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We have investigated the cross section for the π−p → K0π� and pp → pK+π� reactions, paying attention
to a mechanism that develops a triangle singularity. The triangle diagram is realized by the decay of a N∗ to K∗�
and the K∗ decay into πK , and the π� finally merges into �(1405). The mechanism is expected to produce a
peak around 2140 MeV in the K�(1405) invariant mass. We found that a clear peak appears around 2100 MeV in
the K�(1405) invariant mass, which is about 40 MeV lower than the expectation, and that is due to the resonance
peak of a N∗ resonance which plays a crucial role in the K∗� production. The mechanism studied produces the
peak of the �(1405) around or below 1400 MeV, as is seen in the pp → pK+π� HADES experiment.
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I. INTRODUCTION

The nature of �(1405), the lowest excitation of � with
JP = 1/2−, has been given much attention for a long time.
The quark model predicts the mass at higher energy than the
observed peak [1], and a description of �(1405) as a K̄N
molecular state shows a good agreement with the experimental
result, as originally pointed out in Refs. [2–4]. The studies
of the K̄N system based on SU(3) chiral symmetry with the
implementation of unitarity and coupled channels suggest that
�(1405) is generated as a K̄N quasibound state [5–16]. The re-
cent analysis of the lattice QCD simulation supports the molec-
ular picture of �(1405) [17,18]. Furthermore, the analysis of
the compositeness [19–21], which is a measure of the hadronic
molecular component, the charge radius [22], and the root
mean square radius [23], also supports the picture of �(1405)
as a K̄N molecule. Other than these works, many studies of
�(1405) production from photon-induced reactions [24–29],
pion-induced reactions [30,31], kaon-induced reactions [32–
35], proton-proton collisions [36,37], and heavy meson decay
[38] were carried out to clarify the nature of the �(1405) reso-
nance. The studies related to the K̄N system are summarized in
Refs. [39,40] (see also the note “Pole Structure of the �(1405)
Region” by U.-G. Meissner and T. Hyodo in PDG [41]).

In Ref. [29], the role of the triangle singularity (TS) on the
angle and the energy dependence of �(1405) photoproduction
was studied. The triangle singularity was first pointed out in
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Ref. [42]. The corresponding Feynman diagram is formed by a
sequential decay of a hadron and a fusion of two of them, and
the amplitude associated with the diagram has a singularity if
the process has a classical counterpart, which is known as the
Coleman–Norton theorem [43]. The studies of many processes
including the triangle singularity elucidate the possible effect
of the triangle singularity on the hadron properties, e.g., the
η(1405) decay into π0a0 or π0f0 [44–46], the possible origin of
Zc(3900) [47–49], the speculation on the pentaquark candidate
Pc [50–52] (see Ref. [53] for a critical discussion to the light
of the preferred experimental quantum numbers [54]), the Bs

decay into Bππ [55] and B− decays [56,57]. Here, we note that
the strength of the triangle peak is tightly connected with the
coupling strength of the two hadrons merging into a third one.
For example, in the study of the B− decay into K−π−D+

s0(D+
s1)

[56], the DK (D∗K) in the triangle loop goes into Ds0 (Ds1),
which is dynamically generated from the DK (D∗K) and has
a large coupling to this channel [58,59]. Then, the observation
of the peak from the triangle mechanism would give additional
support to the hadronic molecular picture of these states.

For further understanding of the nature of �(1405) and
triangle mechanisms, in this paper we investigate the π−p →
K0π� and pp → pK+π� processes including a triangle
diagram. In both processes, the triangle diagram is formed
by a N∗ decay into K∗� followed by the decay of K∗ into
πK and the fusion of π� to form �(1405), which finally
decays into π�. In this process, the K∗π� loop generates a
triangle singularity around 2140 MeV in the invariant mass of
K�(1405) from the formula given by Eq. (18) of Ref. [53].
The corresponding diagram is shown in Fig. 1. The N∗
resonance, which strongly couples to K∗�, is obtained in
Ref. [60] based on the hidden local symmetry and the chiral
unitary approach, and the analysis of the K� photoproduc-
tion off nucleon around the K∗� threshold energy suggests
that the resonance is responsible for the observed cross
section [61].
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FIG. 1. Triangle diagram for �(1405) production from a N∗

resonance.

As the result of our calculation, we find a peak in the
K�(1405) mass distribution around 2100 MeV in both re-
actions, which is lowered with respect to the 2140 MeV given
by the TS master formula [53] by the initial N∗ resonance
which peaks around 2030 MeV. The experimental study on
�(1405) production from π−p is reported in Refs. [62,63],
but the energy is too small for the triangle singularity from
the K∗π� loop to be observed. The production of �(1405)
from the proton-proton collision is studied in Refs. [64–66].
The future observation of the inevitable peak from the triangle
mechanism induced by �(1405) would give further support
for the molecular nature of �(1405).

II. FORMALISM

A. π− p → K 0π�

In this section we study the effects of the triangle loop in
the following decays: π−p → K0π+�−, π−p → K0π0�0,
and π−p → K0π−�+. The diagrams where the triangle
singularity can appear for those reactions are shown in Fig. 2.
To evaluate the differential cross section associated with this
diagram, we use

dσK0π�

dminv
= MpM�|�k|| �̃pπ |

2(2π )3s| �pπ |
∑ ∑

|tπ−p→K0π�|2, (1)

with minv being the invariant mass of the final π�,

| �pπ | = λ
1
2
(
s,m2

π ,M2
N

)
2
√

s
, (2)

the momentum of the initial π− in the π−p center-of-mass
(c.m.) frame,

|�k| = λ
1
2
(
s,m2

K,m2
inv

)
2
√

s
, (3)

the momentum of the final K0 in the π−p c.m., and

| �̃pπ | = λ
1
2
(
m2

inv,m
2
π ,M2

�

)
2minv

, (4)

the momentum of the final π in the π� c.m.
The resonance N∗(2030) studied in Ref. [60] from the

vector-baryon interaction, mediated by the exchange of vector
mesons, appears there as spin degenerate in JP = 1/2− and
3/2−. The degeneracy can be broken by mixing with states of
pseudoscalar-baryon and connecting these by pion exchange,
as done in Ref. [67]. There should be then two states near de-
generate at the end. We conduct our study with the JP = 1/2−
state. The case of spin 3/2− is discussed at the end of this sec-
tion. For the moment it is sufficient to mention that the structure
and conclusions for that term are the same as for the 1/2− state.

