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Far-off-equilibrium expansion trajectories in the QCD phase diagram
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We consider the hydrodynamic evolution of a quark-gluon gas with nonzero quark masses and net baryon
number in its phase diagram. For far-off-equilibrium initial conditions the expansion trajectories appear to violate
simple rules based on the second law of thermodynamics that were previously established for ideal or weakly
dissipative fluids. For Bjorken flow we present a detailed analysis within kinetic theory that provides a full
microscopic understanding of these macroscopic phenomena and establishes their thermodynamic consistency.
We point out that, for certain far-off-equilibrium initial conditions, the well-known phenomenon of “viscous
heating” turns into “viscous cooling” where, driven by dissipative effects, the temperature decreases faster than
in adiabatic expansion.
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I. INTRODUCTION

One of the primary goals of relativistic heavy-ion collisions
is to study the phase diagram of quantum chromodynamics
(QCD). In a simplified version which ignores additional di-
mensions [1] associated with strangeness and isospin (which
are conserved by the strong interactions), this phase diagram
reduces to a plane spanned by the temperature T and the
baryon chemical potential μB. Based on first-principles lat-
tice QCD calculations at vanishing μB [2–5] and theoretical
modeling at large μB [1], it is conjectured that there exists a
first-order phase transition line in this plane which terminates
at a critical point at finite (Tcr, μB,cr ) [6,7], turning into a
continuous crossover at smaller μB values. The search for the
QCD critical point has been an area of intense research over
the last two decades [8,9].

A key feature common to equilibrated systems near a
critical point is the enhancement of thermodynamic fluctu-
ations accompanied by diverging correlation length of these
fluctuations [10]. Accordingly, the QCD critical point search
program using heavy-ion collisions is driven by exploration
of final-state observables that are sensitive to the correlation
length. One such class of observables are higher-order cumu-
lants of net-proton fluctuations, which are predicted to exhibit
nonmonotonic behavior as the freeze-out region of collision
fireballs is systematically varied in the (T, μB) plane from
low to high μB [6,7,11–14]. This strategy has been pursued
in the two-stage Beam Energy Scan (BES) program at RHIC,
by varying the collision energy

√
sNN from 200 GeV down to

7.7 GeV (for BES-I) and 3.0 GeV (for BES-II) [9,15].
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However, this simple concept is complicated along sev-
eral fronts by the realities of relativistic heavy-ion collisions
[16–25]. The main complication arises from the explosive
expansion dynamics of the fireballs formed in the collisions
which drive the fireball medium out of local thermal equi-
librium. At the lower BES energies additional considerations
make thermalization even more elusive [26]. Equally im-
portant is the observation [27,28] (reviewed in [25,29]) that
different fluid cells inside the expanding medium follow dif-
ferent expansion trajectories through the phase diagram such
that the measured final-state particles represent an average
over contributions with different chemical compositions at
freeze-out. This has led to revived interest in fireball expan-
sion trajectories through the QCD phase diagram.

Such expansion trajectories were first studied over 35 years
ago in the context of ideal fluid dynamics where both entropy
and baryon number are conserved and the expansion there-
fore occurs at fixed entropy per baryon, S/A = s/n = const.
(where S is the total entropy, A is the nuclear mass (baryon)
number, s = S/V is the entropy density, and n = A/V is the
net baryon density) [30–33]. From these studies it is known
that a thermalized gas of massless quarks, antiquarks, and
gluons expands isentropically along lines of constant μB/T ,
ending at the origin (T∞ = 0, μB∞ = 0), whereas for a ther-
malized gas of hadron resonances the adiabatic expansion
trajectories end at (T∞ = 0, μB∞ = mN ) (where mN is the
mass of the nucleon, the lightest baryon number carrying
hadron). It was also understood that, at constant temperature
T > 0, an increase in specific entropy s/n leads in local ther-
mal equilibrium to a decrease of the chemical potential μB,
irrespective of the mass of the constituents. It came therefore
to the present authors as a surprise when in a recent study [34]
of dissipative expansion trajectories, where viscous heating
leads to an increase of entropy with time, for some initial con-
ditions in the quark-gluon plasma phase the chemical potential
μB did not initially decrease, but rather grew with decreasing
temperature. Clearly, along such trajectories the equilibrium
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value of the specific entropy s/n decreased initially [35]. What
causes this decrease, and how can this be compatible with the
second law of thermodynamics asserting that the total entropy
can never decrease (Boltzmann’s “H-theorem”)? The authors
of Ref. [35] pointed to nonequilibrium entropy corrections
as the likely culprit for this phenomenon. In this paper we
show that this conjecture was correct and explain in detail
all of the possible manifestations of dissipative effects in the
heavy-ion fireball expansion trajectories through the QCD
phase diagram.

