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The production of (anti-)deuteron and (anti-) 3He nuclei in Pb-Pb collisions at
√

sNN = 2.76 TeV has been
studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing
centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused
by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and
thermal-statistical model expectations. The particle ratios, 3He /d and 3He /p, in Pb-Pb collisions are found to
be in agreement with a common chemical freeze-out temperature of Tchem ≈ 156 MeV. These ratios do not vary
with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes
models in which nucleus production is proportional to the particle multiplicity and favors those in which it is
proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is
reported. For comparison, the deuteron spectrum in pp collisions at

√
s = 7 TeV is also presented. While the

p/π ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of
2.2 than in Pb-Pb collisions.

DOI: 10.1103/PhysRevC.93.024917

I. INTRODUCTION

Collisions of ultrarelativistic ions create suitable conditions
for producing light (anti-)nuclei, because a high energy density
is reached over a large volume. Under these conditions, hot and
dense matter, which contains approximately equal numbers of
quarks and anti-quarks at midrapidity, is produced for a short
duration (a few 10−23 s). The system cools down and undergoes
a transition to a hadron gas. While the hadronic yields are fixed
at the moment when the rate of inelastic collisions becomes
negligible (chemical freeze-out), the transverse momentum
distributions continue to change until also elastic interactions
cease (kinetic freeze-out).

The formation of (anti-)nuclei is very sensitive to the
chemical freeze-out conditions as well as to the dynamics
of the emitting source. The production scenarios are typically
discussed within two approaches: (i) The thermal-statistical
approach has been very successful not only in describing the
integrated yield of the hadrons but also of composite nuclei
[1–3]. In this picture, the chemical freeze-out temperature
Tchem (predicted around 160 MeV) acts as the key parameter.
The strong sensitivity of the abundance of nuclei to the
choice of Tchem is caused by their large mass m and the
exponential dependence of the yield on the temperature given
by exp(−m/Tchem). (ii) In the coalescence model, nuclei
are formed by protons and neutrons which are nearby in
phase space and exhibit similar velocities [4,5]. A quantitative
description of this process is typically based on the coalescence
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parameter BA and has been applied to many collision systems
at various energies [6–13]. The binding energy of light
nuclei is very small (around few MeV), so they can hardly
remain intact during hadronic interactions, even if only quasi-
elastic scattering during the hadronic phase with temperatures
between 100 MeV and 170 MeV is considered. When produced
thermally at chemical freeze-out, they might break apart and
be created again by final-state coalescence [14]. It turns out
that both the thermal approach and the coalescence mechanism
give very similar predictions [15].

The production of light nuclei has attracted attention
already at lower incident energies in heavy-ion collisions at
the AGS, SPS, and RHIC [16–18]. A study of the dependence
on

√
sNN is of particular interest, because different production

mechanisms might dominate at various energies, e.g., a
formation via spectator fragmentation at lower energies or via
coalescence/thermal mechanisms at higher ones. In all cases,
an exponential drop in the yield was found with increasing
mass of the nuclei [19,20]. At RHIC and now at the LHC,
matter with a high content of strange and of anti-quarks
is created in heavy-ion collisions. This has led to the first
observation of anti-alphas [21] and of anti-hypertritons [22].
Their yields at LHC energies were predicted based on thermal
model estimates in Refs. [1,2].

In this paper, a detailed study of light (anti-)nuclei produced
in the midrapidity region in Pb-Pb collisions at

√
sNN=

2.76 TeV and a comparison with deuteron production in
pp collisions at

√
s = 7 TeV using A Large Ion Collider

Experiment (ALICE) [23] is presented. The paper is organized
as follows: In Sec. II, details of the analysis technique used
to extract raw yields, acceptance and efficiency corrections
of (anti-)deuterons and (anti-)3He are presented. The results
are given in Sec. III which starts with a comparison of
the production of nuclei and anti-nuclei along with studies
related to the hadronic interaction of anti-nuclei with the
detector material. Then, the transverse momentum spectra,
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pT-integrated yields, and average transverse momenta are
shown. The observation of (anti-)tritons is also discussed
in this section. In Sec. IV, the results are discussed along
with a description using a blast-wave approach, and are
compared with expectations from the thermal-statistical and
coalescence models. The measurement of (anti-)alphas and
(anti-)hypertritons will be shown in subsequent publications.

II. EXPERIMENT AND DATA ANALYSIS

A. The ALICE detector

The results presented in this paper are obtained from the
data collected by the ALICE experiment at the LHC. Its
performance and the description of its various subsystems
are discussed in detail in Refs. [23,24]. The ALICE detector
has excellent particle identification capabilities. The main
detectors used in this analysis are the time projection chamber
(TPC) [25], the time-of-flight detector (TOF) [26], and the
inner tracking system (ITS) [27]. All detectors are positioned
in a solenoidal magnetic field of B = 0.5 T. As the main
tracking device, the TPC provides full azimuthal acceptance
for tracks in the pseudorapidity region |η| < 0.8. In addition,
it provides particle identification via the measurement of the
specific energy loss dE/dx. It allows the identification of
(anti-) 3He over the entire momentum range under study and
the measurement is only limited by the available statistics.
The velocity information from the TOF detector is in addition
used to identify deuterons with transverse momenta (pT) above
1.4 GeV/c and (anti-)tritons in the transverse momentum range
of 0.6 GeV/c < pT < 1.6 GeV/c. The detector provides a
similar acceptance as the TPC and its total time resolution for
tracks from Pb-Pb collisions corresponds to about 80 ps which
is determined by the intrinsic time resolution of the detector
and the accuracy of the start time measurement. By a combined
analysis of TPC and TOF data, deuterons are identified up to
4.5 GeV/c in Pb-Pb collisions. In the case of pp collisions, the
less precisely determined start time leads to a time resolution
of about 120 ps and the identification is limited to about
3 GeV/c. The precise space-point resolution in the six silicon
layers of the ITS allows a precise separation of primary and
secondary particles in the high track density region close to
the primary vertex.

B. Event and track selection

For this analysis, the data collected in the year 2010 are
used. In total, the data sample consists of nearly 14 million Pb-
Pb collisions at

√
sNN = 2.76 TeV and 380 million minimum-

bias triggered events for pp collisions at
√

s = 7 TeV after
offline event selection.

