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Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the
case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons
are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching
conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time
dependence of the effective temperature and baryon chemical potential of the system. The numerical results
illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by
the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture
is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the
formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture.
Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided
fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear
sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show,
to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is
connected with the existence of an attractor solution for conformal systems.
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I. INTRODUCTION

Comparisons between predictions of hydrodynamic models
and exact kinetic-theory results have become an important
method to verify the validity of hydrodynamic frameworks
[1–12], which are now our basic tools to interpret the processes
of heavy-ion collisions studied experimentally at RHIC and
the LHC [13–17]. Such comparisons also allow for deeper
analyses of mutual relations between effective hydrodynamic
models and microscopic, underlying theories [18–21], for
a recent review see Ref. [22]. In this work we continue
earlier studies on this topic and generalize previous results
by studying a mixture of massive fermions and massless
bosons forming a highly nonequilibrium system. Similarly
to earlier works we restrict ourselves to boost-invariant
systems [23].

Previous studies of mixtures [24–27] were restricted to the
massless case and done mostly in the context of anisotropic
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hydrodynamics [28,29]. In this paper we restrict ourselves to
the kinetic-theory study, leaving an anisotropic hydrodynamics
context for a separate investigation. Nevertheless, we use here
the results of the first-order Navier-Stokes hydrodynamics to
demonstrate the process of hydrodynamization of the system
[30]. We find that the hydrodynamization in the shear sector
(equalization of the longitudinal, PL, and transverse, PT ,
pressures) takes place earlier than the hydrodynamization in
the bulk sector (equalization of the average and equilibrium
pressures).

In order to study the system behavior close to equilibrium
we determine the shear and bulk viscosities of a mixture and
find that the shear viscosity η is simply a sum of the fermion and
boson shear viscosities, η = ηQ + ηG. On the other hand, the
bulk viscosity of a mixture is given by the formula known for a
massive fermion gas, ζ . Nevertheless, we find that ζ depends on
thermodynamic coefficients characterizing the whole mixture
rather than fermions alone, which means that massless bosons
contribute in a nontrivial way to the bulk viscosity (provided
the fermions are massive).

Interestingly, our studies of the time evolution of the ratio
of the longitudinal and transverse pressures indicate that, to
a very good approximation, it depends on the ratio of the
relaxation and proper times only. This behavior is related to
the presence of an attractor, which was found and discussed
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earlier for conformal systems [31–36], and, quite recently, also
for nonconformal ones [37].

The paper is organized as follows. In Secs. II and III we
introduce the system of kinetic equations for the fermion-boson
mixture and study their momentum moments. This leads to
two Landau matching conditions related to the baryon number
and energy-momentum conservation. In Sec. IV we discuss an
algebraic method useful for dealing with tensors describing our
main observables. This method is used in Secs. V–VII to cal-
culate various thermodynamic variables for systems exhibiting
isotropic, anisotropic, and exact distribution functions, respec-
tively. In Sec. VIII, which is the central analytic part of this
work, we discuss the conservation laws and present two integral
equations used to determine the proper-time dependence of the
effective temperature and baryon chemical potential. In Sec. IX
we present our results describing proper-time dependence of
various quantities, hydrodynamization process, and scaling
properties of the PL/PT ratio. We summarize and conclude
in Sec. X. Appendixes A–C contain: details of the calculations
of the generalized thermodynamic functions, discussion of
the Navier-Stokes equations, and the explicit calculation of
the shear and bulk viscosities for a fermion-boson mixture,
respectively.

In this paper we use xμ = (t,x,y,z) and pμ = (p0 =
Ep,px,py,pz = pL) to denote the particle space-time po-
sition and four-momentum. The longitudinal (z) direction
corresponds to the beam axis. The transverse momentum is
pT =

√
p2

x + p2
y and particles are assumed to be always on

the mass shell, Ep =
√

m2 + p2
T + p2

L. The scalar product
of two four-vectors is aμbμ = aμgμνb

ν ≡ a · b where gμν =
diag(1,−1,−1,−1) is the metric tensor. For the partial deriva-
tive we use the notation ∂μ ≡ ∂/∂xμ. Throughout the paper
we use natural units with c = kB = h̄ = 1.

II. KINETIC EQUATIONS

Our analysis is based on three coupled relativistic Boltz-
mann transport equations for fermions, antifermions, and
boson phase-space distribution functions fs(x,p) [24–27],

(p · ∂)fs(x,p) = C[fs(x,p)], s = Q+,Q−,G . (1)

From now on we shall refer to fermions and bosons as to quarks
(Q±) and gluons (G), respectively. We stress, however, that
these are to large extent symbolic names, since our particles
may have several properties different from those characterizing
real quarks and gluons appearing in field-theoretic calcula-
tions.

The collisional kernelC in Eq. (1) is treated in the relaxation-
time approximation (RTA) [38–41]

C[fs(x,p)] = (p · U )
fs,eq(x,p) − fs(x,p)

τeq
, (2)

where τeq is the relaxation time1 and the four-vector U (x)
describes the hydrodynamic flow. In numerical calculations we

1The Casimir scaling suggests that the mean-free paths and, conse-
quently, the relaxation times of real quarks and gluons may satisfy the
relation τ q

eq/τ
g
eq = CA/CF = 9/4 = 2.25. This condition was used,

assume that τeq is constant, which explicitly breaks conformal
symmetry of the system. The other source of breaking of the
conformal symmetry is a finite quark mass. The form of Uμ(x)
in Eq. (1) is defined by choosing the Landau hydrodynamic
frame. We note, however, that for one-dimensional boost-
invariant systems the structure of Uμ(x) follows directly from
the symmetry arguments, see Sec. VII A.

In Eq. (2) the functions fs,eq(x,p) are standard equilibrium
distribution functions, which (unless specified otherwise) take
the Fermi-Dirac and Bose-Einstein forms for (anti)quarks and
gluons, respectively,

fQ±,eq(x,p) = h+
eq

(
p · U ∓ μ

T

)
, (3)

fG,eq(x,p) = h−
eq

(
p · U

T

)
. (4)

Here T (x) is the effective temperature, μ(x) is the effective
chemical potential of quarks, and

h±
eq(a) = [exp(a) ± 1]−1. (5)

The same value of T (x) appearing in Eqs. (3) and (4), as well
as the same value of μ(x) appearing in the quark and antiquark
distributions in Eq. (3) introduces interaction between quarks,
antiquarks, and gluons—all particles evolve toward the same
local equilibrium defined by T (x) and μ(x). Since the baryon
number of quarks is 1/3, we can use the relation

μ = μB

3
, (6)

with μB being the baryon chemical potential.
All particles are assumed to be on the mass shell, p2 =

p · p = m2, so that the invariant momentum measure is∫
dP (. . .) ≡ 2

∫
d4p �(p · t)δ(p2 − m2)(. . .)

=
∫

d3p

Ep

(. . .), (7)

where � is the Heaviside step function and tμ is an arbitrary
timelike four-vector. Hereafter, the gluons are treated as mass-
less, while quarks have a finite constant mass m.

III. MOMENTS OF THE KINETIC EQUATIONS

We introduce the nth moment operator in the momentum
space

Îμ1···μn(. . . ) ≡
∫

dP pμ1pμ2 · · · pμn(. . . ) , (8)

with the zeroth moment operator defined as

Î(. . . ) ≡
∫

dP (. . . ) . (9)

Acting with Îμ1···μn on the distribution functions fs(x,p) and
multiplying them by the degeneracy factors ks, one obtains the

for example, in Ref. [24]. For sake of simplicity, in this work we use
the same relaxation times for all particles.
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nth moments of the distribution functions

Iμ1···μn
s ≡ ks Îμ1···μnfs(x,p) . (10)

Here ks ≡ gs/(2π )3, with gQ± = 3 × 2 × Nf and gG = 8 ×
2 being the internal degeneracy factors for (anti)quarks and
gluons, respectively. In our calculations we assume that we
deal with two (up and down) quark flavors with equal mass,
which reflects the SU(2) isospin symmetry.

With the above definitions, the first and second moments of
the distribution functions read

Nμ
s (x) ≡ Iμ

s = ks

∫
dP pμfs(x,p) , (11)

T μν
s (x) ≡ Iμν

s = ks

∫
dP pμpνfs(x,p) , (12)

which are identified with the particle number current and the
energy-momentum tensor of the species s, respectively. In
addition, we define the baryon number current

Bμ(x) ≡
∑

s

qs Nμ
s (x)

= kQ±

3

∫
dP pμ[fQ+(x,p) − fQ− (x,p)], (13)

where qs = {1/3,−1/3,0} is the baryon number for quarks,
antiquarks, and gluons, respectively. The total particle number
current and total energy-momentum tensor read

Nμ(x) =
∑

s

Nμ
s (x) , (14)

T μν(x) =
∑

s

T μν
s (x) . (15)

We now consider the nth moments of the kinetic equations
(1), which are obtained by acting with the operator Îμ1···μn

given by (8) on their left- and right-hand sides and multiplying
them by the degeneracy factors ks. The zeroth and first
moments have the form

ksÎpμ∂μfs(x,p) = ksÎpμUμ

fs,eq(x,p) − fs(x,p)

τeq
, (16)

ksÎνpμ∂μfs(x,p) = ksÎνpμUμ

fs,eq(x,p) − fs(x,p)

τeq
, (17)

which, using Eqs. (10)–(12), may be rewritten as

∂μNμ
s = Uμ

Nμ
s,eq − Nμ

s

τeq
, (18)

∂μT μν
s = Uμ

T μν
s,eq − T μν

s

τeq
. (19)

Taking difference between s = Q+ and s = Q− components
of Eqs. (18) we obtain the baryon current evolution equation

