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Utilizing the maximum likelihood estimator for flow analysis
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We explore the possibility of evaluating flow harmonics by employing the maximum likelihood estimator
(MLE). For a given finite multiplicity, the MLE simultaneously furnishes estimations for all the parameters of
the underlying distribution function while efficiently suppressing the variance of measures. Also, the method
provides a means to assess a specific class of mixed harmonics, which is not straightforwardly feasible by the
approaches primarily based on particle correlations. The results are analyzed using the Wald, likelihood ratio, and
score tests of hypotheses. Besides, the resultant flow harmonics obtained using MLE are compared with those
derived using particle correlations and event plane methods. The dependencies of extracted flow harmonics on
the multiplicity of individual events and the total number of events are analyzed. It is shown that the proposed
approach works efficiently to deal with the deficiency in detector acceptability. Moreover, we elaborate on a
fictitious scenario where the event plane is not a well-defined quantity in the distribution function. For the latter
case, the MLE is shown to largely perform better than the two-particle correlation estimator. In this regard, one
concludes that the MLE furnishes a meaningful alternative to the existing approaches for flow analysis.
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I. INTRODUCTION

Relativistic hydrodynamics is one of the feasible theoret-
ical frameworks to describe the temporal evolution of the
strongly coupled quark-gluon plasmas created in relativistic
heavy-ion collisions [1–7]. As a macroscopic approach, the
plasma is modeled as a continuum, essential in understanding
the underlying physics leading to the empirical observables.
The main goal of relativistic hydrodynamics is to describe the
observed particle spectra at intermediate and low transverse
momentum, notably their collective properties, such as the
flow harmonics and correlations [8–14]. From the experimen-
tal perspective, the measured azimuthal distributions played a
crucial role in establishing the picture of a “perfect” liquid,
first served up at the BNL Relativistic Heavy Ion Collider
(zRHIC) [15]. In turn, the analysis of the azimuthal anisotropy
produced by nuclear collisions has become one of the most
prominent observables to extract crucial information on the
properties of the underlying physical system [16–21].
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The anisotropic distribution of particles in the momentum
space is expressed in the flow harmonics vn. To be specific, we
have the following one-particle distribution function [9,22]:

f1(φ) = 1

2π

[
1 +

∑
n=1

2vn cos n(φ − �n)

]
, (1)

where φ represents the azimuth angle of an emitted particle,
and the reference orientation �n for a given order n is referred
to as the event plane. Compared to others, the elliptic flow v2

and triangular flow v3 account for many significant features
of the observed system. In particular, v2 is due mainly to
the geometric almond shape of the initial system [8], and v3

is attributed to the event-by-event fluctuations of the initial
conditions [23]. In the literature, much effort has been devoted
to investigating the relationship between the initial geometric
anisotropy and the final-state flow harmonics, and in particu-
lar, the deviation of the underlying relation from a linearized
one [24–30], eccentricity and flow fluctuations [31–34], and
correlations [35,36].

In practice, many different approaches have been devel-
oped to numerically determine the value of flow harmonics
vn from the experimental data. The conventional event plane
method [9,37] aims to estimate the event planes �n in Eq. (1)
and then evaluate the flow harmonics. The main feature of the
approach is closely related to the fact that the reaction plane
[23] cannot be directly measured experimentally. Many other
methods are primarily based on the particle correlations and
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the notions of the Q vectors and cumulants [11,38–40]. One
advantage of using particle correlation is that the event planes
in Eq. (1) are canceled out in the formalism. Moreover, the
cumulant can be expressed concisely in terms of the gener-
ating function [11,41]. It is worth noting that the notation of
multiparticle cumulants may evolve harmonics of a different
order, as discussed in several relevant studies. This class of ap-
proaches include the particle cumulant [11,39,41], Lee-Yang
zeros [42–44], and symmetric cumulants [45], among other
recent generalizations [35,46,47].

There are two essential aspects of flow analysis. The first
one is nonflow, a generic term used to refer to the collective
behavior that cannot be attributed to independent emission
based on the one-particle distribution function (1). For in-
stance, momentum conservation leads to deviation [48] in
particle correlation compared to the case where the particle
spectrum is entirely governed by the flow. Generally, it is
understood that the impact due to nonflow becomes more
insignificant as one considers particle correlation involving
more hadrons [41,49] or introduces a rapidity gap among
the particles [50–52]. The second one is related to the finite
multiplicity in individual events. As a matter of fact, even
though the hadrons are emanated independently according to
the one-particle distribution function, the second factor leads
to a certain degree of statistical uncertainty. Such uncertainty
is distinct from those caused by the fluctuations in the ini-
tial conditions, which typically possess some physical origin
regarding the underlying microscopic model. To be precise,
from a hydrodynamic perspective, the latter is manifestly by
the fluctuations in the geometry of the initial energy distribu-
tion on an event-by-event basis. In particular, the statistical
error of the particle correlation method might even be larger
than that of the event plane method [22]. Besides, for events
with lower multiplicity, the multiparticle correlation is likely
constrained by more significant statistical uncertainty.