A pair of forward scintillator hodoscopes, the V0 detectors
(2.8 < η < 5.1 and −3.7 < η < −1.7), measured the arrival
time of particles with a resolution of 1 ns and were used for
triggering purposes and for centrality determination of Pb-Pb
collisions. In pp collisions, the data were collected using a
minimum-bias trigger requiring at least one hit in either of
the V0 detectors or in the two innermost layers of the ITS
(silicon pixel detector, SPD). The trigger condition during the
Pb-Pb data taking was changed with time to cope with the

increasing luminosity delivered by the LHC. It was restricted
offline to a homogeneous condition, requiring at least two hits
in the SPD and one hit in either of the V0 detectors. This
condition was shown to be fully efficient for the 90% most
central events [28]. A signal in the V0 was required to lie in
a narrow time window (≈30 ns) around the nominal collision
time in order to reject any contamination from beam-induced
background. Only events with a reconstructed primary vertex
position in the fiducial region |Vz| < 10 cm were considered in
the analysis. The V0 amplitude distribution was also used to
determine the centrality of the heavy-ion collisions. It was
fitted with a Glauber Monte Carlo model to compute the
fraction of the hadronic cross section corresponding to a given
range of V0 amplitude. Based on those studies, the data were
divided in several centrality percentiles, selecting on signal
amplitudes measured in the V0 [28]. The contamination from
electromagnetic processes has been found to be negligible for
the 80% most central events.

In this analysis, the production of primary deuterons and
3He nuclei as well as their respective anti-particles are
measured at midrapidity. In order to provide optimal particle
identification by reducing the difference between transverse
and total momentum, the spectra are provided within a
rapidity window of |y| < 0.5. In addition, only those tracks
in the full tracking acceptance of |η| < 0.8 are selected.
The extrapolation of the yield at low momenta, where the
acceptance does not cover the full |y| < 0.5 region, is done
by assuming a flat distribution in y and by determining dη/dy
for each pT interval. Primary particles are defined as prompt
particles produced in the collision including all decay products,
except products from weak decays of light flavor hadrons and
of muons. In order to select primary tracks of suitable quality,
various track selection cuts are applied. At least 70 clusters in
the TPC and two points in the ITS (out of which at least one
in the SPD) are required. These selections guarantee a track
momentum resolution of 2% in the relevant pT range and a
dE/dx resolution of about 6%, as well as a determination of
the distance of closest approach to the primary vertex in the
plane perpendicular (DCAxy) and parallel (DCAz) to the beam
axis with a resolution of better than 300 μm in the transverse
direction [24]. Furthermore, it is required that the χ2 per TPC
cluster is less than 4 and tracks of weak-decay products are
rejected as they cannot originate from the tracks of primary
nuclei.

C. Particle identification

Particle identification is mainly performed using the TPC
[25]. It is based on the measurement of the specific ionization
energy deposit (dE/dx) of charged particles. Figure 1 shows
the dE/dx versus rigidity (momentum/charge, p/z) of TPC
tracks for pp collisions at

√
s = 7 TeV (top panel) and for Pb-

Pb collisions at
√

sNN = 2.76 TeV (bottom panel). Nuclei and
anti-nuclei like (anti-)deuterons, (anti-)tritons, and (anti-)3He
are clearly identified over a wide range of momenta. The solid
curves represent a parametrization of the Bethe-Bloch function
for the different particle species. In practice, it is required that
the measured energy-loss signal of a track lies in a 3σ window
around the expected value for a given mass hypothesis. While
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FIG. 1. Specific energy loss (dE/dx) vs rigidity (momen-
tum/charge) for TPC tracks from pp collisions at

√
s = 7 TeV (top

panel) and from 0 to 80% most central Pb-Pb collisions at
√

sNN =
2.76 TeV (bottom panel). The solid lines represent a parametrization
of the Bethe-Bloch curve.

this method provides a pure sample of 3He nuclei in the pT

range between 2 and 7 GeV/c, it is limited to about pT <
1.4 GeV/c for deuterons.

In order to extend the pT reach of the deuteron mea-
surement, the TOF system is used above this momentum in
addition. Based on the measured flight time t , the mass m of a
particle can be calculated as

m2 = p2

c2

(c2t2

L2
− 1

)
, (1)

where the total momentum p and the track length L are
determined with the tracking detectors. Figure 2 shows the
obtained �m2 distribution, where the deuteron mass square
(m2

d) was subtracted, for a pT bin between 2.6 and 2.8 GeV/c.
For each pT bin, the �m2 distribution is fitted with a Gaussian
function with an exponential tail for the signal. Since the
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FIG. 2. Distribution of (m2 − m2
d) measured with the TOF detec-

tor for tracks with 2.6 GeV/c < pT < 2.8 GeV/c from central Pb-Pb
collisions showing the peak corresponding to the deuteron mass md

and the background from mismatched tracks (black dotted line) which
is subtracted to obtain the raw yields (see text for details).

background mainly originates from two components, namely
wrong associations of a track with a TOF cluster and the non-
Gaussian tail of lower mass particles, it is described with a first
order polynomial to which an exponential function is added.
The same procedure for signal extraction and background
subtraction is applied in the analysis of pp collisions.

D. Background rejection

Particles produced in the collisions might interact with
the detector material and the beam pipe which leads to the
production of secondary particles. The probability of anti-
nucleus production from the interaction of primary particles
with detector material is negligible, whereas the sample of
nuclei may include primary as well as secondary particles
originating from the material. This contamination is exponen-
tially decreasing with increasing momentum. In addition, it
is about five times larger in central compared to peripheral
Pb-Pb or pp events because of the higher probability of a
fake ITS hit assignment to secondary tracks. Most of the
secondary particles from material have a large DCA to the
primary vertex and hence this information is used to correct
for the contamination. Figure 3 shows the DCAxy distribution
for deuterons (left panel) and anti-deuterons (right panel) for
Pb-Pb collisions at

√
sNN = 2.76 TeV. The distributions are

shown for two different |DCAz| cuts. As can be seen from the
figure, a strict |DCAz| cut of 1.0 cm cuts a large fraction of
background for nuclei, but does not change the distribution for
anti-nuclei. At sufficiently high momenta (above 1.4 GeV/c
for deuterons and above 2 GeV/c for 3He), the secondary
and knock-out contamination caused by material is in this way
reduced to a negligible level and the raw yield can be directly
extracted. In order to extend the measurement of deuterons to
lower momenta in Pb-Pb collisions, the DCAxy distribution
for deuterons in each transverse momentum (pT) interval was
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FIG. 3. Distribution of DCAxy for deuterons (left) and anti-deuterons (right) in the transverse momentum range 0.7 GeV/c < pT <

1.4 GeV/c for 0–80% most central Pb-Pb collisions at
√

sNN = 2.76 TeV demonstrating the influence of cuts in DCAz on d and d.

fitted with the expected shapes (called “templates” in the
following) as extracted from Monte Carlo events. Figure 4
shows a typical example of this procedure for tracks with
transverse momentum range 0.9 GeV/c < pT < 1.0 GeV/c.
One template for primary particles and one template for
secondary particles from material are used. The characteristic
shape of the template used for knock-out nuclei from material
with its flat behavior at large DCAxy allows a precise
distinction between the two contributions. The significant peak
at small |DCAxy | is caused by those knock-out nuclei to which
a cluster in one of the SPD layers is wrongly associated. The
obtained fraction of primary particles is then used to calculate
the raw yield in the corresponding pT bin. The same technique
is applied for background rejection and raw yield extraction of
deuterons for pp collisions at

√
s = 7 TeV.

