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Thermal behavior and entanglement in Pb-Pb and p-p collisions
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The thermalization of the particles produced in collisions of small objects can be achieved by quantum
entanglement of the partons of the initial state as was analyzed recently in proton-proton collisions. We extend
such study to Pb-Pb collisions and to different multiplicities of proton-proton collisions. We observe that, in all
cases, the effective temperature is approximately proportional to the hard scale of the collision. We show that
such a relation between the thermalization temperature and the hard scale can be explained as a consequence
of the clustering of the color sources. The fluctuations of the number of parton states decrease with multiplicity
in Pb-Pb collisions as long as the width of the transverse-momentum distribution decreases, contrary to the
p-p case. We relate these fluctuations to the temperature fluctuations by means of a Langevin equation for
the white stochastic noise. We show that the multiplicity parton distribution for events with at least one hard
parton collision is a � distribution. We use this result to compute the entanglement entropy, showing that the
leading term is the logarithm of the number of partons, meaning that the n microstates are equally probable and
the entropy is maximal. There is another contribution related to the inverse of the normalized parton number
fluctuation, which at very high energy changes the behavior from ln n to ln

√
n.

DOI: 10.1103/PhysRevC.99.015205

I. INTRODUCTION

The presence of an exponential shape in the transverse-
momentum distribution (TMD) of the produced particles in
collisions of small objects together with the approximate ther-
mal abundances of the hadron yields constitutes an indicative
sign of thermalization. This thermalization, however, cannot
be achieved under the usual mechanism, namely, final-state
interactions in the form of several secondary collisions.

The emergence of this phenomenon has been recently stud-
ied [1–4], showing that thermalization can be obtained during
the rapid quench induced by the collision due to the high
degree of entanglement inside the partonic wave functions of
the colliding protons. Thus, the effective temperature obtained
from the TMD of the particles produced in the collision
depends on the momentum transfer; that is, it constitutes an
ultraviolet cutoff of the quantum modes resolved by the col-
lision. In diffractive processes with a rapidity gap, the entire
wave function of the proton is involved and no entanglement
entropy arises. Consequently, we expect no thermal radiation
as it has been observed.

In this article we further explore the relation between
parton entanglement and thermalization by studying p-p and
Pb-Pb collisions at different multiplicities. In the second case
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we expect an interplay between thermalization and final-state
interactions leading to some differences with p-p collisions
concerning the entanglement and thermalization.

We show that the TMDs of both collisions at different
multiplicities can be fitted by the sum of an exponential
plus a powerlike function, characterized by a thermal-like
temperature, Tth, and a temperature scale, Th, respectively.
For any fixed multiplicity and in all collisions the relation
4Tth ≈ Th is satisfied. The power index n describing the hard
spectrum behaves differently in p-p and Pb-Pb collisions,
showing the different behavior of the transverse-momentum
fluctuations. This behavior and the relation between Tth and Th

can be naturally explained in the clustering of color sources.
The cluster-size distribution of the clusters of overlapping
strings found in the collision coincides with the distribution
of temperatures obtained as the solution of the Fokker-Planck
equation associated with the linear Langevin equation for a
white Gaussian noise. We also show that the multiplicity of
parton distribution for events with at least a hard parton is the
� distribution. We take advantage of this result to compute
the entanglement entropy. The leading contribution comes
from the logarithm of the number of partons n. In addition,
there is another contribution related to the width of the parton
multiplicity. This contribution means, asymptotically, that the
entanglement entropy becomes the logarithm of

√
n, indi-

cating that the number of effective microstates changes with
energy from n to

√
n.

The organization of the article is as follows. In Sec. II
we introduce the entanglement of the partonic state following
Ref. [1] and we analyze the TMD of p-p and Pb-Pb col-
lisions at different multiplicities. In Sec. III we discuss the
obtained results, remarking on the similarities and differences
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of p-p and Pb-Pb collisions in connection with thermalization
and entanglement. We briefly discuss the clustering of color
sources in connection with the TMD in Sec. IV, and in Sec. V
we introduce the Langevin and Fokker-Planck equations to
study the time temperature fluctuations. In Sec. VI, we study
the conditional multiplicity distributions for events with at
least a hard parton collision, and in Sec. VII we compute the
entanglement entropy. Finally in Sec. VIII the conclusions are
presented.

