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Background: The reconstruction of the neutrino energy is crucial in oscillation experiments that use interactions
with nuclei to detect the neutrino. The common reconstruction procedure is based on the kinematics of the
final-state lepton. The interpretation of the reconstructed energy in terms of the real neutrino energy must rely on
a model for the neutrino-nucleus interaction. The relativistic Fermi gas (RFG) model is frequently used in these
analyses.
Purpose: We examine the effects of nuclear structure and dynamics going beyond a Fermi gas model on the
reconstruction procedure.
Method: In the Hartree-Fock (HF) model for a quasielastic nucleon knockout, the bound nucleon wave functions
are obtained through a calculation using an effective nucleon-nucleon force. The final-state wave function
is constructed from continuum states in the same potential which have the correct asymptotic behavior. The
continuum random-phase approximation (CRPA) model extends the HF approach taking long-range correlations
into account in a self-consistent way.
Results: Considering only single-nucleon processes, the distributions of (reconstructed) neutrino energies ob-
tained within the HF-CRPA approach are compared with the results of the RFG, a relativistic plane-wave impulse
approximation calculation, and the RPA + np-nh model of Martini et al. [Phys. Rev. C 80, 065501 (2009)].
Conclusions: We find that the distributions of reconstructed energies for a fixed incoming energy in the
HF-CRPA display additional strength in the lower reconstructed energy tails compared to models without
elastic distortion of the outgoing nucleon and the mean-field description of the initial nucleon. This asymmetry
redistributes strength from higher to lower values of the reconstructed energy. The mean-field description of the
nuclear dynamics results in a reshaping of the reconstructed energy distribution that cannot be accounted for in
a plane-wave impulse approximation model even by modifying ad hoc parameters, such as the binding energy.
In particular, it is shown that in the RFG calculations there is no value of the binding energy which is able to
reproduce the entire νμ oscillated spectrum of the T2K experiment as calculated in HF-CRPA.
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I. INTRODUCTION

The main goal of accelerator-based neutrino experiments is
the determination of the neutrino oscillation parameters. The
oscillation probability depends on the ratio of the distance
traveled by the neutrino to its energy, therefore the deter-
mination of the neutrino energy distribution in a detector is
crucial in the oscillation analysis. Due to the broad energy
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distribution of the neutrino beams, determining the energy
of the neutrinos at a detector is a nontrivial task, which
depends on the model used to describe the neutrino interac-
tion with the target nucleus. In a detector one observes the
charged-current scattering of a neutrino off a nucleus where
a single final-state lepton is detected. The hadronic final state
is in many cases not, or not fully, accessible. These events
are dubbed quasielastic- (QE-)like. This means that charged-
current quasielastic scattering is considered the dominant
reaction mechanism, but, depending on the kinematics, other
mechanisms should be taken into account. The experimentally
measurable El and cos θ , the energy and the scattering angle
of the final lepton, are then used to define the reconstructed
energy in the QE(-like) interaction [1,2],

Ēν = 2M ′
nEl − (

M ′
n

2 + m2
l − M2

p

)
2(M ′

n − El + Pl cos θ )
, (1)
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where M ′
n = Mn − EB is the adjusted neutron mass with

Mn(Mp ) as the neutron(proton) rest mass and EB as a chosen
binding energy. The lepton rest mass and momentum are ml

and Pl , respectively.
The reconstructed energy Ēν defined in this way is the

energy of the incoming neutrino in a genuine QE charged-
current scattering off a neutron at rest, adjusted for binding
through the parameter EB . Note that there is a certain ambi-
guity in the definition of the binding energy of the nucleon.
Different definitions of binding energy or similar quantities,
such as missing energy or single-particle energy, require
some caution in their use. A thorough discussion of different
definitions and interpretations of binding energy in leptonic
interactions with the nucleus is given in Ref. [3].

The reconstructed energy Ēν as defined above is easy to
calculate, but it is not a good estimate of the true neutrino
energy on an event-to-event basis as it considers the dynamics
of the nucleons in a nucleus only through the quantity EB .

After binning the data in terms of the reconstructed energy,
the true energy distribution has to be recovered. This requires
a theoretical model for the interaction which can provide the
conditional probability of an event having true energy Eν ,
given the reconstructed energy Ēν . Noninclusion of a realistic
cross-sectional model or possible reaction mechanisms can
introduce a strong bias in the oscillation parameters.

