MOHANTY PHYSICAL REVIEW C 99, 044919 (2019)

example, in Refs. [31–49] the authors have used an excluded
volume approach which only had the repulsive part whereas
Refs. [50–57] considered a van der Waals (VDW) type of
interaction, which has both the attractive and repulsive parts,
and a comparison of the calculated thermodynamic pressure
from both the approaches shows the feature as discussed
above.

In our previous work, Ref. [58], we had developed a HRG
model with attractive interactions between hadrons using the
K-matrix formalism. In the present work, we extend the K-
matrix formalism to include repulsive interactions between
the hadrons using the S-matrix formalism. In Ref. [58], we
used the K-matrix formalism to calculate the phase shifts of
the resonance spectral function, in contrast to the popular
Breit-Wigner parametrization. It has been argued previously
that the K-matrix formalism preserves the unitarity of the
scattering matrix (S matrix) and neatly handles multiple reso-
nances [29,58,59]. However, the formalism fails to handle any
repulsive channel in the scattering matrix. Therefore in this
work we include the repulsive part by fitting to experimental
phase shifts that encode information about the nature of the
interaction. We use the phase shift data from the Scattering
Analysis Interactive Database (SAID) partial wave analysis
for nucleon-nucleon (NN), pion-nucleon (πN), and kaon-
nucleon (KN) interactions in their respective isospin channels
[60–62]. Additionally, we have also included the repulsive
isotensor channel in the pion-pion (ππ ) scattering, as has been
pointed out in many earlier works [27,63].

After constructing the interacting hadron resonance gas
model with both attractive and repulsive interactions using
phase shift information for various hadronic interactions, we
calculate the various thermodynamic observables like pres-
sure, energy density, entropy density, interaction measure,
specific heat, speed of sound, and susceptibilities. The tem-
perature dependences of these observables is then compared
with corresponding results from lattice QCD, IDHRG, and
HRG models with attractive interactions using the K-matrix
formalism.

The paper is organized in the following manner. In the next
section we discuss the formalism used to introduce repul-
sive interactions to our HRG model developed earlier using
the K-matrix approach with attractive interactions [58]. In
Sec. III we discuss the results from the new interacting HRG
model with both attractive and repulsive interactions among
the hadrons. The temperature dependence of our results is
compared to those from LQCD and IDHRG (with different
hadron spectrum). Finally in Sec. IV we summarize our
findings.

II. FORMALISM

The equation of state for an interacting gas of hadrons of
a single species can be computed by using the method of
virial expansion. Specifically, the pressure of such a gas can
be written as [64]

P(β,μ) = 1

β

∞∑
i=1

Ji

i!
ξ i, (1)

where ξ = (m/2βπ )3/2eβμ, and the inverse temperature,
chemical potential, and mass are denoted by β,μ, m respec-
tively. The term Ji takes into account the interaction between
groups of i hadrons, which are given as

J1 = 1, J2 =
∫

dV2(e−βU12 − 1), (2)

etc., where U12 is the interaction energy. Differentiating
Eq. (1) with respect to μ, we obtain the expression for number
density, i.e.,

n(β,μ) =
(

∂P

∂μ

)
β,V

=
∞∑

i=1

Ji

(i − 1)!
ξ i. (3)

Eliminating ξ to the first order from Eqs. (1) and (3) gives
us the ideal equation of state P = nT , where T is the tem-
perature. For a relativistic noninteracting quantum gas the
expression for the pressure is given in [27]. The classical
virial equation of state truncated at the second order is given
as P = nT [1 + nB(T )], where B(T ) = −J2/2 is called the
second virial coefficient. In this work while calculating the
virial coefficients we will be using the S-matrix approach to
statistical mechanics, which has also been used previously in
Refs. [27,65–67] to study the thermodynamics of interacting
hadrons.