II. ENTANGLEMENT, THERMALIZATION, AND
TRANSVERSE MOMENTUM DISTRIBUTIONS

A hard process with momentum transfer Q probes only
the region of space H of transverse size 1/Q. Let us denote
by S the region of space complementary to H . The proton is
described by the wave function,

|�HS〉 =
∑

n

αn

∣∣�H
n

〉∣∣�S
n

〉
, (1)

of a suitably chosen orthonormal set of states |�H
n 〉 and |�S

n 〉
localized in the domains H and S. In the parton model this
full orthonormal set of states is given by the Fock states
with different numbers n of partons. The state (1) cannot be
separated into a product, |ϕH 〉 ⊗ |ϕS〉, and therefore |�HS〉 is
entangled. The density matrix of the mixed state probed in
region H is

ρH = TrS ρSH

=
∑

n

〈
�S

n

∣∣�HS
〉〈
�HS

∣∣�S
n

〉
=

∑
n

|αn|2
∣∣�H

n

〉〈
�H

n

∣∣, (2)

where |αn|2 = pn is the probability of having a state with n
partons, independently of whether their interaction is hard or
soft. The von Neumann entropy of this state is given by

S = −
∑

n

pn ln pn. (3)

We can consider that a high-momentum partonic configura-
tion of the proton when the collision takes place undergoes
a rapid quench due to the QCD interaction. The onset τ of
this hard interaction is given by the hardness scale Q, τ ∼
1/Q. Because τ is small the quench creates a highly excited
multiparticle state. The produced particles have a thermal-
like exponential spectrum with an effective temperature, T ≈
(2πτ )−1 ≈ Q/2π . Thus, the thermal spectrum can be origi-
nated due to the event horizon formed by the acceleration of
the color field [5–9]. On the other hand, the comparison with
CERN Large Hadron Collider (LHC) data on hadron multi-
plicity distributions [2] indicates that the produced Boltzmann
entropy is close to the entanglement entropy of Eq. (3).

In Ref. [1], the thermal component of charged-hadron
transverse-momentum distribution in p-p collisions at

√
s =

13 TeV is parametrized as [10–12]

1

Nev

1

2π pt

d2Nev

dηd pt
= Ath exp(−mt/Tth ), (4)

where Tth is the effective temperature and mt =
√

m2 + p2
t

is the transverse mass. The hard scattering, meanwhile, is
parametrized as

1

Nev

1

2π pt

d2Nev

dηd pt
= Ah

1(
1 + m2

t

nT 2
h

)n
, (5)

where the temperature Th and the index n are parameters
determined from the fit to the experimental data. The value
Tth = 0.17 GeV was found [1], agreeing with the one expected
from the extrapolation of the relation

Tth = 0.098

(√
s

s0

)0.06

(GeV), (6)

obtained at lower energies. Similarly the hard scale Th is given
by the relation

Th = 0.409

(√
s

s0

)0.06

(GeV). (7)

At
√

s = 13 TeV, the values found for the hard scale are Th =
0.72 GeV and n = 3.1. We notice that from Eqs. (6) and (7)
one finds

Th

Tth
≈ 4.2, (8)

independently of the energy. The ratios of the particular values
obtained in the fit [1] are close to these values.

To study the dependence on the multiplicity of Tth and Th

we have used the transverse-momentum distribution of K0
S

produced in p-p collisions at
√

s = 7 TeV in the range up
to pt � 10 GeV/c [13]. We use K0

S instead of π or charged
particles because we have not found published data covering a
broad range of soft and hard regions at different multiplicities.
In Figs. 1–3, we show the fit and the results for Th and

FIG. 1. Normalized differential K0
S production in p-p collisions

at
√

sNN = 7 TeV as a function of transverse momentum for dif-
ferent classes of centralities. Centrality classes from I to X, in
decreasing magnitude, correspond to charged-particle productions of
dNch/dη = 21.3, 16.5, 13.5, 11.5, 10.1, 8.45, 6.72, 5.40, 3.90, and
2.26. The thermal and hard components of the lowest centrality fit
are shown by short dashed and long dashed lines, respectively.
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FIG. 2. Tth and Th as a function of centrality for K0
S production in

p-p collisions at
√

sNN = 7 TeV.

