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We discuss the adequate treatment of the three- and four-body dynamics for the quark model picture of
double-charm baryons and tetraquarks. We stress that the variational and Born-Oppenheimer approximations
give energies very close to the exact ones, while the diquark approximation might be somewhat misleading. The
Hall-Post inequalities also provide very useful lower bounds that exclude the possibility of stable tetraquarks for
some mass ratios and some color wave functions.
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I. INTRODUCTION

There is rich literature on multiquarks, and many reviews,
including [1]. The recent contributions are stimulated by the
discovery of a double-charm baryon [2], which is interesting
by itself and also triggers speculations about exotic double-
charm mesons QQq̄q̄. For years, the sector of flavor-exotic
tetraquarks was somewhat forgotten, and even omitted from
some reviews on exotic hadrons, as much attention was paid
to hidden-flavor states QQ̄qq̄. However, the flavor-exotic
multiquarks have been investigated already some decades ago
[3] and have motivated an abundant literature [4] that was
unfortunately ignored in some recent papers.

The underlying dynamics is not exactly the same in all
papers cited in [4]. Some authors consider a purely linear
interaction, either pairwise or inspired by the string model,
and some others include a Coulomb-like interaction and spin-
dependent terms. Sometimes, the wave function contains a
single color configuration, while in other papers the role of
color mixing is analyzed.

In the present note, we stress that a careful treatment of the
few-body problem is required before drawing any conclusion
about the existence of stable states in a particular model.
We, indeed, observe a dramatic spread of strategies: Some
authors use the full machinery of a variational method based on
correlated Gaussians or hyperspherical expansion, and others
use a crude trial wave function or a cluster approximation. We
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shall review critically the different strategies that can be found
in the literature.

Not surprisingly, the main difficulties are encountered
when a multiquark state is found near its lowest dissociation
threshold. The question of whether or not there is a bound state
requires a lot of care. In particular, one should account for the
mixing of color configurations [5,6].

We apologize for the somewhat technical character of this
survey. However, we find it necessary to clarify the somewhat
contradictory results in the literature. In particular, some
authors who use similar ingredients obtain either stability or
instability for the all-heavy configuration QQQ̄Q̄, and in
our opinion, this is because of an erroneous handling of the
four-body problem in some papers.

This paper is organized as follows. In Sec. II, we briefly
discuss the variational approximation, with several variants,
including the hyperspherical expansion. In Sec. III, we discuss
the diquark approximation, that is widely used. In Sec. IV, we
discuss the Born-Oppenheimer method. In Sec. V, we com-
ment about the approximate relation between meson, baryon,
and tetraquark energy. In Sec. VI a reminder is given about the
Hall-Post inequalities, and some new applications are derived
for tetraquarks within potential models. The importance of
color mixing is illustrated in Sec. VII. The role of the spin-
dependent part of the potential is stressed in Sec. VIII. Some
conclusions are proposed in Sec. IX.

II. VARIATIONAL METHODS

A. General considerations

Variational methods have been applied from the beginning
of quantum mechanics, as they were already used in other fields
of physics involving similar equations. A well-known example
is the helium atom, for which the unperturbed wave function
�0 = exp(−2 r1 − 2 r2), in an obvious notation, is already a
good trial function, and can be improved, without much further
computation, in the form �(α) = exp(−α r1 − α r2), where
α is empirically adjusted, and is interpreted as the effective
charge seen by each electron. See, e.g., [7].
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However, the stability of αe−e− is obvious as once the first
electron is bound, there is enough attraction left to attach the
second one. More delicate is the case of H−(pe−e−), for which
the above trial function does not achieve binding, nor any
factorized f (r1) f (r2). As shown by Hylleraas, and inde-
pendently by Chandrasekhar (see references in [7]), achiev-
ing binding requires either some asymmetry and restoration
of symmetry, as exp(−α r1 − β r2) + [α ↔ β], or some ex-
plicit anticorrelation, such as exp(−α r1 − α r2 − γ r12), or, of
course, a combination of both.

Similarly, the energy and structure of a baryon is eas-
ily calculated in any quark model, as the wave function
is somewhat compact. But for a tetraquark q1q2q̄3q̄4 at the
edge of binding, the wave function contains antibaryonlike
components with q1q2 clustered, meson-meson components
such as q1q̄3 − q2q̄4, and perhaps some diquark-antidiquark
contributions. Thus a simplistic variational function cannot
account for these three aspects.

