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Anisotropic hydrodynamics improves upon standard dissipative fluid dynamics by treating certain large
dissipative corrections nonperturbatively. Relativistic heavy-ion collisions feature two such large dissipative
effects: (i) Strongly anisotropic expansion generates a large shear stress component which manifests itself in very
different longitudinal and transverse pressures, especially at early times. (ii) Critical fluctuations near the quark-
hadron phase transition lead to a large bulk viscous pressure on the conversion surface between hydrodynamics and
amicroscopic hadronic cascade description of the final collision stage. We present a new dissipative hydrodynamic
formulation for nonconformal fluids where both of these effects are treated nonperturbatively. The evolution
equations are derived from the Boltzmann equation in the 14-moment approximation, using an expansion
around an anisotropic leading-order distribution function with two momentum-space deformation parameters,
accounting for the longitudinal and transverse pressures. To obtain their evolution we impose generalized Landau
matching conditions for the longitudinal and transverse pressures. We describe an approximate anisotropic
equation of state that relates the anisotropy parameters with the macroscopic pressures. Residual shear stresses
are smaller and are treated perturbatively, as in standard second-order dissipative fluid dynamics. The resulting
optimized viscous anisotropic hydrodynamic evolution equations are derived in 3 + 1 dimensions and tested in a
(0 + 1)-dimensional Bjorken expansion, using a state-of-the-art lattice equation of state. Comparisons with other

viscous hydrodynamical frameworks are presented.
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I. INTRODUCTION

Dissipative relativistic fluid dynamics has become the
workhorse for simulations of the dynamical evolution of
relativistic heavy-ion collisions [1-8]. When supplemented
with realistic fluctuating initial conditions, a pre-equilibrium
evolution module that evolves these initial conditions into
starting values for the hydrodynamic evolution, and a hadronic
rescattering afterburner that describes the late microscopic
kinetic evolution of the collision fireball during its dilute
decoupling stage, the approach has yielded impressive quanti-
tative precision in its description of a broad set of soft hadronic
observables (i.e., distributions of hadrons with momenta be-
low about 1-2.5 GeV/c) obtained from heavy-ion-collision
experiments at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC) [9-12], and it has
demonstrated convincing predictive power when extending
the calculations into new domains of collision energy [13—
17] or for new collision systems [18-23]. Surprisingly, the
phenomenological success of dissipative fluid dynamics has so
far continued unabated in the description of p + Au, d + Au,
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and *He + Au collisions at RHIC and p + p collisions at the
LHC[20,23,24],1.e., for “small” collision systems in which the
hydrodynamic model had been widely expected to break down.
This finding has generated much recent work addressing two
obvious questions arising from these observations: (1) What
exactly are the formal criteria that ensure the applicability of
relativistic dissipative fluid dynamics to small physical systems
undergoing rapid collective expansion and control its eventual
breakdown? How far away from local thermal equilibrium can
a system be and still evolve hydrodynamically? (2) Are there
alternate mechanisms at work that can mimic the phenomeno-
logical signals of hydrodynamic collective flow, especially in
small collision systems, without requiring strong final-state
interactions among the constituents of the fireball created in
the collision that lead to some degree of approximate local
thermalization?

Generically, hydrodynamics is an effective macroscopic
theory for the late-time, long-distance evolution of sufficiently
equilibrated multiparticle systems. It is typically thought of
as a gradient expansion around ideal fluid dynamics. The
latter describes locally perfectly thermalized fluids in which
any deviation from local thermal equilibrium is immediately
erased by strong final-state interactions among the microscopic
constituents, i.e., systems whose microscopic relaxation time is
effectively zero. Relativistic heavy-ion collisions challenge the
validity of such an expansion through extremely-large-density
gradients in the initial state, which lead to explosive collec-
tive expansion driving the system away from local thermal
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equilibrium. Even worse, the ultrarelativistic collision kine-
matics, combined with the quantum mechanics of the initial
particle production process that generates the fireball medium
from the energy lost by the colliding nuclei in the collision
process [25], imprints on the system a very strong initial
expansion along the “longitudinal” beam direction, with an
approximately-boost-invariant longitudinal expansion veloc-
ity profile (“Bjorken flow” [26]), while any collective expan-
sion in the directions transverse to the beam is initially small
and only builds up later in response to transverse pressure gra-
dients. In realistic fluids with nonzero microscopic mean-free
paths, the resulting large anisotropy in the collective expansion
rate causes large anisotropies in the local rest frame (LRF)
momentum distributions of the microscopic constituents. In
such a situation an expansion around a locally isotropic thermal
equilibrium distribution cannot be expected to converge well.

In addition to rapid and strongly anisotropic expansion
(which is most problematic during the earliest stage of a
heavy-ion collision) another large dissipative effect occurs
towards the end of the evolution when the fireball matter
undergoes a phase transition from a quark-gluon plasma (QGP)
to a hadron resonance gas (HRG). Critical dynamics near the
phase transition causes the bulk viscosity to become large and
peak near the (pseudo-)critical temperature 7, [27-33]. The
resulting large bulk viscous pressure is associated with a strong
deviation of the LRF momentum distribution from thermal
equilibrium. Again, this provides a challenge for any expansion
around a local equilibrium distribution function. Since (due
to the screening of color interactions by color confinement)
the constituents’ mean-free path in the hadron resonance gas
is much larger than in the quark-gluon plasma, the Knudsen
number (defined as the product of the mean free time and the
scalar expansion rate) increases suddenly as the QGP turns
into hadrons, to the extent that the subsequent evolution can
no longer be reliably described by hydrodynamics [34]. One
must therefore switch to a microscopic kinetic description
basically as soon as the hadronization process is complete. At
this point the critically enhanced bulk viscous pressure is still
large because critical slowing down [34-36] prohibits it from
relaxing quickly to the much smaller values expected away
from the phase transition. Its effect on the hadron distribution
functions in the HRG can therefore not be treated effectively
as a perturbation around local thermal equilibrium and should
be accounted for nonperturbatively.

In this work we develop an improved version of anisotropic
hydrodynamics that accounts for large shear viscous effects
caused by a strong longitudinal-transverse anisotropy of the
expansion rate and for large viscous corrections caused by
critical dynamics near the quark-hadron phase transition non-
perturbatively. The formalism is constructed for full (34 1)-
dimensional evolution and tested numerically for (0+ 1)-
dimensional boost-invariant expansion along the beam direc-
tion (Bjorken flow [26]). Numerical results for full (34 1)-
dimensional evolution of heavy-ion collisions with realistic
fluctuating initial conditions [6,15,37,38] will be presented in
a future publication. To derive the anisotropic hydrodynamic
evolution equations we start from an underlying kinetic theory,
the relativistic Boltzmann equation in the relaxation-time ap-
proximation (RTA BE). While such a classical kinetic approach

is known to only work for dilute and weakly coupled gases
[39], it allows us to derive the structure of the macroscopic hy-
drodynamic equations through a systematic moment expansion
[40-43]. As an effective theory, the structure of these equations
holds equally well for strongly and weakly coupled systems
(i.e., it depends only on the separation of microscopic and
macroscopic length scales), as long as one changes the material
properties of the fluid (i.e., its equation of state, transport
coefficients, relaxation times, etc.) that enter as input into the
hydrodynamic description to the actual situation of interest.

Our approach starts from the general treatment described
in Refs. [41,42,44-47], expanding the Boltzmann equation
around an anisotropic local rest frame distribution function f,
which in our case is deformed around the local equilibrium
distribution function by two parameters to account for one
large shear stress component and a large bulk viscous pressure
as described above. Our main innovation is that, following
recent insights reported in Refs. [43,48], the evolution of these
deformation parameters is optimized by determining them
through generalized dynamical Landau matching conditions,
similar to those fixing the evolution of the temperature and
chemical potential. This guarantees that the leading-order
anisotropic distribution f,, (around which the full distribution
function is expanded in moments) fully accounts not only
for the energy and conserved charge density, but also for
the longitudinal and transverse pressures (or, equivalently,
the longitudinal-transverse pressure anisotropy (which is the
largest shear stress component) and the bulk viscous pressure,
as described above). It also significantly simplifies the structure
of the relaxation equations for the residual dissipative flows.
Writing the full distribution function f as f = f, + 8 f, the
deviation § f describes the (smaller) residual shear stress
component and the charge diffusion current. In the present
work we will mostly ignore conserved charges and will hence
set the charge chemical potential and charge diffusion effects
to zero, leaving a complete treatment to a followup paper.

Initially, the resulting hydrodynamic framework is formu-
lated in terms of evolution equations for the parameters charac-
terizing the leading-order distribution f, (temperature, chem-
ical potential, momentum-deformation parameters), similar to
the traditional approach reported in Refs. [46,47,49,50] which
makes explicit reference to kinetic theory and thus requires
that such a distribution function exists and is well defined. We
subsequently break this connection to an underlying kinetic
theory by developing a technique that allows us to express
these microscopic parameters in terms of macroscopic hydro-
dynamic quantities so that the formalism can be completely
formulated and solved as a macroscopic theory. This procedure
introduces the concept of an “anisotropic equation of state”
(aEOS) which we discuss at some length. We here use a
weakly interacting quasiparticle model with a temperature-
dependent particle mass [51,52] to calculate this aEOS and
also the required transport coefficients, keeping mind that, in
later applications to heavy-ion collisions, these ingredients
should be computed or modeled for QCD, or considered
as phenomenological parameters to be determined from the
experimental data.

We emphasize that, in the new approach presented here,
kinetic theory is ultimately only invoked for the computation
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of the transport coefficients—it will no longer be needed
once first-principles calculations of the latter become available
for QCD. Similar to standard dissipative hydrodynamics, the
anisotropic hydrodynamic evolution equations for the energy-
momentum tensor no longer make any explicit reference to
parameters that control the microscopic kinetic evolution of
the system.

With this work we open the door to answering the ques-
tion to what extent complete second-order anisotropic fluid
dynamics (which we call “viscous anisotropic hydrodynamics”
or vaHydro [41]) extends the range of validity of dissipative
fluid dynamics towards smaller collision systems and earlier
switching times between the pre-equilibrium and hydrody-
namic stages. Having a nonequilibrium hydrodynamic ap-
proach that is optimized to the particular challenges posed by
ultrarelativistic collisions between nuclei as small as protons is
anecessary step towards developing a quantitatively predictive
dynamical framework that can set benchmarks for comparison
with experimental data and with other, nonhydrodynamic
explanations of the latter.

Before starting the technical part of our discussion we
introduce our notation. Throughout this work we use natural
units 7 = ¢ = kg = 1. The metric signature is taken to be
“mostly minus” (+,—,—,—). The local rest frame (LRF) is
defined as the Landau frame: the fluid velocity u* is the
normalized timelike eigenvector of the energy-momentum
tensor, T""u,, = Eu*, where £ is the energy density in the
local rest frame. It satisfies u* = T""u,,/\/u,, T""u, and the
normalization condition u,,u* = 1. Unless otherwise indicated
we ignore conserved charges and their associated chemical
potentials.

The paper is structured as follows: In Sec. II we briefly
review the general structure of anisotropic hydrodynamics
and its evolution equations for the energy density and lon-
gitudinal and transverse acceleration. Relaxation equations
for the anisotropic dissipative flows are derived in Sec. III,
starting from the relativistic Boltzmann—Vlasov equation in the
relaxation-time approximation and implementing generalized
Landau matching conditions for the evolution of the micro-
scopic parameters characterizing the anisotropic distribution
function. In Sec. IV we show how to integrate a realistic lattice
QCD equation of state into the anisotropic hydrodynamic
framework and reformulate its evolution equations in purely
macroscopic form, i.e., without any reference to parameters
that are only defined in a kinetic theory model for the micro-
scopic dynamics. In that section we also discuss the resolution
of several technical issues arising in the process of solving the
anisotropic hydrodynamic evolution equations numerically. In
Sec. V we illustrate the performance of our anisotropic hydro-
dynamic framework in comparison with standard dissipative
fluid dynamics for a simple system undergoing Bjorken flow.
A summary of our findings and a brief outlook are presented
in Sec. VI. Several appendixes supply additional technical
ingredients, including (in Appendix E) the derivation of the
evolution equations for standard viscous fluid dynamics needed
for the comparison shown in Sec. V.