∂μBμ = Uμ

Bμ
eq − Bμ

τeq
. (20)

On the other hand, when taking the sum over s components of
Eqs. (19) one gets the total energy and momentum conservation

equation

∂μT μν = Uμ

T μν
eq − T μν

τeq
. (21)

In order to have the baryon number conserved it is required that
the left-hand side of Eq. (20) vanishes, ∂μBμ = 0. The latter
implies vanishing of the right-hand side of Eq. (20), which
leads to the Landau matching condition for baryon current

UμBμ
eq = UμBμ. (22)

Analogously, the energy and momentum conservation means
that the left-hand side of Eq. (21) vanishes, ∂μT μν = 0. This
condition results in vanishing of the right-hand side of Eq. (21),
which leads to the Landau matching condition for energy and
momentum

UμT μν
eq = UμT μν. (23)

IV. TENSOR DECOMPOSITION

It is convenient to introduce the four-vector basis [42,43]

(A(0),A(1),A(2),A(3)) = (U,X,Y,Z), (24)

which in the local rest frame (LRF) reads

A
μ
(0),LRF ≡ U

μ
LRF = (1,0,0,0),

A
μ
(1),LRF ≡ X

μ
LRF = (0,1,0,0),

A
μ
(2),LRF ≡ Y

μ
LRF = (0,0,1,0),

A
μ
(3),LRF ≡ Z

μ
LRF = (0,0,0,1) . (25)

Using Eqs. (25) one may express the metric tensor as fol-
lows [44]

gμν = UμUν −
∑
A �=U

AμAν . (26)

The projector on the space orthogonal to the four-velocity,

μν ≡ gμν − UμUν , takes the form


μν = −
∑
A �=U

AμAν , (27)

and satisfies the conditions Uμ
μν = 0,
μ
α
αν = 
μν , and


μ
μ = 3. The basis (25) is a unit one in the sense that

A · B =
⎧⎨
⎩

0 for A �= B,

1 for A = B = U,

−1 for A = B �= U,

(28)

and complete so that any four-vector may be decomposed in the
basis A(α). In particular, one may express the particle number
flux as follows:

Nμ
s (x) =

∑
A

ns
AAμ, (29)

where the coefficients ns
A, due to Eqs. (28), are given by the

projections

ns
A = AμNμ

s (x) A2, (30)

with A2 = A · A [note that A2 = −1 for spacelike four-vectors
of the basis (25)]. The tensorial basis for the rank-two tensors
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is constructed using tensor products of the basis four-vectors
A

μ
(α). Thus the decomposition of the energy-momentum tensor

takes the form

T μν
s (x) =

∑
A,B

t s
ABAμBν, (31)

with the components of T μν
s (x) defined in the following way:

t s
AB = AμBνT

μν
s (x) A2B2. (32)

Using Eqs. (11) and (12) in Eqs. (30) and (32) in one gets

ns
A = ks

∫
dP (p · A)A2fs(x,p), (33)

t s
AB = ks

∫
dP (p · A)(p · B)A2B2fs(x,p). (34)

V. ISOTROPIC DISTRIBUTIONS

In the case of momentum-isotropic distribution functions
[in particular, in the case of equilibrium distribution functions
fs,eq(x,p) = fs,eq(p · U (x)), as defined by Eqs. (3) and (4)],
which are invariant with respect to SO(3) rotations in the
three-momentum space, by the symmetry of the integrands
in Eqs. (33) and (34) one has (with A and B being the basis
vectors)

n
s,eq
A = ks

∫
dP (p · A)A2fs,eq = 0 if A �= U, (35)

t
s,eq
AB = ks

∫
dP (p · A)(p · B)A2B2fs,eq = 0 if A �= B,

(36)

so that for the momentum-isotropic state Eqs. (29) and (31)
have the following structure:

Nμ
s,eq(x) = N s,eqUμ, (37)

T μν
s,eq(x) = E s,eqUμUν − P s,eq
μν, (38)

with

N s,eq = n
s,eq
U , E s,eq = t

s,eq
UU , P s,eq = t

s,eq
XX = t

s,eq
YY = t

s,eq
ZZ ,

(39)

being the particle density, energy density, and pressure in
equilibrium. Explicit forms of these expressions are given in
Appendix A 2.

VI. ANISOTROPIC ROMATSCHKE-STRICKLAND
DISTRIBUTIONS

It is also useful to consider anisotropic phase-space distri-
butions introduced by Romatschke and Strickland in Ref. [45].
In the covariant form they read [24]

fQ±,a(x,p) = h+
eq

⎛
⎝

√
(p · U )2 + ξQ(p · Z)2 ∓ λ

�Q

⎞
⎠, (40)

fG,a(x,p) = h−
eq

(√
(p · U )2 + ξG(p · Z)2

�G

)
, (41)

where ξQ(x) = ξQ+(x) = ξQ−(x) is the quark anisotropy pa-
rameter, �Q(x) = �Q+(x) = �Q− (x) is the quark transverse-
momentum scale, and λ(x) is the nonequilibrium baryon chem-
ical potential of quarks. Similarly, ξG(x) is the gluon anisotropy
parameter and �G(x) is the gluon transverse-momentum
scale. The anisotropy parameters ξs vary in the range −1 <
ξs < ∞, with the cases −1 < ξs < 0, 0 < ξs < ∞ and ξs = 0
corresponding to the prolate, oblate, and isotropic momentum
distribution, respectively.

The distributions defined by Eqs. (40) and (41) are invariant
only with respect to SO(2) rotations around the z direction in
the three-momentum space. In this case one still has

n
s,a
A = 0 if A �= U, (42)

t
s,a
AB = 0 if A �= B, (43)

and Eqs. (11) and (12) have the following structure [46]

Nμ
s,a(x) = N s,aUμ, (44)

T μν
s,a (x) = E s,aUμUν − P s,a

T 

μν
T + P s,a

L ZμZν, (45)

with

N s,a = n
s,a
U , E s,a = t

s,a
UU , P s,a

T = t
s,a
XX = t

s,a
YY , P s,a

L = t
s,a
ZZ.

(46)

Here 

μν
T = −(XμXν + YμY ν) is the projection operator

orthogonal to U and Z. Explicit forms of Eqs. (46) are given
in Appendix A 1.

VII. EXACT SOLUTIONS OF THE KINETIC EQUATIONS

In order to solve Eqs. (22) and (23) we need to know the
form of the distribution functions fs(x,p) being solutions of the
kinetic equations (1). In general, such solutions are difficult to
find and Eqs. (1) may be at best solved numerically. However,
it is possible to find formal analytic solutions of Eqs. (1) in
the case where the system is boost invariant and transversally
homogeneous. Below, we discuss this case in more detail.

A. Boost invariance and transversal homogeneity

Hereafter, we assume that the considered system is boost in-
variant in the longitudinal (beam) direction and homogeneous
in the transverse direction. In such a case we may choose [42]

Uμ = (t/τ,0,0,z/τ ), (47)

Xμ = (0,1,0,0), (48)

Yμ = (0,0,1,0), (49)

Zμ = (z/τ,0,0,t/τ ), (50)

where τ is the (longitudinal) proper time

τ =
√

t2 − z2. (51)

As a result the system becomes effectively one dimensional.
Since its evolution is governed completely by the proper time
that mixes t and z, one usually refers to such a system as (0+1)
dimensional.
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B. Boost-invariant Bialas-Czyz variables

In the case of (0+1)-dimensional system exhibiting sym-
metries discussed in the previous section it is convenient to use
the variables w and v, which are defined as follows [47,48]:

w = tpL − zEp = − τ p · Z, (52)

v = tEp − zpL = τ p · U. (53)

Due to the fact that particles are on the mass shell w and v are
related by the formula

v(τ,w,pT ) =
√

w2 + (
m2 + p 2

T

)
τ 2. (54)

Equations (52) and (53) can be inverted to express the energy
and longitudinal momentum of a particle in terms of w and v,
namely

Ep = vt + wz

τ 2
, pL = wt + vz

τ 2
. (55)

The Lorentz invariant momentum-integration measure can be
written now as

dP = d3p

Ep

= dw d2pT

v
. (56)

For boost-invariant systems, all scalar functions of space and
time, such as the effective temperature T and quark chemical
potential μ, may depend only on τ . In addition, one can check
that the phase-space distribution functions (which are Lorentz
scalars) may depend only on the variables w, τ , and pT . We
use these properties in the next section.

C. Formal solutions of the kinetic equations

With the help of the variables w, v, and pT we can rewrite
(1) in a simple form [1,2,49,50]

∂fs(τ,w, pT )

∂τ
= fs,eq(τ,w,pT ) − fs(τ,w, pT )

τeq
, (57)

where the boost-invariant versions of the equilibrium distribu-
tion functions are straightforward to find using (52) and (53)

fQ±,eq(τ,w,pT ) = h+
eq

⎛
⎝

√(
w
τ

)2 + p2
T + m2 ∓ μ

T

⎞
⎠, (58)

fG,eq(τ,w,pT ) = h−
eq

⎛
⎝

√(
w
τ

)2 + p2
T

T

⎞
⎠. (59)

Below we assume that distribution functions fs(τ,w, pT ) are
even functions of w, and depend only on the magnitude of pT ,2

fs(τ,w,pT ) = fs(τ,−w,pT ). (60)

2In our analysis we restrict ourselves to the initial distributions in the
RS form, which are SO(2) invariant in transverse momentum space
and thus depend only on the magnitude of pT .

The formal solutions of Eqs. (57) have the form [1,2,49,50]

fs(τ,w,pT ) = D(τ,τ0)f 0
s (w,pT )

+
∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)fs,eq(τ ′,w,pT ). (61)

where f 0
s (w,pT ) ≡ fs(τ0,w,pT ) is the initial distribution func-

tion [we have introduced here the notation τ ′
eq = τeq(τ ′) for the

general case where the equilibration time may depend on the
proper time].