Tth, respectively, as a function of dNch/dη. We observe an
increase of Th and Tth. The values of Tth and Th are in the
ranges 0.18–0.28 and 0.8–1.15, respectively. In Fig. 3 the
scaled curve 4Tth is shown compared to Th. We observe that
the scaled 4Tth curve lies on the obtained Th values; therefore
the relation between Tth and Th (8) remains approximately
valid not only for different energies but also for different
centralities, pointing to some physical reason. The obtained
values for Tth and Th are slightly higher than the values of
Tth = 0.17 GeV and Th = 0.74 GeV of Ref. [1] due to the
different sets of data, because in this analysis K0

S is used
instead of charged particles.

We have extended the study to Pb-Pb collisions at different
multiplicities by fitting the ALICE Collaboration TMD data
for charged particles [14] at

√
s = 2.76 TeV. In Figs. 4–6,

we show the fit and the values obtained for Tth and Th as a
function of the multiplicity. Tth also increases with multiplicity
and Th follows the same relation Th ≈ 4Tth observed at p-p
collisions.

FIG. 3. Th and 4Tth as a function of centrality for K0
S production

in p-p collisions at
√

sNN = 7 TeV.

FIG. 4. Normalized differential charged-particle production in
Pb-Pb collisions at

√
sNN = 2.76 TeV, as a function of transverse

momentum for different classes of centralities. Centrality classes
from 0%–5% to 70%–80%, in decreasing magnitude, correspond to
charged-particle productions of dNch/dη = 1600, 1290, 960, 650,
425, 260, 145, 75, and 30. The thermal and hard components of the
lowest centrality fit are shown by short-dashed and long-dashed lines,
respectively.

In Fig. 7 we show the results of the fit for the power index
n in p-p and Pb-Pb collisions as a function of the charged-
particle production. n decreases with multiplicity for p-p
collisions and, on the contrary, increases for Pb-Pb collisions.
For p-p collisions at

√
s = 13 TeV the value obtained for the

case of charged particles is n = 3.1, slightly smaller than the
value shown in Fig. 7. The values of n are larger for Pb-Pb
collisions than for p-p collisions as expected due to the jet
quenching and corresponding to high-pt particle suppression.

III. DISCUSSION

Our results for p-p collisions show that for each multiplic-
ity the effective thermal temperature obtained from the TMD

FIG. 5. Variation of Tth and Th with centrality for charged-particle
production in Pb-Pb collisions at

√
s = 2.76 TeV.
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FIG. 6. Th and 4Tth as a function of centrality for charged-particle
production in Pb-Pb collisions at

√
s = 2.76 TeV.

of the produced particles can be viewed as a rapid quench
of the entangled partonic state. The behavior of Tth and Th

as a function of the multiplicity is very similar, holding the
relation Th ≈ 4Tth for all the studied multiplicities. This fact
adds evidence to the cases studied in Ref. [1]. It is remarkable
that the same relation holds for Pb-Pb collisions, realizing the
different values of Tth and Th compared with the those in the
p-p case. The increase of Tth with multiplicity in p-p collisions
is larger than that in the Pb-Pb case as was expected, as long
as Tth was nothing but 〈pt 〉, and experimentally the LHC data
[14] have shown an increase with multiplicity in p-p collisions
that is larger than that in Pb-Pb collisions.

Equations (4) and (5) can be obtained in the framework of
clustering of color sources [15–17] as we show in Sec. IV. In
this approach the cluster-size distribution is a � distribution
[18–21] that coincides with the stationary solution of the
Fokker-Planck equation derived from the Langevin equation
corresponding to a white noise [22,23]. In this way the

FIG. 7. Power index n of the hard component as a function of
dNch/dη for K0

S production in p-p at
√

s = 7 TeV and for charged-
particle production in Pb-Pb collisions at

√
sNN = 2.76 TeV.

FIG. 8. R, the ratio of the hard component to the total component
as a function of dNch/dη, for K0

S production in p-p at
√

s = 7 TeV
and for charged-particle production in Pb-Pb collisions at

√
sNN =

2.76 TeV.

fluctuations in the cluster size are related to the temperature
fluctuations.

The ratio R of the integral under the power-law curve (hard
component) and the integral over the total (hard + thermal
components),

R = H

H + S
, (9)

is plotted in Fig. 8 for different multiplicities for p-p and
Pb-Pb collisions. The value found at

√
s = 13 TeV in Ref. [1]

was R ≈ 0.16, in agreement with the ratio calculated in inelas-
tic proton-proton collisions at

√
s = 23, 31, 45, and 53 GeV.