In the isospin basis, the π−p → N∗ vertex has the form

−itπN,N∗ = −ig
I= 1

2
πN,N∗ . (5)

To estimate the g
I= 1

2
πN,N∗ we assume that �N∗,πN is of the order

of 70 MeV and then use the formula

�N∗,πN = 1

2π

M�

MN∗

(
g

I= 1
2

πN,N∗
)2| �pπ |, (6)

with MN∗ being the mass of N∗(2030). Here, | �pπ | is the
momentum of π that results from the decay of N∗ and
is evaluated by using Eq. (2), s = M2

N∗ . Finally, we obtain

g
I= 1

2
πN,N∗ � 1.1.

The value of �N∗,πN = 70 MeV is just an estimate. We
should warn here that we are not so much interested in
the strength of the cross section, which we cannot evaluate
accurately in this formalism. One reason is precisely that
�N∗,πN is not known. Yet, the important thing is the shape
of the invariant-mass distribution and, as we shall see later on,
we also prove that the triangle mechanism is more important
than tree-level mechanisms. The estimate of 70 MeV is based
on values that we get from the old version of the PDG [68],
for two states N∗(2080)(3/2−) and N∗(2090)(1/2−) and the
original papers of Refs. [69,70] and Ref. [71], playing with
very large errors in both experiments.

Since we will have different amplitudes if we change the
charge of the intermediate π� particles, it is convenient to go
from the isospin basis (|I,I3〉) to the charge basis. Although a
formalism using the different π� isospin channels is possible,
we find it convenient to work in the charge basis. Using the

π−

p

N∗ K∗+ (P − q)

π+ (P − q − k)
Σ− (q)

K0(k)

Λ∗

π

Σ

(a)

π−

p

N∗ K∗0 (P − q)

π0 (P − q − k)
Σ0 (q)

K0(k)

Λ∗

π

Σ

(b)

FIG. 2. Diagrams for the reaction π−p → K0π� that contains the triangle mechanism, where π� can be π−�+, π 0�0, or π+�−.
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Clebsch–Gordan coefficients, we have

|π−p〉 =
√

1

3

∣∣∣∣3

2
,−1

2

〉
−

√
2

3

∣∣∣∣1

2
,−1

2

〉
. (7)

This means that the coupling of π−p to N∗ will be

gπ−p,N∗ = −
√

2

3
g

I= 1
2

πN,N∗ . (8)

For the N∗(2030) → K∗� process in s wave, as shown in
the appendix for spin J = 1/2, we have

−itN∗,K∗� = −i
1√
3
gN∗,�K∗ �σ · �εK∗ . (9)

From Ref. [60], we get g
I= 1

2
N∗,K∗� = 3.9 + i0.2, and since we

have both �−K∗+ and �0K∗0 [Figs. 2(a) and 2(b), respec-
tively], then, using

|�0K∗0〉 =
√

2

3

∣∣∣∣3

2
,−1

2

〉
+

√
1

3

∣∣∣∣1

2
,−1

2

〉
, (10a)

|�−K∗+〉 =
√

1

3

∣∣∣∣3

2
,−1

2

〉
−

√
2

3

∣∣∣∣1

2
,−1

2

〉
, (10b)

we get

gN∗,�0K∗0 =
√

1

3
g

I= 1
2

N∗,�K∗ , (11a)

gN∗,�−K∗+ = −
√

2

3
g

I= 1
2

N∗,�K∗ . (11b)

Then, for the amplitude of the π−p → �K∗ reaction
through N∗(2030), we have

tπ−p,�0K∗0 = 1√
3

gπ−p,N∗gN∗,�0K∗0√
s − MN∗ + i �N∗

2

�σ · �εK∗ , (12a)

tπ−p,�−K∗+ = 1√
3

gπ−p,N∗gN∗,�−K∗+√
s − MN∗ + i �N∗

2

�σ · �εK∗ . (12b)

Now, the K∗+ → K0π+ vertex can be calculated by using
the chiral invariant Lagrangian with the local hidden symmetry
given in Refs. [72–75],

LV PP = −ig〈[
,∂μ
]V μ〉. (13)

The symbol 〈. . .〉 here represents the trace over the SU(3)
flavor matrices, and the coupling is g = mV /2fπ , with mV =
800 MeV and fπ = 93 MeV. The SU(3) matrices for the
pseudoscalar and vector octet mesons 
 and V μ are given by


 =

⎛
⎜⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 −
√

2
3η

⎞
⎟⎟⎠, (14)

Vμ =

⎛
⎜⎝

1√
2
ρ0

μ + 1√
2
ωμ ρ+

μ K∗+
μ

ρ−
μ − 1√

2
ρ0

μ + 1√
2
ωμ K∗0

μ

K∗−
μ K̄∗0

μ φμ

⎞
⎟⎠. (15)

From Eq. (13) we get

−itK∗+,K0π+ = −igε
μ
K∗ (pK0 − pπ+ )μ (16)

= igε
μ
K∗ (P − q − 2k)μ (17)

� ig�εK∗ · (�q + 2�k), (18)

where in the last step we made a nonrelativistic approximation
by neglecting the ε0

K∗ component. This is very accurate when
the momentum of the K∗ is small compared with its mass.
We shall evaluate the triangle diagram in the �K∗ c.m.,
where the on-shell momentum of the K∗ is about 250 MeV/c
at Minv(�K∗) � 2140 MeV where the triangle singularity
appears. In Ref. [56] it is shown that the effect of neglecting
the ε0 component goes as (pK∗/mK∗ )2, with a coefficient in
front that renders this correction negligible.