Indeed, in Refs. [4,5], Martini et al. pointed out the impor-
tance of additional strength in the data due to multinucleon
excitations which, in a Ĉerenkov detector, are indistinguish-
able from pure quasielastic reactions. The influence of multin-
ucleon emission on the reconstructed energy was investigated
in Refs. [6–8]. Further efforts on studying the reconstruction
procedure have mainly focused on interactions other than the
QE one-nucleon knockout. Reactions that contribute to QE-
like events, such as multinucleon knockout, misidentification,
or reabsorption of pions, and excitation of resonances which
lead to the same experimental signal were shown to signifi-
cantly affect the reconstructed energy distributions [9,10]. The
effect of 2p-2h events on the oscillation analysis and the elec-
tronlike event excess found by the MiniBooNE Collaboration
for low reconstructed energies [11] (and recently confirmed
[12]) has also been examined [13,14]. Ankowski et al. [15]
on the other hand have analyzed the reconstruction problem
in a spectral function formalism in which they include the
distortion of the emitted nucleon in an effective way.

Restricting to the single-nucleon knockout mechanism,
we present a comparison between the outcomes of different
models. These models include the mean-field continuum ran-
dom phase approximation model (HF-CRPA) developed by
the Ghent Group, which has been successful in reproducing
the inclusive electron-scattering data, including in regions
of low-energy transfer [16,17]. We compare the results of
this approach to those obtained with the relativistic Fermi
gas (RFG) which is commonly used in the experimental
analyses. We also show the result of the relativistic plane-
wave impulse approximation (RPWIA) in which the bound
nucleons are described by relativistic mean-field (RMF) wave
functions [18]; the outgoing nucleon however is described by
a plane wave. We will show that the RFG, although successful

in reproducing integrated quantities, such as the total cross
section, is unable to explain the distribution of reconstructed
energies predicted by the mean-field approach. Distortion of
the final-state nucleon, which is neglected in the RFG and
RPWIA models, is seen to affect the reconstructed energy
distribution considerably.

This paper is structured as follows: In Sec. II, we first
compare the distribution of neutrino energies in the CRPA
with the results of the RFG and RPWIA models for fixed
lepton observables, i.e., for fixed values of the reconstructed
energy. We then introduce the distribution of reconstructed
energies for a given incoming energy. Section III in which
the results are presented is divided into three subsections.
We compare the conditional probability distributions of re-
constructed energies given a certain real neutrino energy in
Sec. III A. Second, in Sec. III B we compare the distribution
of real and reconstructed energies given the MiniBooNE flux.
Then in Sec. III C, we compare the predicted distributions of
reconstructed energies for the near- and far-detector fluxes of
the T2K experiment using a simple two-neutrino oscillation
probability. The conclusions are presented in Sec. IV.

II. DISTRIBUTIONS OF RECONSTRUCTED ENERGIES

In this section, we present the method used to determine
the number of events for a certain reconstructed energy,
given the cross section and the predicted flux. We will closely
follow the approach of Refs. [6,13], and an equivalent dis-
cussion is given in Refs. [8,10]. In the first subsection the
flux-weighted cross section for fixed lepton observables, i.e.,
for fixed reconstructed energy, denoted as f (Eν,El, cos θ ),
is examined. From f (Eν,El, cos θ ) one can appreciate the
range of energy values Eν that will be reconstructed to the
same Ēν given a certain cos θ and El . Then in Sec. II B
the single-differential cross section dσ (Eν,Ēν )

dĒν
is derived. This

quantity gives direct access to the number of events in bins of
Ēν , which is what is reported by experiments.