D. Damping function

In Eq. (61) we have introduced the damping function

D(τ2,τ1) = exp

[
−

∫ τ2

τ1

dτ ′′

τeq(τ ′′)

]
. (62)

The function D(τ2,τ1) satisfies the two differential relations

∂D(τ2,τ1)

∂τ2
= −D(τ2,τ1)

τeq(τ2)
,

∂D(τ2,τ1)

∂τ1
= D(τ2,τ1)

τeq(τ1)
(63)

and converges to unity if the two arguments are the same,
D(τ,τ ) = 1. These properties imply the identity [26]

1 = D(τ,τ0) +
∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ,τ ′). (64)

For a constant relaxation time used in this work Eq. (62)
reduces to

D(τ2,τ1) = exp

[
−τ2 − τ1

τeq

]
. (65)

E. Initial distributions

In what follows we assume that the initial distributions
f 0

s (w,pT ) are given by the anisotropic Romatschke-Strickland
(RS) forms f 0

s,a(w,pT ), which follow from Eqs. (40) and (41),

fQ±,a(τ0,w,pT ) = h+
eq

⎛
⎝

√(
1 + ξ 0

Q

)(
w
τ0

)2 + m2 + p2
T ∓ λ0

�0
Q

⎞
⎠,

fG,a(τ0,w,pT ) = h−
eq

⎛
⎝

√(
1 + ξ 0

G

)(
w
τ0

)2 + p2
T

�0
G

⎞
⎠. (66)

Here ξ 0
s ≡ ξs(τ0),�0

s ≡ �s(τ0), and λ0 ≡ λ(τ0) are initial pa-
rameters.

In view of the form (61), the use of Eqs. (40) and (41)
implies that the decomposition of the particle current and the
energy-momentum tensor for (61) has the form of Eqs. (44)
and (45), namely

Nμ
s (x) = N sUμ, (67)

T μν
s (x) = E sUμUν − P s

T 

μν
T + P s

LZμZν, (68)

with

N s = ns
U , E s = t s

UU , P s
T = t s

XX = t s
YY , P s

L = t s
ZZ. (69)

Hereafter, we refer to results obtained with the solution (61)
as the kinetic or exact ones.
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FIG. 1. Effective temperature T (top panels) and μ/T ratio (bottom panels), shown as functions of the proper time τ and normalized to
unity at the initial proper time τ = τ0. Results correspond to the initial oblate-oblate configuration with the anisotropy parameters given in the
figure. Three different types of lines correspond to three different choices of the statistics and the quark mass (the label “cs” denotes classical
statistics used for both quarks and gluons, while the label “qs” denotes the use of Fermi-Dirac and Bose-Einstein statistics for quarks and gluons,
respectively). Other parameters of the calculations are shown in the figure and discussed in the text.

VIII. BARYON NUMBER AND FOUR-MOMENTUM
CONSERVATION

A. Baryon number conservation

Using the expression for the baryon number current (13) and
the decompositions (37) and (67) one may rewrite Eq. (22) as

Beq = B, (70)

where we define the equilibrium and exact baryon number
densities as

Beq = 1
3 (NQ+,eq − NQ−,eq), B = 1

3 (NQ+ − NQ−
). (71)

The explicit formula forBeq(τ ) is derived in Appendix A 2, see
Eq. (A33),

Beq(τ ) = 16πkQT 3

3
sinh

(
μ

T

)
HB

(
m

T
,
μ

T

)
, (72)

where the function HB is defined by Eq. (A21). The formula
forB(τ ) is more complicated and is given in Appendix A 3, see
Eq. (A43). It contains an integral over the time history of the
functions T ′ ≡ T (τ ′) and μ′ ≡ μ(τ ′) in the range τ0 � τ ′ � τ .

Consequently, Eq. (70) becomes an integral equation

T 3 sinh

(
μ

T

)
HB

(
m

T
,
μ

T

)

= τ0
(
�0

Q

)3

τ
√

1 + ξ 0
Q

sinh

(
λ0

�0
Q

)
HB

(
m

�0
Q

,
λ0

�0
Q

)
D(τ,τ0)

+
∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)
τ ′(T ′)3

τ
sinh

(
μ′

T ′

)
HB

(
m

T ′ ,
μ′

T ′

)
.

(73)

Equation (73) is a single equation for two functions, T (τ )
and μ(τ ). The second necessary equation required for their
determination is obtained from the Landau matching condition
for the energy, which we discuss in the next section.

Meanwhile, it is interesting to notice that Eq. (73) can
be rewritten as an integral equation for the function B(τ ),
namely,

B(τ ) = τ0

τ
B(τ0)D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

τ ′

τ
B(τ ′) D(τ,τ ′). (74)
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FIG. 2. Same as Fig. 1 but for the initial prolate-oblate configuration with the parameters given in the figure.

By differentiating (74) with respect to τ we get

dB(τ )

dτ
+ B(τ )

τ
= 0, (75)

which is nothing else but the form of baryon number conserva-
tion law valid for the Bjorken geometry (in the original Bjorken
paper [23] the same equation was obtained for the conserved
entropy current). Equation (75) has scaling solution

B(τ ) = τ0

τ
B(τ0). (76)

Combining (70) and (72) with (76) we find the equation

sinh

(
μ

T

)
HB

(
m

T
,
μ

T

)
= 3τ0B(τ0)

16πkQτT 3
, (77)

which allows us to determine μ in terms of T and τ for a given
initial baryon number density. Unfortunately, in the general
case we study (Fermi-Dirac statistics for quarks) Eq. (77)

is an implicit equation for μ. The situation simplifies in the
case of classical statistics, where the function HB becomes
independent of μ.

B. Four-momentum conservation

Using the expression for the energy-momentum tensor (15)
and the decompositions (38) and (68) one may rewrite Eq. (23)
as

Eeq = E, (78)

where Eeq and E contain contributions from quarks, antiquarks,
and gluons

Eeq = EQ+,eq + EQ−,eq + EG,eq, (79)

E = EQ+ + EQ− + EG. (80)

Using Eqs. (A26), (A30), (A36), and (A40) we obtain

T 4

[
H̃+

(
1,

m

T
,−μ

T

)
+ H̃+

(
1,

m

T
,+μ

T

)
+ rH̃−(1,0,0)

]

= (
�0

Q

)4

⎡
⎣H̃+

⎛
⎝ τ0

τ
√

1 + ξ 0
Q

,
m

�0
Q

,− λ0

�0
Q

⎞
⎠ + H̃+

⎛
⎝ τ0

τ
√

1 + ξ 0
Q

,
m

�0
Q

,+ λ0

�0
Q

⎞
⎠

⎤
⎦D(τ,τ0)
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FIG. 3. Same as Figs. 1 and 2 but for the initial prolate-prolate configuration with the parameters given in the figure.

+
∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)4
[
H̃+

(
τ ′

τ
,
m

T ′ ,−
μ′

T ′

)
+ H̃+

(
τ ′

τ
,
m

T ′ ,+
μ′

T ′

)]

+ r

⎡
⎣(

�0
G

)4H̃−

⎛
⎝ τ0

τ
√

1 + ξ 0
Q

,0,0

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)4H̃−
(

τ ′

τ
,0,0

)⎤
⎦, (81)

where the functions H̃± are defined by Eqs. (A9) and r is the
ratio of the degeneracy factors

r = kG

kQ

= gG

gQ

= 4

3
. (82)

Equations (73) and (81) are two integral equations that
are sufficient to determine the proper-time dependence of the
functions T (τ ) and μ(τ ). This is done usually by the iterative
method [51]. The two initial, to large extent arbitrary, input
functions Tin(τ ) and μin(τ ) are used on the right-hand sides
of (73) and (81) and the new values Tout(τ ) and μout(τ ) are
calculated from the left-hand sides. They are next used as
Tin(τ ) and μin(τ ) on the right-hand sides to get updated values
of Tout(τ ) and μout(τ ). Such procedure is repeated until the
updated values agree well with the initial values. We have found
that the stable results are obtained with about 50 iterations if
the final proper time is 5.0 fm. The time of the calculations
grows quadratically with the final proper time.

Our use of the two coupled integral equations is similar to
the case studied previously in Ref. [52]. We find that it is more
straightforward than using (81) together with (77). However,
the situation is different in the case of classical statistics, where
(77) can be used to determine analytically μ/T . In this case,
the expression for μ/T obtained from (77) may be substituted
into (81) and we are left with a single integral equation for the
function T (τ ).

One may check, using (A18) and (A19), that Eq. (81) is
consistent with the formula

dE
dτ

= −E + PL

τ
, (83)

where PL = PQ+
L + PQ−

L + PG
L is the total longitudinal mo-

mentum of the system. Equation (83) holds in general for the
Bjorken expansion. It follows directly from the conservation
law in the form ∂μT μν = 0.
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FIG. 4. Proper-time dependence of the ratios (a) T/T0 and
(b) μT0/(μ0T ) obtained in the range τ0 < τ < 10 fm from: kinetic
theory (red solid lines), perfect-fluid hydrodynamics (green dot-
dashed lines), and Navier-Stokes hydrodynamics (navy blue dashed
lines). All results are normalized to the initial values T0 and μ0 used
in the kinetic theory. The initial values of temperature and chemical
potential in the hydrodynamic calculations are chosen in such a
way that the final values of T and μ agree with the values found
in the kinetic-theory calculation. The calculations are done for the
oblate-oblate initial conditions with a finite quark mass of 300 MeV,
quantum statistics, and B0 = 1 fm−3.