FIG. 4. Distribution of DCAxy of identified deuterons in the
transverse momentum range 0.9 GeV/c < pT < 1.0 GeV/c for
central Pb-Pb collisions (

√
sNN = 2.76 TeV) along with the Monte

Carlo templates which are fitted to the data (see text for details).

E. Efficiency and acceptance

The final pT spectra of nuclei are obtained by correcting
the raw spectra for tracking efficiency and acceptance based
on Monte Carlo (MC) generated events. Standard event
generators, such as PYTHIA [29], PHOJET [30], or HIJING
[31], do not include the production of (anti-)nuclei other
than (anti-)protons and (anti-)neutrons. Therefore, nuclei are
explicitly injected into underlying PYTHIA (in the case of
pp) and HIJING (in the case of Pb-Pb) events with a flat
momentum distribution. In the next step, the particles are
propagated through the ALICE detector geometry with the
GEANT3 transport code [32]. GEANT3 includes a basic
description of the interaction of nuclei with the detector,
however, this description is imperfect due to the limited data
available on collisions of light nuclei with heavier materials.
Due to the unknown interaction of anti-nuclei with material,
these processes are not included for anti-nuclei heavier than
anti-protons. In order to account for these effects, a full detector
simulation with GEANT4 as a transport code [33,34] was used.
Following the approach described in Ref. [35], the correction
for interaction of (anti-)nuclei with the detector material from
GEANT3 was scaled to match the expected values from
GEANT4. An alternative implementation to correct for this
effect and the relevant uncertainties related to these corrections
is discussed in Sec. III A. The acceptance × efficiency is then
obtained as the ratio of the number of particles detected by
the detector to the number of generated particles within the
relevant phase space.

Figure 5 shows the acceptance × efficiency for deuterons
(left) and 3He (middle) as a function of pT for Pb-Pb collisions
at

√
sNN = 2.76 TeV. In both cases, the rapid rise of the

efficiency at low pT is determined by energy loss and multiple
scattering processes of the incident particle with the detector
material. The values reach a maximum when the energy
loss becomes smaller and when the track curvature is still
sufficiently large so that a track can cross the dead area
between two TPC readout chambers in a relatively small
distance such that the two track parts can still be connected.
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FIG. 5. Acceptance × efficiency as a function of transverse momentum (pT) for deuterons (left) and for 3He (middle) in Pb-Pb collisions at√
sNN = 2.76 TeV, as well as for deuterons in pp collisions at

√
s = 7 TeV (right panel). The curves represent a fit with the function presented

in Eq. (2) (see text for details).

For straighter tracks at higher pT which cross the insensitive
region between two chambers this distance is larger and the
connection becomes more difficult. Thus a slight reduction of
the efficiency is observed until a saturation value is reached.
The figure also shows the lower efficiency values (open points)
when in addition a deuteron track is matched to a hit in the
TOF detector. The drop is mainly caused by the energy loss and
multiple scattering in the material between the TPC and the
TOF, by the TOF dead zones corresponding to other detectors
or structures, and by the number of active TOF channels. The
curves represent fits with the empirical functional form

f (pT) = a0e
(−a1/pT)a2 + a3pT. (2)

Here, a0, a1, a2, and a3 are free parameters. Correcting the
raw spectra with either the fit function or the actual histogram
is found to result in negligible differences with respect to the
total systematic error.

Figure 5 (right) also shows acceptance × efficiency for the
deuterons as a function of pT for pp collisions at

√
s =

7 TeV. The curve is a fit using the same functional form as
used for the Pb-Pb collisions discussed above. The efficiency
has a similar pT dependence as the one for Pb-Pb collisions at√

sNN = 2.76 TeV. The observed differences are due to
variations in the number of active detector components, mainly
in the SPD, for the two data sets.

F. Momentum correction

Low-momentum particles lose a considerable amount of
energy while traversing the detector material. The track
reconstruction algorithm takes into account the Coulomb
scattering and energy loss, assuming the pion mass for each
particle. Therefore, a track-by-track correction for the energy
loss of heavier particles (d/d̄ and 3He/3He) is needed. This
correction is obtained from MC simulations, in which the
difference of the reconstructed and the generated transverse
momentum is studied on a track-by-track basis. Figure 6 shows
the average pT difference as a function of the reconstructed
track momentum (pRec

T ) for deuterons and 3He. The lines

represent the empirical function

f (pT) = A + B

(
1 + C

p2
T

)D

, (3)

where the free parameters A, B, C, and D are extracted
from a fit. It can be seen that the correction becomes largest
for the heaviest particles at low momenta. This reflects the
typical 1/β2 behavior of the energy loss. The difference in
transverse momentum is corrected on a track-by-track basis
in the analysis. This energy loss correction has been applied
both for pp and for Pb-Pb collisions. The same correction in
rapidity has also been studied and found to result in negligible
changes in the final spectra.

G. Systematic uncertainties

Individual contributions to the systematic error of the
measurement are summarized in Table I and are discussed
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FIG. 6. The average difference between the reconstructed and
the generated pT is plotted as a function of the reconstructed pT for
simulated deuterons and 3He for Pb-Pb collisions at

√
sNN = 2.76 TeV.

The lines represent a fit with the functional form as shown in Eq. (3)
(see text for details).
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TABLE I. Summary of the main contributions to the systematic
uncertainties. See text for details.

Source d 3He

0.7 GeV/c 4 GeV/c 2 GeV/c 8 GeV/c

PID 1% 5% 1% 1%
Tracking and matching 6% 4% 6% 4%
Secondaries material 20% 1% 20% 1%
Secondaries weak decay negl. 5%
Material budget 5% 1% 3% 1%
Hadronic interaction 6% 6%

in detail in the following. The systematic uncertainty related
to the identification of the nuclei is smaller in the pT region in
which the energy loss in the TPC provides a clear separation
compared to those in which the identification is mainly based
on the TOF information. The error is of the order of 1% for
deuterons at low momenta and for the full pT range studied
for 3He nuclei. In the TOF part (pT > 1.4 GeV/c) of the
deuteron spectrum, the error is considerably larger due to
the presence of background and has been estimated as 5%
on the basis of different signal extraction methods: the raw
yields obtained from the signal fit and from bin counting are
compared. The estimates of the uncertainties related to the
tracking and matching are based on a variation of the track cuts
and are found to be less than 4% and independent of the particle
species. In addition to this, a variation in the momentum
correction leads to differences of similar magnitude at lower
momenta and are added in quadrature.