Similarly, for K∗0 → K0π0 we get

−itK∗0,K0π0 = −i
1√
2
g�εK∗ · (�q + 2�k). (19)

The final vertex that we need to calculate in the diagrams of
Fig. 1 is t�π,�π which is given by the �π → �(1405) → �π
amplitude studied in Ref. [6] based on the chiral unitary
approach. There, the authors use the lowest-order meson-
baryon chiral Lagrangian

L(B)
1 =

〈
B̄iγ μ 1

4f 2
[(
∂μ
 − ∂μ

)B

−B(
∂μ
 − ∂μ

)]

〉
, (20)

with

B =

⎛
⎜⎜⎝

1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n

�− �0 −
√

2
3�

⎞
⎟⎟⎠. (21)

The Bethe–Salpeter equation is then used to calculate the
meson-baryon amplitude,

t = [1 − V G]−1V, (22)

where t , V , and G are the meson-baryon amplitude, interaction
kernel, and meson-baryon loop function, respectively. For the
evaluation of t , we use the momentum cutoff qmax = 630 MeV
for the loop function G, and f = 1.15fπ with the pion-decay
constant fπ = 93 MeV as done in Ref. [6].

Thus, the amplitude associated with the diagram in Fig. 2(a),
which we call t1, is given by

t1 = −i
2

3
√

3

g
I= 1

2
πN,N∗g

I= 1
2

N∗,�K∗√
s − MN∗ + i �N∗

2

g
∑

pol. of K∗

∫
d4q

(2π )4

2M� �σ · �εK∗

q2 − M2
� + iε

(2�k + �q) · �εK∗

(P − q)2 − m2
K∗ + iε

t�−π+,�π

(P − q − k)2 − m2
π + iε

. (23)
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Using the property ∫
d3qqif (�q,�k) = ki

∫
d3q

�q · �k
|�k|2 f (�q,�k),

with f (�q,�k ) being the three propagators in the integrand of Eq. (23), and the formula in the nonrelativistic approximation,∑
pol.

εK∗ iεK∗ j = δij ,

Eq. (23) becomes

t1 = −4M�

3
√

3

g
I= 1

2
πN,N∗g

I= 1
2

N∗,�K∗√
s − MN∗ + i �N∗

2

g�σ · �ktT t�−π+,�π , (24)

with

tT = i

∫
d4q

(2π )4

(
2 + �q · �k

|�k|2

)
1

q2 − M2
� + iε

1

(P − q)2 − m2
K∗ + iε

1

(P − q − k)2 − m2
π + iε

. (25)

Integrating tT over q0, we get [53,76]

tT =
∫

d3q

(2π )3

(
2 + �q · �k

|�k|2

)
1

8ω∗ωω′
1

k0 − ω′ − ω∗
1

P 0 + ω + ω′ − k0

1

P 0 − ω − ω′ − k0 + iε

× {2P 0ω + 2k0ω′ − 2[ω + ω′][ω + ω′ + ω∗]}
P 0 − ω∗ − ω + iε

, (26)

where P 0 = √
s, ω∗(�q ) = (m2

K∗0 + |�q |2)1/2, ω′(�q ) =
(m2

π + |�q + �k|2)1/2, and ω(�q ) = (M2
� + |�q |2)1/2. We

regularize the integral in Eq. (26) by using the same cutoff of
the meson loop in Eq. (22), θ (qmax − |�q ∗|), where �q ∗ is the �
momentum in the final π� c.m. [53] and qmax = 630 MeV.
The width of K∗ is taken into account by replacing ω∗ with
ω∗ − i �K∗

2 .
For the case when N∗(2030) → K∗+�−, t2, we have

t2 = −2M�

3
√

3

g
I= 1

2
πN,N∗g

I= 1
2

N∗,�K∗√
s − MN∗ + i �N∗

2

g�σ · �ktT t�0π0,�π . (27)

Thus, the total amplitude in Eq. (1) associated with π−p →
K0π� becomes

tπ−p→K0π� = t1 + t2 = C �σ · �ktT
(
t�−π+,�π + 1

2 t�0π0,�π

)
,

(28)

with

C = − 2

3
√

3
g

I= 1
2

πN,N∗g
I= 1

2
N∗,�K∗g

2M�√
s − MN∗ + i �N∗

2

. (29)

Here, the tT associated with the diagrams in Figs. 2(a) and
2(b) are the same because we use the isospin-averaged mass
and width of the hadrons in tT .

Calculating the square of the amplitude and summing and
averaging over the spins we get

∑ ∑
|tπ−p→K0π�|2 =|C|2|�k|2|tT |2

∣∣∣∣t�−π+,�π+1

2
t�0π0,�π

∣∣∣∣
2

.

(30)

Finally, by using Eq. (30) in Eq. (1), we can calculate
dσK0π�/dminv associated with the diagrams in Fig. 2.

To incorporate the contribution of spin 3/2, we follow the
appendix equations (A11) and (A14) and we see that, instead
of ∑

K∗ pol.

1

3
�σ · �εK∗ �εK∗ · �k, (31)

we get ∑
K∗ pol.