For illustration, we shall use some toy models with increas-
ing complexity. In the simplest version, the color wave function
is frozen as 3̄3 in the (QQ)(q̄q̄) basis, and the potential is purely
chromoelectric. It reads

H33 = p2
1 + p2

2

2 M
+ p2

3 + p2
4

2 m
+ v12 + v34

2

+ v13 + v14 + v23 + v24

4
, (1)

where vij = v(rij ), with v(r) being either r or r0.1 or λ r − κ/r
for illustration. The analog with color 66̄ reads

H66 = p2
1 + p2

2

2 M
+ p2

3 + p2
4

2 m
− v12 + v34

4

+ 5

8
(v13 + v14 + v23 + v24). (2)

If color mixing is accounted for, then one gets a coupled-
channel problem,

H =
(

H33 H36

H36 H66

)
,

H36 = 3(v14 + v23 − v13 − v24)

4
√

2
. (3)

It can be checked, that a simple one-Gaussian wave function
exp(−ax2 − b y2 − cz2), where

x = r2 − r1, y = r4 − r3, z = r3 + r4 − r1 − r2√
2

, (4)

is a set of Jacobi variables, describes somewhat well the
ground state of the single-channel Hamiltonian H33 or H66.
As reviewed in [5], for M = m, the 66̄ is lower than the 3̄3
one. For M/m � 1, the 3̄3 channel benefits from the QQ
attraction, and becomes more favorable. However, by itself,
it requires a large value of M/m to achieve stability below
the 2 Qq̄ threshold. The critical value (M/m)c depends on
the shape of the potential, for instance, (M/m)c � 40 for a
linear interaction, (M/m)c ∼ 15 for a soft potential r0.1, and
(M/m)c ∼ 7 for an attractive Coulomb interaction.

This critical value (M/m)c is significantly lowered if one
refines the wave function and introduces color mixing, i.e., uses
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FIG. 1. Comparison of different approximations for a tetraquark
bound by a linear potential with frozen color wave function, or with
color mixing. Dotted blue line, pure 66̄; dashed blue line, pure 3̄3;
solid blue line, with color mixing; red line, threshold. The units are
such that m = 1 and vij = rij .

H instead of H33 alone. Because of the different symmetry
patterns of the color 3̄3 and 66̄ states, the mixing requires an
antisymmetric (under 1 ↔ 2 or 3 ↔ 4) wave function in one
of the channels. The minimal wave function is, thus,

� ∝ exp
[−au r2

12 − bu r2
34 − cu

(
r2

13 + r2
24

) − c′
u

(
r2

14 + r2
23

)]
± (cu ← c′

u), (5)

where u stands for 3̄3 or 66̄, and cu 	= c′
u in the antisymmetric

channel (66̄ in practice). The effect of color mixing is illustrated
in Fig. 1 (using a simple variational method, so that the actual
energy might be slightly lower). It is seen that the critical value
for binding is reduced to (M/m)c ∼ 32 by color mixing.1

The effect of an explicit Coulomb part in the spin-
independent potential is seen in Fig. 2. The potential is chosen
as v(r) = −κ/r + σ r with κ = 0.4 and σ = 0.2 GeV2. The
light mass is taken as m = 0.3 GeV.

One remarks that the effect of color mixing is less dramatic;
the explicit inclusion of a Coulomb term decreases the critical
value (M/m)c significantly, here about 18 instead of about 28
(with a simple Gaussian expansion).

We shall return in Sec. VII to the problem of color mixing,
with more realistic models that include a spin-spin component.

B. Correlated Gaussian expansion

A more efficient wave function is

� =
∑

i

γi exp(−a11,i x2 − 2 a12,i x. y − · · · − a33,i z2), (6)

which describes an overall scalar with the possibility of
internal orbital excitations. The quadratic form a11,i x2 +
2 a12,i x. y + · · · is positive definite, and is sometimes rewrit-
ten as

∑
j<k bjk,i r2

jk with all bjk,i positive. None of the
Gaussians fulfill the requirements of permutation symmetry,
but � does, after optimization of the parameters.

1In Fig. 1 and similar figures, the energies above the threshold are
an artifact of any variational calculation based on normalizable wave
functions. The proper treatment of the continuum requires dedicated
techniques.
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FIG. 2. Same as Fig. 1 for a Coulomb-plus-linear interaction
v(r) = −0.4/r + 0.2 r , where r is in GeV−1. The energy E is in
GeV.

A variant of (6) consists of using only diagonal Gaussians
associated with the coordinates x, y, and z, but to add diagonal
terms in other sets of Jacobi coordinates, say

� =
∑

i

di exp(−ai x2 − bi y2 − ci z2)

+
∑

i

d ′
i exp(−a′

i x2 − b′
i y2 − c′

i z2) + · · · , (7)

where, for instance,

x′ = r3 − r1, y′ = r4 − r2,

z′ ∝ M r2 + m r4 − M r1 − m r3, (8)

corresponding to different cluster decompositions [8]. In this
case, the spin-isospin-color algebra is slightly more delicate.