Contamination from secondaries originating from interac-
tions of primary particles with the detector material dominates
the systematic error at low transverse momenta, but it decreases
exponentially towards higher momenta. These uncertainties
are estimated by a variation of the fit range and templates. Their
values amount to about 20% in the lowest pT bin for deuterons
and for 3He in most central events. For all other centralities
and transverse momentum regions, it is significantly lower.
Feed down from weakly decaying hyper-nuclei is negligible
for deuterons. The only relevant decay of the hyper-triton,
3
�H → d + p + π−, results in a negligible contamination,
because of the roughly 700 times smaller production cross
section of the hyper-triton with respect to the deuteron [1,2].
On the other hand, the decay 3

�H → 3He + π− contaminates
the 3He spectrum as these particles are produced with similar
abundance. This background is conceptually similar to the
feed down of � decays into the proton spectrum [36] though
the relevant branching ratio in the case of 3

�H (25%) [37]
is assumed to be considerably lower than in the case of �
(64%). A detailed MC study shows that only about 4–8% of
all 3

�H decaying into 3He pass the track selection criteria of
primary 3He. Therefore, the remaining contamination has not
been subtracted and the uncertainty related to it was further
investigated by a variation of the DCAxy cut in data and a final
error of about 5% is assigned. Uncertainties in the material
budget have been studied by simulating events varying the
amount of material by ±10%. This leads to variations in the
efficiency of about 5% in the lowest pT bins. The hadronic

interaction of nuclei with the detector material gives rise to an
additional uncertainty of about 6% for deuteron and for 3He.
The material between TPC and TOF needs to be considered
only for the deuteron spectrum above pT > 1.4 GeV/c and
increases the uncertainty by additional 7%. The corresponding
corrections for anti-nuclei are significantly larger and less
precisely determined because of the missing knowledge of
the relevant elastic and inelastic cross sections. Details of the
systematics originating from differences between the available
models are discussed in the next section.

In general, the individual contributions to the systematic
error do not show a significant dependence on the event
multiplicity. The only exception is given by the uncertainty of
the correction for secondaries from material, which changes
from about 20% in central to about 4% in peripheral Pb-Pb or
pp collisions, respectively. All other contributions are found
to be independent of event multiplicity.

III. RESULTS

A. Anti-particle to particle ratios and hadronic
interaction of anti-nuclei

For a measurement of particle to anti-particle ratios, the
correction of the hadronic interaction of the emitted particles
with the detector material has to be precisely known. The
relevant cross sections are only poorly measured for anti-nuclei
heavier than p. The only available data for anti-deuterons
from the U-70 Serpukhov accelerator [38,39] are measured
at relatively high momenta (p = 13.3 GeV/c and p =
25.0 GeV/c) and provide only a rough constraint. Two
approaches are considered to model the correction for hadronic
interaction. First, the anti-nuclei cross sections are approxi-
mated in a simplified empirical model by a combination of
the anti-proton (σp̄,A) and anti-neutron (σn̄,A) cross sections.
Following the approach presented in Ref. [40], the cross
section σd̄,A for an anti-deuteron on a target material with
mass number A is then, e.g., given by

σd̄,A = (
σ

3/2
p̄,A + σ

3/2
n̄,A

)2/3
K(A), (4)

where the scaling factor K(A) is determined from the same
procedure applied to the measured inelastic cross sections of
nuclei and protons. Details of the method can be found in
Ref. [40]. This approach is implemented as a modification to
GEANT3. However, it does not account for elastic scattering
processes and is therefore only used for the estimation of
the systematic uncertainty. Secondly, the anti-nucleus–nucleus
cross sections are determined in a more sophisticated model
with Glauber calculations based on the well-measured total
and elastic pp cross section [34]. It is implemented in the
GEANT4 software package [33].

The relevant correction factor for the anti-particle to particle
ratio is given by the ratio of the efficiencies in which all effects
cancel except of those related to the hadronic interaction with
the detector material. The efficiency ratios for anti-deuterons
and for 3He nuclei using the two models described above
(modified GEANT3 and GEANT4) are shown in Fig. 7. The
applied correction factors are parametrized with the same
function which was used for a similar study in Ref. [35].
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FIG. 7. Ratio of anti-particle to particle efficiency based on GEANT4 and a modified version of GEANT3 including an empirical model to
describe the hadronic interaction of anti-nuclei for (anti-)deuterons (left) and for (anti-) 3He (right). The estimate of the systematic uncertainty
for the hadronic interaction based on the difference between the two models is indicated by the blue band.

The absorption correction is larger for tracks which are
required to reach the TOF detector due to the additional
material behind the TPC, mainly the support structure and
the transition radiation detector (TRD). In the following,
results corrected with GEANT4 are presented. Based on the
discrepancy between the two models, an uncertainty of 60%
of the difference between the efficiency for particles and
anti-particles is assumed for the absorption correction. It is
indicated by the blue band in Fig. 7.

Applying this model-based correction to the data leads

to d̄/d and
3
He / 3He ratio shown in Fig. 8 for various

centrality bins in Pb-Pb collisions. Both ratios are consistent
with unity and exhibit a constant behavior as a function of pT

as well as of collision centrality. Since the same statements
hold true for the p̄/p ratios [41], these observations are in
agreement with expectations from the thermal-statistical and
coalescence models [2] which predict a ratio of d̄/d = (p̄/p)2

and
3
He / 3He = (p̄/p)3. Table II show the anti-particle to

particle ratios for various centrality classes in Pb-Pb collisions
at

√
sNN = 2.76 TeV.

Ongoing studies on the hadronic interaction of anti-nuclei
in the material between the TPC and TOF will allow us to

TABLE II. Anti-particle to particle ratios for various centrality
classes in Pb-Pb collisions at

√
sNN = 2.76 TeV. The first error

represents the statistical error and the second one is the systematic
error. See text for details.