We compare a number of different models in this paper.
First, the mean-field continuum random-phase approximation
model, which we will refer to as the HF-CRPA model [16,17].
In this model the nucleus is described in a mean field
generated by a self-consistent Hartree-Fock method using
the extended Skyrme force (SkE2) [19,20] for the nucleon-
nucleon interactions. The CRPA takes long-range correlations
into account consistently by using the same nucleon-nucleon
interaction [21,22]. The knockedout nucleon is modeled as a
continuum state of the residual nucleus. By using the same
HF potential for the calculation of the outgoing nucleon wave
function, the initial and final states are orthogonal. The model
has been tested for electron- and neutrino-scattering data in
Refs. [17,22,23]. A comparison with the results of the model
of Martini et al. was presented in Ref. [24]. We summarize
here some of the general differences of the CRPA approach
compared to the RPA model of Martini et al. [4,5]. When
the HF model is compared to the bare (i.e., no RPA) ap-
proach of Martini et al. it is found that the double-differential
cross section in the HF model is quenched, featuring more
strength for larger energy transfers. The RPA model leads to a
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quenching of the cross section for a large part due to the ad-
mixture of nucleon states with the � resonance, which makes
the double-differential cross section in the RPA comparable to
the results found in the HF model in the QE region. The effect
of the CRPA is twofold, first there is a slight suppression of the
cross section in the QE region up to the QE peak. On the other
hand, for low-energy transfers, the CRPA approach leads to
an enhancement of the cross section from the contributions of
giant resonances [24], whereas these collective states are not
included in the RPA approach of Ref. [25].

Second, we consider the RFG, described in the Appendix
of Ref. [26], which includes Pauli blocking [27]. In the RFG
we include a shift by substitution of ω → ωeff = ω − Es to
account for the displacement of the quasielastic peak.

The third model is the RPWIA model in which the bound
state nucleons are described by RMF wave functions [18],
however, the outgoing nucleon is modeled by a plane wave.
The cross section is then obtained as an incoherent sum over
the different nucleon shells which have a specific value of the
missing energy [3] thereby unambiguously determining the
four-momentum of the outgoing nucleon.

Finally, we also show results of the model with relativistic
corrections of Martini and collaborators [4,5,28], referred to
as RPA, and RPA + np-nh for the model including multin-
ucleon excitations. In this model the nuclear initial state is
described using a local Fermi gas.

A. Fixed lepton observables

When considering an interaction where the final-state
lepton has scattering angle cos θ and energy El and using
ω = Eν − El , the probability that the incoming neutrino had
energy Eν is proportional to

f (Eν,El, cos θ ) = C�(Eν )
dσ (Eν )

dω d cos θ

∣∣∣∣
ω=Eν−El

. (2)

Here C is a normalization constant, chosen to be the inverse of
the total flux [

∫
dEν�(Eν )]−1. As the reconstructed energy is

completely determined by cos θ and El, f (Eν,El, cos θ ) is
proportional to the probability of a neutrino having energy Eν

for certain fixed Ēν (cos θ, El ) as determined in Eq. (1).
In Fig. 1, we compare the HF-CRPA results to those

obtained with the RFG, RPWIA, and HFPWIA models. The
HFPWIA model is identical to the full HF approach, except
that a plane wave is used for the outgoing nucleon wave
function. In the RFG model we use a shift in the energy
transfer of 34 MeV by substituting ω → ω − Es .

The initial momentum distribution of the bound nucleons
is different in these approaches. In the RFG model all mo-
mentum states up to the Fermi momentum are occupied. The
Pauli-blocking correction leads to a reduction of the cross
section at low-energy transfer by using a hard cutoff when
the outgoing nucleon has a momentum lower than the Fermi
momentum. In the mean-field approaches the momentum
distribution is determined by the wave functions of the bound
nucleons. It smoothly goes to zero allowing higher values of
missing momentum to contribute to the cross section. When
looking at the double-differential cross sections for fixed
incoming energy and a lepton-scattering angle, this leads to

Tμ = 0.35 GeV with MiniBooNE flux
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FIG. 1. Comparison of the double-differential cross section for
fixed lepton observables, weighted by the MiniBooNE flux [29],
f (Eν, Eμ, cos θμ) defined in Eq. (2). We compare the results of the
HF-CRPA model with the RFG description, the RPWIA, and the
Hartree-Fock plane-wave impulse approximation (HFPWIA) mod-
els. The vertical lines denote the reconstructed energy for the selected
kinematics Ēν (Tμ, cos θ ) defined in Eq. (1) with EB = 34 MeV.

the RFG cross section sharply going to zero. On the contrary
in the mean-field models there is a larger region in which the
nuclear response is nonzero, reflected in a high-ω tail for the
double-differential cross section.

It is well known, through comparison with inclusive
electron-scattering data, that the RPWIA model is signifi-
cantly improved by incorporating distortion of the outgoing
nucleon wave function. By using a solution of the Dirac
equation in the same mean field for the outgoing nucleon wave
function, the height of the QE peak is reduced in favor of the
high-ω tail [27,30].