Other variants deal with the numerical determination of
the parameters. For a given set of range parameters the
weights γi in (6) or di,d

′
i , . . . in (7) and the energy are given

by a generalized eigenvalue equation. The range parameters
themselves are searched for by stochastic methods [9] or as
belonging to a geometric series [8]. In both cases, the method
is now well functioning.

C. Hyperspherical expansion

By properly rescaling the Jacobi coordinates x, y, ..., the
Hamiltonian describing the relative motion of the quarks can
be written as

H = 1

μ

(
p2

x + p2
y + · · · ) + V (x, y, . . .), (9)

which can be read as a Schrödinger equation for a single
particle of mass μ/2 in a world of spatial dimension 3 (n − 1),
where n = 3 for baryons, n = 4 for tetraquarks, etc. In general,
the potential V (x, y, . . .) is not central, so the partial wave
expansion,

� =
∑
[L]

R[L](r)Y[L](	), (10)

results into an infinite set of coupled equations for the radial
functions R[L](r) or their reduced form r5/2 R[L](r). But if one

solves with an increasing number of equations, the conver-
gence is somewhat fast. Here, r = (x2 + y2 + · · · )1/2 is the
hyperradius, 	 a set of 3 n − 4 angles, and [L] denotes the
“grand” angular momentum L and its associated magnetic
numbers labeling the generalized spherical harmonics Y .

The convergence is illustrated in Table IX and Fig. 2 of
Ref. [10].

III. DIQUARK APPROXIMATION

The motivations for diquarks cover much more than hadron
spectroscopy. See, e.g., [11] for a survey and references to
pioneering articles which are sometimes ignored in the recent
literature. A few decades ago, the main concern in baryon
spectroscopy, was the problem of missing resonances, pre-
dicted by the quark model and not observed. Many states of the
symmetric quark model disappear if baryons are constructed
out of a frozen diquark and a quark. However, the missing
resonances, in which of the degrees of freedom x = r2 − r1

and y ∝ r3 − (r1 + r2)/2 are both excited, are not very much
coupled to the typical investigation channels πN or γN
which privilege states with one pair of quarks shared with
the target nucleon N . In recent photoproduction experiments
with improved statistics, some of the missing states have
been identified, which cannot be accommodated as made of
a ground-state diquark and a third quark [12]. So one of the
grounds of the diquark model is somewhat weakened.

The diquark model is regularly revisited, to accommodate
firmly established exotics such a the X(3872), or candidates
awaiting confirmation [1]. Unfortunately, some unwanted
multiquarks are also predicted in this approach, though this
is not always explicitly stated or even realized. The issue
of multiquarks within the diquark model was raised many
years ago by Fredriksson and Jandel [13]2, and is sometimes
rediscovered, without any reference to the 1981 paper. The
paradox is perhaps that the diquark model, that produces fewer
baryon states, produces too many multiquarks!

There are many variants of the so-called diquark model. An
extreme point of view is that diquarks are almost-elementary
objects, with their specific interaction with quarks and between
them. A whole baryon phenomenology can be built starting
from well-defined assumptions about the diquark constituent
masses and the potential linking a quark to a diquark. Then
a diquark-diquark interaction has to be introduced as a new
ingredient for the multiquark sector.

Another extreme is to view diquarks as a type of “Voodoo
few-body3.” In this empirical approach to few-body physics,
to estimate the energy and wave function of, say, (a1a2a3),
with masses mi and interaction vij (r), one first solves for
(a1a2) with v12 alone, with energy η12, then estimates the
bound state of a pointlike (a1a2) of mass m1 + m2, or perhaps

2Some technical details of that paper might be revised, but the main
concern remains.

3Jaffe [14] reported that Bjorken used the words “Voodoo QCD” to
denote several useful models of strong-interaction physics, such as
vector meson dominance, and also some less convincing recipes. A
correspondence with R. L. Jaffe is gratefully acknowledged.
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FIG. 3. Comparison of the exact energy (solid blue line) and
diquark approximation (red dotted line) for a baryon (QQq) with
masses M and m = 1, and a purely linear interaction, as a function
of the mass ratio. The units are such that m = 1 and the potential is∑

rij /2.

m1 + m2 + ε2 in some variants, located at R12, interacting
with a3 through the potential v13(r3 − R12) + v23(r3 − R12),
resulting in binding energy η12,3, and the whole energy is given
by η12 + η12,3. For a four-body system, the (a1a2) and (a3a4)
systems are estimated first, and then a third two-body equation
is solved for (a1a2) interacting with (a3a4) via a potential∑′

vij (R12 − R34), where ′ denotes i = 1,2 and j = 3,4
throughout this paper, in particular in Sec. VI.