Anti-nuclei/nuclei Centrality Ratio

0–10% 0.98 ± 0.01 ± 0.13
10–20% 0.99 ± 0.01 ± 0.13

d̄/d 20–40% 1.01 ± 0.01 ± 0.14
40–60% 1.02 ± 0.01 ± 0.16
60–80% 1.02 ± 0.02 ± 0.16
0–20% 0.83 ± 0.08 ± 0.163

He / 3He
20–80% 1.03 ± 0.14 ± 0.18

constrain the uncertainties of the currently purely model based
corrections and to replace them with data driven ones. As the
spectra for nuclei and anti-nuclei are consistent within the
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2.76 TeV. Boxes describe the systematic uncertainties, vertical lines
the statistical ones.
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FIG. 9. Efficiency and acceptance corrected deuteron spectra for
Pb-Pb collisions at

√
sNN = 2.76 TeV in various centrality classes and

for inelastic pp collisions at
√

s = 7 TeV. The dashed lines represent
an individual fit with the BW function [Eq. (6)] in the case of Pb-Pb
spectra and with the function presented in Eq. (5) in the case of the
pp spectrum (see text for details). The boxes show systematic error
and vertical lines show statistical error separately.

currently large uncertainties, only the spectra of nuclei are
provided in the following.

B. Spectra of nuclei

The final spectra of deuterons obtained in Pb-Pb and pp
collisions are shown in Fig. 9. The statistical and systematic
errors are shown separately as vertical lines and boxes,
respectively. In pp collisions, the spectrum is normalized to
the number of all inelastic collisions (NINEL) which includes
a correction for trigger inefficiencies (see [42,43] for details).
It is fitted with the following function [44–46] that has been
used for lighter particles:

1

2πpT

d2N

dpTdy

= dN

dy

(n − 1)(n − 2)

2πnC[nC + m0(n − 2)]

(
1 + mT − m0

nC

)−n

(5)

with the fit parameters C, n, and the dN/dy. The parameter m0

corresponds to the mass of the particle under study (deuteron)

at rest and mT =
√

m2
0 + p2

T to the transverse mass. As in
the case of lighter particles, the function is found to describe
the deuteron pT spectrum well in the measured range with a
χ2/ndf of 0.26. The fit function is used for the extrapolation

)c  (GeV/
T

p
0 1 2 3 4 5 6 7

]
-2 )c

) 
 [(

G
eV

/
T

pd
yd

T
pπ2

ev
N

 / 
(

N2 d

8−10

7−10

6−10

5−10  = 2.76 TeVNNsALICE, Pb-Pb, 

He3

0-20%

20-80%

Individual fit

FIG. 10. 3He spectra for two centrality classes (0–20% and
20–80%) are shown for Pb-Pb collisions at

√
sNN = 2.76 TeV. The

spectra are fitted individually with the BW function (dashed lines).
The systematic and statistical errors are shown by boxes and vertical
lines, respectively.

to the unmeasured region at low and high transverse momenta
(about 45% of the total yield) and a pT-integrated yield of
dN/dy = [2.02 ± 0.34(syst)] × 10−4 is obtained.

While statistical errors are negligible, the systematic error
is dominated by the uncertainty related to the extrapolation
(13%) which is evaluated by a comparison of different
fit functions [47] (Boltzmann, mT exponential, pT expo-
nential, Fermi-Dirac, Bose-Einstein). Based on the same
extrapolation in the unmeasured region of the spectrum, a
mean transverse momentum 〈pT〉 of 1.10 ± 0.07 GeV/c is
obtained.

The final spectra of deuterons and 3He for Pb-Pb collisions
at

√
sNN = 2.76 TeV are shown in Figs. 9 and 10 for various

choices of the collision centrality. Again, the systematic and
statistical errors are shown separately by boxes and vertical
lines, respectively. The pT distributions show a clear evolution,
becoming harder as the multiplicity increases. A similar
behavior is observed for protons, which have been successfully
described by models that incorporate a significant radial flow
[41].

The spectra obtained in Pb-Pb collisions are individually
fitted with the blast-wave (BW) model for the determination
of pT-integrated yields and 〈pT〉. This model [48] describes
particle production properties by assuming that the particles
are emitted thermally from an expanding source. The func-
tional form of the model is given by

1

pT

dN

dpT
∝

∫ R

0
r dr mTI0

(pT sinh ρ

Tkin

)
K1

(mT cosh ρ

Tkin

)
, (6)

where the velocity profile ρ is described by

ρ = tanh−1 β = tanh−1(βS(r/R)n). (7)
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3He spectra with the BW function for 0–20% centrality for Pb-Pb
collisions at

√
sNN = 2.76 TeV. The systematic and statistical errors

are shown by boxes and vertical line, respectively. The lower panel
shows the deviation of the spectra from the BW fits.

Here I0 and K1 are the modified Bessel functions, r is the
radial distance from the center of the fireball in the transverse
plane, R is the radius of the fireball, β(r) is the transverse
expansion velocity, βS is the transverse expansion velocity at
the surface, n is the exponent of the velocity profile, and Tkin

is the kinetic freeze-out temperature. The free parameters in
the fit are Tkin, βS, n, and a normalization parameter. Here,
we present two alternatives: fitting the two particles separately
(Figs. 9 and 10) and simultaneously (Fig. 11). The extracted
values of the kinetic freeze-out temperature and radial flow
velocity are discussed in more detail in the next section. The
results of these fits are summarized in Table III, where the
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FIG. 12. The production yield dN/dy of light nuclei as a function
of the particle mass mA measured for 0–20% centrality class in Pb-Pb
collisions at

√
sNN = 2.76 TeV. The line represents a fit with an

exponential function.

values of dN/dy and 〈pT〉 are also reported. The dN/dy
values are extracted by individually fitting the spectra with
the BW model. The extrapolation to pT = 0 introduces an
additional error which is again evaluated by a comparison of
different fit functions and amounts to about 6% for central
and 13% for peripheral collisions for the deuteron yields. In
the 3He case, it contributes about 17% and 16% to the total
systematic errors for the 0–20% and 20–80% centrality class,
respectively.

Figure 12 shows the production yields of p, d, and 3He
measured in the centrality interval 0–20% in Pb-Pb collisions
which follow an exponential decrease with the mass of the
particle. The penalty factor, namely the reduction of the yield
by adding one nucleon, is 307 ± 76. Such an exponential
decrease has already been observed at lower incident energies
starting from those provided by the AGS [16,18,19,21], yet
with different slopes.

The mean transverse momentum 〈pT〉 values obtained for
d and 3He are compared to those of light particle species for
Pb-Pb collisions at

√
sNN = 2.76 TeV (from [41]) in Fig. 13.

TABLE III. Summary of extracted yields dN/dy and mean transverse momenta 〈pT〉 based on the BW individual fits performed on the
spectra for Pb-Pb collisions at

√
sNN = 2.76 TeV. The first error on dN/dy and 〈pT〉 represents the statistical error and the second one is the

combination of systematic and extrapolation errors, added in quadrature. See text for details.