σ3εK∗3�εK∗ · �k. (32)

Thus, after summing over the K∗ polarizations

1
3 �σ · �k → σ3k3 (33)

and upon squaring it for |t |2 and summing and averaging over
the baryon spins, we get

1
9 |�k|2 → k2

3 → 1
3 |�k|2, (34)

where the last step considers the angular integration over �k in
dσ/dMinv.

The conclusion is that the sum of the spin 1/2 and 3/2 is
three times bigger than the contribution of J = 1/2 alone or,
equivalently, J = 3/2 contributes twice the amount of J =
1/2. This is logical because, in the diagram of Fig. 13, one
is summing over two third components of R for J = 1/2 and
over four forJ = 3/2. For practical reasons we can evaluate the
whole contribution by using the J = 1/2 formalism removing
the factor 1/

√
3 in Eq. (9) and this is what we shall do in what

follows.
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a

b R

1

2

3

FIG. 3. Diagram of a b → 1 R → 1 2 3.

B. pp → pK+π�

Now we will study the effects of the triangle loop in
the following decays: pp → pK+π+�−, pp → pK+π0�0,
and pp → pK+π−�+. For this, we first start analyzing the
diagram in Fig. 3. For this diagram, the differential cross
section is calculated by using the formula in Ref. [77],

d2σ

dtdMinv
=

∏
F (2MF )

32p2
as(2π )3

| �̃p2|
∑ ∑

|tab→123|2, (35)

where t = (pa − p1)2, Minv is the invariant mass of particles
2 and 3, �̃p2 is the momentum of particle 2 in the 23 c.m., such
that

| �̃p2| = λ
1
2
(
M2

inv,m
2
2,m

2
3

)
2Minv

, (36)

pa is the momentum of the particle a in the initial state,

pa = λ
1
2
(
s,M2

a ,M2
b

)
2
√

s
, (37)

and �F (2MF ) means that we multiply 2MF for each fermion
in Fig. 3, where MF is the mass of the respective fermion. This
factor appears because we use the normalization of Ref. [78].

The complete diagrams for our reaction are shown in Fig. 4.
The triangle part of the diagrams is very similar to the last case,
except that, because of charge conservation, the particles in the
loop will be different. Thus, instead of Eqs. (10a) and (10b),
we have

|�+K∗0〉 = −
√

1

3

∣∣∣∣3

2
,
1

2

〉
−

√
2

3

∣∣∣∣1

2
,
1

2

〉
, (38a)

|�0K∗+〉 =
√

2

3

∣∣∣∣3

2
,
1

2

〉
−

√
1

3

∣∣∣∣1

2
,
1

2

〉
, (38b)

where, to match the sign convention of the 
 and B matrices,
we used |�+〉 = −|1 1〉 (see Ref. [79] for further discussion).

Then, we get gN∗,�+K∗0 = −√
2/3g

I= 1
2

N∗,�K∗ and gN∗,�0K∗+ =
−√

1/3g
I= 1

2
N∗,�K∗ .

The vertices K∗0 → K+π− and K∗+ → K+π0 are calcu-
lated by using Eq. (13), which gives

−itK∗0,K+π− = ig(�q + 2�k) · �εK∗ , (39a)

−itK∗+,K+π0 = i
g√
2

(�q + 2�k) · �εK∗ . (39b)

To calculate the cross section for the diagrams in Fig. 4, we
proceed as done in Ref. [77]. In Fig. 3, the t matrix found in
Eq. (35) is given by

tab→123 = C ′ 1

Minv − MR + i �R

2

gR,23, (40)

with C ′ being a parameter that carries the dependence of the
amplitude on the variable t as well as information about the
pp → pR transition. Substituting

�R,23 = 1

2π

M3

Minv
g2

R,23| �̃p2|, (41)

where particle 3 is assumed to be a baryon, into Eq. (35), we
get

d2σ

dtdMinv
=

∏
F (2MF )

32p2
as(2π )3

|C ′|2
∣∣∣∣∣ 1

Minv − MR + i �R

2

∣∣∣∣∣
2

× 2π
Minv

M3
�R,23. (42)

Now we can take into account the complete reaction by
substituting �R,23 for �N∗→K+π� , where

d�N∗→K+π�

dminv
= 2MN∗2M�

(2π )34M2
inv

| �pK || �̃pπ |
∑∑

|t ′|2, (43)

with | �pK | being the momentum of K in the rest frame of N∗,

| �pK | = λ
1
2
(
M2

inv,m
2
K,m2

inv

)
2Minv

, (44)

and | �̃pπ | is the π momentum in the π� c.m. given by Eq. (4).

p

p N∗ K∗0

π−
Σ+

K+

Λ∗

π

Σ

p

(a)

p

p N∗ K∗+

π0

Σ0

K+

Λ∗

π

Σ

p

(b)

FIG. 4. Diagrams for reaction pp → pK+π� that contains the triangle mechanism, where π� can be π−�+, π 0�0, or π+�−.
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Then, from Eq. (42) we obtain

d3σpK+π�

dt dMinvdminv
= (2Mp)3 2M�

32p2
as(2π )5

| �pK || �̃pπ ||C ′|2

×
∣∣∣∣∣ 1

Minv − MN∗ + i �N∗
2

∣∣∣∣∣
2∑ ∑

|t ′|2.