This strategy is of course fully justified for the deuterium
atom considered as a pne− system, as the internuclear motion
is not significantly modified by the electron. On the other hand,
this approach ruins some subtle collective binding, for instance,
that of Borromean states [15]. Also, one cannot see either
how H−(pe−e−) could become bound in this approach, or the
hydrogen molecule be described as a “diproton” linked to a
“dielectron”! In other cases, the method just underestimates
the binding: For a αe−e− atom with a static nucleus, the
first electron would get an energy −2 in natural units, and
the second, only an energy −0.5, as it would endorse a full
screening, while the exact energy is about −2.90. For the quark
model, the effect is opposite, and, as seen below, the ad hoc
clustering lowers significantly the energy.

A. The diquark model for double-charm baryons

In the case of double-charm baryons QQq there is ob-
viously a QQ clustering which makes it tempting to use a
two-step approach: first a (QQ) diquark and then a (QQ)q
quasimeson, as the diquark has the same color 3̄ as an antiquark.
In Fig. 3, we compare the exact energy of QQq bound by a
linear interaction

∑
rij /2 and the diquark approximation, as a

function of the heavy-to-light quark mass ratio M/m.
There is a clear overbinding. The situation does not improve

too much as M/m increases: The diquark becomes more
compact, but simultaneously, the total energy is more and more
dominated by the heavy sector, so any systematic error in
the QQ effective interaction is more visible. The problem,
as already stressed in [5], is that the light quark induces
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FIG. 4. Comparison of the variational upper bound (green curve)
and Hall-Post lower bound (dotted blue curve), hardly distinguish-
able from the variational estimate at this scale, for the tetraquark
Hamiltonian (1) with a linear interaction. Also shown is the naive
diquark-antidiquark approximation (dashed violet curve).

some interaction between the two heavy quarks. In the case
of a harmonic confinement, V = ∑

r2
ij /2, the potential splits

exactly into V = 3 (x2 + y2)/4 if the second Jacobi variable
is normalized as y = (2 r3 − r1 − r2)/2. The naive diquark
approximation consists of replacing 3 x2/4 by x2/2, so that
the contribution of the heavy quarks to the energy is reduced
by a factor (3/2)1/2. Similarly, for a linear interaction, the
light quark potential, averaged over a sphere surrounding the
diquark, will induce a positive contribution which is either
∝ x2/y or ∝ y2/x, depending on the radius, and is omitted in
the naive diquark model.

B. The diquark model for doubly heavy tetraquarks

The exercise can be repeated for the QQq̄q̄ states. For
simplicity, we consider only the case of a frozen 3̄3 color
wave function, i.e., the Hamiltonian (1). Color mixing has to be
introduced to have the proper threshold in the model, and it was
seen in explicit calculations that the mixing with meson-meson
configurations is crucial for states at the edge of stability.
Nevertheless the comparison of various approximations is
instructive for the toy model (1). In Fig. 4, we compare the
exact solution of (1) with the approximation consisting of first
computing the QQ diquark with r12/2 alone and qq with r34

alone, and then (QQ)(q̄q̄) as a meson with a potential r12,34

and constituent masses 2 M and 2 m. The comparison is also
made for a soft interaction r0.1 in Fig. 5 and a pure Coulomb
interaction in Fig. 6.

IV. BORN-OPPENHEIMER METHOD

A. General considerations

The Born-Oppenheimer method is implicit in any quark
model. The quarkonium potential, for instance, is the minimal
energy of the gluon field for a given separation of the quark and
the antiquark. Explicit reference to Born-Oppenheimer was
made, e.g., in the context of the bag model [16]. Then it was
speculated that some exotic mesons are just quarkonia evolving
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FIG. 5. Same as Fig. 4 with a potential r0.1
ij instead rij .

in a color field with gluonic or light-quark pair excitations; see,
e.g., [17].

For a given interquark potential, there is also a Born-
Oppenheimer approximation (BOA) for the solution of the
Schrödinger equation governing double-charm baryons or
double-charm tetraquarks, in analogy with the treatment of
H2

+ and H2 in atomic physics, and it works very well, even
for moderate values of the quark mass ratio M/m.