In the S-matrix formalism, the second virial coefficient is
related to the scattering amplitude or alternatively to the scat-
tering phase shifts δI

l for a given spin l and isospin I channel.
The correction to the ideal pressure for binary interactions
between particles of species i with particles of species j is
given as

Pi j
int = T J2

2
ziz j

= ziz j

2π3β2

∫ ∞

Mi j

dεε2K2(βε)
∑
I,l

′
gI,l

∂δI
l (ε)

∂ε
, (4)

where the terms zi, gI,l , and ε stand for the fugacity, the
spin-isospin degeneracy factor, and the total center-of-mass
energy respectively. The function K2(x) stands for the modi-
fied Bessel function of the second kind and the term Mi j is the
invariant mass of the interacting hadron pair i j at threshold.
Additionally, there is a sum over all possible spin-isospin
channels and the prime over the summation sign denotes that
for given l , the sum over I is restricted to values consistent
with statistics. A similar expression for interacting part of
number density can also be derived such that ni j

int = βPi j
int for

i �= j and ni
int = 2βPi

int for i = j.
The total pressure and number density for an interacting

system containing N such hadronic species is then given as

P =
N∑
i

Pi
id +

N∑
i, j�i

Pi j
int = Pid + Pint, (5)

n =
N∑
i

ni
id +

N∑
i, j�i

ni j
int = nid + nint, (6)

where Pi
id, ni

id are the ideal contributions of the species i to
pressure and number density of the system respectively. In the
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present work, the contribution to the non interacting (ideal)
part comes from all the stable hadrons. An equation of state
truncated to the second order can be derived as in the previous
paragraph such that the total pressure P or the total number
density n is given as

P = nT − Pint

(
n

nid

)2

= nT + Pint, (7)

n = P

T
+ nint

2

(
P

Pid

)2

= P

T
+ nint, (8)

where Pint and nint are the effective contributions of interaction
to pressure and number density respectively.

From Eq. (4), it can be seen that the second virial co-
efficient gives a positive (attractive) or negative (repulsive)
contribution depending on whether the derivatives of phase
shifts are positive or negative. The phase shifts are obtained
from experiments or from theoretical calculations. In the
present work, we determine the attractive phase shifts using
the K-matrix formalism, which takes the masses and partial
widths of resonances from the PDG (Particle Data Group)
[68] as input. Since the K-matrix formalism is not applicable
for handling the repulsive phase shifts, these are obtained by
fitting to experimental data. We would like to note here that
since we do not have the information of masses and widths
of resonances (mentioned in PDG) that decay into a pair of
nucleons, we extract phase shifts in such situations by fitting
to experimental data.

A. K-matrix formalism

A theoretical way of calculating phase shifts is to use
the K-matrix formalism. The K-matrix formalism preserves
the unitarity of the S matrix and neatly handles multiple
resonances [59]. In addition to that, widths of the resonances
are handled naturally in the above formalism. The notion of
an ideal HRG is only valid for narrow resonances and not for
broad resonances; in contrast, the K-matrix formalism can be
applied quite generally. Similarly, for overlapping resonances
the K-matrix gives a more accurate description of the phase
shifts than the Breit-Wigner parametrization. In Ref. [29] the
K-matrix formalism was used to study an interacting gas of
hadrons, and it was extended further in [58].

The resonances contributing to the process ab → R → cd
appear as a sum of poles in the K matrix,

Kab→cd =
∑

R

gR→ab(
√

s)gR→cd (
√

s)

m2
R − s

, (9)

where a, b and c, d are hadrons and the sum on R runs over
the number of resonances with mass mR. The sum is restricted
to the addition of resonances for a given spin l and isospin I .
The residue functions are given by

g2
R→ab(

√
s) = mR	R→ab(

√
s), (10)

where
√

s is the center-of-mass energy and 	R→ab(
√

s) is the
energy dependent partial decay width, i.e., the total width
times the branching ratio for the channel R → ab, given

as [59]

	R→ab(
√

s) = 	0
R→ab

mR√
s

qab

qab0
[Bl (qab, qab0)]

2
. (11)

The momentum qab is given as

qab(
√

s) = 1

2
√

s

√
(s − (ma + mb)2)(s − (ma − mb)2), (12)

where ma and mb are the masses of decaying hadrons a and b.
In Eq. (11), qab0 = qab(mR) is the resonance momentum

at
√

s = mR, and 	0
R is the partial width of the pole at half

maximum for the channel R → ab. The Bl (qab, qab0) are the
Blatt-Weisskopf barrier factors, which can be expressed in
terms of momentum qab and resonance momentum qab0 for
the orbital angular momentum l . The detailed expression for
Bl (qab, qab0) can be found in Ref. [59].