Centrality 〈β〉 Tkin (MeV) n dN/dy 〈pT〉 (GeV/c) χ 2/ndf

d (0–10%) 0.630 ± 0.003 77 ± 2 0.75 ± 0.05 (9.82 ± 0.04 ± 1.58) × 10−2 2.12 ± 0.00 ± 0.09 0.10
d (10–20%) 0.613 ± 0.004 96 ± 2 0.78 ± 0.06 (7.60 ± 0.04 ± 1.25) × 10−2 2.07 ± 0.01 ± 0.10 0.07
d (20–40%) 0.572 ± 0.004 100 ± 2 0.96 ± 0.07 (4.76 ± 0.02 ± 0.82) × 10−2 1.92 ± 0.00 ± 0.11 0.07
d (40–60%) 0.504 ± 0.017 124 ± 7 1.04 ± 0.19 (1.90 ± 0.01 ± 0.41) × 10−2 1.63 ± 0.01 ± 0.09 0.01
d (60–80%) 0.380 ± 0.010 108 ± 3 1.85 ± 0.35 (0.51 ± 0.01 ± 0.14) × 10−2 1.29 ± 0.01 ± 0.14 0.21
3He (0–20%) 0.572 ± 0.006 101 ± 61 1.02 ± 0.02 (2.76 ± 0.09 ± 0.62) × 10−4 2.83 ± 0.05 ± 0.45 0.49
3He (20–80%) 0.557 ± 0.007 101 ± 37 0.99 ± 0.03 (5.09 ± 0.24 ± 1.36) × 10−5 2.65 ± 0.06 ± 0.45 0.20
d , 3He (0–20%) 0.617 ± 0.009 83 ± 22 0.81 ± 0.06 0.32
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FIG. 13. Mean transverse momentum 〈pT〉 as a function of
particle mass for various centrality classes are shown for Pb-Pb
collisions at

√
sNN = 2.76 TeV.

The figure shows that the 〈pT〉 increases with increasing mass
of the particle. Such a behavior is expected if all the particles
are emitted from a radially expanding source.

C. Observation of (anti-)triton

The combined particle identification capability of the TPC
and TOF also allows a track-by-track identification of low
momenta (0.6 GeV/c < pT < 1.6 GeV/c) anti-tritons as
illustrated in Fig. 14. In this momentum region, the background
from mismatched tracks is removed by the TPC particle
identification. The contamination is estimated based on a
sideband study and found to be negligible below pT <
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FIG. 14. Scatter plot of (m2 − m2
t̄ ) measured with the TOF

detector vs pT. Only those tracks are shown which pass the
preselection done by applying a 3σ cut on the TPC dE/dx. The
pT region in which the candidates are identified on a track-by-track
basis is shown as red box.

1.6 GeV/c, but it increases rapidly for higher momenta so
that signal and background cannot be distinguished anymore
thus limiting the range available for the measurement.

As can be seen, 31 anti-triton candidates are observed in
the 0–80% centrality range. These numbers are consistent with
expectations based on an extrapolation of the 3He spectra to
lower momenta taking into account the low reconstruction
efficiency for anti-tritons in this momentum region (of about
11% ± 6%). An observation of about 10–40 anti-tritons is
expected based on this estimate, indicating similar production

rates of anti-tritons and
3
He nuclei. This comparison suffers

from large uncertainties related to the absorption of anti-nuclei
and energy loss in the detector material before the TPC at such
low momenta. A similar measurement of tritons is unfeasible
due to the large contamination from knock-out nuclei in this
momentum region.

IV. DISCUSSION

A. Description of spectra via blast-wave fits

Combined BW fits provide essential insight into the kinetic
freeze-out conditions and allow quantitative comparisons be-
tween different collision systems and between measurements
at different

√
sNN in terms of a hydrodynamic interpretation.

In this section, a simultaneous fit to the π , K , p, d, and 3He
spectra in the centrality range 0–20% using in addition data
from [41,49] is discussed. Since the BW model is not expected
to describe eventual hard contributions that may set in at higher
pT, the fit ranges have been limited. For the light particles, they
are taken as in Refs. [41,49] (0.5–1 GeV/c, 0.2–1.5 GeV/c,
0.3–3 GeV/c for π , K , and p, respectively). However, for d
and 3He, the spectrum is fitted up to the pT value where the
invariant yield reduces to 10% of the maximum available value
of that spectrum. The exponent n of the velocity profile is left as
a free parameter as in Ref. [41]. In such an approach, all particle
species are forced to decouple with the same parameters even
though they feature different hadronic cross sections with the
medium. This is in particular relevant for multistrange particles
such as 
 and � [50], which are therefore not included in the fit.

In Fig. 15 the results of a simultaneous fit to the five particle
species are shown. The deviations of the spectra from the BW
fit are shown in the lower parts of Fig. 15. The statistical
errors are shown by vertical lines and the systematic errors
are shown as shaded bands. Note that data points marked with
open symbols are not included in the fit. The hardening of
the spectra for central collisions is qualitatively well described
by the combined BW fit with a collective radial flow velocity
〈β〉 = 0.632 ± 0.01, a kinetic freeze-out temperature of Tkin =
113 ± 12 MeV, and n = 0.72 ± 0.03. The χ2/ndf value of the
fit is 0.4. A comparison of these parameters to those obtained
from a fit to π , K , and p [41] (〈β〉 = 0.644 ± 0.020, Tkin =
97 ± 15 MeV, and n = 0.73 ± 0.11) reveals that the inclusion
of nuclei leads to a slightly smaller value for 〈β〉 and a slightly
larger value for Tkin. This behavior is mainly driven by the
strong anti-correlation of 〈β〉 and Tkin in the blast-wave model:
the slightly lower value of 〈β〉 leads to a deviation of the fit
from the proton spectrum which is then compensated by a
higher Tkin.
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FIG. 15. Blast-wave fit of π+, K+, p, d , and 3He particles for
0–20% centrality for Pb-Pb collisions at

√
sNN = 2.76 TeV. Solid

symbols denote the pT range of the spectra used for the fits, while the
open symbols show the remaining part. The lower panels show the
deviations of the measured spectra to the BW fits.