Actually, in the most naive version of BOA, the heavy
quarks are frozen, and the energy of the light quark(s), sup-
plemented by the direct QQ interaction, provides an effective
potential that is independent of M . For finite M , the most
significant correction comes from the recoil of the heavy
quarks. This correction disappears if one applies BOA on the
intrinsic Hamiltonian, free of center-of-mass motion. More
precisely, in the case of baryons, let us consider

H3 = p2
x

M
+ p2

y

μ
+ V (x, y), (11)

and search the solution as

� = ϕ(x) ψ(x, y), (12)

where ψ(x, y) is the solution of the one-body equation,

−�yψ(x, y)

μ
+ V (x, y)ψ(x, y) = ε(x) ψ(x, y). (13)

The BOA consists of neglecting in the kinetic energy operator
the variations of ψ as a function of x, and to deduce the first

M/m
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FIG. 6. Same as Fig. 4 with a potential −r−1
ij instead rij . The

threshold is fixed at −2.
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FIG. 7. Comparison of the light quark energies for QQq̄q̄ (solid
red line) and QQq (dotted blue line) as a function of the QQ

separation x. The second curve is shifted by the difference of energies
Qqq − Qq̄. The units are such m = 1, M = 5, and vij = rij .

levels from

−�xϕ(x)

μ
+ ε(x) ϕ(x) = E ϕ(x). (14)

The ground-state energy is underestimated (i.e., binding over-
estimated), as the last two terms of (11) are replaced by their
minimum4. Note that if the wave function (12) is used as a
trial function, one gets an upper bound for the ground state,
sometimes named “variational Born-Oppenheimer.”

B. Born-Oppenheimer for baryons

The validity of BOA for QQq baryons was shown in
[18]. The check below is just for completeness. The light-
quark energy ε(x) can be calculated by ordinary partial-wave
expansion, which leads to coupled radial equations. One can
also use a variational method, namely

ψ(x, y) =
∑

i

γi[exp(−ai y2 − bi y.si) + (si ↔ −si)],

(15)
where si ‖ x. The matrix elements of the normalization, kinetic
energy, and potential energy are given in a recent compilation
[19]. The light-quark energy Vq = ε(x) − x/2 is shown in
Fig. 7, in the case of a linear potential. For x = 0, the result is
analytic.

C. Born-Oppenheimer for tetraquarks

Here, once more, we use the toy Hamiltonian (1). It
corresponds to a frozen 3̄3 color wave function. The effective
potential is estimated using a trial wave function that general-
izes (15) as to include two Jacobi coordinates, y and z in the
light sector. For x = 0, the light quark energy Vq = ε(x) − x/2
coincides with the energy of a singly heavy baryon Q′qq with
a flavored quark of mass M ′ = 2 M . This provides a check of

4These considerations can be extended to the excited states: The
sum of n first levels is underestimated by BOA.
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the numerics. We shall come back to this point in Sec. V. The
light-quark energy is shown in Fig. 7.

V. RELATING MESONS, BARYONS, AND TETRAQUARKS

In a recent paper, Eichten and Quigg [20] use the heavy-
quark symmetry to relate meson, baryon, and tetraquark
energies. In a simplified version without spin effects, it reads

QQq̄q̄ = QQq + Qqq − Qq̄, (16)

where the configuration stands for the ground-state energy.
For fixed m and M → ∞, the identity is exact. For finite
M , there is some departure. For instance, with a purely linear
model, in units such that v(r) = r for mesons,

∑
i<j rij /2 for

baryons, and m = 1 and M = 5 in the Hamiltonian (1) with
frozen 3̄3 color for tetraquarks, one gets 4.331 for the left-hand
side and 4.357 for the right-hand side of (16). If one treats
the tetraquark QQq̄q̄ and the doubly heavy baryon QQq in
the Born approximation, one can compare the two effective
potentials as a function of the QQ separation x, the baryon
one being shifted by Qqq − Qq̄ which is independent of x.
Without recoil correction, the two potentials are identical at
x = 0. For finite M , there is slight difference, as the single
q recoils against either M or 2 M , and similarly qq recoils
against one or two heavy quarks.

The comparison is shown in Fig. 7. Clearly the two effective
potentials are very similar, and thus give almost identical
energies, up to an additive constant that corresponds to the
last two terms in (16).

VI. HALL-POST INEQUALITIES

A. A brief reminder

The Hall-Post inequalities have been derived in the 1950s
to relate the binding energies of light nuclei with different
number of nucleons [21]. They have been re-discovered in
the course of studies on the stability of matter [22], or to link
meson and baryon masses in the quark model [3,23]. Before the
applications to tetraquarks, we present a brief review illustrated
in the three-body case, that follows the notation of [24].