IX. RESULTS

In this section we present the results of our numerical
calculations. In all studied cases we use a constant equilibration
time τeq = 0.25 fm, which is the same for quark and gluon
components.3 The starting proper time is τ0 = 0.1 fm and the
evolution continues till τf = 5.0 fm (or τf = 10 fm in several
cases). The initial transverse momentum scales of quarks and
gluons are taken identical and always fixed to �0

Q = �0
G =

1 GeV. The initial nonequilibrium chemical potential λ0 is
chosen in such a way that the initial baryon number density
is either B0 = 0.001 fm−3 or B0 = 1 fm−3, see Eq. (A43).

3Here the main motivation comes from saving the computational
time. A popular case used in conformal theories, where τeq is inversely
proportional to the effective temperature T , leads to much longer
calculations due to additional integral in Eq. (62).
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FIG. 5. Effective shear viscosity ηeff defined by Eq. (84) (red solid
line) and the shear viscosity coefficients η calculated using Eq. (85)
for the two T (τ ) and μ(τ ) profiles, found from the perfect-fluid
hydrodynamics (green dot-dashed line) and from the Navier-Stokes
equations (navy blue dashed line). The effective shear viscosity agrees
well with the standard definition of η for τ > 0.5 fm. The initial
conditions are the same as in Fig. 4.

Other initial conditions correspond to different values of the
anisotropy parameters. We use three sets of the values for ξ 0

Q

and ξ 0
G: (i) ξ 0

Q = 1 and ξ 0
G = 10, (ii) ξ 0

Q = −0.5 and ξ 0
G = 10,

and (iii) ξ 0
Q = −0.5 and ξ 0

G = −0.25. They correspond to
oblate-oblate, prolate-oblate, and prolate-prolate initial mo-
mentum distributions of quarks and gluons, respectively. Such
initial values for ξ 0

Q and ξ 0
G were used previously in Ref. [27].

We note that different values of ξ 0
Q, ξ 0

G, and λ0 imply different
initial energy and baryon number densities, hence, due to
matching conditions, also different initial values of T0 and
μ0. We also note that the oblate-oblate initial configuration
is supported by the microscopic calculations, which suggest
that the initial transverse pressure is much higher than the
longitudinal one [30,53].

We perform our calculations for three different choices of
the particle statistics and the quark mass: in the first case both
quarks and gluons are described by the classical, Boltzmann
statistics4 and the quark mass is equal to 1 MeV.5 In the second
case we use again the classical statistics but the quark mass is
300 MeV. Finally, in the third case the quarks are described by
the Fermi-Dirac statistics and have the mass of 300 MeV, while
the gluons are described by the Bose-Einstein statistics. The
gluon mass is always set equal to zero. The case with classical
statistics, B0 = 0.001 fm−3, and negligibly small quark mass
of 1 MeV agrees well with the exact massless case studied in
Ref. [27]. This agreement is used as one of the checks of our
present approach. The complete set of our initial conditions is
given in the tables of Appendix D.

4In this case the ± sign in Eq. (5) is neglected and h±
eq(a) = exp(−a).

5Since this value of mass is much smaller than the considered
temperature values, we refer sometimes to this case as to the massless
one.
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FIG. 6. (a) Proper-time dependence of the shear viscosity of the mixture (red solid line), of the quark component (navy blue dashed line),
and of the gluon component (green dot-dashed line), see Eqs. (85)–(87). The initial conditions are the same as in Fig. 4. (b) The ratio ηQ/ηG

as a function of m/T and μ/T . The colored line represents the system evolution trajectory with the parameters corresponding to (a).

We note that the values of the initial conditions used in this
work are to large extent arbitrary, as we want to analyze here
only general features of the solutions of Eqs. (1). With more
specific systems in mind, one can choose other values of the
initial parameters.

A. Proper-time dependence of T and μ/T

Figures 1–3 show the proper-time dependence of the effec-
tive temperature T and μ/T ratio, which are normalized to
unity at the initial time τ = τ0. The two top panels, (a) and (b),
show temperature profiles, while the two bottom panels, (c) and
(d), show μ/T . The two left panels, (a) and (c), correspond
to the case B0 = 0.001 fm−3, and the two right panels, (b)
and (d), describe the case B0 = 1 fm−3. The three figures
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FIG. 7. Effective bulk viscosity ζeff defined by Eq. (88) (red line)
and the bulk viscosity coefficient ζ calculated with the help of Eq. (90)
for the two T (τ ) and μ(τ ) profiles, found from the perfect-fluid
hydrodynamics (green dot-dashed line) and from the Navier-Stokes
equations (blue dashed line). We find that the effective bulk viscosity
agrees with the standard definition of ζ for τ > 2 fm. The initial
conditions are the same as in Fig. 4.

correspond to three different initial conditions specified by the
initial anisotropy parameters. Figures 1–3 illustrate the effects
of the finite mass and quantum statistics on the time evolution
of T and μ/T . We observe that the inclusion of the finite mass
(for either classical or quantum statistics) has an important
effect on the μ/T ratio. For m = 300 MeV it asymptotically
increases with time, while in the m = 1 MeV case it approaches
a constant, which is expected for the massless system in the
Bjorken model assuming local equilibrium. The finite mass
has a small effect on the time dependence of the effective
temperature. The latter decreases more slowly in the massive
cases (especially in the B0 = 0.001 fm−3 case). The effects
of quantum statistics are most visible in the μ/T proper-time
dependence.

To analyze the proper-time dependence of T and μ/T in
more detail, in Fig. 4 we compare the kinetic-theory (KT)
results for the quantum, massive, and oblate-oblate case with
hydrodynamic calculations. The latter are performed for the
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FIG. 8. Bulk viscosity coefficient ζ calculated with the help of
Eq. (90) with the thermodynamic coefficients κ1 and κ2 determined
for the whole quark-gluon system (red solid line) and the coefficient
ζ0 obtained from Eq. (90) with κ1 and κ2 determined only for the quark
component (blue dashed line). The initial conditions are the same as
in Fig. 4.
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FIG. 9. PT /E (top panels) and PL/PT (bottom panels) for initially oblate-oblate system. Green solid lines correspond to massless quarks
and classical distribution functions, black dashed lines to the massive quarks and classical distribution functions, while red solid lines are for
massive quarks and quantum distributions. Left (right) panels describe the results for B0 = 0.001 fm−3 (B0 = 1 fm−3).

Bjorken perfect-fluid (BJ) and Navier-Stokes (NS) versions,
see Appendix B for definitions of these frameworks. The
initial values of temperature and chemical potential in the
hydrodynamic calculations are chosen in such a way that
the final values of T and μ agree with the values found
in the kinetic-theory calculation. Although such matching is
required only for the last moment of the time evolution, we
see that the hydrodynamic calculations approximate very well
the kinetic-theory results within a few last fermis of the time
evolution. As expected, we see that the Navier-Stokes approach
reproduces better the exact kinetic-theory result, compared to
the perfect-fluid calculation, as it accounts for the dissipative
effects in the system.

B. Hydrodynamization

1. Shear sector

The results shown in Fig. 4 suggest that the nonequilibrium
dynamics of the system enters rather fast the hydrodynamic
regime described by the NS equations (at the stage where
deviations from local equilibrium are still substantial). Such
a phenomenon was identified first in the context of AdS/CFT
calculations [30] and is known now as the hydrodynamization
process. To illustrate this behavior in our case, we show in Fig. 5

the proper-time dependence of the effective shear viscosity
coefficient ηeff defined by the expression [2]6

ηeff = τ

2
(PT − PL), (84)

see Eqs. (B3). The effective shear viscosity (solid red line
in Fig. 5) is compared with the standard shear viscosity
coefficient, η, valid for the system close to equilibrium. For
the quark-gluon mixture the latter is defined as the sum of the
quark and gluon coefficients,7

η = ηQ + ηG, (85)

6We use the notation where calligraphic symbols such as E,PT , or
PL refer to exact values obtained from the kinetic theory. In the situ-
ations where the system is close to equilibrium and described by the
Navier-Stokes hydrodynamics we add the subscript NS. The standard
kinetic coefficients describe the systems close to equilibrium, hence,
the shear viscosity is defined by the formula η = τ

2 (PT − PL)NS and
the bulk viscosity by ζ = −τ�NS, see Appendix B. If we use the
exact kinetic-theory values on the right-hand sides of these definitions
we deal with effective values, which should agree with the standard
definitions for systems being close to local equilibrium.

7For general collision kernels, the total shear viscosity (although
written formally as a sum of the individual contributions) may not be
a simple sum of independent terms, for example, see Ref. [54].
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FIG. 10. Same as Fig. 9 but for initially prolate-oblate system.

where following Ref. [55], see also Refs. [56–58], we use

ηQ = gQτeq

15T

∫ ∞

0

dp p6

2π2(m2 + p2)

× [fQ+,eq(1 − fQ+,eq) + fQ−,eq(1 − fQ−,eq)], (86)

ηG = gGτeq

15T

∫ ∞

0

dp p4

2π2
fG,eq(1 + fG,eq). (87)

The coefficient η is calculated as a function of T and μ obtained
either from the perfect-fluid (green dot-dashed line in Fig. 5)
or NS hydrodynamic calculation (navy blue dashed line in
Fig. 5). In the two cases we find that ηeff agrees very well with
η for τ > 0.5 fm, which is about two times the relaxation time.
Thus, in the shear sector we observe a very fast approach to
the hydrodynamic NS regime. It is important to notice that
the agreement with the NS description is reached when η
is significantly different from zero, which supports the idea
that the hydrodynamic description becomes appropriate before
the system thermalizes, i.e., before the state of local thermal
equilibrium with PT ≈ PL is reached.