To clarify the above statement, let us consider the following
simple example. By assuming that the flow is constituted by
independent particle emission according to

f (φ1, φ2) = f1(φ1) f1(φ2), (2)

where f1 is defined by Eq. (1), one has

〈2〉2,−2 ≡ 〈ei2(φ1−φ2 )〉 = 〈cos 2(φ1 − φ2)〉 + i〈sin 2(φ1 − φ2)〉
= v2

2, (3)

where 〈· · · 〉 ≡ ∫
dφ1dφ2 f (φ1, φ2) · · · is evaluated by averag-

ing out all the particle pairs of a given event, in accordance
with the probability given by the one-particle distribution
function, at the limit of infinity multiplicity. One notes that the
imaginary part of Eq. (3) vanishes by employing the orthog-
onal relationship of sinusoidal functions. On the other hand,
for an event of a finite number of multiplicity M, it is natural
to estimate v2

2 by a discrete version of Eq. (3), namely,

v̂2
2 ≡ 1

M(M − 1)

∑
i �= j

cos 2(φi − φ j ), (4)

where the summation enumerates all distinct M(M − 1) or-
dered pairs. In this regard, one can view Eq. (4) as a statistical

estimator [53] θ̂ of a physical quantity θ = v2
2 for an individ-

ual event. Given the underlying distribution, as a statistical
estimator, its quality is usually measured in terms of its ex-
pected value μ and variance σ 2. In the case of Eq. (4), one
has

μ ≡ E
[
v̂2

2

] = v2
2, (5)

σ 2 ≡ Var
[
v̂2

2

] = 1 + v2
2

M(M − 1)
+ 2

M − 2

M(M − 1)
v2

2 (1 + v4)

+ (M − 2)(M − 3)

M(M − 1)
v4

2 − v4
2 . (6)

Here, Eq. (5) indicates that the estimator Eq. (4) is unbiased.
On the other hand, Eq. (6) clearly shows that the statistical
uncertainty does not vanish as long as the multiplicity M is
finite. Different from Eq. (4), Eq. (3) evaluates the expectation
at the limit of infinite multiplicity. On the other hand, any
given flow evaluation scheme must be applied to realistic
events with finite multiplicity and, therefore, can always be
viewed as a specific choice of statistical estimator. As a result,
it is inevitably subject to some statistical uncertainty.

The present study is mainly motivated to explore the above
aspect in flow measurements. We examine the possibility of
utilizing the maximum likelihood estimator (MLE) as a flow
estimator. The MLE is a well-known approach to estimating
the parameters of a hypothetical probability distribution when
observed data is given. Its goal is achieved by maximizing
the associated likelihood function in the parameter space. In
other words, the estimated parameters, for our case, the flow
harmonics, ensure that the observed data are most probable.
The method is widely used in statistical inference due to its
intuitive and flexible nature. In particular, as an asymptotically
normal estimator, its efficiency is guaranteed in the sense that
it is more accurate than any other estimator at the limit of a
significant sample size. In terms of convergence, the method
is either unbiased or asymptotically unbiased. Apparently,
the context of relativistic heavy ion collisions meets most of
the characteristics of MLE. In particular, the measurements
performed at RHIC and at the CERN Large Hadron Collider
(LHC) have accumulated significant events for different colli-
sion systems at different centralities.

The remainder of the present paper is organized as follows.
In the next section, after briefly reviewing the conventional
particle correlation method, we discuss the mathematical
framework of the MLE and its application to flow analysis
in relativistic heavy-ion collisions. In Sec. III, we carry out
numerical studies to illustrate the use of the MLE method
based on the simulated events using Monte Carlo. The results
are then compared with the particle correlation method. The
method’s efficiency and dependence on the multiplicity and
number of events are analyzed. In Sec. III B, we apply the
method to the scenario where the detector inefficiencies play a
part. The results are again compared with those obtained using
the multiparticle correlation method in terms of the Q vectors.
Last but not least, in Sec. III C, we elaborate on a fictitious
scenario where the event plane is not a well-defined quantity
in the distribution function. The last section is devoted to
further discussions and concluding remarks.
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II. STATISTICAL ESTIMATORS FOR FLOW HARMONICS

A. Measurement of flow harmonics using particle correlations

As mentioned above, the most prominent approaches to
extract the flow harmonics are based on particle correlations
[37]. The cornerstone of such an approach is based on the
following relation regarding k-particle correlation [32]:

〈k〉n1,...,nk ≡ 〈ei(n1φ1+···+nkφk )〉 = vn1 · · · vnk ei(n1�n1 +···+nk�nk ),

(7)

where 〈· · · 〉 is an average over distinct tuples of particles,
again assuming independent particle emission according to
Eq. (1) particles of a given event, at the limit of infinity
multiplicity.