The naive bound is deduced from the identity,

p2
1 + p2

2 + p2
3

2 m
+

∑
i<j

Vij =
[

p2
1 + p2

2

4 m
+ V12

]
+ · · · , (17)

whose expectation value within the ground state of the left-
hand side leads to the inequality,

E3(m,V ) � 3 E2(2 m,V ) = 3
2 E2(m,2 V ), (18)

among the ground-state energies. For instance, in a simple ad-
ditive quark model with a factor 1/2, i.e., V = ∑

i<j v(rij )/2,
with v being the quarkonium potential, one gets E3(qqq) �
3 E2(qq̄)/2. This implies that a baryon is heavier per quark than
a meson, as seen, e.g., by comparing 	−(1672) and φ(1020),
of quark content sss and ss̄, respectively.

The inequality (18) never becomes an equality as it contains
unbalanced center-of-mass kinetic energy. If one starts instead
from the intrinsic Hamiltonians, one gets saturation in the case

of harmonic confinement. Namely,

p2
1 + p2

2 + p2
3

2 m
− ( p1 + p2 + p3)2

6 m
+

∑
i<j

Vij

=
[

2

3 m

(
p2 − p1

2

)2

+ V12

]
+ · · · (19)

leads to the improved bound,

E3(m,V ) � 3 E2(3 m/2,V ), (20)

which is better, as the energy E2 is a decreasing function of
the mass, for given V .

For unequal masses, this “improved” bound is straightfor-
wardly generalized as (the potential terms are omitted)

∑
i

p2
i

2 mi

− (
∑

i pi)
2

2
∑

i mi

=
[

1

μ12

(
m1 p2 − m2 p1

m1 + m2

)2
]

+ · · · ,

E3(m1,m2,m3) �
∑
i<j

E2(μij ), (21)

μ12 = 2
m1 m2

∑
i mi

(m1 + m2)2
.

However, this inequality is not saturated for the harmonic
oscillator. It can be improved by introducing a slightly more
general decomposition of the kinetic energy and optimizing
some parameters. More precisely, this decomposition involves
the parameters bi, yi and xij in the identity,

∑
i

p2
i

2 mi

=
(∑

i

pi

)
.

(∑
i

bi pi

)

+
[
x−1

12

(
p2 − y3 p1

1 + y3

)2
]

+ · · · . (22)

For any given set {yi}, one can determine the parameters bi

and the masses xij . If one takes the expectation value within
the three-body wave function, the first term of the right-hand
side disappears, and one reaches the so-called optimized lower
bound,

E3 � max
y1,y2,y3

∑
i<j

E2[xij (y1,y2,y3)], (23)

where it can be shown that the maximization automatically
fulfills y1 y2 y3 = 1.

B. Application to tetraquarks

Consider first the toy Hamiltonian (1), slightly generalized
as rij → vij = v(rij ) for all pairs. In the case of equal masses,
which can be set to m = M the simple identity,∑

i

p2
i

2 m
+ v12 + v34

2
+

∑′ vij

4

= h12(m) + h34(m)

2
+

∑′ hij (m)

4
,

hij (m) = p2
i + p2

j

2 m
+ vij , (24)
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demonstrates that for the ground-state energies,

E4(m) � 2 E2(m), (25)

i.e., the tetraquark with pure chromoelectric interaction and a
frozen 3̄3 color wave function, is above twice the minimum of
each hij , which is the threshold energy. This is the analog of
the above “naive” lower bound.

If one removes the center of mass, and starts from the
decomposition,∑

i

p2
i

2 m
− (

∑
i pi)

2

8 m
+ v12 + v34

2
+

∑′ vij

4

= h̃12(m) + h̃34(m)

2
+

∑′ h̃ij (m/2)

4
,

h̃ij (m) = 1

m

(
pj − pi

2

)2

+ vij , (26)

one gets the “improved” bound,

E4(m) � E2(m) + E2(m/2), (27)

that is better, as E2(m/2) > E2(m). For unequal masses, the
decomposition reads

p2
1 + p2

2

2 M
+ p2

3 + p2
4

2 m
+ v12 + v34

2
+

∑′ vij

4

=
(∑

pi

)
.(A( p1 + p2) + B( p3 + p4))

+ h̃12(x12) + h̃34(x34)

2
+

∑′ ˜̃hij (x,a,b)

4
,

˜̃h13(x,a,b) = 1

x

(
p1 − p3 + a p2 + b p4

2

)2

+ vij , (28)

where the masses x12, x34, and x are readily calculated from
the parameters A,B and a, and b. This results into