In Fig. 6(a) we show the proper-time dependence of the
shear viscosity of the mixture (red solid line) and compare it
with the shear viscosity of the quark component (navy blue
dashed line) and the gluon component (green dot-dashed line),
see Eqs. (85)–(87). The initial conditions are the same as
in Fig. 4. The results shown in Fig. 6 show that the shear

viscosity of the mixture is dominated by the shear viscosity
of quarks throughout the system evolution. The information
complementary to Fig. 6(a) is provided in Fig. 6(b) where we
present the ratio ηQ/ηG as a function of m/T and μ/T (contour
lines) together with the system trajectory (colored line).

2. Bulk sector

Similarly to the shear-viscosity effects we can analyze the
bulk sector, where we define the effective bulk viscosity by the
expression

ζeff = −τ�, (88)

where � is the exact bulk pressure
� = 1

3 (PL + 2PT − 3Peq). (89)

The time dependence of the effective bulk viscosity is com-
pared in Fig. 7 with the time dependence of the bulk viscosity
coefficient given by the expression

ζ = gQm2τeq

3T

∫ ∞

0

dp p2

2π2

[
(fQ+,eq(1 − fQ+,eq)

+ fQ−,eq(1 − fQ−,eq))

(
κ1 − p2

3(m2 + p2)

)

+ (fQ+,eq(1 − fQ+,eq) − fQ−,eq(1 − fQ−,eq))
κ2√

m2 + p2

]
,

(90)

024915-12



COUPLED KINETIC EQUATIONS FOR FERMIONS AND … PHYSICAL REVIEW C 97, 024915 (2018)

0.3

0.4
T

Q
0 0.5

G
0 0.25
0 0.001 fm 3

a

0 1 fm 3

b

0.1 0.2 0.5 1 2 5
0.2

0.5

1.0

L
T

m 300 MeV, qs
m 300 MeV, cs
m 1 MeV, cs c

0.1 0.2 0.5 1 2 5

d

Ξ
Ξ

Τ fm Τ fm

FIG. 11. Same as Fig. 9 but for initially prolate-prolate system.

where κ1 and κ2 are defined by the thermodynamic derivatives

κ1(T ,μ) =
(

∂Peq

∂Eeq

)
Beq

, κ2(T ,μ) = 1

3

(
∂Peq

∂Beq

)
Eeq

. (91)

For a simple fluid with zero baryon density, the coefficient
κ1 becomes equal to the sound velocity squared. The steps
leading to Eq. (90) are described in more detail in Appendix C.
The form of (90) agrees with that given in Ref. [55] for
fermions. There is, however, one important difference between
our approach and that of Ref. [55]. In Ref. [55] a simple system
of fermions is considered and (90) includes the derivatives
(91) where only fermionic thermodynamic functions appear.
In our case we deal with a mixture and we have checked that
(91) should include the total thermodynamic functions being
the sums of quark and gluon contributions. Thus, although
the bulk viscosity of a quark-gluon mixture is given by the
formula known for massive quarks (and ζ = 0 if m = 0), the
use of the full thermodynamic functions in Eq. (91) means that
although gluons are considered massless they contribute to the
bulk viscosity of the full system.8

8We note that for a more realistic treatment of gluons an effective
thermal mass appears that would change the result for the bulk
viscosity [59–64]; see also Ref. [65].

Similarly as in the shear sector, we can see in Fig. 7 that
ζeff (τ ) approaches ζ (τ ), however, the agreement is reached
for significantly larger times, τ > 2 fm. This means that the
hydrodynamization of the bulk sector is slower and follows
the hydrodynamization of the shear sector. Observations that
the hydrodynamization in the shear sector may happen before
the hydrodynamization in the bulk sector have been done
recently in Ref. [66] within the nonconformal models using the
gauge/gravity correspondence, where the hydrodynamization
in the bulk sector has been dubbed the EoSization process.
In this scenario first PL and PT tend to a common value
P̄ �= Peq and, subsequently, P̄ approaches Peq, which signals
establishing equation of state of the system.

To visualize the importance of the gluon degrees of freedom
in expressions (91) for the bulk viscosity of the mixture in
Fig. 8 we show the bulk viscosity coefficient ζ and compare
it with the coefficient ζ0 that has been calculated in the same
way as ζ except that the thermodynamic coefficients κ1 and κ2

of the former were calculated only for the quark component.
We find that neglecting the gluon contribution in κ1 and κ2

changes substantially the values of ζ making it significantly
smaller. This finding indicates that gluons, although, massless,
contribute to the bulk viscosity of a quark-gluon mixture. The
necessary requirement for this effect is, however, that quarks
are massive.
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FIG. 12. PT /E (top panels) and PL/PT (bottom panels) for massless quarks and classical distribution functions. Green dot-dashed, navy
blue dashed, and red solid lines describe the results for the oblate-oblate, prolate-oblate, and prolate-prolate initial conditions. The blue dotted
line describes (PL/PT )NS obtained from the Navier-Stokes hydrodynamics.

3. PT /E and PL/PT ratios

Figures 9–11 correspond to Figs. 1–3, respectively, and
show the time dependence of the ratios PT /E (top panels) and
PL/PT (bottom panels). In the case of quarks with a very small
mass (green dot-dashed lines) the ratios PT /E tend to 1/3 as
expected for massless systems approaching local equilibrium.
The ratiosPL/PT in all studied cases tend to unity, which again
reflects equilibration of the system. Interestingly, the ratios
PL/PT very weakly depend on the quark mass and the choice
of the statistics.

C. Scaling properties

Each panel of Figs. 9–11 shows our results obtained for
different values of the quark mass and particle statistics but
for the same initial anisotropies. In Figs. 12–14 we rearrange
this information showing in each panel our results obtained
for different initial anisotropies, i.e., for oblate-oblate, prolate-
oblate, and prolate-prolate initial quark and gluon distribu-
tions. Figures 12–14 collect the results for different mass and
statistics. The most striking feature of our results presented
in these figures is that the PL/PT ratios (shown in bottom
panels) converge to the same values, although they describe
the system evolutions starting from completely different initial
conditions.

The origin of this behavior can be found if we analyze the NS
formula for the PL/PT ratio. Let us first consider the massless
case where we may neglect the bulk viscosity and write(PL

PT

)
NS

= PQ,eq − 4ηQ/(3τ ) + PG,eq − 4ηG/(3τ )

PQ,eq + 2ηQ/(3τ ) + PG,eq + 2ηG/(3τ )
. (92)

Assuming in addition that the baryon number density is zero,
we may use the following relations connecting the shear
viscosity with equilibrium pressure:9

ηQ = 4
5τeqPQ,eq, ηG = 4

5τeqPG,eq. (93)

It is interesting to note that the coefficient 4/5 is the same for
quarks and gluons, hence(PL

PT

)
NS

= 1 − 16τeq/(15τ )

1 + 8τeq/(15τ )
, (94)

which explains the late-time dependence of PL/PT on the
proper time only, observed in Fig. 12(c). We note that if the
relaxation time is inversely proportional to the temperature,
Eq. (94) indicates that (PL/PT )NS depends on the product of
τ and T , which is expected for conformal systems and related

9See our discussion below Eq. (C19).
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FIG. 13. Same as Fig. 12 but for massive quarks and classical statistics.

to the existence of a hydrodynamic attractor for such systems
[31–36]. It turns out that the inclusion of the finite mass and
baryon chemical potential (with the values studied in this work)
affects very little Eqs. (93) connecting the shear viscosity with
pressure. The main difference is that the coefficient 4/5 is
slightly changed. It should be replaced by an effective value
obtained for the studied range of T and μ.

To analyze the (PL/PT )NS ratio in a general case in Fig. 15
we plot it as a function of two variables, τeq/τ and m/T ,
for a fixed value of μ. The left panel of Fig. 15 shows the
contour plot of (PL/PT )NS in the case where quantum statistics
are used and μ = 0. The fact that the contour (red dashed)
lines have horizontal shapes indicates that (PL/PT )NS depends
effectively only on τeq/τ (except for the region where τ ≈ τeq

and T ≈ m/5). The red dashed lines overlap with solid black
lines corresponding to the result for the case of classical
statistics. It shows that quantum statistics have negligible
effect on (PL/PT )NS in the studied, rather broad range of
τeq/τ and m/T . These observations explain similarities of the
close-to-equilibrium behavior of (PL/PT )NS in the left panels
of Figs. 9–11. The right panel of Fig. 15 shows the contour
plot of (PL/PT )NS for μ/T = 2. In this case we find again a
weak dependence on m/T as compared to the case of classical
statistics and μ = 0 represented by the solid black lines. Again

this helps us to understand the similarities of the right and left
panels of Figs. 9–11.

D. Remarks on nonconformal attractor

In a very recent paper [37] it has been suggested by
Romatschke to look for attractor behavior by studying the
quantities

A1 = τdE
(E + Peq)dτ

(95)

and

A2 = 2PT + PL − 3Peq

ζT
(96)

as functions of the variable

� = τ

[
4

3

η

E + Peq
+ ζ

E + Peq

]−1

. (97)

Note that in Eqs. (95)–(97) we used boost invariance to simplify
our notation.

In Fig. 16 we show the function A1(�) obtained for three
different initial anisotropies studied in this work. To get the
connection with Ref. [37] we consider the case with negligible
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FIG. 14. Same as Fig. 12 but for massive quarks and quantum statistics.

baryon number density. Otherwise, we include the finite mass
of quarks and quantum statistics. Figure 16 shows that the lines
corresponding to three different initial conditions converge

and later approach the Navier-Stokes line. This observation
supports the existence of a nonconformal attractor for A1 in
our system.
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FIG. 15. Contour plots of (PL/PT )NS obtained for the Navier-Stokes hydrodynamics for (a) μ = 0 and (b) μ/T = 2. In the two cases quarks
and gluons are described by quantum statistics. The solid black lines together with the contour shading represent the classical baryon-free system.
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FIG. 16. The quantity A1 plotted as a function of � for three
different initial anisotropies, finite quark mass, and quantum statistics.