II. ANISOTROPIC HYDRODYNAMICS

A. Ideal fluid decomposition

Inrelativistic hydrodynamics, the energy-momentum tensor
of a perfect fluid is best decomposed in the basis u#*u" and
AW = g — ytyu¥ where u* is the fluid four-velocity (i.e.,
the four-velocity of the local rest frame (LRF) relative to the
global frame):

TH"(x) = Eu" ()" (x) = Peg(x) A" (x). ey

From here on we will mostly suppress the spacetime (x)
dependence for notational simplicity. The LRF energy density
€ and thermal equilibrium pressure P.q are recovered by
projecting the energy-momentum tensor onto the temporal and
spatial directions: & = u,u, T"" and Peq = — % A, THY. Since
the thermal pressure is isotropic none of the spatial directions in
the LRF are special, and there is no advantage in decomposing
the spatial projector A*¥ further.

B. Viscous fluid decomposition

Standard dissipative fluid dynamics is formulated by de-
composing 7/ in the same basis, but adding dissipative
corrections accounting for the bulk viscous pressure IT and
the shear stress tensor #”:

TH = Eu'u’ — (Peq + DA + . 2)

This assumes that the LRF is the Landau frame, i.e., that
in the LRF there is no net momentum flow. Equation (2)
implicitly assumes that, in the LRF, all viscous corrections
are of similar order of magnitude and small relative to the
equilibrium energy density and pressure, such that there still
is no advantage in decomposing the locally spatial projector
further into individual spatial directions.

C. Anisotropic viscous fluid decomposition

The general arguments presented in the introduction imply
that in relativistic heavy-ion collisions the shear stress 7"
is highly anisotropic, and the difference P, — P, between
the longitudinal and transverse pressures can be quite large,
due to strongly different longitudinal and transverse expansion
rates. This suggests that anisotropic hydrodynamics is best
formulated by using a more detailed decomposition of the
energy-momentum tensor in which the spatial projector is fur-
ther decomposed as A*Y = E*Y — z*z", where z/ points along
the beam direction and E"' = g" — utu" + z"*z" projects
onto the spatially transverse directions in the LRF [42]:

T = Eulu’ + Pz’ — PLEM +2WHzY + 7l (3)

The round parentheses around pairs of Lorentz indices in-
dicate symmetrization: W{"z" = L(W/ 2" + W} z*). The
anisotropic decomposition (3) clearly separates the pressures
Pr and P, from the other dissipative components. Given
an arbitrary energy momentum tensor 7/, the anisotropic
hydrodynamic quantities appearing in this decomposition can
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be obtained by the following projections:

E=uyuu,T", (4a)

Pr = zu2,T", (4b)

PL=—-18.,T", (4¢)

Wi, = —BiT"2, (4d)

ml =g . (4e)

In the last line we introduced the symmetric traceless transverse
projection tensor "‘“ﬁ = 2(’“’“‘" + BBy — B Eup). The

corresponding transverse shear stress tensor 7" describes two
shear stress degrees of freedom that account for momentum
diffusion currents along the transverse directions. It is traceless
and orthogonal to both the fluid velocity and the direction of
the pressure anisotropy:

wo_ o _ w o _
Ty, = Uy =27y =0. 5)

Another two shear stress degrees of freedom are encoded in
the longitudinal-momentum diffusion current sz which is
orthogonal to both u, and z,,:

u W, =0=2z,W/,. (6)

The remaining fifth (and largest) shear stress component is
given by P, — P, . Altogether, the five independent compo-
nents of the standard shear stress tensor in Eq. (2) are related
to those in the anisotropic decomposition (3) by

T =l 4 2W ) 4 L — P — B, (T)

while the single bulk viscous pressure degree of freedom IT in
Eq. (2) is related to the thermal, longitudinal, and transverse
pressures in Egs. (2) and (3) by
_ 2P, +Pr
3
Here Pq is not an independent degree of freedom but related

to the energy density £ by the equation of state (EOS) of the
fluid, Peq(&).

- Peq . (8)

D. Hydrodynamic evolution equations

Four of the ten evolution equations that control the dynamics
of the energy-momentum tensor are obtained from the conser-
vation laws for energy and momentum:

3, T" = 0. ©)

Projecting with u, on the temporal direction in the LRF
provides an evolution equation for the LRF energy density:

0=E+E+PO. +(E+ Pr)z, D ut
+ W', (Du,

Here and below a dot over or a D in front of a quantity denotes
the comoving time derivative,e.g., D€ = € = u"9,E.z, D u*
is the scalar longitudinal expansionrate,and 8, = V, - uisthe
scalar transverse expansion rate. The longitudinal derivative
and transverse gradient in the LRF are written as D, = —z#9,,
and V, = B d,, respectively. 0 ,, = slwa ug is the trans-
verse VGIOCIty shear tensor.

_ZVVLMMU) _njfval,uv' (10)

The longitudinal projection z,,d,, T*" = 0yields an equation
for the longitudinal acceleration of the fluid in the LRF:
(€ + Pr)zui = =D, P+ (P — P10,

~ WDz +7"G1 . (A1

Here 6, = V,-zand 6, ,, = g% 8yz2p."
An equation for the transverse acceleration is obtained from

the transverse projection 859, T#" = 0:

(E+POER
= VJ_'PJ_ + (P — 'PJ_)E(;[DZZV
WL (30, — i) — W (507 — )

+ESD WY, + 1%y + D.z,) — EXVL,alY. (12)
Here @%" = E** &9z, where the square brackets in-
dicate antisymmetrization: 0jgz,; = %(8,3@ — 3d,2p). Equa-

tions (10)—(12) agree (after adjustment of notation) with
Egs. (146)—(148) in Ref. [42].

III. DISSIPATIVE RELAXATION EQUATIONS

To close the system of equations we need six additional
relaxation equations for Py, P, , W/ Te and 77" Their dynam-
ics is not controlled by macroscopic conservation laws but
by microscopic interactions among the fluid’s constituents. As
discussed in Sec. I, we will here derive them by assuming a
weakly coupled dilute fluid whose microscopic physics can be
described by the relativistic Boltzmann—Vlasov equation for a
single particle species with a medium-dependent mass:

P f +md'md L f = CLf]. (13)

Here f(x,p) is the single particle distribution function, C[ f]
is the collision kernel, m(x) is the medium-dependent effective
mass, and 8,(}’ ) is the momentum derivative.

A. Anisotropic distribution function

For anisotropic hydrodynamics we split the distribution
function into a momentum-anisotropic leading-order contri-
bution f,(x, p) and a small residual correction § f:

f(x,p) = fulx,p) + 8 f(x,p). (14)

For the leading-order distribution we take the generalized
Romatschke—Strickland form [53-55]:

vV Q;w(-x)p”' V- ﬂ(x)
(15)

fa(xvp)zfeq< Ax)

Here foq(z) =1/(e* + ®) is the equilibrium distribution,
with ® = 1,0, — 1 for Fermi—Dirac, Boltzmann, and Bose—
Einstein statistics, respectively. A(x) is an effective temper-
ature and fi(x) an effective chemical potential. In this work
we consider a system without conserved charges and assume,
for simplicity, that particle number changing microscopic

!Generically we use tildes to indicate quantities involving deriva-
tives of z/ instead of u*.
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processes in the collision term C[f] are so fast that the
effective chemical potential relaxes to zero faster than any other
microscopic timescale.?

In this work the leading-order momentum anisotropy is
encoded in the ellipsoidal tensor

Q;w(x) = uu(x)uv(x) - &(X)E;w(x) + %_L(X)Zu(x)zv(x)-
(16)

It contains two spacetime dependent anisotropy parameters
g and &,. With B, p" p” = —p? | g (i.e., the square of the
transverse momentum p | | gg in the LRF), €, p” p” can be
rewritten as

Qup'p’ =m*+ (A +&E)pT 1gp + L +EDP2 ge. (17)

The difference &, — &, can be attributed to a manifestation of
shear stress (resulting in a difference between the longitudinal
and transverse pressures) while the sum &, + &, encodes a bulk
viscous pressure [56,57]. Introducing the notation oy, (x) =
[1+4 &, 1(x)]7'/2, Eq. (15) can be written in LRF momentum
components more conveniently as

1 Pi LRF pzzLRF
= feq| —yfm? + 2R 4 ZRRE 18
’ feq A\/ ai oz% (18)

To make the decomposition (14) unique one must specify
the three parameters o (x)=(a; (x), oz (x)) and A(x). We pro-
ceed as follows: The physical temperature 7' of the system
is defined by the LRF energy density via the thermodynamic
relation £(x) = £(T (x)). To relate the effective temperature A
to T we impose the generalized Landau matching condition®

€= [ @ prsj=o 0)
p
with the Lorentz-invariant momentum space integral
8 4 0 2 2 8 d*p
/p ) / p20(p~)é(p ) oy ] E,
2y

where g is a degeneracy factor counting the number of quantum
states allowed for a particle with on-shell momentum p*, and
O( pO) denotes the Heaviside step function. Equation (20) states
that A (o) must be chosen such that the residual deviation 8 f
does not contribute to the energy density. This fixes A(a) as a

2This assumption is not realistic: since number-changing processes
are a subset of all microscopic processes, chemical relaxation pro-
cesses are typically slower than momentum-changing ones. Here we
make this assumption for simplicity only and intend to relax it in
future work.

3We note that in the presence of conserved charges the effective
chemical potential i would be related to the physical chemical
potential  associated with the conserved charge by a similar Landau
matching condition for the conserved charge density n:

aﬁzq/(u.p)sfzo, (19)
P

where ¢ is the conserved quantum number.

function of T'; the two agree in the limit « — (1,1) when the
anisotropic leading-order distribution f, reduces to a locally
isotropic equilibrium distribution feq(u-p/T).

The momentum deformation parameters oy | (x) are fixed
by similar generalized Landau matching conditions for the
transverse and longitudinal pressures

PL = Peq + 1T+ nﬁf{}?v
PJ_ = Peq + 11— %nlif{F

(22a)
(22b)

Here njip is the LRF value of the longitudinal diagonal
element of the shear stress tensor 7" in the decomposition (2).
Note that both the bulk viscous pressure IT and the shear stress
component 7y are here assumed to be “large” such that they
must be accounted for already at leading order, by adjusting the
parameters o, | (x) accordingly. This is done by demanding

5P, = / (—z- p)8f =0, (23a)
P

1 3
(YPJ_EE/(—p~E-p)8f:O. (23b)
p

By imposing these conditions, oy j(x) are adjusted such
that the longitudinal and transverse pressures P; and P,
are everywhere fully accounted for by the leading-order
distribution f,, with zero residual contributions from & f.
This is an application of the anisotropic matching scheme
proposed by Tinti in Ref. [55] and a generalization of the
P, -matching scheme proposed and studied in Refs. [43,48]
to both P, and P, (or, equivalently, to the pressure anisotropy
Pr — P ~ nfyr and the bulk viscous pressure IT). In this
matching scheme, the § f correction generates only the residual
dissipative flows described by W{’, and ", which break the
cylindrical symmetry of the distribution function in the LRF
and account for the remaining four smaller components of the
shear stress tensor 7" in Eq. (7).

With the matching conditions (20), 23(a), and 23(b) we have
the following kinetic theory expressions for the energy density
and the longitudinal and transverse pressures:*

g® — / W - p)* fa = Toooo, (24a)
P
po = /(—z P fa = oo, (24b)
P
w _ 1 =
P = 2 /(—P' E - p)fa = Dooo- (24¢)
[

The “anisotropic integrals” 7,4, over the leading-order
distribution function f, that appear in these equations are
defined in Eq. (A1).

4The superscript (k) on the thermodynamic quantities indicates their
kinetic theory definition for a gas of weakly interacting quasiparticles.
The purpose of this notation will become clear later when we introduce
a more realistic EOS.
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B. Relaxation equations I

The relaxation equations for the dissipative flows are ob-
tained by expressing the latter as moments of the distribution
function and by using the Boltzmann equation to describe its
evolution, using decomposition (14) and treating 6 f as a small
perturbation. We start from

P =D / (—z- P far (25a)
Sk)

P = 2D / (—p-E-p)fan (25b)

Wit =gy / (—z-p)p"sf, (25¢)
P

A ag;D/p{“pﬁ}af, (25d)
p

where we defined the compact notations [42]
aM = zmv " tj_w) = Eggtaﬁ’
a = g"a,, if" = g (26)

for the spatially transverse (in the LRF) components of a vector
a* or its LRF time derivative a” and the spatially transverse
and traceless part of a tensor t*” or its LRF time derivative
#V. After moving the time derivative D on the right-hand side
(r.h.s.) under the integral until it hits the distribution function
f. or 8 f, we use the decomposition f = f, + 8 f together
with

oy=uuD+z,D,+Vy, 27
to rewrite the Boltzmann—Vlasov equation (13) in the form

CLf1—md*mol f
u-p
—z-p)D, f, — pt#
+( z-p)D. fa—p
u-p
Lz pP)DSf = p"V,8f
u-p '

fotof =

VJ_;Lfa

(28)

Closing this equation requires an approximation for 8 f. We
here use the 14-moment approximation.