Furthermore, once one computes the K matrix by providing
the relevant masses and widths of resonances, the phase shift
can be obtained using the relation

δI
l = tan−1 K (

√
s). (13)

Here we would like to note that a comparison between
the empirical phase shifts of resonances and the K-matrix
approach gives almost identical results for resonances like
ρ(770), K∗(892), N (1680), etc.

B. Experimental phase shifts

As mentioned earlier, for repulsive interactions and for
interactions where the information about mR and 	R are not
available, the K-matrix formalism is not applicable and we
resort to extraction of phase shifts from experimental data.
In our extraction of repulsive (πN , KN) and nucleon-nucleon
(NN) interaction phase shifts, we use the data from the SM16
partial wave analysis [60]. For the repulsive isotensor channel
δ2

0 in the π -π scattering, we use the data from Ref. [69].
However, the S-matrix formalism elucidated here is only
applicable for elastic scattering, and the inelastic part that
enters into the analysis by fitting to experimental data has to
be removed. To get around this problem, we make an estimate
of the contribution coming from the inelastic part by first
defining a generic l dependent scattering amplitude fl (

√
s):

fl (
√

s) = ηl e2iδl − 1

2i
, (14)

where ηl is the inelastic parameter. The elastic cross section is
given as

σel = 4π

q2

∑
l

(2l + 1) sin2 δl , (15)

and the inelastic cross section is given by

σinel = π

q2

∑
l

(2l + 1)
(
1 − η2

l

)
, (16)

where q is the center-of-mass momentum. The total cross sec-
tion σ is the sum of Eqs. (15) and (16). We can approximate
the contribution to the elastic part of the phase shift δel by the
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FIG. 1. Energy dependence of NN scattering phase shifts taken from SAID partial-wave analysis [60]. The notation to specify NN
scattering channels is 2S+1lJ , where l, S, J correspond to orbital, spin, and total angular momentum respectively.

following expression:

δel ≈ sin−1

(√
σel

σ
sin δ

)
, (17)

where δ is the total phase shift that is obtained from the fit to
experimental data [60–62].

1. N N interactions

For the nucleon-nucleon (NN) interaction we have in-
cluded the phase shifts for l � 7 in both I = 0 and I = 1
isospin channels. Combinations of l , S, and I are chosen so

that the total wave function for NN interaction is antisym-
metric as dictated by Pauli’s principle. We have restricted the
range of energies up to the pion (π ) production threshold.
Beyond this threshold, the contribution from the inelastic
channels become dominant and the present formalism fails
to disentangle the contribution from the elastic and inelastic
parts. However, below this threshold, where the contribution
from inelasticities are subdominant, we can extract the contri-
bution from the elastic part using the approximation (17). In
order to use Eq. (17) we need a parametrization of the cross
section as a function of energy, which in the present study is
taken from Ref. [70]:

σ NN (mb) =

⎧⎪⎪⎨
⎪⎪⎩

23.5 + 1000(plab − 0.7)4, plab < 0.8 GeV,

23.5 + 24.6

1+exp
(
− plab−1.2

0.10

) , 0.8 < plab < 5 GeV,

41 + 60(plab − 0.9) exp(−1.2plab), 1.5 < plab < 5 GeV,

(18)

where plab is the laboratory momentum. Similarly the elastic cross section σel can be parametrized as

σ NN
el (mb) =

⎧⎪⎪⎨
⎪⎪⎩

23.5 + 1000(plab − 0.7)4, plab < 0.8 GeV,
1250

plab+50 − 4(plab − 1.3)2, 0.8 < plab < 2 GeV,

77
plab+1.5 , plab > 2 GeV.