E4(M,m) � max
A,B,a,b

[E2(x12) + E2(x34) + E2(x)]. (29)

Hence a rigorous lower bound is obtained from simple alge-
braic manipulations and the knowledge of the two-body energy
as a function of the reduced mass. For a linear interaction, (29)
further simplifies into

E4(M,m) � E2(1) max
A,B,a,b

[
x

−1/3
12 + x

−1/3
34 + x−1/3

]
, (30)

where E2(1) = 2.33811 . . . is the opposite of the first root of
the Airy function. For r0.1, the exponent −1/3 is replaced by
−0.1/2.1 and E2(1) is computed numerically. The results for
E4/E2(1) as a function of M/m are shown in Figs. 4 and 5.
The sum 1/M + 1/m is kept equal to 2 to fix the threshold
energy at 2 E2(1).

VII. COLOR MIXING

The λ̃i .λ̃j model of Eq. (1), with a pairwise potential from
color-octet exchange, induces mixing between 3̄3 and 66̄ states
in the QQ − q̄q̄ basis. Perhaps the true dynamics inhibits the
call for higher color representations such as sextet, octet, etc.,
for the subsystems of a multiquark, but for the time being, let

M/m|

5

|

10

|
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|

20

E
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−0.99
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−1.01

−1.02

•charm •bottom

FIG. 8. Effect of color mixing on the binding of QQūd̄, within the
AL1 model. The tetraquark energy is calculated with only the color
3̄3 configurations (blue curve) and with the 66̄ components (green
curve).

us adopt the color-additive model. If one starts from a 3̄3 state
with QQ in a spin triplet, and, for instance, q̄q̄ = ūd̄ with spin
and isospin S = I = 0, then its orbital wave function is mainly
made of an s wave in all coordinates. It can mix with a color
66̄ with orbital excitations in the x and y linking QQ and q̄q̄,
respectively. A minimal wave function in this sector can be
chosen as

�6 ∝ x. y exp(−a x2 − b y2),

or

�6 ∝ exp
[−a12 x2 − a34 y2 − α

(
r2

13 + r2
24

)
−β

(
r2

14 + r2
23

)] − {α ↔ β}. (31)

The effect of color mixing for a spin-independent interaction
was shown Fig. 1 in the case of a linear potential, and in Fig. 2
for a Coulomb-plus-linear potential V (r) = −a/r + b r with
a = 0.4, b = 0.2 GeV2, and m = 0.3 GeV, as a function of
M/m. The gain is less pronounced for very large M/m, but for
the mass ratios of interest, color mixing is crucial to achieve
binding.

We now illustrate the role of color mixing for the AL1
potential (to be introduced in Sec. VIII). The energy estimated
as a function of M/m without and with color mixing is shown
in Fig. 8. The ground state of the QQūd̄ that is a candidate
for stability, with JP = 1+, has its main component with color
3̄3, and spin {1,0} in the QQ − ūd̄ basis. The main admixture
consists of 66̄ with spin {1,0} and an antisymmetric orbital
wave function of which (31) is a prototype, and of 66̄ with spin
{0,1} with a symmetric orbital wave function.

The relevance of color mixing was also illustrated with
realistic models in Table II of Ref. [6] and was stressed by
several authors cited in [4], in particular Brink and Stancu.

VIII. SPIN-DEPENDENT CORRECTIONS

In the most advanced calculations of Ref. [4], it was ac-
knowledged that a pure additive interaction such as (1) will not
bind ccq̄q̄, on the sole basis that this tetraquark configuration
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FIG. 9. Effect of the spin-spin interaction of the binding of
QQūd̄ , within the AL1 model. The tetraquark energy is calculated
with (green line) and without (blue line) the chromomagnetic term.

benefits from the strong cc chromoelectric attraction that is
absent in the Qq̄ + Qq̄ threshold. In the case where qq = ud,
however, there is in addition a favorable chromomagnetic inter-
action in the tetraquark, while the threshold experiences only
heavy-light spin-spin interaction, whose strength is suppressed
by a factor m/M .

For illustration, we use the potential AL1 by Semay and
Silvestre-Brac [25]. Its central part is similar to the Coulomb-
plus-linear adopted in Fig. 2. Its spin-spin part is a regularized
Breit-Fermi interaction, with a smearing parameter that de-
pends on the reduced mass. More precisely,

Vij (r) = −κ

r
+ λ r − � + 2 π α

3 mi mj

exp(−r2/r2
0 )

π3/2 r3
0

σ i .σ j ,

r0(mi,mj ) = A

(
2 mi mj

mi + mj

)−B

, (32)

mq = 0.315, mc = 1.836, mb = 5.227,

� = 0.8321, B = 0.2204, A = 1.6553,

κ = 0.5069 α = 1.8609, λ = 0.1653,

where the units are appropriate powers of GeV. The results are
shown in Fig. 9 for QQūd̄ , as a function of the mass ratio
M/m.