(45)
The transition amplitude t ′ in Eq. (45) is

t ′ =
√

2

3
2M�g

I= 1
2

N∗,�K∗g

(
t�+π−,�π + 1

2
t�0π0,�π

)
�σ · �ktT ,

(46)

which is constructed in a way similar to what was done in
the previous section to obtain Eq. (28) but now changing the
following variables in Eq. (26):

P 0 = Minv, (47a)

|�k| = | �pK | = λ
1
2
(
M2

inv,m
2
K,m2

inv

)
2Minv

, (47b)

k0 = M2
inv + m2

K − m2
inv

2Minv
. (47c)

Putting Eq. (46) into Eq. (45), we get

d3σpK+π�

dt dMinvdminv
= C ′′ 1∣∣Minv − MN∗ + i �N∗

2

∣∣2 | �̃pπ |
∣∣∣∣t�+π−,�π

+ 1

2
t�0π0,�π

∣∣∣∣
2

|�k|3|tT |2, (48)

where | �̃pπ | is the π momentum in the π� c.m.,

| �̃pπ | = λ
1
2
(
m2

inv,m
2
π ,M2

�

)
2minv

, (49)

and

C ′′ = 2

3

(2Mp)3 2M�

32p2
as(2π )5

∣∣gI= 1
2

N∗,�K∗
∣∣2

g2(2M�)2|C ′|2, (50)

which is a function of s = (pa + pb)2 and t = (pa − p1)2.
Using now the relation

dt = 2| �pa|| �p1| d cos θ, (51)

which follows from t = (pa − p1)2, we then obtain

d3σpK+π�

d cos θ dMinvdminv
=C ′′ 2| �pa|| �p1|∣∣Minv − MN∗+i �N∗

2

∣∣2 | �̃pπ |
∣∣∣∣t�+π−,�π

+ 1

2
t�0π0,�π

∣∣∣∣
2

|�k|3|tT |2, (52)

with

| �pa| = λ
1
2
(
s,M2

p,M2
p

)
2
√

s
, (53a)

| �p1| = λ
1
2
(
s,M2

p,M2
inv

)
2
√

s
. (53b)

Minv [MeV]

t T
[M

eV
-2
]

8x10-8

6x10-8

4x10-8

2x10-8

0

-2x10-8

-4x10-8

FIG. 5. Re(tT ), Im(tT ), and |tT | of Eq. (26).

This last step is important to account for the phase space of
this process that depends on | �p1|, which is tied to Minv.

Finally, we should integrate out the cos θ in Eq. (52) but C ′
in C ′′ depend on it. The resultant factor of the cos θ integration
is denoted by C ′′′ and since we do not know the expression for
C ′, we take C ′′′ = 1. This means that from now on we will use
arbitrary units (arb. unit) for the cross section.

Thus, we end up with

d2σpK+π�

dMinvdminv
= C ′′′2| �pa|| �p1|∣∣Minv − MN∗ + i �N∗

2

∣∣2 | �̃pπ |
∣∣∣∣t�+π−,�π

+ 1

2
t�0π0,�π

∣∣∣∣
2

|�k|3|tT |2. (54)

III. RESULTS

In Fig. 5, we show the real part, imaginary part, and absolute
value of the amplitude tT of Eq. (26) as a function of the
invariant mass of K�(1405), Minv, by fixing the invariant
mass of π�, minv, at 1400 MeV. The absolute value of tT
has a peak around 2140 MeV as expected from the condition
for a triangular singularity by Eq. (18) of Ref. [53], and the
peak is dominated by the imaginary part of the amplitude.
As mentioned in Ref. [56], the peak of the imaginary part is
responsible for the triangle singularity.

In Fig. 6, we plot the mass distribution of the π−p →
K0π� scattering process as a function of minv(π0�0),
minv(π+�−), and minv(π−�+) with a fixed

√
s = Minv=2050,

2100, 2140, 2200, 2230 MeV. Let us first look at the π0�0

mass distribution in Fig. 6. At Minv = 2140 MeV, where a
peak associated with the triangle singularity is expected from
the formula in Ref. [53], we can see a clear peak at 1400 MeV
associated with �(1405) in the π� invariant mass. As we
see in the figure the largest strength is obtained with Minv =
2100 MeV. A peak is found around 1385 MeV for Minv =
2200,2230 MeV with a smaller strength, and the peak position
moves toward higher energy a little for Minv = 2050 MeV. In
the case of the π+�− and π−�+ final states, while the basic
features are shared with π0�0, the peak positions of the the
π+�− mass distribution are about 5 MeV less than that of the
π0�0 mass distribution, and the peak positions in the π−�+
mass distribution are about 5 MeV bigger than the values of
the π0�0 mass distribution with a similar width and strength.
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FIG. 6. The dσ/dminv mass distribution as a function of
minv(π 0�0), minv(π+�−), and minv(π−�+) for the π−p → K0π�

scattering with several fixed values of Minv.

Among these processes, the π+�− gives the largest strength.
This is roughly because the t�−π+,�π term is twice as larger as
t�0π0,�π in Eq. (30).

As stated before Eq. (7), we separate the π0�0, π+�−,
and π−�+ channels, although an isospin formalism could be
equally implemented. Indeed, N∗ has I = 1/2 and thus the
final Kπ� state also has I = 1/2, but the π� subsystem can
be either I = 0 or I = 1, and the amplitudes π� → π� have
a contribution of both I = 0 and I = 1 and even a small one of
I = 2, and these contributions appear with different signs in the
charge channels, thus leading to different mass distributions.
These differences between cross sections of the π� channels
were predicted in the theoretical study of the γp → K+π�
reaction in Ref. [24] and corroborated by experiments done in
Refs. [80,81].

FIG. 7. The d2σpK+π�/dMinvdminv as a function of minv(π 0�0),
minv(π+�−), and minv(π−�+) for the pp → pK+π� scattering with
several fixed values of Minv and

√
s = 3179 MeV.