Figure 17 shows similar results as Fig. 16 but for A2(�). In
this case, the lines corresponding to different initial conditions
converge with each other only in the NS regime. Hence, our
present results are insufficient to demonstrate the existence of
an attractor for A2. Further study of this behavior is planned
for our future investigations.

X. SUMMARY AND CONCLUSIONS

In this paper we have solved a system of coupled kinetic
equations for fermions, antifermions, and bosons in the re-
laxation time approximation. We have generalized previous
results by including the finite fermion mass, the quantum
statistics, and the finite baryon number. We have compared the
results of the numerical calculations with the first-order hydro-
dynamic calculations to demonstrate the hydrodynamization
process. We have found that equalization of the longitudinal
and transverse pressures takes place earlier than equalization of
the average and equilibrium pressures. We have determined the
shear and bulk viscosities of a mixture and find that the shear
viscosity is a sum of the fermion and boson shear viscosities,
while the bulk viscosity of a mixture is given by the formula
known for a massive fermionic gas. However, the bulk viscosity
depends on thermodynamic coefficients characterizing the
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FIG. 17. Same as Fig. 16 but for A2 vs �.

whole mixture rather than fermions alone, which means that
massless bosons do contribute to the bulk viscosity (if fermions
are massive).
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APPENDIX A: GENERALIZED
THERMODYNAMIC FUNCTIONS

In this section we present explicit expressions for various
physical quantities such as the particle and energy densities or
the transverse and longitudinal pressures. These expressions
are obtained with the use of different distribution functions,
which do not necessarily correspond to local equilibrium.
Thus, we call them generalized thermodynamic functions—
in local equilibrium they become standard thermodynamic
functions satisfying well-known thermodynamic identities. We
start with the anisotropic RS distributions, as other cases can
be easily worked out if the results for the RS distributions are
known.

1. Anisotropic distributions

The forms of the generalized thermodynamic functions for
anisotropic distributions are given by the following integrals:

N s,a ≡ n
s,a
U = ks

∫
dP (p · U )fs,a[p · U,p · Z], (A1)

E s,a ≡ t
s,a
UU = ks

∫
dP (p · U )2fs,a[p · U,p · Z], (A2)

P s,a
T ≡ t

s,a
AA = ks

∫
dP (p · X)2fs,a[p · U,p · Z]

(A �= U,Z)

= ks

∫
dP (p · Y )2fs,a[p · U,p · Z]

= −ks

2

∫
dP (p · 
T · p)fs,a[p · U,p · Z], (A3)

P s,a
L ≡ t

s,a
ZZ = ks

∫
dP (p · Z)2fs,a[p · U,p · Z]. (A4)

The explicit calculations lead to the following expressions for
quarks and antiquarks

NQ±,a = 4πkQ�3
QH̃+

N

(
1√

1 + ξQ

,
m

�Q

,∓ λ

�Q

)
, (A5)

EQ±,a = 2πkQ�4
QH̃+

(
1√

1 + ξQ

,
m

�Q

,∓ λ

�Q

)
, (A6)

PQ±,a
T = πkQ�4

QH̃+
T

(
1√

1 + ξQ

,
m

�Q

,∓ λ

�Q

)
, (A7)

PQ±,a
L = 2πkQ�4

QH̃+
L

(
1√

1 + ξQ

,
m

�Q

,∓ λ

�Q

)
, (A8)
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where functions H̃ are defined by the integrals:

H̃±
N (a,y,z) ≡

∫ ∞

0
r2dr h

±
eq(

√
r2 + y2 + z)a,

H̃±(a,y,z) ≡
∫ ∞

0
r3dr h

±
eq(

√
r2 + y2 + z)H2

(
a,

y

r

)
,

H̃±
T (a,y,z) ≡

∫ ∞

0
r3dr h

±
eq(

√
r2 + y2 + z)H2T

(
a,

y

r

)
,

H̃±
L (a,y,z) ≡

∫ ∞

0
r3dr h

±
eq(

√
r2 + y2 + z)H2L

(
a,

y

r

)
, (A9)

and the functions H2(a,b) were introduced in Ref. [4]:

H2(a,b) ≡ a

∫ π

0
dϕ sin ϕ

√
a2 cos2 ϕ + sin2 ϕ + b2,

H2T (a,b) ≡ a

∫ π

0
dϕ

sin3 ϕ√
a2 cos2 ϕ + sin2 ϕ + b2

, (A10)

H2L(a,b) ≡ a3
∫ π

0
dϕ

sin ϕ cos2 ϕ√
a2 cos2 ϕ + sin2 ϕ + b2

.

With b = 0 the functions H2(a,b) reduce to the functions H(a),HL(a), and HT (a) used in Ref. [2]. The integrals in Eq. (A10)
are analytic [4]:

H2(a,b) = a√
a2 − 1

⎛
⎝(1 + b2) tanh−1

√
a2 − 1

a2 + b2
+

√
(a2 − 1)(a2 + b2)

⎞
⎠, (A11)

H2T (a,b) = a

(a2 − 1)3/2

⎛
⎝(b2 + 2a2 − 1) tanh−1

√
a2 − 1

a2 + b2
−

√
(a2 − 1)(a2 + b2)

⎞
⎠, (A12)

H2L(a,b) = a3

(a2 − 1)3/2

⎛
⎝−(1 + b2) tanh−1

√
a2 − 1

a2 + b2
+

√
(a2 − 1)(a2 + b2)

⎞
⎠. (A13)

For gluons one has:

NG,a = 4πkG�3
GH̃−

N

(
1√

1 + ξG

,0,0

)
= 8πζ (3)kG

�3
G√

1 + ξG

, (A14)

EG,a = 2πkG�4
GH̃−

(
1√

1 + ξG

,0,0

)
= 2π5

15
kG�4

GH
(

1√
1 + ξG

)
, (A15)

PG,a
T = πkG�4

GH̃−
T

(
1√

1 + ξG

,0,0

)
= π5

15
kG�4

GHT

(
1√

1 + ξG

)
, (A16)

PG,a
L = 2πkG�4

GH̃−
L

(
1√

1 + ξG

,0,0

)
= 2π5

15
kG�4

GHL

(
1√

1 + ξG

)
, (A17)

where ζ is the Riemann zeta function [the coefficient ζ (3) is known as Apéry’s constant]. The expressions on the right-hand sides
of Eqs. (A14)–(A17) hold for the Bose-Einstein statistics. Note that in the case of massless gluons the integrals (A10) are done
for b = 0 and can be factorized in Eqs. (A9).

It is useful to notice that the functions H2 and H2L are related by the expression

∂H2(a,b)

∂a
= H2(a,b) + H2L(a,b)

a
, (A18)

hence, we also have

∂H̃±(a,y,z)

∂a
= H̃±(a,y,z) + H̃±(a,y,z)

a
. (A19)

We can use (A19) to derive (83) from (81).
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We close this section with the formula for the baryon number density valid for anisotropic RS systems

Ba = NQ+,a − NQ−,a

3
= 16πkQ�3

Q

3
√

1 + ξQ

sinh

(
λ

�Q

)
HB

(
m

�Q

,
λ

�Q

)
, (A20)

where

HB(y,z) ≡ 1

4

∫ ∞

0
r2dr

[
1

cosh
√

r2 + y2 + cosh z

]
. (A21)

2. Isotropic distributions

The forms of the thermodynamic functions for the equilibrium state are commonly known, nevertheless we quote them here
for completeness. They are given by the formulas

N s,eq ≡ n
s,eq
U = ks

∫
dP (p · U )fs,eq(p · U ), (A22)

E s,eq ≡ t
s,eq
UU = ks

∫
dP (p · U )2fs,eq(p · U ), (A23)

P s,eq ≡ t
s,eq
AA = ks

∫
dP (p · A)2fs,eq(p · U ) = −ks

3

∫
dP (p · 
 · p)fs,eq(p · U ), (A �= U ). (A24)

Their explicit forms for quarks and anti-quarks may be obtained from Eqs. (A5)–(A8) as a special case of ξs → 0,�s → T , and
λs → μ,

NQ±,eq = 4πkQT 3H̃+
N

(
1,

m

T
,∓μ

T

)
, (A25)

EQ±,eq = 2πkQT 4H̃+
(

1,
m

T
,∓μ

T

)
, (A26)

PQ±,eq
T = πkQT 4H̃+

T

(
1,

m

T
,∓μ

T

)
, (A27)

PQ±,eq
L = 2πkQT 4H̃+

L

(
1,

m

T
,∓μ

T

)
. (A28)

Note that H2L(1,b) = 2/(3
√

1 + b2) and H2T (1,b) = 4/(3
√

1 + b2), which means that PQ±,eq
T = PQ±,eq

L ≡ PQ±,eq, as expected
for the isotropic state. Analogous results may be obtained for gluons

NG,eq = 4πkGT 3H̃−
N (1,0,0) = 8πζ (3)kGT 3, (A29)

EG,eq = 2πkGT 4H̃−(1,0,0) = 4π5

15
kGT 4, (A30)

PG,eq
T = πkGT 4H̃−

T (1,0,0) = 4π5

45
kGT 4, (A31)

PG,eq
L = 2πkGT 4H̃−

L (1,0,0) = 4π5

45
kGT 4, (A32)

where to get the last expressions on the right-hand sides we again assumed the Bose-Einstein statistics. Here, similarly as for
quarks PG,eq