To concentrate on vn, one usually chooses a specific set of
(n1, . . . , nk ) so that

∑k
j=1 n j = 0 [32], and therefore all the

coefficients involving the event planes cancel out in the expo-
nential. Otherwise, the event plane correlator will become a
part of the formalism [35]. For instance, in the case of two-
particle correlation k = 2, one may consider n1 = −n2 = n.
Therefore, we have

〈2〉n,−n ≡ 〈ein(φ1−φ2 )〉 = 〈cos n(φ1 − φ2)〉 = v2
n (8)

For an event with finite multiplicity M, where the azimuth
angles of the measured particles read φ1, φ2, · · · , φM , it is
intuitive to adopt the following estimator [45]:

v̂2
n = 1

M(M − 1)

∑
i �= j

cos n(φi − φ j ). (9)

Subsequently, the first two moments of the estimator are found
to be [45]

E
[
v̂2

n

] = v2
n, (10)

Var
[
v̂2

n

] = 1 + v2
2n

M(M − 1)
+ 2

M − 2

M(M − 1)
v2

n (1 + v2n)

+ (M − 2)(M − 3)

M(M − 1)
v4

n − v4
n, (11)

which is an unbiased estimator that has a finite variance that
decreases with increasing multiplicity. This result readily falls
back to Eqs. (5) and (6) given above.

To proceed, one may either evaluate cumulants using the
formalism of generating functions, as first proposed by Borgh-
ini et al. [11,54,55], or evaluate the multiparticle correlation
straightforwardly [39].

The above formalism can also be generalized to include
weighted average [45], where a specific weight wk is associ-
ated with the kth particle in the correlation. In particular, we
have

〈k〉n1,n2···nk ≡ 〈ei(n1φ1+n2φ2+···+nkφk )〉, (12)

which is intuitively given by∑
k-tuples

w1w2 · · · wkei(n1φ1+n2φ2+···+nkφk )

∑
k-tuples

w1w2 · · · wk
≡ N〈k〉n1 ,n2 ,...,nk

D〈k〉n1 ,n2 ,...,nk

, (13)

at finite multiplicity, where the summation is carried out for
all distinct tuples, from which any autocorrelation should be
removed.

In practice, the numerator and denominator of Eq. (13) can
be expressed by employing the Q vectors [38], defined as

Qn,p ≡
M∑

j=1

w
p
j einφ j , (14)

where p is an exponent that can be chosen conveniently to
simply the resultant expressions. As an example, for k = 2,
one has

N〈2〉n1 ,n2
= Qn1,1Qn2,1 − Qn1+n2,2, (15)

D〈2〉n1 ,n2
= Q2

0,1 − Q0,2, (16)

which falls back to (the real part of) the right-hand side (r.h.s.)
of Eq. (9) for w j = 1 and n1 = −n2 = n.

Again, we note that Eqs. (13) and (15) are essentially
estimators for a given event with finite multiplicity obtained
experimentally, which, in turn, are subject to statistical uncer-
tainties. To make the above generic statements concrete, we
consider two simple examples. For an event with multiplicity
M, let k = 2, w1 = w2 = 1, and n1 = −n2 = n; then we have

E
[
N〈2〉n1 ,n2

] = M(M − 1)v2
n, (17)

Var
[
N〈2〉n1 ,n2

]= M(M− 1)
{(

1+ v2
2n

)+ 2(M − 2)v2
n (1 + v2n)

−2(2M − 3)v4
n

}
. (18)

As a second example, consider w1 = w2 = w3 = 1, n1 = 2,
n2 = 3, n3 = −5, and let us assume �2 = �3 = �5 = � for
simplicity; one finds

E
[
N〈3〉2,3,−5

] = M(M − 1)(M − 2)v2v3v5, (19)

Var
[
N〈3〉2,3,−5

] = M(M − 1)(M − 2)
{[

v4v6v10 + v2
2v4 + v2

3v6 + v2
1v10 + 2v2v3v5

]
+2(M − 3)

[(
v2

2v
2
5 + v2v3v5v6

) + (
v2v3v4v5 + v2

3v
2
5

) + (
v2

2v
2
3 + v2v3v5v10

)]
+(M − 3)

[(
v2

3v4v10 + v4
3

) + (
v2

2v6v10 + v4
2

) + (
v4v

2
5v6 + v4

5

)]
+(M − 3)(M − 4)

[
2v2v3v

3
5 + 2v2v

3
3v5 + 2v3

2v3v5 + v2
3v4v

2
5 + v2

2v
2
5v6 + v2

2v
2
3v10

]
+(M − 3)(M − 4)(M − 5)v2

2v
2
3v

2
5 − M(M − 1)(M − 2)v2

2v
2
3v

2
5

}
. (20)
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Although it is a bit tedious, evaluating the last expres-
sion is straightforward by considering different combinations
when one, two, or three particles from the two ordered triples
(consisting of distinct particles, respectively) coincide. Equa-
tions (18) and (20) illustrate the fact that these estimators are
subject to finite uncertainties and do not vanish, owing to finite
statistics. The event planes do not coincide, and therefore,
the r.h.s. of the three-particle correlation Eq. (19) actually
furnishes the event plane correlation [32].

In this regard, one might speculate that MLE could serve
as an alternative flow estimator, and such a possibility will
be explored in the remainder of the paper. The definition
and elementary properties of the MLE are elaborated on
in the following subsection. Subsequently, the approach is
implemented numerically. The Monte Carlo simulations are
performed, and the results will be compared to the con-
ventional techniques, such as the particle correlation and
event-plane methods.