(19)

By comparing Eqs. (18) and (19), we can see that the contri-
bution from inelastic processes is small below plab < 0.8 GeV
and increases further with plab. In Fig. 1 we have plotted the
experimental NN phase shifts from the SAID partial-wave
analysis [60] as a function of center-of-mass energy (

√
s). The

dominant contribution comes from lower l values, e.g., the 1S0

phase shift which peaks at lower
√

s and then falls sharply or
the rapidly falling and largely repulsive 3S1 phase shift. An
interesting case to observe is the triplet P waves, which can
have J = 0, 1, 2 corresponding to phase shifts 3P0,

3P1,
3P2.

The behaviors of the phase shifts are quite different in the
above three channels: from zero crossing to purely repulsive
and purely attractive cases as seen in Fig. 1. This could be
attributed to the spin-orbit coupling, which splits them into

triplet states having different behavior depending on the sign
and strength of the coupling. However, most of the phase
shifts become negative at higher

√
s, signifying the hard core

nature of NN interaction. We would like to note that for NN
interaction the contribution from bound states, e.g., the 3S1

channel, which forms deuteron at threshold, is not taken into
account in Eq. (4).

2. π N interactions

For pion-nucleon (πN) interaction we have included only
those phase shifts [61] which are purely repulsive, and the at-
tractive parts are from the K-matrix parametrization. Here, we
have restricted the energies to the eta (η) production threshold,

044919-4



THERMODYNAMICS OF A GAS OF HADRONS WITH … PHYSICAL REVIEW C 99, 044919 (2019)

and the cross sections are parametrized from Ref. [70] using
the isobar model as

σπN (mb) = 326.5

1 + 4
(√

s−1.215
0.110

)2

q3

q3 + (0.18)3 , (20)

where q is the center-of-mass momentum. In the range of
momenta 0.5 < plab < 1.5 GeV, the inelastic channel πN →
ππN is the most dominant whose cross section can be
parametrized as

σπN
inel (mb) = 74(plab − 0.555)2 p−4.04

lab GeV. (21)

The dominant repulsive contribution in the πN interaction
comes from the S31 (l2I,2J ) phase shift corresponding to the
(1620) resonance. We would like to stress here that in
our previous study of resonances in Ref. [58], using the
K-matrix formalism, resonances such as (1620), (1910),
(1930), and N (1720) were included in the attractive part of
the S-matrix, via their masses and partial decay widths (i.e.,
branching fraction times the total width) for a resonance R
interacting through the process ab → R → ab, where a and
b are the corresponding hadrons. However, a comparison to
experimental phase shifts through the factor ∂δl (ε)/∂ε has
shown that it is negative below the η production threshold.
Thus, such resonances are included in the repulsive part by
fitting to experimental phase shifts.

3. K N interactions

For the KN interaction, the dominant repulsive contribu-
tion comes from the S11 (lI,2J ) phase shift containing the
�(1660) resonance. Similar to the case of πN , � resonances
like �(1660), �(1750), and �(1915) and � resonances like
�(1520), �(1600), and �(1690) were considered attractive
in [58], but here we include them in the repulsive part, since
∂δl (ε)/∂ε is negative below the inelastic production threshold
[62]. The cross sections are parametrized from Ref. [71] as

σ KN (mb) = 23.91 + 17.0 exp

(
− (plab − 10)2

0.12

)
,

plab < 2.5 GeV and

σ KN
el (mb) = 172.38 exp [−2.0(plab + 0.1)],

plab < 0.7 GeV. (22)

4. π-π interactions

For the pion-pion (ππ ) interaction we have included the
dominant repulsive phase shift from Ref. [69], in the isotensor
channel δ2

0 , as do previous studies [27,63]. This phase shift is
known to cancel the isoscalar channel δ0

0 containing the broad
f0(500) (σ meson). The relevant energies have been restricted
to the pion production threshold.