Our results for p-p collisions at
√

s = 7 TeV for different
multiplicities are close to the mentioned value. In the case
of Pb-Pb we have found a smaller value. This smallness is
consistent with the behavior found in Ref. [24] based on
saturation momentum and geometrical scaling.

IV. CLUSTERING OF COLOR SOURCES

Multiparticle production is currently described in terms of
color sources (strings) stretched between the projectile and the
target. These strings decay by the Schwinger q-q̄ production
and subsequently hadronize to produce the observed hadrons.
The color in the strings is confined in a small area in the
transverse space of the order of 0.2 fm. With increasing
energy and/or atomic number of the colliding objects, the
number of color sources grows, and they start to overlap,
forming clusters. A cluster of n color sources behaves as
a single string with an energy momentum that corresponds
to the sum of the energy momentum of the overlapping
strings and with a higher color field, corresponding to the
vectorial sum of the color charges of each individual string.
The resulting color field covers the area Sn of the cluster. Thus
�Q2

n = (
∑n

1
�Qi )2, and given that the individual string colors can

be arbitrarily oriented in color space, the average �Qi · �Qj is
zero, so �Q2

n = n�Q2
1. As Qn depends also on the area, we have
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Qn = √
nSn/S1Q1, where S1 is the area of the individual

string. The mean multiplicity and the mean transverse mo-
mentum are proportional to the color charge and to the color
field, respectively,

μn =
√

nSn

S1
μ1,

〈
p2

t

〉
n

=
√

nS1

Sn

〈
p2

t

〉
1, (10)

which in the limit of high density, ξ = NsS1/S, becomes

μn = NsF (ξ )μ1,
〈
p2

t

〉
n

= 1

F (ξ )

〈
p2

t

〉
1, (11)

where Ns is the number of color sources and F (ξ ) is a
universal factor,

F (ξ ) =
√

1 − e−ξ

ξ
. (12)

The factor 1 − e−ξ is the fraction of the total collision area
covered by color sources at density ξ (a homogeneous profile
for the collision area is assumed). F (ξ ) goes to 1 at low
densities and goes to 0 at high ξ . The transverse-momentum
distribution f (pt ) is obtained from the Schwinger’s distri-
bution, exp(−p2

t x), weighted by the cluster-size distribution
W (x), where x is the inverse of 〈p2

t 〉n:

f (pt ) =
∫

dxW (x) exp
(−p2

t x
)
. (13)

The weight function is the � distribution because the process
of increasing the centrality or energy of the collision can be
regarded as a transformation of the color field located in the
sites of the surface area, implying a transformation of the
cluster-size distribution of the type

W (x′) → x′W (x′)
〈x′〉 → · · · x′kW (x′)

〈x′k〉 → · · · . (14)

This renormalization group type of transformation was stud-
ied a long time ago in probability theory, and it was shown
that the only stable distributions under such transformations
are generalized � distributions. We take the simplest case,
namely, the � distribution

W (x) = γ

�(n)
(γ x)n−1 exp(−γ x), (15)

with

γ = n

〈x〉 (16)

and

1

n
= 〈x2〉 − 〈x〉2

〈x〉2
. (17)

Introducing Eq. (15) into Eq. (13) we obtain the distribution
[18]

f (pt ) = 1(
1 + p2

t

/
γ
)n = 1(

1 + F (ξ )p2
t

n〈p2
t 〉1

)n
, (18)

which takes the form of the parametrization used in Eq. (5)
with

T 2
h =

〈
p2

t

〉
1

F (ξ )
, (19)

which grows with the density ξ and thus with the energy and
centrality as is observed in the analysis of p-p and Pb-Pb
collisions. In the last case, if the fits include larger pt values a
flattening of the dependence of Th with multiplicity due to jet
quenching effects is observed. At low pt , Eq. (18) behaves as

f (pt ) ≈ exp
(−p2

t F (ξ )
/〈

p2
t

〉
1

)
, (20)

independently of n. In this low-pt regime, there are other
effects, like fluctuations of the color field, that should be
taken into account. In fact, assuming that such fluctuations are
Gaussian, we have [6–8]

P(Th ) =
√

2

πσ 2
exp

(
− T 2

h

2σ 2

)
, (21)

hence we obtain the thermal distribution

fth(pt ) =
∫ ∞

0
dThP(Th ) exp

(
− p2

t

T 2
h

)
= exp

(
− pt

σ/
√

2

)
.