B. MLE and its application as a flow estimator

In this subsection, we turn our attention to the MLE.
For a given set of observations y ≡ (y1, y2, . . . , yM ), we
assume that they are sampled from a joint probability
distribution governed by several unknown parameters θ ≡
(θ1, θ2, . . . , θm). As mentioned in the introduction, one con-
siders the following likelihood function L at the observed
data,

L(θ ) ≡ L(θ ; y) = f (y; θ ), (21)

which is the joint probability density for the given observa-
tion evaluated at the parameters θ . The goal of MLE is to
determine the parameters for which the observed data attain
the highest joint probability, namely

θ̂MLE = arg max
θ∈�

L(θ ), (22)

where � is the domain of the parameters. In particular, for in-
dependent and identically distributed (i.i.d.) random variables,
f (y; θ ) is given by

f (y; θ ) =
M∏

j=1

f uni(y j ; θ ). (23)

Indeed, the above scheme can be readily applied in the
context of collective flow in heavy-ion collisions. Considering
an event consisting of M particles, the likelihood function
reads

L(θ ; φ1, . . . , φM ) = f (φ1, . . . , φM ; θ ) =
M∏

j=1

f1(φ j ; θ ), (24)

where the likelihood function L is governed by the one-
particle distribution function (2). The last equality is based on
the assumption that the particles’ azimuthal angles are i.i.d.
variables, which gives Eq. (2) in the case of two particles. The
parameters of the distribution, θ = (v1, �1, v2, �2, . . . ), are
the flow harmonics and event planes.

In practice, one often chooses the objective function to be
the log-likelihood function �,

�(θ ; φ1, . . . , φM ) = lnL(θ ; φ1, . . . , φM )

=
M∑

j=1

ln f1(φ j ; θ ). (25)

Numerical calculations indicate that Eq. (25) is more favor-
able than Eq. (24), although as the multiplicity M becomes
more significant the appropriate implementation should be
adopted to avoid increasing truncation error.

The maximum of � occurs at the same value of θ as does
the maximum of L. For � that is differentiable in its domain
�, the necessary conditions for the occurrence of a maximum
are

∂�

∂θ1
= · · · = ∂�

∂θm
= 0. (26)

In this work, we will primarily focus on the dominant
harmonic coefficients such as v2 and v3 even though the asso-
ciated event planes are obtained simultaneously from Eq. (26).

As discussed in the introduction, MLE has asymptotical
normality, which attains the Cramér-Rao lower bound when
the sample size increases. In other words, no consistent es-
timator has a lower asymptotic mean squared error than the
MLE. In the context of relativistic heavy-ion collisions, all
the events of a given multiplicity asymptotically form a (mul-
tivariant) normal distribution

θ̂MLE ∼ N (θ0, [IM (θ0)]−1), (27)

where θ0 represents the “true” value, and IM (θ ) is the Fisher
information matrix, defined as

IM (θ ) ≡ Eθ

[
− d2

dθ2
�(θ ; φ1, . . . , φM )

]
, (28)

where the expectation Eθ is taken with respect to the distribu-
tion of f (φ1, . . . , φM ; θ ). For i.i.d. data, the Fisher information
possesses the form

IM (θ ) = MI1(θ ), (29)

where I1 is the Fisher information matrix for a single observa-
tion. As a result, the standard deviation of MLE is expected
to be roughly proportional to 1√

M
. These properties can be

further quantified using the Wald, likelihood ratio, and score
tests, which will be performed in the numerical simulations.

III. MONTE CARLO SIMULATIONS

A. Numerical results and comparison with other methods

Based on the discussions in the preceding sections, we
employ the Monte Carlo generator to simulate events and esti-
mate the flow coefficients using the MLE method. The quality
of the estimation is evaluated by the standard tests of hy-
potheses. Also, the results are compared with those obtained
using the other approaches, namely, the particle correlation
and event plane methods.

One primarily considers events consisting of independent
particle emissions according to the one-particle distribution
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TABLE I. The estimated flow harmonics vn and event planes �n

using MLE from a single event.

θ v2 v3 v4 �2 �3 �4

true values 0.2 0.08 0.25 2.25 0.0323 0.925
MLE 0.228 0.0782 0.253 2.36 0.0461 0.966

function (1), which is further truncated at the fourth order, and
the directed flow is ignored:

f1(φ) = 1

2π
[1 + 2v2 cos 2(φ − �2) + 2v3 cos 3(φ − �3)

+2v4 cos 4(φ − �4)], (30)

where the event planes �n are randomized between distinct
events, and the harmonics are taken as

v2 = 0.2,

v3 = 0.08,

v4 = 0.25. (31)

We use the above parameters to generate a specific number
of events with a given multiplicity. The MLE method is then
employed to extract the flow harmonics. To validate the MLE
approach, we aim to see whether the estimation of v2 will
be undermined by some other parameter that plays a more
significant role in the underlying probability distribution. In
this regard, we have particularly chosen a large and unphysical
value for v4. We have verified that the results below are not
sensitive to this specific choice. Besides, for simplicity, we
do not consider the flow’s momentum or rapidity dependence;
therefore, only the particle’s azimuthal angles are involved in
the calculations.