C. The 14-moment approximation

The 14-moment approximation derives its name from ap-
proximating & f in terms of its 14 momentum moments with
p" and p* p" (where the moment with the linear combination
p* pH g, = m?* as weight function is equivalent to the moment
taken with weight 1) [58,59]. In our case the choice of
the Landau frame, together with the generalized matching
conditions (19), (20), 23(a), and 23(b) and the absence of
diffusion currents related to conserved charges, eliminate ten
of these moments, leaving only four independent moments
to construct § f. These need to be matched to the residual
dissipative flows W', and 7", which each have two degrees

of freedom. The 14-moment approximation for & f can thus be

written as [42]

sf
fafa
where f, =1 — ©f,. The coefficients c! i (x) and c (x)

are computed by substltutlng Eq. (29) into the kinetic theory
definitions of W** |, and rr s

(x,p) = M @O[=2(0)-plppy + VP, (29)

Wi, = f (—z-p)p™s 7, (302)
mt = / plp"s f, (30b)
P
and decoupling the resulting set of linear equations:
A v O N :
e/’ = , ¢ = . (31)
Tt 2Ja020

The anisotropic integrals 7,45 appearing in these expressions
are defined in Eq. (A2). As expected, the coefficients are
directly proportional to the residual dissipative flows:

m
puwWL, | pupwr!’
J110 2T 4020

8f = (—(—z p) )fafa. (32)

D. Relaxation equations IT

Substituting the 14-moment approximation (32) for 8 f into
Egs. (25) and (28), simplifying some of the resulting terms by
integrating by parts, and enforcing the generalized matching
conditions, some algebra yields the following dissipative re-
laxation equations:’

PO _ph  ph _ph

?Ek) - n B 31'71/2L + ZZL(k)ZuDz”M
+21 00, — 2wz, + AV WH Doy,
A Wz Vit — Oy (33)
p o PO Pl POCPD £+ Wz Deu
T 31,
+21000 + Wiz, + 2y Wi Dy,
— AW 2 Vit 4+ 30 e, (34

5In deriving these equations one encounters terms involving the
comoving time derivative m of the temperature-dependent quasi-
particle mass that arise from the second term on the left-hand side
(L.h.s.) of the Boltzmann—Vlasov equation (13). We eliminate them by
using the chain rule i = (dm/dT)(dT /dE)E where we take dm /dT
as external input from the quasiparticle model discussed below,
evaluate the derivative dT/d€ = (d€/dT)™" = 2T /(€ + Peq) from
the lattice QCD EOS, and use Eq. (10) for E. Equations (33)—(36)
(together with the transport coefficients listed in Appendix A) are
found after combining the terms on the r.h.s. of Eq. (10) with other
terms involving the same dissipative forces. In doing so we neglect
contributions of O(an{;lf{;l), where R;l is the residual inverse
Reynolds number associated with the residual components W},
and 71"
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. wh _ _
Wi’;} =-— L +2i) E" DLu, — 27 2, Viu"
T

=W =uv MUV - Wy
_(Tz M ")z, 4 Sy W01

W 12 v TwW nv
—Awu Wi 2vDu” + Ay o Wiz,

+ "Wy, + A 7 D, — 2 72,V u®,
(35)
{nv} ' { 5
= — rl +2iu0f — 2wz — 8Tt e,
T
— gt +2n Vel + Ml 2 Dot
A WD 43T W, Ve (36)

Here P® = %(P;k) +2P%Y) is the average pressure as given
by kinetic theory, and o'"=E4E}0Pu*! is the transverse
vorticity tensor.

The structure of Eqgs. (33)—(36) is simpler than that of
the corresponding equations derived in Ref. [42], not only
by the absence of terms coupling to the conserved charge
and diffusion currents (which only reflects the simplifying
assumptions made here), but also as a result of imposing
the generalized Landau matching conditions (19), (20), 23(a),
and 23(b), which optimizes the evolution of the anisotropy
parameters in f, and thus removes additional terms needed in
Ref. [42] to correct their evolution if not chosen optimally in
the first place.

The transport coefficients appearing on the right-hand sides
of Egs. (33)—(36) are labeled following as much as possible the
convention established in Ref. [42]. Except for the relaxation
times they are given in Appendix C.% Generically they involve
the “anisotropic thermodynamic integrals” over the anisotropic
distribution function f, given in Appendix A. Their validity,
as well as the validity of the specific relations between
some of these transport coefficients listed in Appendix C,
depends on the applicability of relativistic kinetic theory of
a gas of weakly interacting quasiparticles as the underlying
microscopic theory, which is not guaranteed for quark-gluon
plasma. Their generalization to a realistic microscopic theory
of QCD medium dynamics requires much additional work.
We will here use the expressions given in the appendixes
as order-of-magnitude estimates and place holders for future
more realistic sets of transport coefficients.

Equations (33)—(36) also involve two relaxation times: 1,
and . T controls the relaxation of the kinetic bulk viscous
pressure P® — Pé’é) [see Eq. (8)] whereas the shear relaxation
time t,; drives the relaxation of both the large shear stress com-
ponent sz) - (f) and the smaller ones described by W1, and
7}". That all shear stress components have the same relaxation

®Please note the superscripts (k) on the transport coefficients
appearing on the right-hand sides of Eqs. (33) and (34). They reflect
the fact that these control the evolution of the kinetic part of the
longitudinal and transverse pressures. For the quasiparticle model
introduced in the next section an additional mean field enters which
modifies these pressures and transport coefficients. The modified
expressions will be denoted without the superscript.

time even if some of them become large is a model assumption
that may be corrected in future improved calculations of the
transport coefficients for strongly anisotropically expanding
QGP.

Formally, the relaxation times arise from a linearization of
the collision term around the local equilibrium distribution fq
(with temperature computed from the energy density):

CLf1= —%S)[ﬂx,p) - feq<”;zg))] 37)

Literal use of this relaxation-time approximation (RTA) [60]
gives 1, = 1 = t.. However, strong coupling in the quark-
gluon plasma in the temperature regime just above the quark-
hadron phase transition, as well as critical behavior near that
phase transition, lead to very different temperature dependen-
cies of the bulk and shear viscosities and their associated
relaxation times in QCD, especially around 7, [28-31,61].
In particular, the bulk relaxation time ty is expected to be
affected by “critical slowing down” [29,33,35], i.e., it should
exhibit a strong peak near T.. Since large bulk viscous effects
near T, are one of the main motivations for our work here,
we feel compelled to account for them by introducing two
different relaxation times t, and tp, and tying them to
phenomenologically parametrized shear and bulk viscosities 1
and ¢ by postulating the standard kinetic theory relations [40]

Tp = 77/:371’ n = ;/ﬂl’l (38)

The (temperature-dependent) isotropic thermodynamic inte-
grals B, and B appearing in these relations are given further
below in Eq. (82). The viscosities n and ¢ are transport
parameters that occur in standard “isotropic” dissipative fluid
dynamics—they appear here through the relaxation times 7,
and ;. When comparing anisotropic with standard dissipative
fluid dynamics further below in Sec. V we do so by using the
same functions 7, and ty in both approaches.

IV. ANISOTROPIC EQUATION OF STATE

While the relaxation equations (33)—(36) were derived from
the Boltzmann equation, the equations remain structurally
unchanged for strongly coupled fluids. They are purely macro-
scopic, i.e., all terms on the r.h.s. have the form of some
macroscopic driving force (proportional to the Knudsen or
inverse Reynolds numbers or products thereof) multiplied
by some transport coefficient. The kinetic origin of these
equations is hidden in these transport coefficients. Applying
the equations to strongly coupled fluids requires only that these
transport coefficients, along with the equation of state relating
the energy density and equilibrium pressure, are swapped out
accordingly.

For the time being most of the transport coefficients of hot
and dense QCD matter are still essentially unknown. While the
shear and bulk viscosities will be taken as parameters whose
functional forms are modeled phenomenologically and whose
overall magnitudes are to be fit to experimental observables, the
remaining transport coefficients will be approximated by using
kinetic theory, for reasons of consistency with our derivation
of the evolution equations. Their evaluation requires micro-
scopic kinetic inputs; namely, the parameters (A, o, o)
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characterizing the anisotropic distribution function f,, the
particle mass m, and also the temperature 7. However, for
the QGP equation of state, which is very precisely known
from lattice QCD calculations [62,63], we want to use first-
principles theoretical input.

In this section we discuss how to consistently incorporate
such direct information from QCD into a hydrodynamic frame-
work that was originally derived from a kinetic theory with a
very different EOS. We will call this procedure “integrating the
lattice QCD EOS with some kinetic framework.” We introduce
a parametric model for an anisotropic equation of state that
allows the anisotropic hydrodynamic equations, including the
dissipative relaxation equations for the longitudinal and trans-
verse pressures and the remaining shear stress components,
to be solved on a purely macroscopic level. This differs from
earlier implementations of the framework which relied on the
solution of dynamical evolution equations of the microscopic
kinetic parameters (A, o), oy, m) [43,44,46,49-51] (which,
for the case of QCD, are not really well defined). However,
since we will need these microscopic parameters for the
calculation of those transport coefficients that we compute
from kinetic theory (a temporary necessity that will disappear
as soon as ways have been found to calculate these transport
coefficients directly from QCD), we determine them from
the macroscopic hydrodynamic quantities at the end of each
time evolution step by using our parametric model for the
anisotropic EOS.”

To construct this parametric model we follow
Refs. [51,52,64] and parametrize the response of the pressure
anisotropy and the bulk viscous pressure to anisotropic
expansion by using a quasiparticle EOS. The quasiparticles
have a temperature-dependent mass that is chosen such that
a weakly interacting gas of these particles accurately mimics
the QCD EOS. The transport coefficients are then worked
out in this kinetic theory.® It is well known [65-67] that for
thermodynamic consistency such an approach requires the
introduction of a mean field B whose temperature dependence
in equilibrium generates the temperature dependence of the
quasiparticle’s effective mass. It also receives additional
dissipative corrections out of equilibrium [52].

A. Integrating lattice QCD equation of state with quasiparticle
equation of state

The key question that needs to be addressed in anisotropic
hydrodynamics is how much pressure anisotropy and bulk
viscous pressure is generated by a given hydrodynamic ex-
pansion rate and its anisotropy. These are the two largest
and most important dissipative effects in our approach. The

"Note that the parametric model is not used for the equilibrium
EOS P¢y(€) (for which we take state-of-the-art lattice QCD results)
but only to parametrize the dissipative deviations of the longitudinal
and transverse pressures from P.q(&), as well as for the calculation
of the remaining transport coefficients.

8Note that an accurate description of the equation of state does not
imply by any means that the kinetic theory also predicts the correct
transport properties of the medium. In all likelihood it does not.

answer to this question depends on the microscopic properties
of the medium. For QCD matter this response is presently not
known. It is, however, a key ingredient in the hydrodynamic
evolution model. In this section we model this response by
that of a weakly interacting gas of quasiparticles with a
medium-dependent mass m (7). Within this model we can
associate (within certain limits) any given deviations of the
longitudinal and transverse pressures P; and P, from the
equilibrium pressure Peq(€) with specific values for the mi-
croscopic parameters (A, o, m(7T)) describing the anisotropic
quasiparticle distribution function f,. These values can then
be used to compute the kinetic theory values for the transport
coefficients. So while the equilibrium pressure is described
by the full QCD EOS from lattice QCD, the dissipative
deviations of P, and P, from the equilibrium pressure are
interpreted microscopically within a weakly interacting gas of
massive Boltzmann particles. As we solve the hydrodynamic
equations (10)—(12) together with the dissipative relaxation
equations (33)—(36), we interpret the resulting deviations from
local equilibrium within the quasiparticle model by writing

0=E9—-EDE), (39a)
PL — Peg(€) = P — PLAE), (39b)
PL— Peg€) = PY — POE). (39)

113

Here the superscript (g) stands for “quasiparticle model.”
The zero on the Lh.s. of the first of these equations reflects
the Landau matching condition £ = £(T') to the lattice QCD
energy density, which also provides us with the temperature T
at which the quasiparticle mass m(7") and equilibrium mean
field Beq(T) (see below) are evaluated. In the quasiparticle
model the hydrodynamic quantities on the r.h.s. of Eq. (39)
consist of kinetic and mean-field contributions [64]

ED =£® 4 B, (40a)
P =P - B, (40b)
P =PP - B. (40c)

The kinetic contributions are obtained from Egs. 24(a)—
24(c):

EO(A,a; m(T)) = Tagoo(A,0; m(T)), (41a)
PO, a;m(T)) = Toago(A,; m(T)), (41b)
PO, a; m(T)) = Tooio(A 0 m(T)), (41c)

where T = T(£). The mean field B consists of an equilibrium
part By and a dissipative correction § B:

B = Boy(T) + §B. (42)

By Landau matching, the total quasiparticle energy density £¢@
is fixed to its equilibrium value:

ED(E) = EQT) + Bey(T), 43)

where Eé’é)(T) = T5000(T,1; m(T)). The Landau matching con-

dition 39(a) can then be rewritten as

Trooo(A,0;m(T)) = Logoo(T,1; m(T)) — 8B. 44)
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This establishes a relation between the temperature and the
kinetic-theory parameters, provided that § B is determined. In
the equilibrium limit, the quasiparticle pressure is

PLE) = PET) — Beg(T), (45)

where Pe(é)(T) = Too00(T,1; m(T)). The equilibrium terms in
Egs. (43) and (45) are all functions of temperature.