(22)

In other words, the thermal temperature is proportional to the
fluctuations of the hard temperature, which are proportional
to the hard temperature. The exact relation between the hard
and thermal scales, however, must account for the effect of the
fluctuations in the hard part of the distribution in the width of
the found soft distribution.

We notice that according to Eq. (18) the power index n is
related to the inverse of the width of the distribution and a
different behavior with multiplicity is obtained for p-p and
Pb-Pb collisions. This fact is a consequence of the clustering
of the color sources. At low density of sources, there are only
a few clusters of overlapping strings and thus the only temper-
ature fluctuations come from inside the individual strings. As
the number of clusters with different numbers of color sources
increases, the fluctuations also increase and correspondingly n
decreases. If the color density increases further, the clusters of
different colors start to overlap in such a way that the number
of clusters with different numbers of color sources decreases
and thus the fluctuations decrease and n increases. The change
of behavior that can be observed in Fig. 7 is related to the
critical percolation point. Notice that n is decreasing with
multiplicity in p-p collisions, but we expect that above a given
multiplicity n should start to grow in the same way as in Pb-Pb
collisions.

V. THERMAL BEHAVIOR AND NON-GAUSSIAN
DISTRIBUTION

The Gibbs distribution in energy, exp(−E/T ), which
is Gaussian in the momenta of free massive particles,
exp(−p2/2mT ), is considered as the generalized case for
thermal equilibrium of noncorrelated or short-range correlated
systems. A microdynamical explanation for the Maxwell-
Boltzmann statistics is given by the Langevin equation,
describing a particle moving under the influence of a
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deterministic damping force and a stochastic drive, which
accelerates the particle in a short time, changing the momenta
randomly and uncorrelated. The stationary solution of this
stochastic equation follows the Gaussian distribution. Because
the harmonic oscillator is just the extension of this free-motion
Langevin equation into the phase space, this picture is also
accepted for free quantum systems.

It could be thought that any non-Gaussian distribution may
only come from nonthermalized systems, in particular, the
obtained power-tail distribution or the � distribution, which
gives rise to the power-tail distribution in the clustering of
color sources model. However, it has been shown [23] that
this is not the case, and by treating the deterministic damping
constant in the Langevin equation also stochastically then the
distribution is in general non-Gaussian. In particular for the
case of a multiplicative white noise it is a � distribution [22].

Let us consider the Langevin equation of a variable σ for a
stochastic process [22]:

dσ

dt
+

(
1

τ
+ ξ (t )

)
σ = φ. (23)

The stochastic process is defined by the white Gaussian noise
ξ (t ) with the mean 〈ξ (t )〉 and the correlator 〈ξ (t )ξ (t + �t )〉
given, respectively, by

〈ξ (t )〉 = 0, 〈ξ (t )ξ (t + �t )〉 = 2Dδ(�t ), (24)

where τ and D define, respectively, the mean time for changes
of the variable σ and its variance by the following conditions:

〈σ (t )〉 = σ (0) exp(−t/τ ), 〈σ 2(∞)〉 = τD

2
. (25)

From Eq. (23) a Fokker-Planck equation can be obtained,
following the procedure of Ref. [23], for the probability
distribution f (σ, t ) of having the value σ (t + δt ), provided
the value at time t is σ (t ), and the noise 1/τ + ξ , namely [22],

∂ f (σ )

∂t
= − ∂

∂σ
K1(σ ) f (σ ) + 1

2

∂2

∂σ 2
K2(σ ) f (σ ), (26)

with

K1(σ ) = − 1

τ
σ + φ, K2(σ ) = 2Dσ 2. (27)

The stationary solution of Eq. (26) is

f (σ ) ∼ 1

K2(σ )
exp

(
2

∫
ds

K1(s)

K2(s)

)
, (28)

which once normalized and by using Eq. (27) becomes the �

distribution

f (σ ) = 1

�(n)

μn

σ 1+n
exp

(
−μ

σ

)
, (29)

with

μ = φ

D
, n = 1 + 1

τD
. (30)

We observe that by taking the variable as σ = T 2
h = 1/x the

� distribution in Eq. (29) is nothing but the � distribution as
defined in Eq. (15) with μ = γ = n/〈Th〉2. From Eq. (30) we

have 〈
T 2

h

〉 = τφ, (31)

meaning that the higher T 2
h , the scale of hard interactions, is

the higher τ is ; thus Th and Tth evolve slowly.