As a first example, we consider one single event with a
multiplicity M = 1000. In Table I, we show the estimated
parameters. The corresponding results using the Wald, like-
lihood ratio, and score tests are shown in Table II.

The quality of the estimation is further evaluated by
the statistical tests of hypotheses [56], which are presented
in Table II. In particular, we perform three types of hy-
pothesis testing: Wald, likelihood ratio, and score tests.

TABLE II. The results of the Wald, likelihood ratio, and score
tests of hypotheses.

Wald Likelihood ratio score

4.981 2.061 6.394

Roughly speaking, all these tests assess constraints on sta-
tistical parameters by quantifying the deviation between the
unrestricted estimate and its hypothesized value. Analysis
such as confidence intervals for the estimator can be facili-
tated by the fact that all three tests asymptotically approach
the χ2 distribution, a sum of the squares of normal distribu-
tions under the null hypothesis. Intuitively, in terms of the
log-likelihood function, one measures the precision of the
estimation in terms of the horizontal and vertical distances
between the estimator θ̂ and the true value θ0. Specifically,
the Wald test access how far away the estimator locates in the
horizontal direction, and the likelihood ratio test gives that in
the vertical direction, namely,

tW = (θ̂ − θ0)T V̂ −1
M (θ̂ − θ0) (32)

and

tLR = 2[�(θ̂ ) − �(θ0)], (33)

where the covariant matrix V̂M is

V̂M = [IM (θ0)]−1, (34)

where IM is given by Eq. (28), the Fisher information under
the null hypothesis, and � is the log-likelihood function, and
the factor “2” ensures that it converges asymptotically to a χ2

distribution.
The score test measures the slope at the true value,

tS = S(θ0)T V̂MS(θ0), (35)

where

S(θ ) = ∇θ �(θ ; φ1, . . . , φM ) (36)

is the gradient of the log-likelihood function,

For the specific event, the Fisher information I1(θ0) is numerically found to be⎛⎜⎜⎜⎜⎜⎜⎝
2.148 0.479 0.106 −0.247 −0.015 0.579
0.479 3.140 0.479 −0.107 −0.038 0.239
0.106 0.479 2.819 −0.208 −0.065 0.084

−0.247 −0.107 −0.208 0.655 0.024 −0.348
−0.015 −0.038 −0.065 0.024 0.155 0.004
0.579 0.239 0.084 −0.348 0.004 2.915

⎞⎟⎟⎟⎟⎟⎟⎠, (37)

where the dimension of the matrix is determined by that of
θ . The MLE results manifestly sit within the 95% confident
interval.

We have observed that, even for a single event, the flow
harmonics estimated by the MLE method are reasonable.

In what follows, we compared the obtained flow harmonics
with those extracted using particle correlations. Also, since
the method gives a more favorable asymptotic mean squared
error, it might be used to achieve a minimized statistical un-
certainty when compared to other approaches. In this regard,
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TABLE III. The average and variance of the estimated elliptic flow v2 using the two-particle correlation and MLE methods. The results
are obtained using N = 1000 events and for different multiplicities per event. The averages μ[· · · ] and variance Var[· · · ] of the estimators are
evaluated on an event-by-event basis.√

μ[v̂2
2] μ[v̂2] Var[

√
v̂2

2] Var[v̂2]
M particle correlation MLE True value particle correlation MLE True value

500 0.1978 0.2015 0.2 9.58 × 10−4 7.77 × 10−4 0
1000 0.1994 0.2021 0.2 4.78 × 10−4 3.05 × 10−4 0
2000 0.1997 0.2014 0.2 2.11 × 10−4 1.78 × 10−4 0

we consider a scenario where the elliptic flow fluctuates on an
event-by-event basis. To be specific, one replaces the first line
of Eq. (31) with the following Gaussian distribution:

v2 ∼ N (μ = 0.2, σ 2 = 0.01). (38)

The numerical results on the comparison between the
two-particle correlation and MLE methods are presented in
Tables III and IV. First, for each event of a given multiplic-
ity, particles are drawn independently according to Eq. (30)
using the parameters given by Eq. (31), and one estimates
v2 for individual events by the MLE and then calculates
the average. In the calculations, for simplicity, we adopt the
values estimated by the event-plane method for the remain-
ing flow harmonics and the event planes. This applies to
the results presented in Tables III, IV, VII and in Fig. 1
in the current subsection, and also to Figs. 2–5 below in
Sec. III B, as well as to Table VIII in Sec. III C. For the
remaining applications of MLE, the parameter space θ is six
dimensional.

The resulting elliptic flow is obtained by the event average
of MLE estimations and shown in Table III. The correspond-
ing variance of v2 among different events, a measure of
flow fluctuations, is also evaluated. The results obtained by
the MLE method are compared with those using the two-
particle correlation formula (9). Specifically, for the latter,
the elliptic flow is estimated by taking the square root of the
event average of the r.h.s. of Eq. (9), in accordance with the
practice of [57]. Also, the variance of the flow is evaluated

by that of
√

v̂2
2 for individual events, following Ref. [58].