These considerations allow us to explain the differences
between the models; we start our discussion by considering
the scattering angle cos θ = 0.5 in Fig. 1. It is known that
the RFG model gives a good description of the QE peak in
inclusive electron scattering in this kinematic region when the
Fermi momentum and binding energy are tuned accordingly
[31]. The HF-CRPA approach and RFG model agree in their
descriptions of the peak position and strength, but the HF-
CRPA models feature a more prominent high-energy tail. This
tail originates from the high-ω tail in the double-differential
cross section. The PWIA models overestimate the peak as
predicted by the RFG model and underestimate the tail in the
HF-CRPA description. The distortion of the outgoing nucleon
wave function is needed to shift strength from the peak to the
tail as in the full HF-CRPA description.

For cos θ = 0.85, we see that the CRPA model leads to a
slight reduction of the HF cross section along the peak, ac-
companied by an increase in the tail. This forward-scattering
region for low-energy transfers is where the more realistic
treatment of nuclear dynamics in the HF-CRPA approach
leads to a different shape of the cross section. This region is
also where the cross section is largest and will determine the
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peak position for the distribution of reconstructed energies,
which will be shown in the following section. The recon-
structed energy tends to match the peak of the RFG and PWIA
cross sections but describes the average of the HF-CRPA dis-
tributions instead of the peak. The distortion of the outgoing
nucleon wave function in the same mean-field potentials used
for the bound state makes sure that the final and initial states
are orthogonal. This treatment leads to a strong reduction of
the cross section and a characteristic shape which compares
favorably to inclusive electron-scattering data [17,22,23].

For more backward-scattering processes, the height of the
peak in the HF-CRPA calculation is reduced. The mean-field
tail is less prominent, and the PWIA and RFG cross sections
are comparable up to a shift for larger energies, seen for
cos θ = −0.2. The strong reduction of the cross section in
the HF-CRPA model for more backward angles comes from
the distortion of the outgoing wave function. This can be seen
by comparing the PWIA results that lack this distortion and
are comparable in magnitude. We have also confirmed this
through direct comparison of the HF-CRPA model to the full
RMF model of Refs. [30,32].

The corresponding results for the same kinematic condi-
tions as in Fig. 1 obtained with the RPA and RPA + np-nh
models can be found in Fig. 3 of Ref. [6].

B. The single-differential cross-sectional dσ (Eν ,Ēν )
d Ēν

In this section, we introduce the single-differential cross
section dσ (Eν,Ēν )

dĒν
[8]. This quantity is denoted d(Eν, Ēν ) as in

Ref. [13] and is proportional to the probability that a reaction
giving rise to a reconstructed energy Ēν was induced by a
neutrino with energy Eν .

The number of events with reconstructed energy Ēν for
a given neutrino flux �(Eν ) can then be obtained from
d(Eν, Ēν ) as

N (Ēν ) =
∫

dEν�(Eν )d(Eν, Ēν ). (3)

It is essentially this quantity that is measured by experiments
after reconstruction from the outgoing lepton variables.

Note also that the number of events in terms of real
energies is given by

N (Eν ) = �(Eν )
∫

dĒνd(Eν, Ēν ). (4)

This is shown in Ref. [8] and should be clear from the
construction of d(Eν, Ēν ). In this paper we always use the
energy normalized flux �(Eν )[

∫
dEν�(Eν )]−1 when com-

puting N (Ēν ) and N (Eν ) such that they have the unit
cm2 GeV−1.

Construction of d(Eν, Ēν )

The number of events for certain kinematics (Eν, ω, cos θ )
can be written straightforwardly as the product of the flux
�(Eν ) with the double-differential cross section. In order to
construct d(Eν, Ēν ), proportional to the number of events
with reconstructed energy Ēν , the cross section is transformed
to the variables (Eν,El, Ēν ). The lepton energy is determined
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FIG. 2. The effect of the binding energy and rest mass of the
final-state lepton on cos θ (El, Ēν ). The dashed lines are for a final-
state muon where the thin dashed lines do not include a binding
energy and the thick dashed lines are for EB = 34 MeV. The solid
lines are the solutions for a final-state electron using the same binding
energy.

by ω = Eν − El , and the scattering angle cos θ (Eν,El ) is
obtained as a function of El and Ēν by inverting Eq. (1). The
transformation is then given by

dσ

dEldĒν

= J dσ

dω d cos θ

∣∣∣∣
ω=Eν−El,cos θ (El,Ēν )