For simplicity we assume that the quasiparticles have
Boltzmann statistics (® = 0). To ensure that at asymptotically
high temperature the equilibrium pressure and energy density
of this Boltzmann gas approach the corresponding values of a
quark-gluon gas with 2(N? — 1) bosonic and 4N, N ; fermionic
degrees of freedom, we normalize them by applying to the
quasiparticle distribution function a degeneracy factor

4

— [2(N? — nxt
g =[2(NZ = 1) +4NNs5] 55

(46)
with N, = 3 colors and Ny = 3 flavors, counting u, d, and
s quarks only (heavier flavors are exponentially suppressed
in the phenomenologically interesting temperature range and
are therefore neglected). This degeneracy factor is part of the
momentum integration measure f » in the definition (21).

The thermal quasiparticle mass m(7T) is chosen such that
the equilibrium pressure Pe(?l)(é' ) and energy density Eég)(é' ) of
the quasiparticle model agree with their lattice QCD counter-
parts. Technically this is done by expressing the lattice QCD
entropy density S in terms of the corresponding kinetic theory
expression S for a gas of quasiparticles with mass m(T') and
Boltzmann statistics [64]:

T

O PY W LPY g7

T T 2

S

K3(z), (47)

where K,,(z) is the modified Bessel function withz = m(T)/T.
For thermodynamic consistency the right-hand side must

satisfy S@ = dP{/d T, which is ensured by setting

LA dm(T
Bey(T) = _zinz AT 322K, (2) d(T )
0

where % =m(T)/T. Plots of the quasiparticle mass-to-
temperature ratio z and equilibrium mean field B.q as func-
tions of 7', using a 2010 lattice QCD EOS obtained by
the Wuppertal-Budapest Collaboration [62], can be found in
Ref. [64]. Here we use the state-of-the-art QCD EOS compiled
by the Beam Energy Scan Theory (BEST) Collaboration [68].
The resulting slightly modified temperature dependencies of
2(T), dm(T)/dT, and Beq(T) are shown in Fig. 1 as solid
lines (together with the earlier results from Ref. [64] shown as
dashed lines).

Equation (48) determines the mean field in equilibrium.
Out of equilibrium it receives a nonequilibrium correction
8B [52]. As shown in Ref. [52], thermodynamic consistency
and energy-momentum conservation can be used to derive
from the Boltzmann equation the following general evolution

.0 0.1 0.2 0.3 0.4 0.

N W A L W

0.3+
02}

0.1}

—0.1¢

—02¢

03"

04
0.0 0.1 0.2 0.3 0.4 0.5

T (GeV)

FIG. 1. (a) Normalized quasiparticle mass z =m/T, (b) the
derivative dm/dT, and (c) the equilibrium mean field B.q/ T* ob-
tained from Eqs. (47) and (48) by using a state-of-the-art lattice
QCD EOS compiled by the BEST Collaboration [68] (solid lines)
and from earlier lattice QCD results obtained by the Wuppertal—
Budapest Collaboration [62,64] (dashed lines), shown as functions of
temperature 7. In practice, the equilibrium mean field in panel (c) is
obtained as the difference between the equilibrium kinetic and lattice
QCD pressures, By = 736(5) - Pe(g) = ”Pe(f;) — Peq [see Eq. (45)].

equation for B:
B+mm/f+/(u~p)C[f]=o. (49)
P P

By Landau matching the nonequilibrium correction to the
quasiparticle energy density £@ = &% 4+ B must vanish,
hence

B = By — f (u - p)*sf, (50)
p
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where §f = f — feq. Substituting f = f, + 8 f and using the
relaxation-time approximation

(- p)f

i

Clf1~ D

Eq. (49) takes the form
B — By

123

B= - %(5“ —2PpP PO (52)
Note that the expression in the parentheses is the trace of
the kinetic contribution to the energy-momentum tensor 7#".
Since the nonequilibrium component of the mean field § B =
B — B contributes to the bulk viscous pressure, we have
replaced in Eq. (52) the relaxation time 7, by the bulk relaxation
time . The time derivative of the thermal mass can be
expressed in terms of the energy-conservation law (10) by
using the chain rule.

Although Eq. (50) shows that B is not an independent
quantity, we find it most straightforward to use Eq. (52) to
propagate the mean field B dynamically. It does not directly
enter the evolution equations for the components of the en-
ergy momentum tensor as an independent variable, but is only
needed for the model interpretation of the pressure anisotropy
and bulk viscous pressure (which are hydrodynamic outputs)
in terms of the microscopic parameters (A, a) needed for
computing the transport coefficients in Appendix C. We use
Egs. (10), (33), (34), and (52) to evolve &, P, PY, and
B. The physical pressures are obtained from Py = P(Lk) —B

and P, = Pf) — B. From & we determine T using the lattice
EOS, and thus we know m(T'). Then we rewrite our anisotropic
equation of state model (39) as

& — B = Lyooo(A,0e,m(T)), (53a)
Pr + B = Lpgo(A,0,m(T)), (53b)
P+ B = Io(A,a,m(T)), (53¢)

solve these equations for the anisotropy parameters
(A, oy, ap), and compute the transport coefficients.

Of course, the values (A, a, m) associated in this way with
P, Pi, and £ at any point of the hydrodynamic spacetime
grid are model dependent, and a different parametrization of
the lattice QCD EOS in terms of quasiparticles (for example,
as a mixture of different types of quasiparticles with different
quantum statistical properties, degeneracy factors, and masses)
would yield different results. For example, we have tried (and
abandoned) an alternate approach where we used a weakly
interacting Boltzmann gas of particles with a fixed mass to
interpret the pressure anisotropy and bulk viscous pressure
in terms of microscopic parameters (A, o¢; m). In that case
we were unable to find solutions at early times where the
strong longitudinal expansion leads to negative bulk viscous
pressures large enough that no valid choice of microscopic
parameters can reproduce this in the kinetic model theory. In
the quasiparticle model we can partially absorb this with an
out-of-equilibrium mean-field contribution.

With the anisotropic EOS model (53) we can finally write
down the equations of motion for the total pressures P, and

P, by combining Eqgs. (33) and (34) with Eq. (52):

P—Pyq PL—PL -,
_ LD 2
™ 35,72 | b

+ Efel - ZWiLzZM + Xﬁ/u szDZuﬂ

Py = —

+ X%W’ﬁzzﬂuu” — )_\JLTnf”aLW, (54)
,ﬁ - Peq PL - Pl
— +
T 31,
+ 2100+ Wi 2 + Ay, W, Douy,

— A W 2, Vi +3Emt o . (55)

’]jl = +EZLZ/},DZMM

Here we redefined the transport coefficients for the lon-
gitudinal and transverse pressures as detailed in Ap-
pendix D. This completes our formalism for nonconformal
anisotropic hydrodynamics, where the equations of mo-
tion (10)—(12), (35), (36), (54), and (55) are purely macroscopic
and structurally independent of the underlying microscopic
physics, while the transport coefficients are evaluated with
our specific quasiparticle kinetic model for the anisotropic
equation of state.

B. Reconstructing the energy density and fluid velocity

Most numerical codes developed for heavy-ion collisions
(including ours) solve the energy-momentum conservation
laws (9) on a fixed “Eulerian” spacetime grid instead of the
LRF projected conservation equations (10)—(12). The reason
for this is the existence of powerful flux-corrected evolution
algorithms for conservation laws of the type (9) [69-71]. To be
able to use these algorithms one writes Egs. (9) in conserved
flux form, which for the Milne coordinates x* = (7,x,y,n)
reads

0. T™ + 0 (W' T™) = J*. (56)

The source term J* on the r.h.s. includes both geometric
(Christoffel) terms arising from the curvilinear nature of the
coordinate system and the dissipative fluxes [71].

Running the evolution algorithm for one time step thus
produces updated values for the first row of the energy-
momentum tensor and the dissipative flows encodedin P, P, ,
W1, and 7}, as well as the mean field B. For the evaluation
of the EOS and the calculation of the transport coefficients
as described in the preceding section we need, however, the
LRF energy density £, and to compute the source term J* we
need the fluid four-velocity u*. How to obtain these from the
updated output of the evolution code at the end of a time step
is described in this section.

We start by writing the first row of 7#" as

T =(E+Pu"u* — P g™+ AP
+2W(’Zz") +nl", (57)

where g' = diag(l,—l,—l,—l/rz) is the metric tensor and
AP =P, —P,. The spacelike basis vector z** can be
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parametrized as [42]

1
= ——=(tu",0,0,u’ /7). (58)

1/1+u2l

where u; = (u} +u3)"/? is the magnitude of the transverse
four-velocity.

Next, we observe that the term ZWYZZM) depends (through
the components of z*) on u” and u". It cannot be subtracted
from 7°* until a relation between u#* and u” is found. To this
end let us construct from known quantities the vector K* =
T — 7" whose components read [72]

K* = (€ +POWY — Py + Alp(m:)z SUBL
+ul 14+ uﬁ_
(59a)
K'=(E+Pou"u' + Mot (i =x,y), (59b)
J1+ ui
APuTu" L W)+ (Tun)?

K'=(E+Pu"u”+ —+ W

u e /
L tut /1 +u?

(59¢c)
In the last equation we used the orthogonality relation

zuW!. =0 to eliminate WY _. Taking the combination
WM?K® — uTu" K" one obtains

u" A—By1—A24 B2

—=F= — , 60
ut 1+ B2 (60)
where
K’I
A= ———, (61a)
K™+ P
Wi,

B=_— it (61b)
(K" +Pp)

as well as A =7A and B = tB are all known quantities.
One can further use the normalization condition u,u" =1 to
rewrite Eq. (60) either as

u’ F
LA (62)
JI1+ uf_ X
or as
T 1
S (63)

/ X
l—I—uﬁ_

where F = t Fandx = (1 — F?)!/2, With this the components
of z** in Eq. (57) and thus ZWYZz”) are now known.

We next define the known vector M* = K* — 2W(fzz“),
with components

M*=(E+POu'u’ — P, +AP(F/x)*, (64a)
M =E+Pou"u’ (i =x,y), (64b)
M" = (E+Pu"u" + APF/(tx?). (64¢)

From Eq. (64b) one obtains immediately the transverse flow
velocity components and magnitude:

. M
Wo=—— (652)
u™(E+PL)
M,
I 65b
T ET P (65b)

where M, = [(M*)*> + (M?)*]'/>. The two remaining un-
known variables are u® and £. By taking the combination
ul M* — u"u' M' one finds a relation between u* and &:

T _ I 2
. \/M + PL— AP(F/x)? 6

‘T E+PL

This can now be used to express u’ and | in Egs. (65) as well
as 1" in Eq. (60) in terms of £ and the other known quantities.
With a bit of algebra, and making use of the relation F =
TM"/(M® + Pp), the normalization condition (u”)* — u% —
(tu")?> = 1 then yields the following explicit reconstruction
formula for the energy density:

M

M + P, — AP(F/x)?

(TM")’[M* + P, — AP(F /x)’]

(M7 +PL)? '
Note that, since P, and P, are evolved directly, the r.h.s.
of Eq. (67) is entirely known. This is in contrast with
the reconstruction formula for £ in viscous hydrodynamics
where one must solve some nonlinear equation F(£) =0
numerically [72,73]. Once Eq. (67) is evaluated, the fluid

velocity components %, u’, and #” can be determined by using
Egs. (66), (65), and (60) consecutively.