It is found that both methods give a reasonable estimation
of the flow harmonics. As the multiplicity M increases, the
variance extracted from the MLE method becomes smaller.
It is noted that the values of the mean and variance nu-
merically converge as long as one uses a significant number
of events. The results presented in Table III are obtained
using N = 1000 events. We also note that in this case the
origin of the variance of the elliptic flow is entirely statistical

because v2 in the one-particle distribution is well defined. In
this sense, the column of Var[v2

2] denoted by “true value” is
filled with zeros.

For a realistic scenario, on the other hand, it is under-
stood that the measured flow fluctuations also contain the part
which is governed by the event-by-event fluctuations of initial
geometry. The latter reflects the underlying microscopic phys-
ical model. This motivated us to consider the event-by-event
fluctuation given in Eq. (38). The corresponding results are
shown in Table IV. Compared with the results presented in
the foregoing table, the average v2 obtained using MLE is
closer to the true value. This is understood because the particle
correlation method estimates v2

n and contains a fraction of
flow fluctuations [59,60]. Regarding the variance, we note
that the value shown in the last column becomes less than
σ 2 = 0.01 since, in the Monte Carlo process, all negative
harmonic coefficients are discarded. By definition, the MLE
cannot entirely remove the flow fluctuations due to statisti-
cal uncertainty. Nonetheless, in principle, it attains a more
accurate value than other estimators, particularly when the
multiplicity becomes more significant.

In order to make the above discussions about flow fluctu-
ations more concrete, in Fig. 1 we show the scatter plots for
extracted v2

2 and v2
3 for individual events using both methods.

In the calculations, the events are generated whose multiplic-
ities are drawn randomly according to a uniform distribution
up to M = 5000. The estimated flow harmonics are shown as
a function of event multiplicity. From Fig. 1, it is observed that
the estimations of MLE primarily possess a smaller statistical
uncertainty when compared to other methods, as the hollow
red triangles are confined mainly within the region determined
by the filled black circles. These results are consistent with
those shown above in Table III. It is also noted that v2

n derived
from the particle correlation might be negative, but the values
of vn estimated by MLE are always found positive in our
numerical calculations.

Now, we present the results on the event planes extracted
by the MLE method. Since the particle correlation method

TABLE IV. The same as Table III, but the elliptic flow is generated by including additional Gaussian fluctuations governed by Eq. (38).√
μ[v̂2

2] μ[v̂2] Var[
√

v̂2
2] Var[v̂2]

M particle correlation MLE True value particle correlation MLE True value

500 0.2221 0.2113 0.2 9.69 × 10−3 1.11 × 10−2 8.90 × 10−3

1000 0.2252 0.2132 0.2 8.86 × 10−3 1.03 × 10−2 8.90 × 10−3

2000 0.2252 0.2135 0.2 8.79 × 10−3 1.03 × 10−2 8.90 × 10−3
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TABLE V. The event planes �n obtained by MLE and event-plane methods. The results are obtained for a single event but with different
multiplicities.

�2 �3 �4

M 500 1000 2000 500 1000 2000 500 1000 2000

True value 1.185 2.943 2.435 1.519 1.695 1.389 0.682 1.272 0.802
Event plane method 1.130 2.986 2.462 1.774 1.844 1.389 0.685 1.242 0.797
MLE 1.134 2.983 2.458 1.849 1.864 1.408 0.659 1.245 0.790

does not provide an estimation of the event planes, the ob-
tained results are compared with a conventional event-plane
approach [37], adopting the following formula:

�̂n = 1

n
atan

⎛⎝ M∑
j=1

sin nφ j,

M∑
j=1

cos nφ j

⎞⎠. (39)

The results are presented in Table V.
To verify the statistical robustness of the method, we ex-

plore the multiplicity and event number dependence of the
MLE method. The results are presented in Tables VI and VII.
To study the asymptotical normality of the MLE approach,
we show in Table VI the average and variance of the estimator
for the flow harmonics evaluated at different values of multi-
plicity. It is shown that, as the multiplicity increases, all the
estimations of flow harmonics become more precise while the
variance decreases, as expected. On the other hand, Tables VI
shows the dependence of the event average and variance of
MLE on the event number. It is indicated that both the aver-
age and variance of the estimator become stable as long as
the event number is big enough. This is readily understood
because, by definition, the events are independently sampled
from the likelihood distribution, whose behavior is therefore
governed by the central limit theorem.

Before closing this subsection, we note that since the MLE
evaluates the flow harmonics in a way that is independent of
specific particle combinations, it naturally furnishes certain
harmonic products that are not obtained straightforwardly
from the particle correlation analysis. Moreover, owing to the
invariance property of MLE, a product of the MLEs is the
MLE of the product of harmonic coefficients. We will further
address the last point in the following subsection in the context
of detector inefficiency.

TABLE VI. The dependence of the MLE method on the event
multiplicity M. The calculations are carried out with N = 1000
events.