, (5)

with J the Jacobian determinant. When the lepton energy
is determined by ω = Eν − El , the only dependence on the
reconstructed energy enters through cos θ (El, Ēν ). One then
finds that the Jacobian is given by

∣∣∣∣∂ cos θ

∂Ēν

∣∣∣∣ = M ′
nEl − [

(M ′
n)2 + m2

l − M2
p

]
/2

Ē2
νPl

. (6)

When equating the neutron and proton masses and omitting
EB , i.e., M ′

n = Mp = M , one obtains the same expression
used in Refs. [8,13].

The distribution d(Eν, Ēν ) is now defined by integration
over the lepton energy,

d(Eν, Ēν ) =
∫ E+

l

E−
l

dElJ dσ

dω d cos θ

∣∣∣∣
ω=Eν−El,cos θ (El,Ēν )

.

(7)

The integration bounds are given by the most extreme values
of the lepton energy that reconstruct to a certain Ēν , i.e., the
energies for which cos θ (El, Ēν ) = ±1.

In Fig. 2, the function cos θ (El, Ēν ) is plotted for different
values of Ēν . The dashed lines represent the solution obtained
with the reconstruction formula when EB = 0. The thick
dashed lines are obtained with EB = 34 MeV. Both dashed
lines are solutions for a final-state muon. The solution for
electrons also with EB = 34 MeV is shown by the solid line.
This figure should be interpreted in light of Eq. (7). The
integration range can be determined from the El axis; the
cross section of Eq. (5) is integrated for values of El between
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E+
l and E−

l , given by the points for which cos θ (El, Ēν ) =
±1. For each El in this range, the angle by which the integrand
is considered is given by cos θ (El, Ēν ). For a certain Ēν the
line thus corresponds to the total leptonic phasespace that can
be reconstructed to this value. Integration of the cross section
for a fixed energy Eν along this line yields d(Eν, Ēν ), and
the total cross section is recovered as in Eq. (4), which can be
understood from Fig. 2 as the available leptonic phase space
being covered by lines of different Ēν values.

III. RESULTS

As seen in the previous section where the flux-weighted
distributions of energies f (Eν,El, cos θ ) defined in Eq. (2)
were presented, the mean-field approaches feature more
strength in the tails of the cross section. We first show the
effect this has on the distribution d(Eν, Ēν ). Then we will
illustrate how the experimentally measurable distributions of
reconstructed energies differ.

A. The single-differential cross section d(Eν, Ēν )

We compare d(Eν, Ēν ) obtained in different approaches.
The comparison of the HF-CRPA model with the RFG and
RPWIA models is shown in Fig. 3. We use Ēν as defined in
Eq. (1) with EB = 34 MeV as used in the MiniBooNE [1].
The RFG cross section includes a shift with Es = 34 MeV
chosen to match EB .

We see that the CRPA model leads to a slight decrease
in the peak strength compared to the HF model that is most
apparent at lower neutrino energies. In any case, the general
shape of d(Eν, Ēν ) is similar in the HF and CRPA approaches,
which is why we will refer to both approaches simultaneously
as HF-CRPA.

The peaks of the HF-CRPA models are slightly displaced
to larger reconstructed energies, whereas the peaks in the RFG
and RPWIA models are centered around the reconstructed
energy. The peak position for the RPWIA and RFG models is
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FIG. 3. Comparison of d (Eν, Ēν ) obtained with the CRPA, HF,
RPWIA, and RFG models. The reconstructed energy is defined by
Eq. (1) with EB = 34 MeV. The RFG model includes an energy shift
of Es = 34 MeV.

determined by the average binding energy of the nucleon. The
peak position in the RFG model reproduces the reconstructed
energy because we choose Es = EB . In the RPWIA model
the effect of binding is determined by the separation energy
of the two discrete shell-model states, this quantity is not
directly comparable to the energy shift used in the RFG
model. The binding in the HF-CRPA approach is in the first
instance also determined by the single-particle energies of
the bound neutrons. One can appreciate that for sufficiently
high energies (Eν = 0.7 GeV in Fig. 3) the value for which
Eν = Ēν tends to match the average of d(Eν, Ēν ). However
the peak is displaced further to the right because of the more
accurate treatment of the low-ω cross section and the distor-
tion of the outgoing nucleon. Indeed as can be appreciated
from the discussion in Ref. [24], the HF-CRPA approach leads
to a broader cross section in which the peak of the cross
section is quenched, an effect that goes hand in hand with a
more prominent high-ω tail. The peak of d(Eν, Ēν ) is mainly
determined by the forward-scattering cross section. Looking
at the results for cos θ = 0.85 in Fig. 1, one sees that the more
realistic shape of the HF-CRPA cross section indeed leads
to a peak at energies smaller than Ēν , whereas the RPWIA
and RFG approaches have a peak along the reconstructed
energy.