E=M"— AP(F/x)* —

(67)

C. Reconstructing the anisotropic parameters

Having reconstructed the LRF energy density &, the left-
hand sides of Egs. (53) are all known, as is the temperature
T [from £(T)] and thus the particle mass m(7). We can now
use the expressions on the right-hand sides of these equations
to determine the anisotropic parameters (A, oy, o). We write
Egs. (53) as

F(x)=0, (68)
where
A
X=]al], (69)
oL
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and

Toooo(x) —E+ B

Inoo(x) = PL — B |. (70)
Troro(x) —PL— B

We then use Newton’s method in three dimensions to find the
solution vector X. One starts with an initial guess vector X©,
which is typically the value of X at the spatial grid point known

from the previous time step. This vector is updated with an
iteration AX, which is given by the matrix equation

JiAX; =—F (71)

F(x) =

where J;; = 0F;/0X; is the Jacobian matrix. The analytical
form of this matrix is

Jooo1 2J401-1 Ja0-1
A? Aai Avtz
_ | 2220 2J11-1 Jad0-1
J = A? Aa? Ao |° (72)
Jooni 4Ta02-1 Ja21-1
A? Aai Aaz

One can simplify the computation of the matrix elements in
Eq. (72) by using the identities (see Appendix B)

Tio-1 = Aoz (Taooo + Taaoo), (73a)

Tio1-1 = At (Zaooo + Zaono), (73b)
Aaiaz

Jn1-1 = ————5 Zanoo — Loo10)- (73¢)
oy —aj

The iteration process (71) is repeated until convergence is
achieved. Newton’s method is a local root-finder and works
well if the initial guess X? is sufficiently close to the solution.
This may not be the case when the hydrodynamic variables are
first initialized or evolving too rapidly. To better handle such
situations, we include a line-backtracking algorithm, which
takes partial steps of A X, to improve global convergence [74].

Each iteration of Newton’s method requires the numerical
computation of eight one-dimensional integrals, three for F
and five for J. Alternatively, one may use Broyden’s method,
which approximates the Jacobian in terms of F', so only three
integrals need to be evaluated. [74] An approximate Jacobian
may complicate the line-backtracking search, which ensures a
decrease of | F'| only if the exact Jacobian is used. For iterations
where the full Broyden step does not sufficiently decrease | F|
we switch to Newton’s method.

D. Initializing the mean-field and anisotropic parameters

In the anisotropic equation-of-state model (53) there is
an ambiguity between the initialization of the mean field
B and of the kinetic terms £®, sz), and Pik). Standard
hydrodynamic initial conditions for the energy-momentum
tensor only provide £, Pr, and P, on the initialization
hypersurface. The initial energy-density profile £ also yields
the initial temperature profile and thus the initial profile for
the equilibrium part Bey(T') of the mean field. Its comoving
time derivative on the initialization surface can be obtained by
taking the equilibrium limit of Eq. (52):

. m
Beoy = _;(ggy - 3PY). (74)

To obtain a guess for the initial nonequilibrium deviation
8B we assume that §B evolves on a timescale larger than
the bulk viscous relaxation time tr;. We can then ignore the
time derivative of § B on the left-hand side of Eq. (52) and
obtain from the difference between Eqs. (52) and (74) the
“asymptotic” initial condition

spEy — ST o (75)
m — dtom

As before (see footnote 5), m and mz can be expressed in terms
of the energy density £ and its LRF time derivative. Having thus
specified the initial profile for the mean field B = B, + 6B
we can proceed to extract the initial anisotropic parameters and
compute the initial values for the transport coefficients.

For far-from-equilibrium initial conditions, such as those
provided by the IP-Glasma model [37] where P, starts out
with a very large negative value P, = —& and, after classical
Yang—Mills evolution for a time of the order of the inverse sat-
uration momentum, settles to around zero [75,76], the implied
deviation Py, — Peq can become so large that, with this initial
choice of B, the quasiparticle model cannot accommodate
it within the allowed ranges for (A, a, ar). Since typically
B < 0Oathigh temperatures (see Fig. 1), the kinetic longitudinal
pressure, ’sz) =P + B, may in this situation be negative.
Specifically, the anisotropic parameter initialization is found
to fail when P, /P, < 0.08. To overcome this problem, in the
case of such extreme initial conditions for P, we simply adjust
our initial guess for § B and increase the initial value for B until
asolution for (A, o] , @y ) can be found. More meaningful ways
of dealing with this shortcoming will be left to future work.

V. BJORKEN FLOW

In this section we test our anisotropic hydrodynamic for-
malism by comparing it to standard viscous hydrodynamics
for the case of (0+1)-dimensional Bjorken expansion, using
the state-of-the-art lattice QCD equation of state referenced
in Fig. 1. We begin by simplifying the anisotropic evolution
equations (10)—(12), (35)—(36), and (54)—(55) for systems with
Bjorken symmetry. In Milne coordinates, the fluid velocity
is u”* = (1,0,0,0), the longitudinal and transverse expansion
rates are z, D .u* =1/t and 6, =0, and the residual shear
stress components W', and7r{" vanish by symmetry. The com-
ponent 777 trivially reduces to £. As a result, the anisotropic
hydrodynamic equations simplify to

. £
&= —+—PL, (76a)
T
. 75_Peq PL _PL EZL
=— - =, 76b
P T 31, /2 T (76b)
: P—Peyq P.—PL -
pr=-lla ol e g6
T 31, T
B__B—Beq E+PrdmdT
o T tm dT d&
x (& =2P, — P, —4B), (76d)

054912-12



(34 1)-DIMENSIONAL ANISOTROPIC FLUID DYNAMICS ...

PHYSICAL REVIEW C 97, 054912 (2018)

0.1 02 03 04 05 . 014 016 018 020 022 0.14 016 018 020 022

1.0}

03} R 1 o8]

oal 0.6

04/

0.17
02}
; (b)
0.0 ‘ ‘ ‘ 0.0 == ‘ ‘ ‘ ‘
0.14 016 018 020 022 0.14 016 018 020 022
T (GeV)

FIG. 2. The temperature dependence of (a) the specific shear viscosity 1/S, (b) the specific bulk viscosity ¢ /S, and (c) the bulk viscosity
¢ itself in units of fm >, given by the parametrizations (78) and (79) [6]. We note that the peak of ¢ /S in panel (b) occurs at the temperature
T = 0.995T. ~ T. whereas the bulk viscosity { = (£/S) x S in panel (c) peaks at the higher temperature 7 = 1.057.

where in Eq. 76(d) we used
m E+PLdmdT

m tm  dT dE

as well as E® — 277(1() — ’sz) =&—-2P, — P, —4B.
To fix the relaxation times 7, and t we proceed as

follows: we use a temperature-dependent parametrization for

the specific shear viscosity 1/S [6],

/ . (n/s)min + (n/s)slope(T - T()
B (n/S)min

where S = S(€) is the lattice QCD entropy density and 7, =
154 MeV is the pseudocritical temperature. The model pa-
rameters (17/S)min = 0.08 and (/S )s10pe = 0.85 GeV~! were
extracted from a global Bayesian analysis of RHIC and LHC
heavy-ion-collision data [6].° Similarly, we use for the specific
bulk viscosity ¢ /S the parametrization from Ref. [77]:

¢/8 =(&/Shom f(T/T)p), (79)

where the function f(x) is given by

(77)

forT > T,

78
forT < T, (78)

Ci+ hexp [%] + A exp [“‘0—_21] (x < 0.995)
f=140+Ax+ Apx? (0.995 < x < 1.05)
Cy + Azexp [l(r;f] + Agexp [1;—4"] (x > 1.05),

(80)

with Ag = —13.45, Ay =27.55, A, = —13.77, C; = 0.03,
C, =0.001, Ay =09, 1, =022, 23 =09, A4 =0.25, 01 =
0.0025, 0, = 0.022, 03 = 0.025, and o4 = 0.13. For the nor-
malization factor we choose (£ /S)norm = 1.25 [6], and we fix
the location of the peak of the specific bulk viscosity by taking

Note that, while some of these parameters where fit to experimental
data [6], this was done with standard viscous hydrodynamics, and
slightly different values might be expected when repeating that
exercise with anisotropic hydrodynamics. The precise values of the
parameters in Eqgs. (78)—(80) should therefore not be taken too
seriously.

T, = T..!° Figure 2 shows the behavior of the specific shear
and bulk viscosities as a function of temperature.

The relaxation times are then obtained from the kinetic
theory relations (38), rewritten in the form

n S ¢S
== TnN=355">

S /371 S ﬁl‘[
using the following quasiparticle versions of the isotropic
thermodynamic integrals 8, and B [52]:

g L (—p-A-p)y
T p 13- p)
_ 5
T3

Ty 81)

feq7

dm —p-A-
— cf(é’ + Peg) + cfm— ufeq.

Pn dt J, 3 - p)

(82)

Here cf,(S) is the squared speed of sound from lattice QCD.
The system (76) of ordinary differential equations is solved by
using Heun’s method. After each intermediate and full time
step the anisotropic parameters are updated by numerically
solving Eq. (68).

These anisotropic hydrodynamic results will be compared
with those from second-order viscous hydrodynamics in
the 14-moment approximation. The corresponding evolution
equations and transport coefficients are derived in Appendix E.
For Bjorken flow, the set of independent dynamical vari-
ables reduces to the energy density &, the shear stress 7 =

—2M = %(Pl — PL), and the bulk viscous pressure 1 =

%(279 | + Pr) — Pey. Their evolution equations simplify to
E+Pyq+—m

E= , (83a)
T
5= _l . 4& _ (Tax + 3877)T — 2)\111'11_[’ (83b)
T 3t 31, T
. I SunlIl — A
e X _ Ao Snnll—An.m 830)

n T met

1Note that this puts the peak of the bulk viscosity at a much lower
temperature than assumed in most previous implementations of this
parametrization (see, e.g., Refs. [6,77-80]).
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FIG. 3. The Bjorken evolution of the normalized energy density £/&, bulk viscous pressure IT, longitudinal shear stress component 7,
pressure anisotropy P /P, , total mean field B, and nonequilibrium component of the mean field § B, calculated in anisotropic hydrodynamics
(solid red, vaHydro) as well as in standard viscous hydrodynamics (dashed blue and green, vHydro and vHydro 2). The solid red and long-dashed
blue lines (vaHydro and vHydro) use transport coefficients derived from kinetic theory for medium-dependent quasiparticles while the dashed
green lines (vHydro 2) use kinetic theory transport coefficients derived in the small fixed mass limit. The fluid starts out in thermal equilibrium at
longitudinal proper time 7y = 0.25 fm/c with initial temperature 7, = 0.5 GeV. In panel (f), the short-dashed purple line shows the “asymptotic
approximation” (75) for § B, computed by using data from the anisotropic hydrodynamic evolution whereas the long-dashed blue line uses
Eq. (84) and data from the viscous hydrodynamic evolution. IT, r, B, and 8B are plotted in units of GeV /fm?.

For the nonequilibrium mean-field contribution § B we use the
second-order expression [52]

@ 3tndmdT

§BY = — dg(€+73€q)l'[9, (84)
where 6 = 0,u* =1/t is the scalar expansion rate. In
Eq. (84), we replaced the relaxation time t, by 7. The
relaxation times 7,; and 7y are obtained from Eqgs. (81) and (82)
while the second-order transport coefficients T, 67z, Arr,
omm, and A, are computed from the quasiparticle model in
the 14-moment approximation (after expansion around a local
equilibrium distribution; see Appendix E). We also look at
how the transport coefficients, including the relaxation times,
affect the viscous hydrodynamic results when computed in
the small-fixed-mass approximation z < 1 and dm/dT ~ O,
without a mean field, which is commonly implemented in
viscous hydrodynamic simulations. [78,81,82].

A. Equilibrium initial conditions

In Fig. 3 we show the Bjorken evolution of the hydrody-
namic variables in anisotropic hydrodynamics, including the
total mean field and its nonequilibrium component in the quasi-
particle (QP) model used to compute the transport coefficients,
and compare it with that in the standard viscous hydrodynamic
models. Figure 4 shows the same for the associated Knudsen
and inverse Reynolds numbers. In this section we impose
equilibrium initial conditions with initial temperature 7o = 0.5
GeV at longitudinal proper time 7o = 0.25 fm/c, i.e., all
nonequilibrium effects are initially zero. Figure 3(a) shows that

all three models (anisotropic hydrodynamics with QP transport
coefficients in solid red lines, standard viscous hydrodynamics
with QP transport coefficients in long-dashed blue lines, and
transport coefficients from a Boltzmann gas in a small-fixed-
mass expansion in short-dashed green lines) produce almost
identical evolutions for the energy density. The energy density
decreases somewhat more slowly than for a conformal ideal
fluid, indicated by the thin black line ~t =43, This is due
to the smaller pressure of our EOS (which thus performs
less longitudinal work) and to viscous heating. For reference
we note that the system passes through the pseudocritical
temperature 7, = 154 MeV at 7, ~ 37 fm/c, with a small
spread of less than 2 fm/c between the three models.