M 500 1000 2000

μ[v̂2] 0.205 0.202 0.202
Var[v̂2] 8.95×10−4 4.16×10−4 2.27×10−4

μ[v̂3] 0.0847 0.0843 0.0830
Var[v̂3] 1.11×10−3 4.32×10−4 1.95×10−4

μ[v̂4] 0.258 0.252 0.252
Var[v̂4] 8.99×10−4 4.31×10−4 2.15×10−4

B. MLE and detector inefficiency

In practice, a detector’s acceptance might not be uni-
form, potentially leading to non-negligible systematic bias
in anisotropic flow analysis. In terms of particle correlation
and Q vectors, this issue has been addressed by various au-
thors [45]. This subsection explores how the MLE method
can be applied to scenarios involving detector inefficiency.
In particular, we elaborate on a scheme to compensate for
the detector’s nonuniform acceptance by incorporating weight
into the formalism of the likelihood function. The proposed
scheme is then implemented and illustrated by considering
two specific detector inefficiencies. Moreover, we show that
MLE can be employed to evaluate certain harmonic products
that are not straightforwardly embraced by the particle corre-
lation approach.

One may quantify the nonuniformity by the detector’s ac-
ceptance rate as a function of the azimuthal angle, g(φ) � 1,
where g(φ) = 1 corresponds to a perfect detector. For sim-
plicity, we also ignore the dependence of the acceptance on
transverse momentum and rapidity. For the MLE scheme,
the likelihood function can be modified to adapt to this in-
efficiency by including a weight factor defined by w(φ) =
1/g(φ). Subsequently, we generalize Eqs. (24) and (25) to the
form

�′(θ ; φ1, φ2, φ3, . . . , φM) = lnL′(θ ; φ1, φ2, φ3, . . . , φM)

=
M∑

j=1

w(φ j ) ln f1(φ j ; θ ). (40)

It is noted that the weight factor gives a correction in the power
of the one-particle distribution function, compensating for the
suppressed multiplicity. Using Eq. (40), the MLE calculations
remain essentially unchanged.

As mentioned above, the particle correlation method is
mostly applicable to a specific class of set of correlator Eq. (7)
where

∑k
j=1 n j = 0. In other words, the quantity is isotropic

because the event planes cancel out entirely in the remaining
expression.

TABLE VII. The dependence of the MLE method on the number
of events N . The calculations are carried out with multiplicity M =
1000.

N 500 1000 2000

μ[v̂2] 0.2023 0.2022 0.2026
Var[v̂2] 4.08×10−4 4.27×10−4 4.41×10−4
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TABLE VIII. The estimated elliptic flow using the particle correlation and MLE estimators where the event-plane �2 is generated by
considering additional Gaussian fluctuations given by Eq. (44).

σ 2 π/12 π/24

M Particle correlation MLE MLE-mod True value Particle correlation MLE MLE-mod True value

100 0.1174 0.1227 0.1805 0.2 0.1501 0.1554 0.2010 0.2
500 0.1171 0.1198 0.1794 0.2 0.1556 0.1573 0.2156 0.2

In what follows, we illustrate the scheme through two
specific forms of detector acceptance. By employing the MLE
method, we consider the following products of flow harmon-
ics:

〈2〉 ≡ 〈2〉−2,2 = v2
2 = 0.04,

〈3〉 ≡ 〈3〉−2,−2,4 = v2
2v4 = 0.01,

〈4〉 ≡ 〈4〉−3,−2,2,3 = v2
2v

2
3 = 0.000256,

〈2′〉 ≡ v2v3 = 0.016,

〈3′〉 ≡ v2
2v3 = 0.0032,

〈4′〉 ≡ v2
2v3v4 = 0.0008, (41)

where the last equality gives the true values. It is noted that the
first three quantities are essentially multiparticle correlators
of the form Eq. (7), which can also be evaluated1 using the
particle correlation scheme as in [45]. For instance, the event
average 〈2〉−2,2 vanishes due to the event average carried
out for the terms involving the event planes. However, the
last three quantities in Eq. (41) do not fit into this category
as the corresponding correlator vanishes. Specifically, using

1As in [45], the second row in Eqs. (41) is obtained by considering
�2 = �4.

the MLE approach, one estimates vn and their products for
individual events, and the event averages 〈v2

2v4〉 and 〈v2
2v3〉

can be evaluated in a similar fashion irrelevant to any specific
particle tuple.

Our first example is a simplified scenario according to
[39], where the detector’s acceptance is given by a piecewise
function,

g1(φ) =
{

0.5, π/3 < φ � 2π/3,

1.0 otherwise.
(42)

The results are shown in Figs. 2 and 3. In the left plot of
Fig. 2, we present the distributions of the detected particles
according to the Monte Carlo procedure. These particles are
then utilized by the MLE method to estimate the quantities
given in Eq. (41). As shown on the right plot of Fig. 2, for all
six quantities, the MLE with weight is shown to give appro-
priate compensation for the detector inefficiency. The results
of the first three quantities defined in Eq. (41) are mainly
consistent with the results obtained by using Q vectors [45].
For the last three quantities, where reasonable corrections are
also achieved, the evaluation using MLE is somewhat unique
in its own right. We also show in Fig. 3 the distributions of
the estimated v2 and v3 on an event-by-event basis. For both
cases, it is demonstrated clearly that the expected value and

FIG. 1. The estimated flow harmonics v2
2 and v2

3 using the MLE and particle correlation methods, as functions of the event multiplicity M.
The hollow red triangles represent the results obtained by the MLE, while the filled black circles are those by the particle correlation method.
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FIG. 2. The results for a simplified detector’s acceptance given by a step function Eq. (42). (a) The particle generated and observed by the
detector with a uniform (blue line) and nonuniform (red line) azimuthal acceptance. (b) The resultant products of flow harmonics for uniform,
nonuniform, and weight-corrected nonuniform cases.

probability distributions of the relevant quantities are properly
recovered.