In Fig. 7, we show the results of d2σpK+π�/dMinvdminv for
the pp → pK+π� scattering as a functions of minv(π0�0),
minv(π+�−), and minv(π−�+), respectively. The total energy
of the system

√
s is fixed at 3179 MeV which can be accessed

experimentally [64–66]. The dependence on minv is similar to
that in dσK0π�/dminv. In the case of π0�0 the peak is located
at 1400 MeV by fixing Minv = 2140 MeV. For Minv = 2200
and 2230 MeV, the peak positions move towards 1380 MeV
and also the widths are broader than that of the 1400 MeV case.
Decreasing the value of Minv to 2100 MeV, we obtain the peak
position around 1405 MeV. The shape of results are similar for
the π+�− and π−�+ mass distributions, but the peak positions
are 10 MeV bigger for the case of π+�− and 5 MeV smaller
for π−�+ mass distribution. In these processes, π−�+ gives
the largest strength because of the additional factor two for the
t�+π−,�π term in Eq. (52) compared with t�0π0,�π . We should
note that the peak with this mechanism appears at lower π�
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FIG. 8. Cross section of π−p → K0π� process σK0π� as a
function of Minv for π−p → K0π� scattering. The red solid line
corresponds to π 0�0, the black dash line corresponds to π+�−, and
the blue dash-dotted line corresponds to π−�+.

invariant mass than with the model of Ref. [36], where the
peak showed at 1420 MeV. This is due to the fact that with
the TS, �(1405) is formed by π�, rather than by K̄N , and
this channel couples mostly to the lower-mass state of the two
�(1405) states [10].

For the case of the π−p → K0π� reaction, we integrate
dσK0π�/dminv over minv in the range of the �(1405) peak,
minv ∈ (mπ + m�,1450 MeV), where mπ and m� are the
isospin-averaged mass of π and �, and we obtain the cross
section of π−p → K0π� and σK0π� as a function of Minv.
The results are represented in Fig. 8. There are peaks around
2100 MeV for all cases, although the expected value of
triangular singularity is 2140 MeV. This is because the N∗
resonance in the K∗� production has a peak around 2030 MeV
[the term 1/|Minv − MN∗ + i �N∗

2 |2 in Eq. (52)].
For the case of the pp → pK+π� reaction, integrat-

ing now the d2σpK+π�/dMinvdminv over minv we obtain
dσpK+π�/dMinv which is shown in Fig. 9 as a function of

FIG. 9. dσpK+π�/dMinv as a function of Minv for pp → pK+π�

scattering with fixed value of
√

s = 3179 MeV. The red solid line
corresponds to π 0�0, the black dash line corresponds to π+�−, and
the blue dash-dotted line corresponds to π−�+.

Minv for π0�0, π+�−, and π−�+. Similarly, we get peaks
around 2100 MeV for the three cases.

In the π−p and pp reactions, the strength is largest for
the π+�− and π−�+ final state, respectively, reflecting the
strength before the integration shown in Figs. 6 and 7.

We should note that the N∗(2030) is about 50 MeV below
the K∗� threshold, but the width of about 125 MeV makes
the overlap of the resonance in the region of K∗� invariant
masses studied still sizable, and the important thing is that this
resonance has a large coupling to the K∗� channel as we have
discussed. We can also rightly question whether the structure
found for tT is not tied to two-body thresholds rather than to
the TS. We can have two thresholds where (in the absence
of a K∗ width) two singularities (finite) would appear: the
K∗� threshold and the �π threshold. The latter one appears
at 1337 MeV but the peaks in the π� mass distributions show
up at about 1400 MeV, related to �(1405), thus it is not the
π� threshold enhancement that one is seeing there. The K∗�
threshold appears at 2087 MeV, and the width of the K∗ softens
a structure related to this threshold. Actually, we see a soft
enhancement of Re(tT ) in Fig. 5 around this energy. This is
related to this threshold and a detailed study of the threshold
effect and the TS, going to the limit of small width, was
conducted in Ref. [56] where a triangle diagram with K∗DK
intermediate states was studied. It was indeed found that Re(tT )
had a bump associated with the K∗D threshold while Im(tT )
had a peak stemming from a triangle singularity. Here we have
a similar situation where Re(tT ) in Fig. 5 is influenced by the
K∗� threshold, while Im(tT ) is driven by the TS peaking at
higher energy. We see in Fig. 5, by looking at |tT |, that the
peak structure is just provided by Im(tT ), so it is the TS that is
responsible for the peak structure in the cross sections studied.

We note that our calculations are done without a normaliza-
tion. In the case of the π−p → K0π� reaction we made an
estimate of the absolute value by assuming a N∗(2030) decay
width to πN of about 70 MeV. This is only a guess of the order
of magnitude based on similar decay widths for N∗ resonances
in that energy range. It is not possible right now to be more
quantitative. In the case of the pp → pK+π� reaction, we
did not even attempt to make an estimate of the absolute value
of the cross section. Yet, the results that we find in the next
section, where we show that the triangle mechanism is far
more important than the tree-level diagram, give us confidence
that the triangle mechanism discussed here is indeed very
important and provides a plausible solution to the puzzle of the
experimental results of Ref. [65]. At present we would suggest
that an experimental exploration is done of the dependence
of the cross sections on the K+π� invariant mass to see if
the predictions tied to the TS studied here hold. A further
theoretical study after some extra experimental information
from these observables would then be advisable.

IV. FURTHER CONSIDERATIONS

The paper has relied on a triangle loop with K∗π� in the
intermediate state. We can ask what happens to the related
tree-level mechanism with the same final state. Then we can
consider the mechanism of Fig. 10 for the pp → pK+π−�+
reaction. The first thing we realize is that, in this mechanism,
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p

p

p

Σ+ π-

K*0 K+

FIG. 10. Tree-level diagram corresponding to Fig. 4(a) with the
fixed π� being π−�+.