VI. CONDITIONAL PROBABILITY FOR
A HARD COLLISION

Let us consider the probability pn of having n partons in a
given collision. It has been shown [25–29] that the conditional
probability pc

n of having n partons and at least one giving rise
to a hard collision is

pc
n = n

〈n〉 pn. (32)

This equation has been obtained not only for hard events but
also for events of a type, denoted by c, in which for a result to
be considered of the type c it is enough to have a single c event
in at least one of the elementary collisions. Examples of this
kind are events without a rapidity gap (nondiffractive events),
hard events, annihilation events in p̄-p collisions, events with
at least one jet and W ± and Z0 events. Let N (n) be the number
of events with n being the number of elementary collisions
observed in a hadronic or nuclear collision, we then have

N (n) ≡
n∑

i=0

(
n

i

)
αi

c(1 − αc)n−iN (n), (33)

where αc is the probability of having an event c in an elemen-
tary collision (0 < αc < 1). If αc is small, Eq. (33) becomes

N (n) = αcnN (n) + (1 − αcn)N (n), (34)

where from the definition of a type c event the first term of
Eq. (34) is the number of events Nc(n) where a c occurs:

Nc(n) = αcnN (n). (35)

If N is the total number of events, we have∑
n

N (n) = N,
∑

n

nkN (n) ≡ 〈nk〉N, (36)

and for the total number of events with c occurring, we have∑
n

αcnN (n) = αc〈n〉N. (37)

This implies the following for the probability distribution of
having a c event in n collisions:

pc(n) = αcnN (n)

αc〈n〉N = n

〈n〉 p(n), (38)

which is of the form of Eq. (32). In this equation, n is the
number of elementary collisions (parton-parton or nucleus-
nucleus, depending on the case studied), but Eq. (38) has been
applied to the multiplicity particle probability distributions,
p(n) being the minimum bias multiplicity distribution. Indeed,
Eq. (32) was checked in the case of production of W ± and
Z0 with data of the CDF Collaboration at Fermilab [26], in
the case of the production of jet events with data of the UA1
Collaboration at CERN Super Proton Synchrotron [26], in the
case of the production of Drell-Yan pairs in S-U collisions
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with data of the NA38 Collaboration [27], and in the case of
annihilation in p̄p collisions [26]. In all cases a good agree-
ment with the experimental data was obtained. Notice that in
Eq. (32) the right-hand side is independent of c and only its
shape is determined by the requirement of being of type c. In
terms of cross sections, the c events are self-shadowed, and
their cross sections can be written as a function of only the
elementary cross sections of a c event [30,31].

This selection procedure of the events satisfying certain c
criteria can be repeatedly applied for subsequent c conditions.
For instance, from these events with at least one particle with
transverse momentum larger than pt,1 one can further select
events with at least one particle with transverse momentum
larger than pt,2 and pt,2 > pt,1, and so on (there are cases
in which this multiple selection procedure cannot be applied
more than once, like nondiffractive or annihilation events).
The corresponding probability distributions to the repeated
selection satisfy

p(n) → n

〈n〉 p(n) → n2

〈n2〉 p(n) → · · · nk

〈nk〉 p(n). (39)

Notice that

〈n〉c = 〈n2〉
〈n〉 (40)

and

〈n〉c − 〈n〉 = 〈n2〉 − 〈n〉2

〈n〉 � 0. (41)

As we say in Sec. IV, transformations of the kind of Eq. (39)
were studied a long time ago by Jona-Lasinio [32] in con-
nection with the renormalization group in probability theory,
showing that the only stable probability distributions under
such transformations are the generalized � distributions. The
simplest one is the � distribution. This transformation has also
been studied in connection with the self-similarity condition
and the KNO scaling [29]:

〈n〉pn = ψ

(
n

〈n〉
)

= ψ (z). (42)

For the � distribution

ψ (z) = βk

�(k)
zk−1e−βz, k > 1, (43)

we have the normalization conditions

1 ≡
∑

n

pn =
∑

n

1

〈n〉ψ
(

n

〈n〉
)

=
∫

dzψ (z) = 1 (44)

and

1 ≡
∑

n

n

〈n〉 pn =
∫

dzzψ (z), (45)

which forces β = k. The parameter k is related to the normal-
ized width:

1

k
= 〈z2〉 − 〈z〉2

〈z〉2
. (46)

We use the � distribution in our evaluations of the entangle-
ment entropy.