III. RESULT

In Fig. 2, we show the temperature variation at zero
chemical potential for various thermodynamic quantities such
as scaled pressure, energy density, entropy density, speed of
sound, and the specific heat capacity at constant volume.
Results of the attractive K-matrix (KM) based HRG model

from Ref. [58] are compared with the total contribution (To-
tal), which contains both attractive and repulsive channels,
obtained in the present work. In Ref. [58] it was found that
the effect of attractive interaction through the KM approach
increases the value of all thermodynamic observables com-
pared to the ideal HRG result (IDHRG 1). It must be noted
that the K-matrix formalism includes only those resonances
which have a two-body decay mode and only these resonances
were included in IDHRG 1. We observe that the effect of
repulsive interactions cancels some of the contributions from
attractive channels, thereby slightly lowering the net result for
“Total” relative to KM for the observables studied here. A
second comparison with the ideal HRG model, Fig. 2(a), that
considers all the confirmed hadrons and resonances consisting
of up, down, and strange flavor valence quarks listed in the
PDG 2016 Review [68] [IDHRG (PDG 2016)], shows a better
agreement with lattice data. However, it is worth mentioning
here that the agreement of “IDHRG (PDG 2016)” with the
LQCD data is because of the increase in the number of
degeneracies and not due to some inherent interaction that is
naturally present in the system revealed within the S-matrix
formalism. On the whole, we conclude that the effects of
repulsive channels suppress the bulk variables studied here,
compared to the K-matrix (KM) approach, and these are
shown in Fig. 2.

Similar to thermodynamic observables, it was found in
Ref. [58] that the K-matrix formalism leads to an increment
in the values of diagonal and off-diagonal susceptibilities
compared to the ideal HRG result. The effects of repulsive
interactions are most prominent when we calculate these
second-order diagonal and off-diagonal susceptibilities. Re-
sults for χ2

B , χ2
Q, χ11

BS , and χ11
BQ (B, Q stand for baryon and

electric charge respectively; the definition of susceptibilities
can be found in Ref. [58]) shown in Fig. 3 agree better with
the LQCD data in the case when both attraction and repulsion
are taken into account than in the K-matrix formalism. The
effect of repulsion is mostly visible in the baryonic sector. For
example, we have checked for χ2

B that the contribution from
repulsive interaction has the following order: πN > KN >

NN . Although we find that more channels are repulsive in
NN interaction than in πN interaction, the effect of repulsion
on observables like χ2

B is more from πN interaction. This is
because the effect of repulsion in elastic πN interaction is
dominant in the energy range 1.07 <

√
s < 1.67 GeV, while

for elastic NN interaction it is in the range 1.88 <
√

s < 2.34
GeV. This fact is reflected when we compute thermodynamic
observables in the relevant temperature ranges. We have also
checked for the remaining second-order diagonal and of-
diagonal susceptibilities, and the difference between “Total”
and the K-matrix formalism for χ2

S is small and for χ11
QS it is

negligible.
Lattice observables like fluctuations and correlations of

conserved charges at finite net baryon density are expected
to be sensitive to the modeling of baryonic interactions. How-
ever, lattice calculation at finite μB is not possible because of
the sign problem. Methods like Taylor series expansion and
analytic continuation from imaginary have been devised to get
around this problem [72–83]. Following Ref. [84], we directly
compare the predictions of the S-matrix formalism to lattice
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FIG. 2. Temperature dependence of various thermodynamic quantities [(a) P/T 4, (b) ε/T 4, (c) s/T 3, (d) (ε − 3P)/T 4, (e) CV /T 3, and
(f) c2

S] at zero chemical potential. “Total” contains both the attractive and repulsive interactions whereas KM contains only the attractive part.
IDHRG 1 corresponds to results of the ideal HRG model, with same number of particles as used in the KM formalism. IDHRG (PDG 2016)
in (a) corresponds to results of the ideal HRG model for all the hadrons and resonances listed in PDG 2016 [68]. Results are compared with
lattice QCD data of Refs. [21] (WB) and [22] (HotQCD).

data at imaginary chemical potential instead of performing
analytic continuation to real chemical potential. Since the
QCD pressure is an even function of real μB, the first-order
net baryon susceptibility assuming Maxwell-Boltzmann (MB)
statistics can be written as [84]

χ1
B =

∞∑
j=1

b j sinh( jμB/T ), (23)

where b j contains the information from different baryonic
sectors. Using analytic continuation, one can convert the
above sum to a Fourier series expansion where the Fourier
coefficients are given as

b j (T ) = 2

π

∫ π

0
dx Im

[
χ1

B(T, iμB)
]

sin( jx), (24)

where x = μB/T .
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FIG. 3. Temperature dependence of secondorder susceptibilities [(a) χ2
B , (b) χ 2

Q, (c) χ 11
BS , and (d) χ 11

BQ] at zero chemical potential. “Total”
contains both the attractive and repulsive interactions whereas KM contains only the attractive part. IDHRG 1 corresponds to results of the
ideal HRG model, with same number of particles as used in the KM formalism. Results are compared with lattice QCD data of Refs. [17]
(WB), [19] (HotQCD), and [23] (Lattice).