T = PG,eq
L ≡ PG,eq. Similarly to anisotropic case the baryon number density is

Beq = NQ+,eq − NQ−,eq

3
= 16πkQT 3

3
sinh

(
μ

T

)
HB

(
m

T
,
μ

T

)
. (A33)

3. Exact solution of the kinetic equations

For the solutions of Eqs. (57) of the form (61) the thermodynamic variables have the forms

N s = ks

∫
dP (p · U )fs[p · U,p · Z], E s = ks

∫
dP (p · U )2fs[p · U,p · Z],

P s
T = ks

∫
dP (p · A)2fs[p · U,p · Z] (A �= U,Z), P s

L = ks

∫
dP (p · Z)2fs[p · U,p · Z]. (A34)
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Using above definitions and repeating the calculation from Sec. X, gives

NQ± = 4πkQ

⎡
⎣(

�0
Q

)3H̃+
N

⎛
⎝ τ0

τ
√

1 + ξ 0
Q

,
m

�0
Q

, ∓ λ0

�0
Q

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)3H̃+
N

(
τ ′

τ
,
m

T ′ , ∓ μ′

T ′

)⎤
⎦, (A35)

EQ± = 2πkQ

⎡
⎣(

�0
Q

)4H̃+

⎛
⎝ τ0

τ
√

1 + ξ 0
Q

,
m

�0
Q

, ∓ λ0

�0
Q

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)4H̃+
(

τ ′

τ
,
m

T ′ , ∓ μ′

T ′

)⎤
⎦, (A36)

PQ±
T = πkQ

⎡
⎣(

�0
Q

)4H̃+
T

⎛
⎝ τ0

τ
√

1 + ξ 0
Q

,
m

�0
Q

, ∓ λ0

�0
Q

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)4H̃+
T

(
τ ′

τ
,
m

T ′ , ∓ μ′

T ′

)⎤
⎦, (A37)

PQ±
L = 2πkQ

⎡
⎣(

�0
Q

)4H̃+
L

⎛
⎝ τ0

τ
√

1 + ξ 0
Q

,
m

�0
Q

, ∓ λ0

�0
Q

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)4H̃+
L

(
τ ′

τ
,
m

T ′ , ∓ μ′

T ′

)⎤
⎦, (A38)

for quarks and

NG = 4πkG

⎡
⎣(

�0
G

)3H̃−
N

⎛
⎝ τ0

τ

√
1 + ξ 0

G

,0,0

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)3H̃−
N

(
τ ′

τ
,0,0

)⎤
⎦, (A39)

EG = 2πkG

⎡
⎣(

�0
G

)4H̃−

⎛
⎝ τ0

τ

√
1 + ξ 0

G

,0,0

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)4H̃−
(

τ ′

τ
,0,0

)⎤
⎦, (A40)

PG
T = πkG

⎡
⎣(

�0
G

)4H̃−
T

⎛
⎝ τ0

τ

√
1 + ξ 0

G

,0,0

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)4H̃−
T

(
τ ′

τ
,0,0

)⎤
⎦, (A41)

PG
L = 2πkG

⎡
⎣(

�0
G

)4H̃−
L

⎛
⎝ τ0

τ

√
1 + ξ 0

G

,0,0

⎞
⎠D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)(T ′)4H̃−
L

(
τ ′

τ
,0,0

)⎤
⎦, (A42)

for gluons. We define the baryon number density for the exact solution of the kinetic equation as follows:

B = 16πkQ

3

⎡
⎣ τ0

(
�0

Q

)3

τ
√

1 + ξ 0
Q

sinh

(
λ0

�0
Q

)
HB

(
m

�0
Q

,
λ0

�0
Q

)
D(τ,τ0) +

∫ τ

τ0

dτ ′

τ ′
eq

D(τ,τ ′)
τ ′(T ′)3

τ
sinh

(
μ′

T ′

)
HB

(
m

T ′ ,
μ′

T ′

)⎤
⎦. (A43)

APPENDIX B: NAVIER-STOKES HYDRODYNAMICS

The results of our kinetic-theory calculations are compared with the viscous hydrodynamic results obtained by solving the
Navier-Stokes (NS) hydrodynamic equations. The latter have the form

d

dτ
(EQ,eq + EG,eq) = −EQ,eq + EG,eq + PQ,eq + PG,eq + �NS − πNS

τ
, (B1)

dBeq

dτ
+ Beq

τ
= 0. (B2)

Here EQ,eq = EQ+,eq + EQ−,eq is the equilibrium energy density of quarks and antiquarks, PQ,eq = PQ+,eq + PQ−,eq is the
equilibrium pressure of quarks and antiquarks, �NS is the bulk pressure, and πNS is the shear pressure (both used in the close-
to-equilibrium limit). All the functions appearing in Eqs. (B1) and (B2) depend on T and μ, hence Eqs. (B1) and (B2) are two
coupled equations that can be used to determine T (τ ) and μ(τ ). One can easily notice that Eq. (B1) may be written in the form
of Eq. (83) once we identify

PL = Peq − πNS + �NS, PT = Peq + 1
2πNS + �NS, (B3)
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where Peq = PQ,eq + PG,eq. Within NS approach, the shear and bulk pressures are expressed by the kinetic coefficients η and ζ ,

πNS = 4η

3τ
= 4(ηQ + ηG)

3τ
, (B4)

�NS = −ζ

τ
. (B5)

The expressions for ηQ, ηG, and ζ are given by Eqs. (86), (87), and (90).
For the moment let us denote T (τ ) and μ(τ ) obtained from the kinetic theory as TKT(τ ) and μKT(τ ), while those obtained from

the NS hydrodynamics as TNS(τ ) and μNS(τ ). We expect that TKT(τ ) and μKT(τ ) agree well with TNS(τ ) and μNS(τ ) in the late
stages of the evolution, when the system approaches local equilibrium. To check this behavior we choose such initial conditions
for hydrodynamic equations (B1) and (B2) that for the final time τ = τf we match the temperature and chemical potential in the
two approaches: TNS(τf ) = TKT(τf ), μNS(τf ) = μKT(τf ). Then, we check if the functions TNS(τ ) and μNS(τ ) smoothly approach
TKT(τ ) and μKT(τ ) if τ → τf . By neglecting the bulk and shear pressures in Eq. (B1) we can also make comparison with perfect
fluid hydrodynamics and check if the system approaches local equilibrium.

APPENDIX C: SHEAR AND BULK VISCOSITIES FOR MIXTURES

In this section we present details of our method used to calculate the shear and bulk viscosity coefficients for a quark-gluon
mixture. We follow the treatment of Refs. [67,68], where the bulk viscosity was obtained for the Gribov-Zwanziger plasma.
Analyzing a boost-invariant system, we deal with a simple structure of hydrodynamic equations, which facilitates the calculations.

1. Landau matching conditions in the case of boost-invariant geometry

In the first-order gradient expansion, the nonequilibrium corrections to the equilibrium distribution function have the form

δfQ± = −τeq
∂fQ±,eq

∂τ
, δfG = −τeq

∂fG,eq

∂τ
. (C1)

Using the form of fQ±,eq and fG,eq for boost-invariant geometry we find

δfQ± = −τeqfQ±,eq(1 − fQ±,eq)

[
w2

vτ 2T
± dμ

T dτ
+

(
v

τ
∓ μ

)
d ln T

T dτ

]
, (C2)

δfG = −τeqfG,eq(1 + fG,eq)

[
w2

vτ 2T
+ v

τ

d ln T

T dτ

]
. (C3)

The Landau matching conditions for the energy and momentum read∫
dwd2pT

v

v2

τ 2
[kQ(δfQ+ + δfQ− ) + kGδfG] = 0, (C4)

∫
dwd2pT

v

v2

3τ 2
[kQ(δfQ+ − δfQ− )] = 0. (C5)

Using (C2) and (C3) we rewrite (C4) and (C5) as∫
dwd2pT

v

v2

τ 2
f3S

w2

vτ 2T
+

∫
dwd2pT

v

v2

τ 2
f2D

dμ

T dτ
+

∫
dwd2pT

v

v2

τ 2
f3S

v

T τ

d ln T

dτ
−

∫
dwd2pT

v

v2

τ 2
f2D

μ

T

d ln T

dτ
= 0

(C6)

and∫
dwd2pT

v

v2

τ 2
f2D

w2

vτ 2T
+

∫
dwd2pT

v

v2

τ 2
f2S

dμ

T dτ
+

∫
dwd2pT

v

v2

τ 2
f2D

v

T τ

d ln T

dτ
−

∫
dwd2pT

v

v2

τ 2
f2S

μ

T

d ln T

dτ
= 0,

(C7)

where

f3S = kQ[fQ+,eq(1 − fQ+,eq) + fQ−,eq(1 − fQ−,eq)] + kGfG,eq(1 + fG,eq),

f2S = kQ[fQ+,eq(1 − fQ+,eq) + fQ−,eq(1 − fQ−,eq)], (C8)

f2D = kQ[fQ+,eq(1 − fQ+,eq) − fQ−,eq(1 − fQ−,eq)].
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By introducing the averaged values defined as

〈. . .〉α ≡
∫

dwd2pT

v
. . . fα, (C9)

where α = 3S,2S,2D, we rewrite (C6) and (C7) in the compact form

〈w2〉3S + 〈v2〉3S

d ln T

d ln τ
+ 〈v〉2Dτ 2T

d

dτ

(
μ

T

)
= 0,

〈
w2

v

〉
2D

+ 〈v〉2D

d ln T

d ln τ
+ 〈1〉2Sτ

2T
d

dτ

(
μ

T

)
= 0. (C10)

To proceed further it is convenient to introduce the notation

A = 〈w2〉3S, B = 〈v2〉3S, C = 〈v〉2D, D =
〈
w2

v

〉
2D

, E = 〈1〉2S. (C11)

Then, we find the proper-time derivatives of T and μ/T expressed by the coefficients (C11)

d ln T

d ln τ
= AE − CD

C2 − BE
, τ 2T

d

dτ

(
μ

T

)
= DB − AC

C2 − BE
. (C12)

The coefficients (C11) can be used also to express various thermodynamic derivatives. After straightforward calculations, where
T and μ are treated as independent thermodynamic variables, we find

∂Peq

∂T
= ∂PQ+,eq

∂T
+ ∂PQ−,eq

∂T
+ ∂PG,eq

∂T
= A

τ 3T 2
− Dμ

τ 2T 2
,

∂Peq

∂μ
= ∂PQ+,eq

∂μ
+ ∂PQ−,eq

∂μ
= D

τ 2T
,

∂Eeq

∂T
= ∂EQ+,eq

∂T
+ ∂EQ−,eq

∂T
+ ∂EG,eq

∂T
= B

τ 3T 2
− Cμ

τ 2T 2
,

∂Eeq

∂μ
= ∂EQ+,eq

∂μ
+ ∂EQ−,eq

∂μ
= C

τ 2T
, (C13)

∂Beq

∂T
= C

3τ 2T 2
− Eμ

3τT 2
,

∂Beq

∂μ
= Eμ

3τT
.