The origin of the nonextensive thermodynamics related to
Eq. (5) could be the fractal structure of the thermodynamical
system. In Ref. [33] it is shown that such systems present
temperature fluctuations following a γ distribution. The repet-
itive fractal structure has to do with the scale transformations
represented by Eq. (39).

In terms of the reduced matrix density (2), the transforma-
tion induced by the repeated selection pt,1 < pt,2 < · · · < pt, j

translates into a sum over each time of a larger region of
soft partons, modifying the probability pn = |αn|2 in the way
prescribed by the chain in Eq. (39).

VII. ENTANGLEMENT ENTROPY

We use Eq. (43) to evaluate the entanglement entropy. The
von Neumann entropy for minimum bias events is

S = −
∑

n

pn ln pn

= −
∑

n

1

〈n〉ψ
(

n

〈n〉
)

ln

[
1

〈n〉ψ
(

n

〈n〉
)]

= ln〈n〉 −
∫ ∞

0
dzψ (z) ln[ψ (z)], (47)

and the von Neumann entropy for type c events, containing at
least one hard collision, is

Sc = −
∑

n

pc
n ln pc

n = −
∑

n

npn

〈n〉 ln

(
npn

〈n〉
)

= −
∑

n

n

〈n〉2
ψ (z) ln

(
nψ (z)

〈n〉2

)

= −
∫ ∞

0
dzzψ (z) ln

(
zψ (z)

〈n〉
)

= ln〈n〉 −
∫ ∞

0
dzzψ (z) ln[zψ (z)]. (48)

Taking for ψ (z) the � distribution, we obtain

S = ln〈n〉 − ln k + k + ln �(k) + 1 − k

�(k)
∂k�(k)

� ln〈n〉 + 1

2

[
k − 1

k
+ ln

(
2π

k

)]

→ ln
〈n〉√

k
= ln〈n〉1/2 (49)

and

Sc = ln〈n〉 + k + ln �(k) − k

�(k)
∂k�(k)

� ln〈n〉 + 1

2

[
1 + ln

(
2π

k

)]

→ ln
〈n〉√

k
= ln〈n〉1/2, (50)

where the last equality of the above relations holds for large k
and �(k) is the � function. We observe that the leading term
ln〈n〉, given that 〈n〉 � s�, is similar to the one obtained using
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FIG. 9. Entanglement entropy S − ln〈n〉 (49) of the minimum
bias distribution p(n) (42) (solid line) and entanglement entropy
Sc − ln〈n〉 (50) of the type c event distribution pc(n) (38) (dot-dashed
line).

the Balitsky-Kovchegov equation. The difference between
both entropies reads

Sc − S = ln k − 1

�(k)
∂k�(k) � 1

2k
, (51)

In Fig. 9 S − ln〈n〉 and Sc − ln〈n〉 are shown as a function of
k. As k > 1, S and Sc decrease with k and at larger values
Sc approaches S. As k > 1, S − ln〈n〉 and Sc − ln〈n〉 are
decreasing functions of k in all the allowed domain of k. These
functions, according to Eqs. (49) and (50), become negative at
very high k. The leading term of S and Sc is ln〈n〉, meaning
that the n partons, i.e., the n microstates of the system, are
equally probable, and thus the entropy is maximal. In addition
to this contribution, there is one that depends only on k, i.e.,
the inverse of the normalized fluctuations on the number of
partons, Eq. (50). This contribution is a positive decreasing
function of k in a very broad range, becoming negative at very
high k. In the infinite limit, the � distribution becomes the
normal or Gaussian distribution, and both S and Sc behave
like ln(n/

√
k) = ln(n1/2). This result means that the number

of microstates is not n anymore but rather
√

n. A saturation
effect occurs and the growth of microstates is suppressed as
the collision energy or the centrality increases. This saturation
is explained in models like the color glass condensate (CGC)
or the clustering of color sources. In this last model, the
number of independent color sources or strings, n, formed
from the initial partons of the colliding objects, is reduced
at high energies because the number of effective independent
color sources is proportional to

√
n in such a way that Eq. (50),

involving logarithms, is satisfied [34]. In the limit of high
energy in the glasma picture of the CGC, the number of color
flux tubes is also

√
n.