B. Comparison to thermal models

Figure 16 shows the d/p and the 3He /p ratios as a function
of the average charged particle multiplicity per event. The
proton yields are taken from [41,49]. The observed values
of about 3.6 × 10−3 for the d/p ratio and about 9.3 × 10−6

for the 3He /p ratio are in agreement with expectations from
the thermal-statistical models [1,2]. Similar values for d/p
ratios are also observed by the PHENIX experiment for
Au-Au collisions [47,51]. Since at RHIC energies significant
differences between nucleus and anti-nucleus production are
present, for this plot the geometrical mean is used which
in a thermal concept cancels the influence of the baryon
chemical potential (μB).1 Within the achieved experimental
precision, no dependence of these particle ratios on the event
multiplicity is observed at RHIC and LHC energies. Also the

1In a thermal model, the yield nB of a baryon with energy E in
a medium of temperature T is proportional to exp(−E−μB

T
) while

the yield of an anti-baryon nB is proportional exp(−E+μB

T
). The

geometric mean
√

nBnB leads to a cancellation of the μB .
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FIG. 16. d/p and 3He /p ratio in heavy-ion collisions as a
function of event multiplicity. Within the uncertainties no significant
variation with multiplicity is observed. The d/p and d̄/p̄ results from
the PHENIX Collaboration [47,51] are averaged as explained in the
text. The lines represent fits with a constant to the ALICE data points.

p̄/p and the p/π ratios hardly vary with centrality [41,52]
showing that Tchem and μB do not vary with centrality in high
energy collisions. In a coalescence approach, the centrality
independence disfavors implementations in which the nuclei
production is proportional to the absolute proton multiplicity
[53] rather than the particle density.

The comparison with thermal models is shown in more de-
tail in Fig. 17 for the 0–10% centrality class. These calculations
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FIG. 17. Particle ratios of nuclei as measured in 0–10% most
central Pb-Pb collisions compared to the THERMUS [54] model
(solid lines) and the GSI-Heidelberg model [1] (dashed lines) as a
function of the chemical freeze-out temperature Tchem. The 3He yield
is scaled to 0–10%. Horizontal error bars indicate the temperature
range obtained by a projection of the total error of the ratio on the
temperature axis.
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have been performed using the grand-canonical formulation of
both THERMUS [54] and the GSI-Heidelberg model [1]. This
approach is appropriate for the ratios shown here, as no strange
quarks are involved. Details can be found in Refs. [1,2]. These
ratios are monotonically increasing with Tchem reflecting the
dependence with exp(−�m/Tchem) where �m corresponds to
the mass difference of the particles under study.

The measured ratios of 3He /p and 3He /d are in agreement
with a chemical freeze-out temperature in the range 150–
165 MeV. No significant differences are observed between
the THERMUS and GSI-Heidelberg model with respect to the
production of light (anti-)nuclei. A fit to p, d, and 3He only
gives Tchem = 156 ± 4 MeV with a χ2/ndf of 0.4. This value
can be compared to a fit including all measured light flavor
hadrons which yields a temperature of about 156 MeV [55].

At these temperatures, the weakly bound deuteron and
3He can hardly survive. These nuclei might break up and
might be regenerated. However, if this complex process of
breakup and regeneration is governed by an overall isentropic
expansion, the particle ratios are preserved [56]. Eventually,
the yields of particles including weakly bound nuclei are
therefore described in the thermal-statistical model. Other
properties, e.g., spectral shapes and elliptic flow, exhibit the
influence of the interactions during the hadronic phase.

The d/p ratio obtained in pp collisions is lower by a factor
of 2.2 than in Pb-Pb collisions. Assuming thermal production
not only in Pb-Pb, but also in pp collisions, this could indicate
a lower freeze-out temperature in pp collisions. However, the
p/π ratio does not show significant differences between pp
and Pb-Pb collisions. Effects related to canonical suppression
of strange particles can also be excluded because these ratios
do not involve any strange quarks. Therefore, this observation
must find another explanation within the framework of thermal
models or nonthermal production mechanisms need to be
considered in small systems. Further work in the theoretical
models is needed for a better understanding of this effect.

C. Comparison with the coalescence model

Light nuclei have nucleons as constituents and are thus
likely formed via coalescence of protons and neutrons which
are near in space and have similar velocities. In this production
mechanism, the spectral distribution of the composite nuclei
is related to the one of the primordial nucleons via

Ei

d3Ni

dp3
i

= BA

(
Ep

d3Np

dp3
p

)A

, (8)

assuming that protons and neutrons have the same momentum
distribution. BA is the coalescence parameter for nuclei i with
mass number A and a momentum of pi = App.

Figure 18 shows the obtained B2 values for deuterons (left
panel) and B3 values for 3He (right panel) in several centrality
bins for Pb-Pb collisions. The results are plotted versus the
transverse momentum per nucleon. A clear decrease of B2 and
B3 with increasing centrality is observed. In the coalescence
picture, this behavior is explained by an increase in the source
volume Veff : the larger the distance between the protons and
neutrons which are created in the collision, the less likely it
is that they coalesce. Alternatively, it can be understood on
the basis of the approximately constant d/p and 3He /p ratios
as an increase of the overall proton multiplicity independent
of the geometry of the collision. The argument can be best
illustrated by assuming a constant value of B2 and integrating
Eq. (8) over pT. The value of B2 can then be calculated for
a given ratio d/p and a given spectral shape f (pT) [with∫ ∞

0 f (pT) dpT = 1] of the proton spectrum as

B2 = π

2

dNd
dy( dNp

dy

)2

1∫ ∞
0

f 2(pT)
pT

dpT

, (9)

where for a constant ratio of the deuteron dNd/dy to proton
dNp/dy yield, it is found that B2 ∝ 1/(dNp/dy). As can be
seen in Fig. 18, the coalescence parameter also develops
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an increasing trend with transverse momentum for central
collisions in contrast to expectations of the most simple
coalescence models. The significance of this increase is
further substantiated by the fact that the systematic errors
between pT bins are to a large extent correlated. It can be
qualitatively explained by position-momentum correlations
which are caused by a radially expanding source [57]. For
quantitative comparisons, better theoretical calculations are
needed which couple a coalescence model to a full space-
time hydrodynamic description of the fireball. Also in the
discussion of the variation of the B2 parameter as a function
of collision energy, its strong dependence on centrality and pT

must be taken into account. It is observed that B2 at a fixed
momentum (pT = 1.3 GeV/c) for central collisions (0–20%)
decreases rapidly from AGS energies to top SPS energy and
then remains about the same up to RHIC [51]. Our value of
approximately 4 × 10−4 GeV2/c3 is only slightly lower than
the measurement at RHIC (≈6 × 10−4GeV2/c3).