Using (C13) we find that

κ1(T ,μ) =
(

∂Peq

∂Eeq

)
Beq

= ∂(Peq,Beq)

∂(Eeq,Beq)
= −AE − CD

C2 − BE
= −d ln T

d ln τ
,

κ2(T ,μ) = 1

3

(
∂Peq

∂Beq

)
Eeq

= 1

3

∂(Peq,Eeq)

∂(Beq,Eeq)
= − DB − AC

τ (C2 − BE)
= −τT

d

dτ

(
μ

T

)
. (C14)

2. Shear viscosity

The shear viscosity can be obtained from the formula η = τ (PT − PL)NS/2, which in close-to-equilibrium situations leads to
the expression

η = τ

2
(PT − PL)NS = τ

2

∫
dwd2pT

v

[(
p2

T

2
− w2

τ 2

)
[kQ(fQ+,eq + δfQ+ + fQ−,eq + δfQ− ) + kG(fG,eq + δfG)]

]

= τ

2

∫
dwd2pT

v

[(
p2

T

2
− w2

τ 2

)
[kQ(δfQ+ + δfQ− ) + kGδfG]

]
. (C15)

Here we used the property that the equilibrium distributions are isotropic and do not contribute to the integral (C15). Using
Eqs. (C2) and (C3) we find

η = −τeq

2

∫
dwd2pT

v

[(
p2

T

2
− w2

τ

)
w2

vτT

]
f3S, (C16)

where the terms containing derivatives of T and μ dropped out again due to symmetry reasons. Equation (C16) can be rewritten
as

η = −τeq

2

∫
d3p

Ep

[(
p2

x − p2
z

) p2
z

EpT

]
f3S (C17)

= − τeq

2T

∫
2πdp p6

E2
p

∫ π

0
sin θdθ

[(
sin2 θ

2
− cos2 θ

)
cos2 θ

]
f3S. (C18)
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The integral over the angle θ gives −4/15, hence the final result is

η = 4πτeq

15T

∫
dp p6

E2
p

f3S, (C19)

which leads to Eqs. (85)–(87).
For massless quarks, Eq. (86) gives ηQ = 7gQπ2T 4τeq/450 and ηQ = 8gQT 4τeq/(5π2) for Fermi-Dirac and Boltzmann

statistics, respectively. The corresponding values of pressure are: P Q,eq = 7gQπ2T 4/360 and P Q,eq = 2gQT 4/π2, hence, for
the two statistics we find ηQ = 4P Q,eq/5. In the similar way, from (87) we find for massless gluons: ηG = 2gGπ2T 4τeq/225 and
ηG = 4gGT 4τeq/(5π2) for Bose-Einstein and Boltzmann statistics. The corresponding pressures are: P G,eq = gGπ2T 4/90 and
P G,eq = gGT 4/π2, which gives again ηG = 4P G,eq/5.

3. Bulk viscosity

The bulk pressure is the difference between the average exact pressure, (PL + 2PT )/3, in the system and the reference
equilibrium pressure, Peq. Close to local equilibrium, it can be defined by the following formula:

�NS = 1

3
(PL + 2PT − 3Peq)NS

= 1

3

∫
dwd2pT

v

[(
w2

τ 2
+ p2

T

)
[kQ(fQ+,eq + δfQ+ + fQ−,eq + δfQ− ) + kG(fG,eq + δfG)]

− 3
w2

τ 2
[kQ(fQ+,eq + fQ−,eq + δfQ− ) + kGfG,eq]

]

= 1

3

∫
dwd2pT

v

[(
w2

τ 2
+ p2

T

)
[kQ(δfQ+ + δfQ− ) + kGδfG]

]
. (C20)

To get the last line in Eq. (C20), we have used the fact that equilibrium distributions are isotropic. It is interesting to notice that
(C20) can be also written as

�NS = 1

3

∫
dwd2pT

v

[(
w2

τ 2
+ p2

T + m2 − m2

)
[kQ(δfQ+ + δfQ− ) + kGδfG]

]
= −m2

3

∫
dwd2pT

v
[kQ(δfQ+ + δfQ− )], (C21)

where we used the Landau matching condition (C4) and the fact that gluons are massless.
Using the notation introduced above we find

�NS = −τeq

3

∫
dwd2pT

v

(
w2

τ 2
+ p2

T

)[
f3S

(
w2

vτ 2T
+ v

τ 2T

d ln T

d ln τ

)]
− τeq

3

∫
dwd2pT

v

(
w2

τ 2
+ p2

T

)
f2D

d

dτ

(
μ

T

)

= −τeq

3

∫
dwd2pT

v

(
w2

τ 2
+ p2

T

)[
f3S

(
w2

vτ 2T
− v

τ 2T
κ1

)]
+ τeq

3τT

∫
dwd2pT

v

(
w2

τ 2
+ p2

T

)
f2D κ2. (C22)

Due to boost invariance, the integral above can be done in the plane z = 0, where w = pLt, v = Ept . Since f3S and f2D are
isotropic, we obtain

�NS = − τeq

3τT

∫
d3p p2

[
f3S

(
p2

3E2
p

− κ1

)]
+ τeq

3τT

∫
d3p

Ep

p2f2D κ2. (C23)

For the Bjorken flow we have ∂μUμ = 1/τ , thus the Navier-Stokes relation �NS = −ζ∂μUμ allows us to identify the bulk
pressure as

ζ = τeq

3T

∫
d3p p2

[
f3S

(
p2

3E2
p

− κ1

)]
− τeq

3T

∫
d3p

Ep

p2f2D κ2. (C24)

Similarly, starting from (C21) we find

ζ = τeqm
2

3T

∫
d3p

[
f2S

(
κ1 − p2

3E2
p

)]
+ τeqm

2

3T

∫
d3p

Ep

f2D κ2, (C25)

which leads to (90).
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APPENDIX D: TABLES OF INITIAL AND FINAL PARAMETERS

TABLE I. Initial and final parameters for the case: m = 1 MeV and classical statistics (τf = 5 fm).

B0( 1
fm3 ) ξ 0

Q ξ 0
G T0 (MeV) Tf (MeV) μ0 (MeV) μf (MeV)

KT 0.001 1 10 164 50 0 0
KT 0.001 −0.5 10 200 59 0 0
KT 0.001 −0.5 −0.25 217 64 0 0
NS 0.001 149 50 0 0
BJ 0.001 185 50 0 0
KT 1 1 10 164 54 246 55
KT 1 −0.5 10 199 60 202 47
KT 1 −0.5 −0.25 217 65 180 42
NS 1 130 54 281 55
BJ 1 199 54 202 55

TABLE II. Initial and final parameters for the case: m = 300 MeV and classical statistics (τf = 5 fm).

B0( 1
fm3 ) ξ 0

Q ξ 0
G T0 (MeV) Tf (MeV) μ0 (MeV) μf (MeV)

KT 0.001 1 10 165 60 1 1
KT 0.001 −0.5 10 196 68 0 0
KT 0.001 −0.5 −0.25 214 74 0 0
NS 0.001 151 60 1 1
BJ 0.001 182 60 0 1
KT 1 1 10 161 52 342 223
KT 1 −0.5 10 193 60 282 197
KT 1 −0.5 −0.25 215 68 242 167
NS 1 117 52 407 223
BJ 1 200 52 271 223

TABLE III. Initial and final parameters for the case: m = 300 MeV and quantum statistics (τf = 5 fm).

B0( 1
fm3 ) ξ 0

Q ξ 0
G T0 (MeV) Tf (MeV) μ0 (MeV) μf (MeV)

KT 0.001 1 10 164 59 1 1
KT 0.001 −0.5 10 194 67 0 0
KT 0.001 −0.5 −0.25 214 73 0 0
NS 0.001 150 59 1 1
BJ 0.001 181 59 1 1
KT 1 1 10 160 53 391 223
KT 1 −0.5 10 191 59 325 202
KT 1 −0.5 −0.25 214 68 274 171
NS 1 103 53 494 223
BJ 1 202 53 302 223

TABLE IV. Initial and final parameters for the case: m = 300 MeV and quantum statistics (τf = 10 fm).

B0( 1
fm3 ) ξ 0

Q ξ 0
G T0 (MeV) Tf (MeV) μ0 (MeV) μf (MeV)

KT 1 1 10 160 41 391 229
NS 1 103 41 494 229
BJ 1 202 41 300 229
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