We proceed to elaborate on a more realistic detector’s
acceptance function given by the following form:

g2(φ) =
{

1 + exp(−φ/7) sin 2(φ + 0.5), 1.07 < φ � 2.64 or 4.21 < φ � 5.78,

1.0 otherwise. (43)

The above acceptance’s function mimics a realistic detector
where the acceptance is suppressed at the forward and back-
ward directions [61]. Figure 4 shows the distribution of the
detected particles and the resulting estimation of harmonic
products. Also, Fig. 5 gives the distribution of the estimations
for v2 and v3 regarding individual events. Again, it is clearly
seen that the MLE method does a reasonable job of estimat-
ing these quantities and their probability distributions while
coping with detector inefficiency, particularly for the ones
which cannot be furnished straightforwardly by the particle
correlation method.

C. A fictitious scenario with fluctuating event plane

In this section, we elaborate on a fictitious scenario where
the event plane in Eq. (1) is not a well-defined quantity in the
distribution function. In particular, we consider that the event
plane is subjected to a normal distribution

�2 ∼ N (μ, σ 2), (44)

where μ is sampled uniformly from the interval μ ∈ (0, π )
and σ 2 = π/12 or π/24.

Using the two-particle correlation estimator Eq. (4) and
MLE, the results are presented in Table VIII. Since a pa-
rameter of the distribution function, i.e., the event plane, is
governed by a probability distribution, the estimation scheme
should be taken with caution. As expected, the estimated v2

becomes less accurate as the deviation σ 2 becomes more

significant. Nonetheless, the estimations of v2 are numerically
convergent for both approaches and are mostly reasonable
when the fluctuations are not significant. When compared
with two-particle correlation, MLE yields essentially better
results. Specifically, if one assumes that �2 is a fixed pa-
rameter in the one-particle distribution, MLE gives slightly
better results than those from particle correlation. However,
if one considers that �2 is generated by a distribution where
the variance σ 2 is taken as an unknown parameter as the
remaining ones, MLE (dubbed “MLE-mod” in Table VIII)
yields better results. We note that such an extension does not
seem straightforward in the case of the particle-correlation
estimator.

IV. CONCLUDING REMARKS

In this work, we study the possibility of employing the
MLE as a flow estimator. The proposed estimator possesses
three interesting features. First, due to its asymptotical nor-
mality, MLE provides a smaller variance when comparing
other estimators. Since a part of flow fluctuations comes from
the finite multiplicity of realistic collision events, this feature
can be utilized to suppress undesirable statistical uncertain-
ties. Second, the proposed approach provides a means to
access specific mixed harmonics, which cannot be straight-
forwardly obtained using methods primarily based on particle
correlations. Third, the MLE flow estimator is robust for the
fictitious scenario where some parameters of the probability
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FIG. 3. The distributions of the estimated v2 and v3 on an event-by-event basis using the MLE method, evaluated for the detector’s
acceptance given by Eq. (42).

distribution are not well defined. The resultant flow harmonics
obtained using MLE were compared with those derived using
other existing methods. The obtained results were analyzed
using the Wald, likelihood ratio, and score tests of hypotheses.
We also explore the dependence of extracted flow harmonics
on the event multiplicity and number of events. Moreover, it
is shown that the proposed approach works efficiently to deal
with the deficiency in detector acceptability. Therefore, it is
argued that the MLE furnishes a meaningful alternative to the
existing approaches.

We also acknowledge that the proposed scheme encounters
certain limitations or drawbacks. First, it is computationally

expensive in its present form. The algorithm complexity of
the MLE approach increases essentially linearly with the mul-
tiplicity, similar to that of the particle-correlation method.
Besides, the MLE’s computational time increases geomet-
rically with the dimension of the parameter space. Second,
although MLE is asymptotically normal, unbiased, and con-
sistent, which generally attains more accurate values than
other estimators, numerical results also seem to reveal a cer-
tain degree of bias at finite multiplicity. To our knowledge,
mathematically confirming whether the flow MLE is a biased
estimator is not straightforward, and has not been addressed in
this study. Lastly, the present study has been primarily focused

FIG. 4. The same as Fig. 2, but for a more realistic nonuniform acceptance given by Eq. (43). (a) The particle generated and observed
by the detector with a uniform (blue line) and nonuniform (red line) azimuthal acceptance. (b) The resultant products of flow harmonics for
uniform, nonuniform, and weight-corrected nonuniform cases.
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FIG. 5. The same as Fig. 3, but for the detector’s acceptance given by Eq. (43).

on the integrated flow. To generalize the scheme to differ-
ential flow may also face further challenges such as, among
others, the computational feasibility. Besides, it is interesting
to examine the performance of MLE when nonflow plays
a significant role. We plan to explore these topics in future
studies.
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