The results of two leading-order Fourier coefficients
b1(T ), b2(T ) computed using the S-matrix formalism are
compared to lattice results and are shown in Fig. 4(a). We
find a very good agreement between the coefficient b1(T )
and lattice QCD results using imaginary chemical potential.
Moreover, we found that b2(T ) is quite small compared to the
lattice results, which is due to the inclusion of only NN inter-
action and not other baryon-baryon interactions. However, we
found that b2(T ) is positive for T < 135 MeV and negative
above this temperature, contrary to the results of Ref. [84]
which are negative throughout the temperature range. This
can be understood from the isospin weighted sum of phase
shifts of NN interaction, which is positive for small

√
s and

falls rapidly at large
√

s, showing the hard core nature of NN
interaction at short distances.

The contribution from interaction can be explored fur-
ther by considering certain combinations of diagonal and
of-diagonal susceptibilities which are identically zero for a
noninteracting or ideal HRG but not for a noninteracting gas
of quarks and gluons [85]. The quantity χ2

B − χ4
B = 0 for

a hadron gas which has baryon number ±1, but not for a
noninteracting QGP for which χ2

B − χ4
B > 0, since all quarks

carry a baryon number of ±1/3. However, for an interacting
gas, the inclusion of NN interaction which carries a net baryon

number ±2 might give us a nonzero result. It is particularly
instructive to note that this observable is related to Fourier
coefficients such that χ2

B − χ4
B = −∑ j=∞

j=2 j( j2 − 1)b j (T ),
assuming MB statistics. In our case, since the contribution
comes only from the term j = 2 for NN interaction, we
have χ2

B − χ4
B = −6b2(T ). We compare this with the S-matrix

formalism where the ideal part is computed assuming Fermi-
Dirac (FD) statistics. This is shown in Fig. 4(b), and the
result shows that −6b2(T ) changes sign in accordance to
the discussion in the previous paragraph. However, we find
that the influence of statistics (FD) in the S-matrix formalism
leads to an increase in the value of observable χ2

B − χ4
B and

shifts the change in sign to a lower temperature. The above
observation is in agreement with lattice data, which also
shows a similar change in sign when moving from lower to
higher temperature. For temperatures T > 110 MeV we find
that χ2

B − χ4
B > 0, again indicating the hard core nature of NN

interaction. In Ref. [54,67] the same increasing trend of χ2
B −

χ4
B with temperature was also found using a repulsive mean

field in a multicomponent hadron gas and excluded volume
approach. Our results using the S-matrix formalism validate
the previous results. Moreover, one should note that the effect
of including only NN interaction is rather small compared to
the results obtained by Ref. [54,67] which can be improved
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FIG. 4. The left panel shows the variation of Fourier coefficients bj (T ) with temperature, computed using the S-matrix formalism,
compared to the lattice results from Ref. [84]. Open symbols (circles and triangles) denote the result from lattice QCD. Solid (black) line
denotes the result of Fourier coefficient b1(T ). The dot-dashed purple line and the dotted red line represent the positive and negative parts of
the Fourier coefficient b2(T ) respectively. The right panel shows the variation of χ2

B − χ 4
B with temperature at zero chemical potential. Nonzero

values come mainly due the NN interaction, which is shown by the dashed blue and solid purple lines, denoting the positive and negative parts
assuming FD statistics in the ideal part. The dot-dashed purple line and the dotted red line represent the positive and negative parts of the
Fourier coefficient 6b2(T ) respectively (see text). Results are compared with lattice QCD data of Ref. [23] (Lattice), with open red and solid
green symbols denoting the positive and negative parts.

upon adding other baryon-baryon interactions in the partition
function. However, we do not have information about the
experimental phase shifts of other baryon-baryon interactions,
and one has to substitute chiral effective theory [86,87] or
other such methods, which is left as a future work. Other
observables like v1 = χ31

BS − χ11
BS and v2 = 1/3(χ2

S − χ4
S ) −

2χ13
BS − 4χ22

BS − 2χ31
BS [85] are trivially zero in our analysis

since we do not have information about interactions (phase
shifts) among baryons which have |B| > 1 and |S| = 1 or vice
versa.