The RFG model lacks the low-Ēν tails present for suf-
ficiently high energies in the mean-field approaches. These
originate from the broader momentum distributions in the
mean-field models, which lead to a larger phase space in
which the nuclear response is nonzero. The HF-CRPA models
however feature far more strength in the low-Ēν tail than
the RPWIA model. The general features of d(Eν, Ēν ) in the
HF-CRPA model, namely, the shift of the peak, the large
low-Ēν tail, and the quenched tail to the right of the peak,
can be understood by considering that the distortion of the
outgoing nucleon reduces and shifts the peak strength in favor
of the low-Ēν tail. The reduction in the high-Ēν tail, on the
other hand, is due to the reduction of the cross section for
larger scattering angles.

The low-Ēν tail in the HF-CRPA result will affect results
in terms of reconstructed energies in an analogous way as
multinucleon emission processes. This becomes clear from
Fig. 4 where the results obtained in the RPA and RPA + np-nh
of Martini et al. [6,13] are compared to the CRPA results. Note
that in the results of Martini et al. [6,13] the reconstructed en-
ergy is defined with EB = 0 MeV. The compared d(Eν, Ēν )’s
are hence not computed for the same Ēν bins, but this mainly
results in a shift of the distribution.

For Eν = 200 MeV, the np-nh strength does not contribute
appreciably, apart from the shift the CRPA distribution is
comparable with the RPA and RPA + np-nh results, although
it is slightly broader. The main difference between the RPA
and CRPA distributions is most obvious for Eν = 1 GeV.
The peak and the high-Ēν tail are quenched in favor of
the low-Ēν tail. The np-nh distributions also feature heavy
low-Ēν tails due to the multinucleon knockout events, which
also contribute in this kinematic region. When comparing
data in terms of Ēν and Eν in the CRPA, we thus expect a
redistribution of events towards lower values of Ēν in a similar
way as shown in Refs. [6,13].
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the RPA approach (dotted lines) and RPA + np-nh (dashed lines).
The distributions are calculated for electron neutrinos, the results
of Martini et al. [13] are obtained with EB = 0 MeV, whereas the
CRPA results do include a binding energy of EB = 34 MeV in the
reconstructed energy.

B. MiniBooNE

We present the distribution of reconstructed energies in
the CRPA model and compare it to the results obtained in
RPWIA and RFG approaches. The success of the mean-field
model in the low-energy regime is evident from comparison
to inclusive electron-scattering data [17,22,23]. The model is
not fully relativistic, it cannot be straightforwardly extended
to arbitrarily high neutrino energies. The goal of this paper
is therefore not to provide predictions of full reconstructed
distributions as this would also require a further assessment
of two-nucleon knockout, resonances, and other contributions
to the CC0π signal [33,34]. We will simply explore the
Ēν distributions for Eν < 2 GeV to highlight the differences
among the CRPA, RPWIA, and RFG results.

In this section, the number of events for a certain recon-
structed energy N (Ēν ) given by Eq. (3) is computed with
the MiniBooNE flux [29]. We will contrast this quantity with
the flux-weighted total cross-sectional �(Eν )σ (Eν ), which
we refer to as the number of events in terms of real energies
N (Eν ). We thus compare the prediction in terms of energies
and contrast it with the predicted measurable distribution of
reconstructed energies. Note again that the results are divided
by the total flux [

∫
dEν�(Eν )] such that the distributions

represent the flux-folded cross section. In Fig. 5, the flux-
weighted total cross section is shown in the left panel. The
RFG model uses kF = 221 and Es = 34 MeV, similar to the
values used in the analysis of the MiniBooNE Collaboration
[1]. The RPWIA model predicts the largest cross section along
the peak, and this is due to the broad momentum distribution
of the bound nucleons and the lack of a proper treatment of
the final state. The final-state plane wave is not orthogonal
to the initial-state wave function, which leads to unphysical
contributions to the total strength for low-energy transfers.
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FIG. 5. Comparison of the total flux-folded cross section of
MiniBooNE in terms of (reconstructed) energies. The left panel
shows the flux-weighted total cross section. The right panel shows
the cross section in terms of reconstructed energies.