Figure 3(c) shows that, if a QP model is used for the
transport coefficients, the mean field B also evolves almost
identically in anisotropic and standard viscous hydrodynamics.
Small differences between anisotropic and standard viscous
hydrodynamics with QP transport coefficients are observed in
the evolution of the shear stress 7 [O(2%)] and the pressure
ratio P /P, [0O(10%)]: the effective resummation of shear
viscous effects in anisotropic hydrodynamics leads to a slight
reduction of the shear stress, resulting in a slightly reduced
pressure anisotropy. Standard viscous hydrodynamics, with
transport coefficients calculated in the small-fixed-mass expan-
sion (short-dashed green lines), produces somewhat [ O (15%)]
larger shear stresses and stronger pressure anisotropies.

Given that the pressure anisotropy gets quite large, with
P /Py decreasing to about 30% at T ~ 1 fm/c, the excellent
agreement between standard viscous and anisotropic hydro-
dynamics is somewhat unexpected. It suggests that the widely
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FIG. 4. The shear (top row) and bulk (bottom row) Knudsen and inverse Reynolds numbers numbers associated with Fig. 3. For Bjorken
flow, the formulas for the Knudsen and inverse Reynolds numbers reduce to Kn, = 7,,/0,,067 = /2/31, /7, Kng = tn6 = tn /7, R} 1 —
T [Peg = 32w /Peq, and RH' = |IT|/Peq. The last column [panels (c) and (f)] shows the Navier-Stokes limits of the shear and bulk
inverse Reynolds numbers, R} \s = v/8/37/(tPeq) and Rp'ys = £/(TPeg).

used standard viscous hydrodynamic approach is quite robust
and quantitatively reliable even for large shear stresses. Similar
observations were made before in Ref. [72] as well as in
studies of the Bjorken dynamics of strongly coupled theories
where second-order viscous hydrodynamics could be directly
compared with an exact numerical solution of the underlying
strong-coupling dynamics [83,84].

The largest differences between anisotropic and standard
viscous hydrodynamics are seen in the evolution of the bulk
viscous pressure IT [Fig. 3(d)] and the nonequilibrium part of
the mean field 6 B [Fig. 3(f)]. The two panels expose strong
correlations between the evolutions of these two quantities.
Both are small: (i) The bulk viscous pressure at early times
is about 100 times smaller than the shear stress. While the
evolution of IT is qualitatively similar (although quantita-
tively different by more than a factor of two at early times)
for anisotropic and standard viscous hydrodynamics with
QP transport coefficients, it exhibits qualitatively different
dynamics in standard viscous hydrodynamics with transport
coefficients computed from the small-fixed-mass expansion.
(ii) Compared with the equilibrium mean field, the nonequi-
librium part §B is about two orders of magnitude smaller
[see Figs. 3(c) and 3(f)]. Here one observes very different
trajectories for § B between the evolutions from anisotropic
and standard viscous hydrodynamics, although their shapes are
qualitatively similar. In addition, Fig. 3(f) shows for compari-
son the “asymptotic approximation” (75) (short-dashed purple
curve) which should be compared with the exact numerical
solution (red solid line). Obviously, the large expansion rate
at early times makes the asymptotic trajectory, which is based
on the assumption that § B evolves more slowly than the bulk
relaxation rate, a rather crude approximation.

Figure 4 shows the Knudsen and inverse Reynolds numbers
associated with the shear and bulk viscous stresses. While the
Knudsen and inverse Reynolds numbers associated with shear
stress dominate the nonequilibrium dynamics at early times,
those associated with bulk viscosity are the most relevant at
late times when the system passes through the QCD phase
transition.'!

In spite of the shear Knudsen number [Fig. 4(a)] starting out
large with a value of around 2.5, the shear inverse Reynolds
number [Fig. 4(b)] never exceeds a value of about 75%—85%.
This results from the delay caused by the microscopic shear
relaxation time which controls the approach of the shear stress
7 from its zero starting point to its Navier—Stokes value and
has at 7o = 0.25 the value 7, ~ 0.8 fm/c. By the time R;'
reaches its Navier—Stokes limit [shown in Fig. 4(c)], the shear
Knudsen number has already dropped to values well below 1.
We reiterate that at the peak value ~3/4 of the shear inverse
Reynolds number the differences between anisotropic and
standard viscous hydrodynamic evolution are less than 6% as
long as both are evaluated with transport coefficients computed
from the same underlying kinetic theory.

Figure 4(e) shows the evolution of the bulk inverse Reynolds
number Rﬁl , which peaks due to critical dynamics near
the QCD phase transition temperature 7,; the corresponding
Navier—Stokes value is shown in Fig. 4(f). Because 7y o ¢ [see
Eq. (81)], the bulk relaxation rate slows down when the bulk
viscosity peaks. This leads to “critical slowing down” of the

"Note that the Knudsen numbers for vaHydro (solid red) and
vHydro (long-dashed blue) are almost identical due to the very similar
energy density and temperature evolution; see Eq. (82) and Fig. 3(a).
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FIG. 5. Same as Fig. 3 but for Glasma-like initial conditions, with the same initial temperature at the same initial time. The initial pressures
are set to Py = 4.975 x 1073&; and P = 0.4975&,. For the anisotropic hydrodynamic evolution (solid red line) the magnitude of the initial
mean field By is reduced to 15.3% of the default value (purple short-dashed line) B®Y = B, + § B®Y. For the standard viscous hydrodynamic
evolution with quasiparticle transport coefficients (long-dashed blue lines) B and § B are determined as described in the text. I1, =, B, and 6 B

are plotted in units of GeV /fm’.

evolution of the bulk viscous pressure I, limiting its growth
as the system cools down to T, [33,35]. Comparing the solid
red and dashed blue curves in Figs. 4(e) and 4(f), we see that
IT and thus R;' never reaches much more than about half of
its peak Navier—Stokes value, and it also peaks later (around
T ~ 38 fm/c = 1, corresponding to T & 0.9957T,) than the
Navier—Stokes limit which reaches its maximum already at
T ~ 27 fm/c (corresponding to T ~ 1.057,). One observes
that, even near its peak at t ~ 38 fm/c, R]f[1 evolves almost
identically in anisotropic and standard viscous hydrodynam-
ics with QP transport coefficients.'> A marked difference is
observed, however, when the system is evolved with standard
hydrodynamics using transport coefficients from a massless
Boltzmann gas without a mean field [green short-dashed lines
in Figs. 4(d) and 4(e)]. It turns out that the thermodynamic
integral By in Eq. (82) is remarkably sensitive to the degree of
nonconformality of the Boltzmann gas, giving rise to a much
longer bulk viscous relaxation time in the QP model than for
the light Boltzmann gas without a mean field, especially in the
neighborhood of 7,. This is reflected in the large difference
between the short-dashed green line and the other two curves
for the bulk Knudsen number shown in Fig. 4(d), which causes
the corresponding large difference in the evolution of the bulk
inverse Reynolds number shown in Fig. 4(e): The much shorter
relaxation time for the light Boltzmann gas allows the bulk
viscous pressure to follow its Navier—Stokes limit [shown in

12The reason for this will become clearer in Fig. 7 below where we
will see that at late times anisotropic hydrodynamics reduces in good
approximation to second-order viscous hydrodynamics.

Fig. 4(f)] much more closely, causing Ry ! to rise much more
steeply and to a larger peak value as the system cools towards
T, than in the other two approaches where B is calculated
from the QP model.

We have studied thermal equilibrium initial conditions with
several other combinations of initial temperature 7 and 7y,
resulting in significantly different evolutions of the energy
density and viscous pressure components (not shown here).
Two features appear to be universal, however: (i) As long
as we use transport coefficients computed from the same
microscopic QP kinetic theory, the evolution of all components
of the energy-momentum tensor, as well as of the mean field
B, shows only very small differences (of the same order as
shown in Fig. 3) between anisotropic and standard viscous
hydrodynamics. (ii) By using instead transport coefficients for
a Boltzmann gas of light fixed-mass particles, standard viscous
hydrodynamics leads to significantly different evolutions for
the bulk viscous pressure I1. For a meaningful comparison
between anisotropic and standard viscous hydrodynamics it
is therefore important that a consistent set of transport coef-
ficients is being employed. Also, for a medium with broken
conformal invariance (such as the quark-gluon plasma and
other forms of QCD matter) nonconformal effects on the
transport coefficients can have a large effect on the evolution of
the bulk viscous pressure which may not be properly captured
when using transport coefficients derived from a theory with
weakly interacting degrees of freedom that have small masses.

B. Glasma-like initial conditions

In this section we repeat the exercise of the previous one
for a different set of initial conditions, resembling those that
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FIG. 6. The shear and bulk Knudsen numbers and inverse Reynolds numbers associated with Fig. 5.

one would get from matching the hydrodynamic evolution to a
pre-equilibrium stage described by the IP-Glasma model [37].
As already described, this model predicts approximately van-
ishing initial longitudinal pressure P, &~ Oand P, ~ £/2[75].
(In practice, we set P /P, = 0.01 initially). We use the same
initial longitudinal proper time and temperature as before. The
corresponding results are plotted in Figs. 5 and 6.

For this extreme initial condition, the default magnitude
of B must be reduced by about 85% in order to be able to
successfully initialize the anisotropic microscopic parameters;
for B this is shown in Fig. 5(c) while the implications for the
anisotropic microscopic parameters will be discussed in the
following section. The highly nonequilibrium initial conditions
manifest themselves in large starting values for the shear and
bulk stresses and the nonequilibrium mean field. The initial
shear stress [Fig. 5(b)] is about five times larger than its
peak value for equilibrium initial conditions. The bulk viscous
pressure [Fig. 5(d)] and nonequilibrium part of the mean field
[Fig. 5(f)] are for the first fm/c one to two orders of magnitude
larger than for equilibrium initial conditions. In spite of this,
anisotropic and standard viscous hydrodynamics still lead to
almost identical evolution trajectories for the energy density
[Fig. 5(a)] and viscous pressures [Figs. 5(b) and 5(d)] if QP
transport coefficients are used, and if the latter are swapped out
for those from a light Boltzmann gas, a significant change in the
standard viscous hydrodynamic evolution is only seen for the
bulk viscous pressure [short-dashed green curve in Fig. 5(d)].
The shear stress 7 and the pressure ratio Py /P, emphasize
the differences in the hydrodynamic models somewhat at early
times [Figs. 5(b) and 5(e)], pushing the pressure ratio towards
isotropy somewhat faster in anisotropic than in standard
viscous hydrodynamics, but all three dynamical approaches
converge to a common late-time behavior for = and P /P,
after about 2 fm/c (i.e., after about three times the initial
shear relaxation time of about 0.8 fm/c). It is, however, not

the case that equilibrium and Glasma-like initial conditions
lead to the same temperature evolution of the system: A
careful comparison of Figs. 3(a) and 5(a) shows that, for the
nonequilibrium initial conditions, viscous heating by the large
initial bulk and shear stresses causes the energy density (and
therefore temperature) to drop somewhat more slowly than for
equilibrium initial conditions, especially at early times.

Figure 5(f) shows again that the “asymptotic approxima-
tion” (75) for §B™Y) (dashed purple line) is not a good
approximation for the full numerical evolution of § B shown by
the solid red line. Since for the Glasma-like initial conditions
the nonequilibrium mean-field contribution § B is initially of
the same order of magnitude as the equilibrium contribution
Beq, the breakdown of this approximation is visible even in the
evolution of the total mean field B (solid red line) which is not
at all described by B®Y) = B.q + § B,

Looking at the Knudsen and inverse Reynolds numbers
in Fig. 6 the only striking (although obvious) difference are
the large starting values for both shear and bulk inverse
Reynolds numbers when using Glasma-like initial conditions.
Similar to the shear stress 7w and pressure ratio P /P, in
Figs. 5(b) and 5(e), these two observables exhibit noticeable
differences at early times between anisotropic and standard
viscous hydrodynamic evolution.