π+�− are not in a resonant state [the �(1405)] unlike in
Fig. 4(a). Its contribution will appear as a background that
in experiments is removed to get the �(1405) signal. Yet we
can make an estimate of this contribution relative to the loop
mechanism of Fig. 4. We must replace in Eq. (54)

2M�

(
t�+π−,�+π− + 1

2 t�0π0,�+π−
)�σ · �k tT (55)

by

1

M2
inv(π−K+) − m2

K∗ + imK∗�K∗
�σ · (�k − �pπ ). (56)

We have made estimates of these two terms in the region of
the peak of Minv(K∗0�+) (∼2100 MeV) and of the peak of
Minv(π−�+) (∼1400 MeV) and we find the tree level small
compared with the loop terms, of the order of five times smaller,
and out of phase with the other mechanism, which gives rise to
a small background below the structure that we have studied.

Next we would like to see what happens if we had a
mechanism with K̄N instead of π� in the loop. Our argumen-
tation is that, by having π� in the loop we guarantee that the
�(1405) state of small energy (1385–1400 MeV) is produced.
However, should there be a mechanism with K̄N in the loop,
then the �(1405) state of higher energies (∼1420 MeV)
would be produced and we would reach different conclusions
in the paper. Actually, related to the mechanism that we have,
we could have the mechanism of Fig. 11. The same resonance
N∗ that we have discussed also couples to φN . However, as we
can see in Fig. 2 of Ref. [60] the strength of the N∗ resonance
coupling to the φN channel is of the order of 0.25 compared
with 7 for the coupling to K∗� that we have considered here.
This is about a factor 30 smaller than the mechanism we have
considered.

We can also see at which Minv(φn) value one expects the tri-
angle singularity peak, and we find it at Minv(φn) = 1970 MeV
[we put the mass of �(1405) as 1433 MeV to be above the K̄N
threshold and to be able to apply Eq. (18) of Ref. [53]]. This
energy is lower than the energy of 2100 MeV where the former
triangle singularity appeared. This invariant mass is lower
than the one reached in the π−p → K0π� experiments of
Refs. [62,63]. It is at reach in the pp → pK+π� experiment

p

Σ+

π-

φ K0
π-

N*

K0
n

Λ*

FIG. 11. Triangle mechanism with φnK̄0 intermediate state.

of Ref. [65]. In addition, the small width of the φ makes the
TS structure narrower, but the p-wave coupling of φ → KK̄
reduces drastically the strength. Indeed, the |�k |3 factor in the
cross sections of Eqs. (1) and (30) for π−p → K0π� and
Eq. (54) for pp → pK+π� introduces an extra 0.08 relative
reduction factor of the K̄N triangle mechanism versus theK∗�
one. The two factors discussed make the φK̄N mechanism
negligible versus the K∗π� mechanism.

On the other hand, one may wonder if there are other N∗
resonances around the 2000–2150 MeV that couple strongly
to φN , but by looking into the PDG [41] and the older version
of the PDG [68], we do not find any resonance with coupling
to φN .

We could think of other possible vector mesons and N∗. The
next vector meson is ρ(1450). This mechanism develops a TS
at 2614 MeV [the mass of �(1405) is again put as 1433 MeV
here], which cannot be reached in the experiment of Ref. [65].
In addition,ρ(1450) → KK̄ is quoted as “not seen” in the PDG
[41] although some searches are quoted there. Furthermore, we
do not know of any N∗ resonance around this energy that could
have a sizable coupling to Nρ(1450).

Finally, we would like to insist that we have not determined
the strength of the cross section. For reasons discussed at the
beginning we would need information, the πN decay of N∗,
which is not known, and we did estimates. For the case of thepp
reaction we simply give results in arbitrary units. However, the
comparison done with the tree level, showing that the strength
of the triangle mechanism is much more important than the
tree level, indicates that the mechanism discussed is relevant
for the reaction. Leaving this apart, the shape of the invariant-
mass distributions is totally given by the mass and width of the
particles in the triangle diagram and there is no uncertainty in
the shape.

The discussion above is illustrative and shows the relevant
role of the TS with the K∗�π intermediate state, which
enhances the excitation of the low-energy �(1405) state,
providing a plausible explanation of the experimental findings
of Ref. [65].

V. SUMMARY

We have carried out a study of contributions of a trian-
gle diagram to the the π−p → K0π� and pp → pK+π�
processes. In both reactions, the triangle diagram is formed
by N∗ decaying first to K∗ and �, K∗ decaying into πK ,
and then � and π merging to give �(1405), which finally
decays into π�. In this process, the K∗π� loop generates a
triangle singularity around 2140 MeV in the invariant mass
of K�(1405) from Eq. (18) of Ref. [53]. We evaluate the
real part, the imaginary part, and the absolute value of the
amplitude tT and find a peak around 2140 MeV. We calculate
dσK0π�/dminv with some values of Minv in the π−p → K0π�
reaction and d2σpK+π�/dMinvdminv with some values of Minv

and fixed
√

s = 3179 MeV as a function of minv(π0�0),
minv(π+�−), and minv(π−�+). In these distributions, we
see peaks around 1400 MeV, representing clearly �(1405).
Integrating over minv, we obtain σK0π� and dσpK+π�/dMinv,
and these distributions show a clear peak for Minv(N∗(2030))
around 2100 MeV. The peak of the singularity shows up around
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K* K* K*

Σ Σ Σ

K*

Σ

FIG. 12. Source of K∗� → K∗� interaction through vector
exchange.

2140 MeV. This peak position of the triangular singularity is
lowered by the initial N∗ resonance peak around 2030 MeV in
the K∗� production.