V. CONCLUSION

In summary, the spectral distributions of deuterons in pp at√
s = 7 TeV and of deuterons and 3He in Pb-Pb collisions at√
sNN = 2.76 TeV have been presented. In Pb-Pb collisions,

the yields are decreasing by a factor of 307 ± 76 for each
additional nucleon, the mean pT rises with mass, and the
combined blast-wave fit to π , K , p, d, and 3He gives a
reasonable fit with 〈β〉 = 0.63 and Tkin around 115 MeV
suggesting that the kinetic freeze-out conditions for nuclei
are identical to those of the other light flavor hadrons. For
anti-tritons, a track-by-track identification has been applied in
the momentum range 0.6 GeV/c < pT < 1.6 GeV/c and the
observation of 31 anti-tritons in Pb-Pb collisions at

√
sNN =

2.76 TeV in the 0–80% centrality class is reported in this paper.
An important question is whether the nuclei produced in

heavy-ion collisions are created at the chemical freeze-out or at
a later stage via coalescence. One of the key observations is the
fact that the d/p and 3He /p ratios are constant as a function
of 〈dNch/dη〉η=0. Such a behavior is expected from a thermal-
statistical interpretation, as it is found that Tchem and μB do not
vary with centrality in high energy collisions. Furthermore,
a common freeze-out temperature of around 156 MeV for
light (anti-)nuclei and all other measured light flavor hadrons
is obtained in a thermal-statistical model. Light (anti-)nuclei
in Pb-Pb collisions therefore show the identical behavior as
noncomposite light flavor hadrons which are governed by a
common chemical freeze-out and a subsequent hydrodynamic
expansion.

The extracted coalescence parameters B2 and B3 exhibit a
significant decrease with collision centrality and an increase
with transverse momentum which cannot be explained by
coalescence models in their simplest form. On the other hand,
taking into account the larger source volume for more central
collisions and the radial expansion of the emitting system,
the production of light (anti-)nuclei in Pb-Pb collisions may
still be compatible with the expectations from a coalescence
space-time description.

The measurements of nuclei at LHC energies are shown
to follow trends observed from lower incident energies.

Extrapolations and model predictions based on the thermal-
statistical or coalescence approach are, therefore, a solid
ground for further studies, e.g., of hyper-nuclei and exotica.
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A. Gomez Ramirez,52 P. González-Zamora,10 S. Gorbunov,43 L. Görlich,116 S. Gotovac,115 V. Grabski,64

L. K. Graczykowski,132 A. Grelli,57 A. Grigoras,36 C. Grigoras,36 V. Grigoriev,76 A. Grigoryan,1 S. Grigoryan,66 B. Grinyov,3

N. Grion,110 J. F. Grosse-Oetringhaus,36 J.-Y. Grossiord,129 R. Grosso,36 F. Guber,56 R. Guernane,71 B. Guerzoni,28

K. Gulbrandsen,80 H. Gulkanyan,1 T. Gunji,126 A. Gupta,90 R. Gupta,90 R. Haake,54 Ø. Haaland,18 C. Hadjidakis,51

M. Haiduc,62 H. Hamagaki,126 G. Hamar,134 L. D. Hanratty,102 A. Hansen,80 J. W. Harris,135 H. Hartmann,43 A. Harton,13

D. Hatzifotiadou,105 S. Hayashi,126 S. T. Heckel,53 M. Heide,54 H. Helstrup,38 A. Herghelegiu,78 G. Herrera Corral,11

B. A. Hess,35 K. F. Hetland,38 T. E. Hilden,46 H. Hillemanns,36 B. Hippolyte,55 P. Hristov,36 M. Huang,18 T. J. Humanic,20

N. Hussain,45 T. Hussain,19 D. Hutter,43 D. S. Hwang,21 R. Ilkaev,99 I. Ilkiv,77 M. Inaba,127 C. Ionita,36 M. Ippolitov,76,100

M. Irfan,19 M. Ivanov,97 V. Ivanov,85 V. Izucheev,112 P. M. Jacobs,74 C. Jahnke,119 H. J. Jang,68 M. A. Janik,132

P. H. S. Y. Jayarathna,121 C. Jena,30 S. Jena,121 R. T. Jimenez Bustamante,63 P. G. Jones,102 H. Jung,44 A. Jusko,102 P. Kalinak,59

A. Kalweit,36 J. Kamin,53 J. H. Kang,136 V. Kaplin,76 S. Kar,131 A. Karasu Uysal,69 O. Karavichev,56 T. Karavicheva,56

E. Karpechev,56 U. Kebschull,52 R. Keidel,137 D. L. D. Keijdener,57 M. Keil,36 K. H. Khan,16 M. Mohisin Khan,19 P. Khan,101

S. A. Khan,131 A. Khanzadeev,85 Y. Kharlov,112 B. Kileng,38 B. Kim,136 D. W. Kim,44,68 D. J. Kim,122 H. Kim,136 J. S. Kim,44

M. Kim,44 M. Kim,136 S. Kim,21 T. Kim,136 S. Kirsch,43 I. Kisel,43 S. Kiselev,58 A. Kisiel,132 G. Kiss,134 J. L. Klay,6 C. Klein,53
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G. Santagati,29 D. Sarkar,131 E. Scapparone,105 F. Scarlassara,30 R. P. Scharenberg,95 C. Schiaua,78 R. Schicker,93 C. Schmidt,97

H. R. Schmidt,35 S. Schuchmann,53 J. Schukraft,36 M. Schulc,40 T. Schuster,135 Y. Schutz,113,36 K. Schwarz,97 K. Schweda,97

G. Scioli,28 E. Scomparin,111 R. Scott,124 K. S. Seeder,119 J. E. Seger,86 Y. Sekiguchi,126 I. Selyuzhenkov,97 K. Senosi,65

J. Seo,67,96 E. Serradilla,10,64 A. Sevcenco,62 A. Shabanov,56 A. Shabetai,113 O. Shadura,3 R. Shahoyan,36 A. Shangaraev,112

A. Sharma,90 M. Sharma,90 N. Sharma,124,61 K. Shigaki,47 K. Shtejer,9,27 Y. Sibiriak,100 S. Siddhanta,106 K. M. Sielewicz,36

T. Siemiarczuk,77 D. Silvermyr,84,34 C. Silvestre,71 G. Simatovic,128 G. Simonetti,36 R. Singaraju,131 R. Singh,79 S. Singha,79,131

V. Singhal,131 B. C. Sinha,131 T. Sinha,101 B. Sitar,39 M. Sitta,32 T. B. Skaali,22 M. Slupecki,122 N. Smirnov,135

R. J. M. Snellings,57 T. W. Snellman,122 C. Søgaard,34 R. Soltz,75 J. Song,96 M. Song,136 Z. Song,7 F. Soramel,30 S. Sorensen,124

M. Spacek,40 E. Spiriti,72 I. Sputowska,116 M. Spyropoulou-Stassinaki,88 B. K. Srivastava,95 J. Stachel,93 I. Stan,62

G. Stefanek,77 M. Steinpreis,20 E. Stenlund,34 G. Steyn,65 J. H. Stiller,93 D. Stocco,113 P. Strmen,39 A. A. P. Suaide,119

T. Sugitate,47 C. Suire,51 M. Suleymanov,16 R. Sultanov,58 M. Šumbera,83 T. J. M. Symons,74 A. Szabo,39 A. Szanto de
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