The system bbūd̄ is barely bound without the spin-spin
term, though the mass ratio mb/mq is very large. Its acquires
its binding energy of the order of 150 MeV when the spin-spin
is restored.

The system ccūd̄ is clearly unbound when the spin-spin
interaction is switched off. This is shown here for the AL1
model, but this is true for any realistic interaction, including an
early model by Bhaduri et al. [26]. The case of ccūd̄ is actually
remarkable. Here the binding requires both the color mixing of
3̄3 with 66̄, and the spin-spin interaction. Moreover, the binding
is so tiny that it cannot be obtained with a simple variational
method. One needs either a fully converged expansion on a
basis of correlated Gaussians, or a hyperspherical expansion
up to a grand orbital momentum Kmax of the order of 12. Semay

and Silvestre-Brac, who used their AL1 potential, missed the
binding, but their method of systematic expansion on the
eigenstates of an harmonic oscillator is not very efficient to
account for the short-range correlations, and is abandoned in
the latest quark-model calculations. Janc and Rosina were the
first to obtain binding with such potentials, and their calculation
was checked by Barnea et al. (see [4] for references).

IX. CONCLUSIONS

Let us summarize. The four-body problem of tetraquarks
is somewhat delicate, especially for systems at the edge of
stability. The analogy with atomic physics is a good guidance
to indicate the most favorable configurations in the limit
of dominant chromoelectric interaction. However, unlike the
positronium molecule, the all-heavy configuration QQQ̄Q̄ is
not stable if one adopts a standard quark model and solves the
four-body problem correctly.

The method of Gaussian expansion works somewhat well.
With most current models, the matrix elements can be esti-
mated analytically and one can study the convergence as a
function of the number of terms, and the role of each spin-color
configuration entering a given tetraquark state. This is also the
case for the hyperspherical expansion.

The mixing of the 3̄3 and 66̄ color configurations is impor-
tant, especially for states very near the threshold. This mixing
occurs by both the spin-independent and the spin-dependent
parts of the potential.

Approximations are welcome, especially if they shed some
light on the four-body dynamics. The diquark-antidiquark
approximation is not supported by a rigorous solution of the
four-body problem, but benefits of a stroke of luck, as the
erroneous extra attraction introduced in the color 3̄3 channel
is somewhat compensated by the neglect of the coupling to the
color 66̄ channel. The equality relating QQq̄q̄,QQq,Qqq,
and Qq̄ works surprisingly well as long as one is restricted to
color 3̄3, but does not account for the attraction provided by
color mixing.

On the other hand, for asymmetric configurations (QQq̄q̄),
the Born-Oppenheimer method provides a very good ap-
proximation, and an interesting insight into the dynamics. It
was probed here for a toy model with frozen color, and its
extension as to include the coupling of color configurations
would deserve some study.

In short, ccūd̄ with JP = 1+ is at the edge of binding within
current quark models. For this state, all contributions to the
binding should be added, in particular the mixing of states with
different internal spin and color structure, and in addition, the
four-body problem should be solved with extreme accuracy,
for instance, by pushing the hyperspherical expansion up to a
grand angular momentum Kmax � 12.

In comparison, achieving the binding of bbūd̄ looks easier.
Still, with a typical quark model, the stability of the ground
state below the threshold cannot be reached if spin effects and
color mixing are both neglected. The crucial role of spin effects
explains why one does not expect too many states in addition
to 1+ [10].

Needless to say that any improvement of the dynamics
would be welcome. In [10], for example, this is done by
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including some pion exchange in the light quark sector. A better
binding is obtained for ccūd̄ . The presence of multibody com-
ponents in the interquark potential was discussed, in particular
a disconnected or connected string network linking the quarks
and antiquarks. This string model provides an attraction that
is larger than the pairwise linear interaction ∝ ∑

λ̃i .λ̃j rij ,
provided there is no constraint from the Pauli principle, i.e.,
that the color wave function can readjust itself freely when
the quarks move. This is not the case for ccūd̄ . A good test
of that model would be the stability of flavor-asymmetric
configurations such as bcūs̄.

Note added in proof: The excess of attraction due to the
pointlike approximation for diquarks was also pointed out by
Kiselev et al. [27] in the case of doubly heavy baryons.
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