Thus, our results constitute an interesting prediction of the
triangle singularity effect in the cross sections of these decays.
The work done here could explain why in the experiments
of Refs. [65,66] the invariant-mass distribution of π� for
�(1405) are found at lower invariant masses than in other
reactions. It would also be interesting to see if the predictions
done here concerning the triangle singularity are fulfilled by
the experimental data, an issue that has not been investigated so
far. This work also can serve as a warning to future experiments
that measure these interactions that they should be careful when
associating peaks in this energy region to resonances.
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APPENDIX: SPIN 1/2 AND 3/2 CONTRIBUTION

For K∗� → K∗�, we have the contribution from vector
exchange in Ref. [60] as shown in Fig. 12. The contribution
close to the resonance pole is given by

tK∗�,K∗� = g2
K∗�√

s − MR + i�R/2
�ε · �ε ′ ≡ tR�ε · �ε ′, (A1)

where �ε and �ε ′ are the polarization vectors of the initial and
final vectors. This amplitude contains both spin 1/2 and 3/2.
It is easy to split this into spin 1/2 and 3/2. We can write
symbolically the amplitude of Fig. 12 as in Fig. 13. We can
write the vertices corresponding to Fig. 14 as

t̃
(1/2)
K∗� = 1√

3
gK∗� �σ · �ε, (A2)

t̃
(3/2)
K∗� = gK∗� �S · �ε, (A3)

K*

Σ

K*

Σ

R

FIG. 13. Representation of Fig. 12 in terms of the resonance
generated by the mechanism of Fig. 12.

K*

Σ

R

FIG. 14. Effective R → K∗� vertex.

where �S is the transition operator from spin 3/2 to 1/2, with
the properties∑

ms

σi |ms〉〈ms |σj = δij + iεijkσk, (A4)

∑
Ms

Si |Ms〉〈Ms |S†
j = 2

3
δij − i

3
εijkσk. (A5)

Each of these operators projects the amplitude of Fig. 13
over spin 1/2 and 3/2, respectively, and we have

t
(1/2+3/2)
R = tR

{
1
3 �σ · �ε �σ · �ε ′ + �S · �ε �S† · �ε ′}

= tR�ε · �ε ′, (A6)

which gives us the proper separation of the amplitude of
Fig. 13 into its spin 1/2 and 3/2 parts. By using the vertices
of Eqs. (A2) and (A3) it is easy to see that∑ ∑ ∣∣t̃ (1/2)

K∗�

∣∣2 =
∑∑ ∣∣t̃ (3/2)

K∗�

∣∣2 = g2
K∗�, (A7)

which means that, by using the form of Eq. (A1), one has the
same width of R → K∗� for J = 1/2 and J = 3/2 and one
can use the coupling gK∗� for either case, ignoring the spin
variables, as done in Ref. [60].

The coupling to πN proceeds via the loop shown in Fig. 15
[60,67]. We are only concerned about the ratio between J =
1/2 and 3/2, so we assume that the loop of Fig. 15 is dominated
by the on-shell intermediate K∗�. In the limit of small K∗
momentum and separating the product of the K∗ → Kπ and
�K → N vertices into S and D waves [we remove the factor
of 2 from �ε · ( �pπ − �pK ) = 2�ε · �pπ for simplicity], we find

�ε · �pπ �σ · �pπ = εiσj

| �pπ |2
3

δij + εiσj

(
pπipπj − | �pπ |2

3
δij

)
,

(A8)

the couplings of the πN to N∗ with J = 1/2 and 3/2 are given
by

t̃
(1/2)
πN =

∑
K∗ pol.

g̃

3
| �pπ |2 �σ · �ε gK∗�√

3
�σ · �ε = g̃gK∗�

3
√

3
| �pπ |2 �σ · �σ

= 1√
3
g̃gK∗�| �pπ |2 for J = 1/2, (A9)

K*

Σ

R
K

N

π (p
π
)

FIG. 15. Effective mechanism for R → πN .
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K*

Σ

R

N

π

FIG. 16. Mechanism for πN → K∗� combining the vertices of
Figs. 13 and 15.

t̃
(3/2)
πN =

∑
K∗ pol.

g̃εiσj

(
pπipπj − 1

3
| �pπ |2δij

)
gK∗� �S · �ε

= g̃gK∗�σjSi

(
pπipπj − 1

3
| �pπ |2δij

)
for J = 3/2.

(A10)

Next, we look at the πN → K∗� transition of Fig. 16 and we
have

t̄
(1/2)
πN,K∗� = gK∗�√

3
�σ · �ε 1√

s − MR + i�R/2

g̃gK∗�√
3

| �pπ |2

≡ g̃

3
�σ · �ε | �pπ |2tR, (A11)

t̄
(3/2)
πN,K∗� = gK∗� �S · �ε 1√

s − MR + i�R/2

× g̃gK∗�S
†
i σj

(
pπipπj − 1

3
| �pπ |2δij

)

= g̃

(
�σ · �pπ �ε · �pπ − 1

3
| �pπ |2 �σ · �ε

)
tR. (A12)

In the coupling g̃ we have included for convenience the
result that would come from the loop integration of Fig. 15,
which is common to J = 1/2 and J = 3/2.

We can sum Eqs. (A11) and (A12) to account for both the
spin 1/2 and 3/2 (if one adds incoherently the cross sections
one obtains the same result, because spin 1/2 and 3/2 do not
interfere) and we get

t̄
(1/2+3/2)
πN,K∗� = g̃�σ · �pπ �ε · �pπ tR. (A13)

Since in the scattering �pπ is in the z direction we can write

t̄
(1/2+3/2)
πN,K∗� = g̃| �pπ |2σ3ε3tR. (A14)

In the triangle loop of Fig. 1, ε3 → k3 and then we get a factor
σ3k3 instead of �σ · �k/3 by using Eq. (A11) for J = 1/2.
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