The correlation between the strangeness S and baryon
number B is a sensitive probe of the relevant microscopic
degrees of freedom. The quantity CBS [88], defined as CBS =
−3χ11

BS/χ
2
S , is one such observable. For a gas of noninteracting

QGP CBS = 1, but for a gas of hadrons dominated by kaons
and antikaons [a light quark is always correlated with its
strange partner (kaons) or vice versa (antikaons)] CBS < 1.
On the other hand, a system dominated by strange baryons
which correlate light quark (antiquark) with strange quark
(antiquark) hence has CBS > 1. Therefore, for large baryon
chemical potential, CBS could be larger than unity in a hadron
gas. Moreover, a significant difference between LQCD and
the ideal HRG model was reported previously [89]. It has
been argued that such a discrepancy can be cured by allowing
additional strange hadrons which have not been confirmed but
are predicted in various quark models [83,90]. Figure 5 shows
that the difference between LQCD and ideal HRG can be
accounted for by including interaction without invoking any
additional hadrons.

We match the second virial coefficient obtained using the
S-matrix formalism with the virial coefficient B(T ) of a van
der Waals gas and extract the VDW parameters a and b. For a
VDW gas the coefficient B(T ) is given as [64]

B(T ) = b − a

T
, (25)

where b = 16πr3/3, where r is the hard core radius and a is
a positive constant denoting attraction. Thus, the interacting
pressure PVDW

int is related to the number density nVDW for a
VDW equation of state as

PVDW
int = −(nVDW)

2
T B(T ), (26)
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FIG. 5. The temperature dependence of CBS at zero chemical po-
tential calculated in the current work (Total). IDHRG 1 corresponds
to results of the ideal HRG model, with the same number of particles
as used in the KM or S-matrix formalism. IDHRG (PDG 2016)
corresponds to results of the ideal HRG model using the hadronic
spectrum of PDG 2016 [68]. Results of the ideal HRG model with
additional resonances which are not yet confirmed are also shown
[IDHRG (PDG 2016+)]. Lattice QCD data of CBS are taken from
Refs. [17] (WB) and [19] (HotQCD).
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fitted with the straight line −T B(T ) = −bT + a [see Eq. (25)].

Matching PVDW
int with Pint, i.e., the second term of Eq. (7),

and nVDW with Eq. (8), we extract the values of a and
b. Figure 6 shows the Pint/n2 calculated as a function of
temperature using the S-matrix formalism compared to that
of an interacting VDW gas. In the case of a temperature
independent VDW parameters, the curve in Fig. 6 would be
a straight line. This study indicates that the simple (constant)
parametrization of the VDW parameters is not correct in a
realistic situation, where both the attractive parameter a and
the repulsive parameter b could in general be temperature
dependent. This fact also supports models [27], where a tem-
perature dependent radius was used. However, assuming the
VDW parameters are temperature independent, a straight line
fit to the results in Fig. 6 with a functional form of −bT + a
is carried out to extract the VDW parameters. The values of
the VDW parameters are a = 1.54 ± 0.064 GeV fm3 and the
hard core radius r = 0.81 ± 0.014 fm. We would like to com-
ment here that the extracted parameters can be seen as some
effective values containing contributions from meson-meson,
meson-nucleon, and nucleon-nucleon interactions averaged
over many hadronic species, while Refs. [51,57] extracted
these parameters considering only baryon-baryon interaction.