The CRPA and HF models are comparable in strength, and
there is only a reduction owing to the CRPA effects.

We see that the shape of the total integrated cross-sectional
N (Eν ) is similar for all the models for this flux. The elastic
distortion of the outgoing nucleon in the HF-CRPA models
leads to a reduction in N (Eν ) which is most obvious along the
peak of the flux. The RFG model can reproduce the position
of the QE peak and overall strength of the cross section.
This shows that the specific shape of the double-differential
cross section is not of great importance after integration over
the total leptonic phase space for fixed energies. However
N (Ēν ) depends on the lepton kinematics in a subtler way
than N (Eν ) as seen in Fig. 2. The spreading present in the
double-differential cross section leads to a different shape
for d(Eν, Ēν ), which affects the distribution of reconstructed
energies N (Ēν ).

This is illustrated in the right panel of Fig. 5, where N (Ēν )
is plotted. We see that the models tend to agree in strength
along the peak, even though this is not the case in the left
panel. These results show that the most interesting facet is that
the HF-CRPA models are reshaped in a different way than the
RFG and RPWIA models. Indeed, when comparing N (Eν ) to
N (Ēν ) in the RFG and RPWIA models, the peak is shifted
slightly to the right and is reduced in favor of the high-Ēν tail.
The HF-CRPA models behave differently, N (Ēν ) is skewed
towards lower reconstructed energies, and the low-Ēν peak is
enhanced.

This is important in the analysis of neutrino-nucleus-
scattering experiments where predictions of the cross section
in terms of reconstructed energies are used to describe the
signal and the background. If N (Ēν ) obtained in an RFG can
be made to agree with the CRPA results by tuning model
parameters, this leads to a different interpretation in terms of
real energies because the reshaping and therefore unfolding
produces different shapes for N (Eν ) for similar N (Ēν ) distri-
butions. In order to accurately describe the reconstructed data,
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models beyond a FG-based approach should be taken into
account as inclusion of elastic FSI leads to a shape for N (Ēν )
which is not reproduced in the models using plane waves
for the outgoing nucleon. Even though N (Ēν ) obtained with
different neutrino interaction models might agree for a certain
energy distribution, this is not necessarily true for different
fluxes. This will be illustrated in the next section.

C. The T2K experiment

The T2K experiment is a long baseline neutrino experi-
ment, using a neutrino beam originating from the J-PARC ac-
celerator. It uses two detectors, the near-detector (ND) ND280
measures the events before oscillation, and the oscillated
events are detected at the Super-Kamiokande (SK) detector
295 km away. In the oscillation analysis, the experiment uses
the cross section measured in the near detector to constrain
the nuclear interaction model and the flux [35]. The cross
section is modeled using the RFG model [36] implemented
in the NEUT event generator [37] and in addition to this,
the 2p-2h contribution of Nieves et al. [38] is taken into
account. Several parameters are fitted to the data measured in
ND280. Parameters pertaining to the RFG model include the
axial mass MA, the Fermi momenta for carbon and oxygen,
and the binding energy for both nuclei [35]. The systematic
uncertainties on oscillation parameters measured in SK are
determined by the constraints on these parameters which are
fitted to the available near-detector data.

In this section, we consider a single parameter, namely,
the binding energy of the RFG model, implemented as an
energy shift as previously explained. A shift of 25 MeV is
commonly used to describe the cross section on carbon [36],
although the precise value and its interpretation depend on the
specific implementation of the RFG model [3]. We vary this
parameter and compare N (Ēν ) obtained in the RFG model
with the HF results, not taking into account CRPA corrections
as was seen in the previous sections that the influence on
the reconstructed energy distributions is small. The cross
section in terms of reconstructed energies is presented for
both the near-detector flux and the predicted νμ flux at SK
using a simple two-neutrino oscillation prescription. Again,
we limit the neutrino energy to values lower than Eν =
2 GeV in every calculation. For simplicity, all calculations
are performed for a carbon nucleus. The reconstructed energy
is defined using Eq. (1) with EB = 25 MeV fixed for every
calculation.