It could be thought that because 〈n〉c � 〈n〉 the leading
term of the entanglement entropy Sc is larger than the corre-
sponding S. Indeed, instead of Eq. (48) we could have written

Sc = ln〈n〉c −
∫

dzψc(z) ln [ψc(z)], (52)

FIG. 10. Entanglement entropy difference Sc − S of Eqs. (49)
and (50) for the minimum bias distribution p(n) (42) and for the type
c event distribution pc(n) (38).

with

ψc(z) ≡ 1

〈n〉c
pc

n = 1

〈n〉c

n

〈n〉 pn = 1

〈n〉c
ψ (z). (53)

From Eqs. (46) and (40) we can write

ln〈n〉c = ln〈n〉 + ln

(
1 + 1

k

)
, (54)

so asymptotically as k → ∞, 〈nc〉 = 〈n〉.
The differences between S and Sc are small and asymptot-

ically tend to zero as is shown in Fig. 10.
The dependence of S − ln〈n〉 or Sc − ln〈n〉 on the energy

or on the impact parameter (centrality) is very interesting in
the clustering of color sources approach due to the previously
described dependence of k on the string density ξ . At low
density, k decreases up to a critical string density, ξc. Above
this critical density, ξ > ξc, k increases. In this way, both
S − ln〈n〉 and Sc − ln〈n〉 increase with ξ up to the critical
density ξc and decrease for larger ξ . This decrease of S − ln〈n〉
or Sc − ln〈n〉 with energy or centrality is small compared with
the growth of ln〈n〉 in such a way that S and Sc are always
growing. The exact value of k, which corresponds to the ξc

marking the turnover, depends on the observed rapidity range,
the pt acceptance, and the profile functions of the projectile
and the target. We know from the data that k decreases with
energy and centrality in p-p collisions and it increases for
Au-Au and Pb-Pb collisions. The turnover of k could be
at very high multiplicity in p-p collisions at

√
s = 13 TeV.

Notice that S or Sc does not present a maximum at ξ = ξc but
rather a change in the dependence of S or Sc on ξ .

VIII. CONCLUSIONS

The analysis of the dependence on the multiplicity of the
LHC p-p and Pb-Pb data confirms the picture of thermaliza-
tion induced by quantum entanglement. In all the analyzed
data, the effective thermalization temperature obtained from
the data is proportional to the hard scale of the collision Th
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given by the average transverse momentum. The coefficient
of proportionality is universal, independent of the considered
collision, even though Tth and Th are different in each collision
type. Thermal and hard temperatures increase with multiplic-
ity in both collision scenarios, and this rise reproduces the
known correlation of 〈pt 〉 and dNch/dη for p-p and Pb-Pb
collisions. In the framework of clustering of color sources
the proportionality between Tth and Th is understood, being
Tth proportional to the fluctuations of Th. The n parameter
of the hard distribution decreases with multiplicity for p-p
collisions and increases for Pb-Pb collisions. This fact means
that the normalized transverse-momentum fluctuations behave
quite different with multiplicity in p-p and Pb-Pb collisions.
This behavior is naturally explained by the clustering of
color sources. The change in the behavior of n is related to
the formation of a large cluster of the initial color sources
(partons), which marks the percolation phase transition.

The cluster-size distribution is a � distribution that is
also the stationary solution of the Fokker-Planck equation
associated with the Langevin equation for a white stochastic
Gaussian noise.

Also, we have shown that the multiplicity parton distri-
bution for events with at least one hard parton is the �

distribution. Using this result, we compute the von Neumann
entanglement entropy. In agreement with previous results, the
leading term is the logarithm of the number of partons, mean-
ing that the n microstates are equally probable and the entropy
is maximal. The corrections to the leading term depend on the
inverse of the normalized multiplicity parton fluctuations. At
present energies available at the LHC, they are not very large
for p-p and Pb-Pb collisions, however, asymptotically, they
change the entanglement entropy from ln n to ln

√
n. We show

that in the clustering of color sources the difference between
the entanglement entropy and the leading term, Sc − ln n, as
a function of the energy or centrality, presents a maximum
corresponding to a critical density of the strings formed in
the collision, the string percolation, which occurs when the
overlapping strings cross all the collision surface.
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