IV. SUMMARY

To summarize, we have included repulsive interaction be-
tween hadrons by fitting to experimental phase shifts which
carry information about the nature of the interaction. The
attractive part of the interaction is also included and was
calculated by parametrizing the two-body phase shifts using
the K-matrix formalism [58], which is known to preserve the
unitarity of the S-matrix. Since the experimental phase shifts
for the attractive part of the interactions were available for
the NN scattering, those are used in calculations. Thermody-
namic quantities like pressure, energy density, trace anomaly,
specific heat, speed of sound, etc. were calculated using the
S-matrix formalism. The results indicate that the effect of

repulsive channels is to suppress the bulk variables studied
here. This finding suggests that in contrast to certain channels
like π -π interaction, where the isospin-weighted sum of s-
wave attractive and repulsive phase shifts cancel each other,
we found that this observation is not true for all channels.
We find that although some partial cancellation is occurring
among various phase shifts in πN , KN , and NN interaction
channels, the resultant interaction is substantial and far from
exact cancellation.

Similarly, we compared the Fourier coefficients using the
S-matrix formalism with lattice data at imaginary chemical
potential. The leading-order coefficient b1(T ) reproduces lat-
tice data, while the next-to-leading order coefficient b2(T ) is
smaller than the prediction of lattice QCD data. However, we
found that b2(T ) is positive for T < 135 MeV and negative
for T > 135 MeV, contrary to Ref. [84], where it is negative
throughout the temperature range. This can be attributed to
the isospin weighted degeneracy of NN interaction that is
positive at lower

√
s and negative at higher

√
s.

We found that the most prominent effect of repulsive
interactions is seen when we calculate the second- and higher-
order fluctuations and correlation. The inclusion of repulsive
interaction leads to a better agreement of observables like χ2

B
and χ2

Q with lattice data than the result of only attractive inter-
action considered in Ref. [58] using the K-matrix formalism.
This is because, in addition to other attractive interactions as
considered in [58], resonances like (1620), (1910) in the
πN interaction and like �(1660) in the KN interaction were
considered attractive in the K-matrix formalism. But here, we
have included such resonances in the repulsive part. This is
understood as a comparison to the experimental phase shifts
of such resonances through the factor ∂δl (ε)/∂ε has shown
that it is negative and hence repulsive. Here, we would like to
note that the strength from different channels to the repulsive
part of the second virial coefficient is in the order such that
πN > KN > NN .

Particularly, the two most interesting observations which
resulted from the current work are as follows. First, we
find that the observable χ2

B − χ4
B > 0 for temperatures T >

110 MeV, in an interacting HRG model discussed in this work,
is contrary to the expectation χ2

B − χ4
B = 0 for an uncorrelated

gas of hadrons like in the IDHRG model. We also observed
that statistics (FD or MB) play a crucial role on the values and
the sign of this observable. However, the effect of interaction
is only from NN interaction, which is rather small compared
to the results obtained by Refs. [54,67]. The present result can
be viewed as a first attempt to address such observables in a
model which does not have any free parameters compared to
previous works. This result can be improved by adding other
baryon-baryon interactions using information from chiral ef-
fective theory, etc. Second, for the observable CBS , which is a
sensitive probe of the relevant microscopic degrees of freedom
of a system, the HRG model in the present formalism very
well describes the LQCD data. It is also seen from Fig. 5 that
the IDHRG model with additional strange hadronsm which
has not yet been confirmed, agrees with the LQCD data at
a similar level [89]. The difference in physics interpretation
is the following: the IDHRG model with additional strange
hadrons attributes the matching of LQCD data relative to
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normal IDHRG model to the increase in hadronic degrees of
freedom for the system of hadrons. Our results, in contrast,
attribute the matching toto interactions among the constituents
that is captured naturally through the formalism used in the
current work.

Finally we have tried to quantify the attractive and re-
pulsive interactions in our model in terms of the VDWHRG
attractive and repulsive parameters a and r, respectively. In
doing so we assume that the parameter values do not change
with temperature and the interacting parts of the pressure are
same in the two models at a given temperature. It may be
noted that our results as shown in Fig. 6 indicate that a and
r could be temperature dependent. It would be interesting to

calculate various transport co-efficients in a S-matrix based
HRG model and compare to other different types of HRG
models and corresponding lattice QCD results.
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