When comparing the ND event distributions in terms of
Ēν , shown in Fig. 6 for the HF model and for the RFG
model with different energy shifts, one sees that large values
for the energy shift are required to reduce the peak strength
of the cross section in order to be comparable to the HF result.
The best fit is obtained for Es ≈ 45 MeV, in agreement with
the value discussed in Ref. [3].

The predicted cross section for an oscillated flux in the SK
detector, calculated for carbon, is shown in Fig. 7. The dis-
appearance probability of the muon neutrino was calculated
using a two-neutrino oscillation probability with sin2(2θ23) =
0.97 and �m2 = 2.32 × 10−3 eV2. The oscillated νμ flux is
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FIG. 6. Comparison of the cross section in terms of reconstructed
energies weighted with the ND flux of the T2K experiment. The RFG
calculations are labeled by their energy shift Es .

then given by

�(Eν ) =
[

1 − sin2(2θ23) sin2

(
�m2L

4Eν

)]
�SK(Eν ), (8)

where the predicted unoscillated flux at the far-detector
�SK was taken from Ref. [39]. Compared to the ND distri-
bution where the peak strength and shape in the HF and RFG
models with a shift of 45 MeV are in agreement, we see a
reduction of the cross section along the peak but an increase
in strength in the dip region and for the second peak. This
can be explained again by considering the low-Ēν tails for
higher energies Eν . The flux at higher energies contributes
to the dip region through these tails. The inclusion of np-nh
has a comparable effect as shown in Ref. [13]. The smaller
cross section along the first peak can be mimicked by using a
higher binding energy in the RFG model. This is however not
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FIG. 7. Comparison of the cross section in terms of reconstructed
energies, weighted with the SK flux with the two-neutrino disappear-
ance probability given by Eq. (8). Results are obtained in the HF
approach and with RFG models with different values of the energy
shift Es .
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true of the dip and the second peak where a smaller binding
energy Es is needed to match the HF prediction. This shows
that, even though both models may agree for a certain flux,
due to a different reshaping of the cross section, these results
are not necessarily suited to describe a different neutrino flux.
Changes in the energy shift in the RFG model have an effect
on the position of the dip and peaks, which are important in
determining the mass parameter �m2.

IV. CONCLUSION

A crucial problem in the oscillation analysis is the de-
termination of the neutrino energy distribution in a detector,
usually performed through the reconstructed energy approx-
imation. An interaction model is necessary to describe the
connection between the reconstructed and the genuine en-
ergy distributions. In this paper, we have investigated this
connection considering a QE one-nucleon knockout in the
HF-CRPA, which incorporates, in particular, the mean-field
bound nucleons in the initial state and the distortion of the
outgoing nucleon wave function. We have discussed the effect
of the nuclear model by introducing the distribution d(Eν, Ēν )
of reconstructed energies Ēν around the genuine Eν value. In
the RFG model the Fermi motion broadens this distribution in
a symmetric way around the real energy E. In the HF-CRPA
model we have shown that the distribution of reconstructed
energies around the real energy favors lower reconstructed
energy values. More specifically the distortion of the outgoing
nucleon wave function leads to a pronounced low recon-
structed energy tail, and the realistic treatment for low-energy
transfer shifts the peak of the distribution d(Eν, Ēν ). We have
investigated the consequences for oscillation experiments, in
particular, for the T2K experiment. We aimed at reproducing

the reconstructed energy distribution in the near and far detec-
tors of the T2K experiment, predicted in the HF approach with
an RFG model. In the RFG model the energy shift Es is taken
as an adjustable parameter. For the near-detector flux a sat-
isfactory fit is obtained for an energy shift of Es = 45 MeV.
However, for the oscillated distribution there is no value of
the energy shift which, in the simple Fermi gas expression,
fits our evaluation for the reconstructed energy distribution.
Exporting parameters which reproduce near-detector data to
a different flux in the far detector can in this way lead to a
significant bias on oscillation parameters. The conclusion is
that the sophistication of the Fermi gas model is not sufficient
in this case. Taking nuclear effects beyond the RFG model
into account could lead to a more satisfying understanding of
the experimental data, and it could, for example, remove a
bias induced by the use of a constant binding energy in the
experimental analyses.
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