C. Evolution of the microscopic kinetic parameters

Although the parameters (A, o , oy ) describing the slope
and anisotropy of the momentum distribution of the micro-
scopic degrees of freedom are vestiges from an underlying
kinetic theory whose traces we have tried to erase as much
as possible in our formulation of anisotropic hydrodynamics
(hoping that eventually we can obtain the transport coefficients
of QCD matter from a more fundamental approach), it is inter-
esting to “look under the hood” and see how our parametrized
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FIG. 7. The anisotropic hydrodynamic evolution of the effective
temperature A (dashed blue) compared with the temperature T
(solid red) is shown in the left panels for (a) equilibrium and (c)
Glasma-like initial conditions. The right panels show the evolution
of the momentum deformation parameters «;, (dashed magenta) and
o (dash-dotted black), again for (b) equilibrium and (d) Glasma-like
initial conditions. The temperatures A and T are plotted in units of
GeV. The deformation parameters ¢; and «; are unitless.

anisotropic EOS works, i.e., how the QP model adjusts its
microscopic parameters to accommodate the macroscopic
anisotropic hydrodynamic initial conditions provided, and how
it evolves them in response to the anisotropic hydrodynamic
evolution of the energy-momentum tensor.

Figures 7(a) and 7(b) compare, for equilibrium initial con-
ditions, the evolution of the effective temperature parameter A
with that of the true temperature 7 extracted from the energy
density, and of the momentum anisotropy parameter oz, with
that of o , respectively. A comparison of Figs. 7(a) and 7(b)
with Figs. 4(b) and 4(e) shows that large inverse Reynolds
numbers in both the shear and bulk sectors correlate with
effective temperatures A > T and longitudinal momentum
deformation parameter «; < 1. Large shear inverse Reynolds
numbers correlate with o) deviating from unity in the opposite
direction (i.e., with «; > 1), leading to narrower longitu-
dinal and wider transverse momentum distributions than in
the equilibrium distribution feq, consistent with P, /P, < 1.
Large bulk inverse Reynolds numbers push down both «; and
o, corresponding to negative bulk viscous pressures. At late
times, when both the shear and bulk inverse Reynolds numbers
approach zero, the momentum distribution approaches local
equilibrium, &y ;| — land A — T.

For Glasma-like initial conditions, shown in Figs. 7(c)
and 7(d), these generic statements for the deformation parame-
ters & remain true but at early times the relationship between T
and A is completely changed: the effective temperature A starts
out much smaller than the true temperature. A low effective
temperature A would narrow the microscopic momentum
distribution in the transverse plane if it were not compensated
by a very large [O(10)] initial value of «; , which upholds the
kinetic-energy density and transverse pressure. On the other

hand, o starts out almost at zero, reinforcing the narrowing
of the longitudinal momentum distribution generated already
by the small A value and thereby causing a very small ratio
of the kinetic contributions to P, and P, . This is, of course,
forced upon the system by the very anisotropic initial condition
Pr/P, =0.01.

While the microscopic kinetic parameters (A, o) control
only the kinetic contributions to energy density and pressures,
the qualitative agreement of their tendencies extracted from
this analysis of Figs. 7(c) and 7(d) with those of the total
energy density and pressures shown in Fig. 5 demonstrates
that the mean field B, even where large, cannot alter the sign
of the pressure anisotropy (shear stress). Its value shifts the
average kinetic pressure relative to the kinetic-energy density
and thereby has a large influence on the bulk viscous pressure.

VI. CONCLUSIONS AND OUTLOOK

In this work we presented a purely macroscopic formulation
of anisotropic hydrodynamics in 3 + 1 spacetime dimensions,
parametrized with Milne coordinates. To obtain the Lorentz
structure of the anisotropic hydrodynamic equations, includ-
ing the relaxation equations for the dissipative flows, we
started from a microscopic description in terms of a rela-
tivistic Boltzmann—Vlasov equation with a relaxation-time-
approximated collision term. The mean field in the Boltzmann—
Vlasov equation is constructed such that the energy density
and equilibrium pressure of this kinetic theory satisfy an
equation of state that agrees with the lattice QCD EOS of
strongly interacting matter. The macroscopic equations of
motion are derived from an anisotropic moment expansion
of this Boltzmann—Vlasov equation, where the distribution
function is split into a momentum-anisotropic leading-order
term f, and a residual correction & f. To close the anisotropic
moment expansion we use for the residual correction & f
the 14-moment approximation. The leading-order term is
constructed such that it can nonperturbatively account for
the two largest dissipative effects encountered in relativistic
heavy-ion collisions, a large longitudinal-transverse pressure
anisotropy at early times and a large bulk viscous pressure
during the phase transition of the matter from a quark-gluon
plasma to color-confined hadronic matter. This requires the
introduction of two momentum-anisotropy parameters o, o
into f, whose dynamics is fixed by a novel generalization of
the Landau matching conditions that ensures that there are no
residual corrections from 8 £ to the longitudinal and transverse
pressures of the system. This matching scheme allows us to
completely eliminate the microscopic parameters that define
fa, and to write down, for the first time, a set of macroscopic
anisotropic hydrodynamic evolution equations which make no
explicit reference at all to their microscopic kinetic origin.

There are ten evolution equations for the ten components
of the energy-momentum tensor. No specific assumptions are
made for the equation of state relating the energy density and
thermal pressure in thermal equilibrium, i.e., the equations can
be used to describe any form of matter that behaves like a
dissipative fluid. Two of these equations evolve the longitudinal
and transverse pressures Py and P, . Instead of splitting them
into a thermal equilibrium pressure, a bulk viscous pressure
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and a longitudinal-transverse shear stress, with the latter two
quantities assumed to be small and perturbatively treatable, in
our approach P, and P, themselves are evolved, with the
transport coefficients controlling how far they may deviate
from the thermal equilibrium pressure.

The evolution of the energy-momentum tensor components
is controlled by a standard set of driving forces, such as
the longitudinal and transverse expansion rates, the various
components of the velocity shear tensor, the flow vorticity,
etc. In addition, the dissipative flows are characterized by
a set of relaxation times describing their relaxation towards
their first-order Navier—Stokes limits. Consistent with the
anisotropic parametrization of the leading-order distribution
fa, the dissipative forces are separated into longitudinal and
transverse parts by using a systematic procedure involving or-
thogonal projection operators that was developed in Ref. [42].
They are multiplied by a set of two dozen transport coeffi-
cients. These transport coefficients, as well as the relaxation
times, are material properties of the dissipative fluid to be
described.

We do not know how to compute these transport coefficients
for QCD matter from first principles. Therefore, we use in this
work a kinetic theory for weakly interacting quasiparticles with
temperature-dependent masses as a model for computing them.
We write the distribution function for these quasiparticles as
f = fa + 8 f and parametrize f, in the same way as in the
kinetic theory from which we first started. From the solution
of the anisotropic hydrodynamic equations we then take the
energy density &£, longitudinal pressure P, and transverse
pressure P, , as well as the mean field B, and describe the
deviations of Py and P from the equilibrium pressure Peq()
(which is taken from lattice QCD) in terms of the microscopic
anisotropic parameters of the kinetic model. Having thus fixed
the parameters of the kinetic model from the macroscopic
hydrodynamic output, we can use it to compute all the transport
coefficients in kinetic theory. We emphasize that mapping
the hydrodynamic output in this way onto kinetic theory is
done here only for the purpose of computing the transport
coefficients—the evolution equations for the components of
the energy-momentum tensor are purely macroscopic and
make no explicit reference to the evolution of microscopic
parameters that are only defined within kinetic theory.

For the relaxation times we take previously introduced
phenomenological parametrizations that were recently cali-
brated by a global comparison of a sophisticated dynamical
model involving dissipative relativistic fluid dynamics at its
core with experimental heavy-ion-collision data collected at
the LHC [6,85].

As a first application of this new approach we have
here studied the Bjorken evolution of a longitudinally boost-
invariant, transversely homogeneous system, evolving it both
with anisotropic and standard viscous hydrodynamics for
comparison. We find remarkable agreement between the two
approaches if both used quasiparticle transport coefficients
but noticeable disagreements with a standard viscous hydro-
dynamic simulation using transport coefficients for a weakly
interacting Boltzmann gas in the small-fixed-mass limit. This
suggests an unexpected robustness of the standard viscous
hydrodynamic approach even in the presence of large shear

and bulk viscous effects. A final assessment of the relative
strengths and weaknesses of anisotropic vs standard viscous
hydrodynamics will, however, have to await the availability
of full (34 1)-dimensional numerical evolution comparisons
which are presently being pursued.

A key motivation for anisotropic hydrodynamics is that,
by accounting for the large dissipative components already
at leading order, by parametrizing them into the leading-
order distribution function f;, the remaining dissipative flows
arising from the residual deviation & f in the decomposition
f = fu. + 8 f should be smaller than the dissipative flows in
standard viscous hydrodynamics where they arise from §f in
the decomposition f = f.q + &f. Bjorken flow does not allow
us to test this expectation because, for systems with Bjorken
symmetry, the residual dissipative flows arising from & f
vanish anyhow exactly by symmetry. Full (3 + 1)-dimensional
simulations will allow us to answer this question. Taking the
results reported in the last chapter of Ref. [72] (based on a
version of the present framework that did not treat the bulk
viscous pressure nonperturbatively) as guidance for what to
expect, anisotropic hydrodynamics as formulated here should
indeed make the residual shear stress components significantly
smaller in the center of the fireball, where the largest shear
stresses are generated at early times by longitudinal expansion.
However, the same may not necessarily hold for cells near the
transverse edge of the fireball where the transverse expansion
rate can exceed the longitudinal one and where accounting
nonperturbatively for large effects associated with anisotropies
relative to the beam axis (as we do here) may not offer signifi-
cant advantages. We hope to be able to soon present numerical
results that show how these expectations bear out in practice.

We close by noting that the observed sensitivity of the
Bjorken evolution to the chosen model for computing the
transport coefficients puts some urgency to the question how
to compute the transport coefficients of anisotropic hydrody-
namics from first principles for a theory such as hot and dense
QCD. We have to leave this as a challenge for future work.
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APPENDIX A: ANISOTROPIC INTEGRALS

In this section, we define the anisotropic integrals that ap-
pear in this paper and show how to integrate them numerically.
The anisotropic integrals Z,,.4; and J,,4s are defined as

(- p)y "2 ,

Lurgs = ; W(_Z “p)
x(—p-8-p)(p- Q- p)"fa, (A1)

(u-py -

Jnrqs = , W(_Z - p)
X(=p-B-p)p-Q-p)fufa (A2

where the distribution function f, is

1 2 2
fa=fu —\/%+L§‘F+mz). (A3)

A 1 or

For particles with Boltzmann statistics 7,45 = Jnrqs- Al-
though there is no known analytical solution for these integrals
for massive particles, their dimensionality can be reduced to
one. After substituting the spherical coordinates
PxLRF = ] Apsiné cos ¢,
Dy IRE = @ AP singsing, (A4)
Pz1RF = g Apcos,
with p = p/A, the angular integrals in Eqs. (A1) and (A2) can
be evaluated analytically, yielding

2q+2 r+1 A nts+2
a oA

o0
dp —n+l,=2 —=2\5/2
4722\ /0 pp"T(pT +m”)
X Rnrq(aL’O‘L; ’h/ﬁ)feq(\/m),
2942 _r+1 pAnts+2  poo
ap o A f S S N
T R e — d +
Jnra a2t )y PP (p* +m’)
X Rrg(@1,01;/ P) foq(v/ P + 117)

Inrqs =

(AS5)

X feq(v/ P2+ m?), (A6)
where m = m/A and the functions R,,,, are defined as
Rnrq(ai’aL; m/ﬁ)
1
= "2 / d cos 6(cos 0) (sin 6)*
-1
x (14 zsin®)" 21702 (A7)

with w = [oti + (n/p)*1Y/? and 7z = (ozf_ — ai)/wz. The ra-
dial momentum integral can be computed numerically with
generalized Gauss—Laguerre quadrature. For reference, we list
the functions R, that are needed in this paper:

Raoo = w[l + (1 + 2)t(2)], (A8a)

Raso = w’ (A8b)
w

R = My (A8c)
Zw

342z -3(14+2)1(2)

Roao 53 , (A8d)
2w
3+ z+ 0 +2)(z = 3)(2)
Rom = 205 0w (AS8e)
343+
Ray = O+ 2@ (ASD)
22w?
—15+13 3(1 5
Ruat = + 13z +4Z(3wﬂ: )5+ z)t(z)’ (ASg)
Raos = 3z-D+ (Z(jzzw— 2) + 3)t(z)’ (ASh)
R = 3+z+ (14-|Zrzzu))(z - 3)t(z)’ (ASi)
15+z+ —6)—15 .
Rums = z (zi;ws) )t(z)’ (AS))
S (z —=3)(5+32) + 30 + 2)(z(z — 2) + 5)t(z)
0 422(1 + Dw? ’
(ASK)
where 1(z) = %

APPENDIX B: ANISOTROPIC INTEGRAL IDENTITIES

Here we show how to derive the identities (73). First, we
express the anisotropic integrals (A1) and (A2) as

n—r—2q r

1 2 ,
Turgs = 2! /I;ELRF pz,LRFpﬁLRFEZfaa (BD)

1 2 2 -
fEERé ' PLireP CiReEa fafar (B2)
p

\7nrqx = m

where E, = (m* 4+ p1 | gp/@l + p2ge/ai)'/?. Fromhere on
out, we suppress the LRF subscripts. To obtain the first
identity 73(a), we introduce rapidity coordinates

E =m,coshy, p,=m,sinhy, (B3)

where m | = (m* + pf_)l/z, to rewrite Eq. (B2) as

dydsz n—2q —r—2,
ras = ——m cosh y)'—"=1
x (sinh y) p 9 ES £, fu. (B4)

Next, one can write the distribution term f, £, as

Aa%Ea ofa
m? cosh ysinhy dy

fafa= (BS)

After integrating by parts with respect to the variable y (where
the boundary term vanishes for » > 2) one obtains the relation

s7nrqs = AO[%(I’! —r — 2‘] - I)Ill—Z,r,q,s-H
+A(,¥12‘(I" - l)In72,r72,q,s+1 + A(S + I)In,r,q,sflv
(B6)

which for (n,r,q,s) = (4,2,0, — 1) yields Eq. 73(a).
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For the second identity 73(b) one uses cylindrical coordi-
nates

E =.\/m?>+ pl 4+ p2, p.=picosp, p,=pising

(B7)
to express the integral (B2) as

_ dp.dp;
\.7nrqs - g/ (27T)2(2q)”

The term f, f, can be written as
A} E, 3f,
pL dpL

Integration by parts with respect to p | , with the boundary term
vanishing for g > 1, gives

EMT —2g— lp; 24+1Esfafa

fafa=— (B8)

erqs = A()li(l’l —r — 2q - I)Izl—Z,r,q,s-H
+ A T, 0 g-1541 + Al + DL, 0-1,  (BY)

which for (n,r,q,s) = (4,0,1, — 1) yields Eq. 73(b).
Finally, to get the third identity 73(c) we use spherical
coordinates

E =/m?+ p2, p, = pcosb,

px = psinfcos¢, p, = psinfsing (B10)
in the integral (B2):
dpd(cosO) . . 5. _;
ras = En r—2q r+2q+2
o =5 [ Gy g
x (cos @) (sin ) EX £, f. (B11)
and write the term f, f, as
A E, 0fa
fafa= aLaL /. (B12)

o —a? p*cosf dcosh
Integrating by parts with respect to cos 6, where the boundary
term vanishes for ¢ > 1, gives the following relation:

Aa? o?
1YL
\7nrqs = —2[(}’ - I)In—Z,r—Z,q,s-H _In—Z,r,q—l,s-&-l]

1o
+A(S + 1)1.11,r,q,s—1»

(452715_

(B13)

which for (n,7,q,s) = 1) yields Eq. 73(c).
APPENDIX C: ANISOTROPIC TRANSPORT
COEFFICIENTS

We list the transport coefficients that appear in the relax-
ation equations (33)—(36). Some of the expressions contain
terms «xdm /dT (see footnote 5). For the quasiparticle model
described in Sec IV A, the temperature-dependent mass m(T')
and its derivative dm /dT should be taken from Fig. 1.

The coefficients controlling the evolution of the kinetic

longitudinal pressure sz) are

EEO = Thye0 — 3PV + ﬁ%(é' + Pr)Zoooo, (Cla)
10 = Ty~ PO 49T e P V. (Clb)
f 210 — Py IT de ') Zo200,

- Ja410 dm dT

g = 222 — To00, C1
Ve = T | dT dg (Cle)
At = 1=y (Cld)

- Ja20 dm dT

ALk — 22220 —7 Cle
T T T | dT dEO (Cle)

Those controlling the evolution of the kinetic transverse pres-
sure PG()

TH0 = Ty — PP +m Z—H;Z—g(g + Pr)Zootos (C2a)
FY = 2T — PR) +m S+ P, (€20)
Ty = 2;71 2120 Z’; Zg Zoo105 (C2c)
T = 3 -1, (C2d)
_ 3 dm dT

b =1- jj‘:;o dr; dgzomo (C2e)

The evolution of the longitudinal momentum diffusion current
W1, involves the coefficients

1
= E(sz) — Ino0), (C3a)
1
Y = E(Pﬂ" — Tmo), (C3b)
z =PP PP, (C3c)
_ _ 1 dm dT J210
S = Ay ——(& , (C3d
w wil— 2+de d5( +PL)( 4210) (D
_ Jaa10 dm dT J»10
W= —m e+ P )( ) (C3e)
v Ta210 dT d& P\ Taano
_ 2
= 2Jen (€30
Tni0
- Ja220
o= , (C3g)
i J4020 g
A=Y -1, (C3h)

while that of the transverse shear stress tensor 7 j_” involves the
coefficients

i =P — T, (C4a)
_ 3 1 dm dT J2020
5T = 28 4~ —m— (€ , (C4b
T 4T” +2 dT d€( +PL)< 4020) ( )
_ 4 J4030
T _9 (Cdc)
T Ja020
_ dm dT k72()2()
=2 -1 ——(E+P ,  (C4d
" i o ar d&’( * L)<J74020> (G4
My = Xku -1, (Cde)
My =My, +2. (C4i)

Additional transport coefficients appear for systems with
conserved charges and associated diffusion currents [42].
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APPENDIX D: TRANSPORT COEFFICIENTS FOR P,
AND P, IN THE QUASIPARTICLE MODEL

Here we redefine the transport coefficients controlling the
macroscopic longitudinal and transverse pressures after adding
to Egs. (33) and (34) the mean-field terms from Eq. (52). The
transport coefficients for the total longitudinal pressure P, are

- - 1 dmdT
&= - ST+ PU(EY — 2P - PYY),
(Dla)
L 1 dm dT
i =i -SSR o€+ P(EW - 2P - P,
(D1b)
= - 1 dmdT
R = Ry — (€Y - 2P — PPy, (Dlo)
Ay =1, (D1d)
0 - 1 dm dT
hy =20 ad—';%(ﬂ") —2PP PPy (Dle)

Those controlling the evolution of the total transverse pressure
P, are

L I dm dT
L= - T+ PO(EY —2PY - PYY),
(D2a)
- - 1dmdT
fh = - S €+ P (EY - 2P - PY),
(D2b)
= - 1 dmdT
Ty =2t = 22 oo (€9 2P - PP). (Do)
M =M — L, (D2d)
- - 1 dmdT
= L ge € P ) 0

APPENDIX E: VISCOUS HYDRODYNAMIC EQUATIONS

Here we derive the viscous hydrodynamic equations (83)
and their transport coefficients. We start with the quasiparticle
case (long-dashed blue) and derive the relaxation equation for
6B and its second-order solution (84). The general evolution
equation for § B is given by [52]

3B

5B =—"" 4" 30+ 48B), (E1)
n m

where the m1/m term can be written as

m 1dmdT ¢ E2)
m mdT d§~
We replace the time derivative € with the energy conservation
law in viscous hydrodynamics

E+(E 4 Peg + MY — "0, =0, (E3)

where 6 = 0,u" is the scalar expansion rate and o,, =
A% g, is the velocity shear tensor. For the second-order
relaxation equation, we only need the first-order approximation

xS —(g + Peq)es thus

o LdmdT o p o (E4)
m  mdT d€ «

The equation of motion for § B then reduces to

. 8B &+ PeqdmdT
8B=—— — —— ——(3[1 +48B)0. E5
5 m dT d€ BT+ ) E5)
To first order in deviations from equilibrium 6B = 0. The
second-order solution is given by Eq. (84) [52]. In Eq. (ES),
we truncate the third-order term o8 B to arrive at the second-
order relaxation equation
8B 3(E+ Peq)dmdT
___M_m_ng_ (E6)
dT d&¢
Next, we derive the relaxation equations for the viscous
components IT and 7" in the same manner as in Sec. III.
We start by taking the time derivative of their quasikinetic
definitions [52]

8B =
n m

. 1 .
1= 50/ (—p-A-p)sf —68B, (E7a)
P
1
g = gAf;/;D/ ppPlsf, (E7b)
p

where §f is the nonequilibrium correction to the distribution
function

f = feq +8f, (E8)

with feq = exp(—u-p/T) being the local equilibrium Boltz-
mann distribution. The time derivative B is given by (E6).
We substitute the terms containing 6 f using the Boltzmann
equation (13) and Eq. (ES):

: . CLf1—md*mdP f

Sf = _feq+
u-p
B PWV;Lfeq B p(mVH(gf (E9)
u-p u-p

where p*) = A¥p¥ and V, = A}, 0, is the spatial gradient.
To close the system of equations we use the 14-moment
approximation for 6 f [81]

3f 1

— =celu - py + en(=p- A p)+ e pupy. (EL0)

feq 3
where p(,. pyy = A‘;ﬁ DPapp- To solve for the coefficients we
insert the expression (E10) into the energy-matching condition
and the definitions of IT and w#”:

8 = / (u-p)*sf =0, (Ella)
p
1
1= ——/.pup,,Al“)Sf, (E11b)
3 P
i atd :/p(upv)éf. (Ellc)
p

Since the 14-moment approximation is first-order in the dissi-
pative flows, we neglect the second-order contribution ~§ B to
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the energy density and bulk viscous pressure in (E11). After
some algebra, the coefficients are

Il
Cg=—e (E12a)
3ZLaolar — Ij,
Tyl
on= g, (E12b)
3Laoler — I3,
Y
e = T (E12¢)
21y
where we defined the thermodynamic integrals
Tno = M(_p A p)qfeq- (E13)
), Qg+ D!
The final expression for §f is
8f _ , , L
—— = \Ceu-p)y+ sen(=p-A-p))l
feq 3
1
+ =Capupnym", (E14)

2

where ¢¢ = c¢/I1, ¢q = cn /11, and ¢, = 1/Z4,. After inte-
gration by parts and inserting for §f the 14-moment approxi-
mation (E14), the relaxation equations for IT and 7" reduce
to

IT w
- _:31'19_81'11'[1_[94_)"1'[7[” alwv

1= (E15a)
n
T v) v)
A A p—— — B + 27w — 1 M)
Tx

— Sqnt0 + ApnIlo””. (E15b)

Here " = Al Apdiguq is the vorticity tensor. The transport
coefficients are

Br = ?7 (El16a)
5 d
Bri = 2B — CUE + Pug) + Em Ty, (E16b)
3 dT
m
dnn=1-—c?— ?(55100 + cnZo1)
dmdT _ 5_ 3
_mﬁﬁ(é‘ + Peq)<C€IZI + §Cn122 + W)’
(B16¢)

1 Cam* T,

Ay = __cg+w, (E16d)
3 3
10 4, m*T,

o = = ﬂTﬂ (E16€)
4 L_’”mzzzz B dm dT

67[” = 5 + T — cﬂmd—T%(g + Peq)IZZa (Eléf)
6 2m* _ _

Arn = 5 = — 5 (CeZoo + Enoy)- (El6g)

In an expansion in powers of z = m/T <« 1, taking the fixed-
mass limit dm/dT = 0, the leading terms for these transport
coefficients are [81]

EW +PY

= T“ + 0@, (E17a)
1 2\2

Bn = 15(§ - (c) ) (8 +PY) + 0), (E17b)
2 2

dnn = 3 + 0(z"Inz), (E17¢)
8/1

Az = §(§ — (c§k>)2> + 0(z%), (E17d)
10

Tor = o+ oY, (E17¢)
4 2

Onn = 3 + 0(2), (E171)
6 2

y—— 3 + O(z°Inz). (E17g)

Here (c‘(yk))2 = 731/150 is the kinetic theory definition for
the squared speed of sound. Although Eéfl), Pé’c‘l), and (cV)?
are kinetic theory expressions, it is common practice to
replace them in the above expressions with those from
lattice QCD, and we will do so here. For Bjorken flow,
the energy conservation law (E3) and relaxation equa-
tions (E15) simplify greatly. The gradient terms are o*’ =
diag(O0, %, %,—%), 0 = 1/7, and "’ = 0. The shear stress
components are T’ = diag(O,—%r%t””,—%rzn””, 7). As
a result, the viscous hydrodynamic equations reduce to
Eq. (83).
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