We point out that the above phenomenon of decreasing
equilibrium entropy is associated with more rapid cooling
along the expansion trajectory than expected for adiabatic
expansion. One usually associates dissipative effects with the
phenomenon of viscous heating, a form of internal friction
that causes the medium to cool down more slowly in dissi-
pative evolution than in adiabatic expansion. To distinguish
the far-off-equilibrium dynamics discovered numerically by
Dore et al. [34,35] from this expected behavior we introduce
the concept of viscous cooling, where the dissipative system
cools more rapidly than the ideal fluid.

To allow for a largely analytic discussion we follow
Ref. [34] and assume one-dimensional Bjorken expansion, but
our insights are generic and generalize to arbitrary expansion
geometries that can only be studied numerically. Moreover,
Dore et al. employed a lattice QCD based equation of state
that included the effects of criticality [36]. Since a realistic
equation of state will not be crucial for our discussion, we
simplify the system further and consider a weakly interacting
gas of massive quarks and massless gluons at finite chemical
potential [37]. Such a gas does not have a phase transition
or a critical point, but it has nonvanishing transport coeffi-
cients arising from the interactions among its constituents.
We calculate these transport coefficients from kinetic theory
self-consistently with our model assumptions.

Dividing the entropy (or any other macroscopic hy-
drodynamic quantity) into equilibrium and nonequilibrium
contributions requires a definition of the temperature T and
chemical potential μB associated with the equilibrium part.
This matching of equilibrium parameters to the nonequilib-
rium state is ambiguous. An important aspect of the work
presented here is a comparison between macroscopic and
microscopic descriptions; for the former we use second-order
hydrodynamics, whereas for the latter we implement the
relativistic Boltzmann equation with a collision kernel in re-
laxation time approximation (“RTA Boltzmann”). To ensure
conservation of energy-momentum and baryon number by
the RTA collision kernel [38–42]1 we employ the Landau
matching conditions [47] e = eeq(T, μB) and n = neq(T, μB),
i.e., we assign T and μB such that the associated equilibrium
values reproduce the actual energy and net baryon densities of
the fluid cell in its nonequilibrium state.

1This works for a momentum independent relaxation time in the
RTA collision kernel as used here. For a momentum-dependent re-
laxation time the RTA collision term must be generalized to remain
compatible with these conservation laws under Landau matching
[43–46].

This paper is organized as follows: In Sec. II we de-
scribe the nonconformal hydrodynamic equations studied in
this work. Since we study a multicomponent quantum gas at
finite baryon chemical potential μB, its transport coefficients
differ from those used in Refs. [34] for a single-component
Boltzmann gas without conserved charge [48]; these transport
coefficients are derived in Appendix A. Section III briefly
summarizes the characteristics of the isentropic expansion
trajectories in ideal fluid dynamics for conformal and noncon-
formal systems. This is followed by a discussion of dissipative
expansion trajectories for conformal systems in Sec. IV and
for nonconformal systems in Sec. V. In each case two differ-
ent subsections describe and analyze the hydrodynamic and
kinetic theory solutions for these trajectories; for the noncon-
formal case the two are compared in Appendix C. We explain
how, for certain types of far-off-equilibrium initial conditions,
the system can expand following trajectories along which the
equilibrium part of the entropy initially decreases. For the
conformal case, the splitting of the entropy current into equi-
librium and nonequilibrium parts is described in Appendix B.
Our conclusions are presented in Sec. VI.

II. DISSIPATIVE HYDRODYNAMICS
WITH BJORKEN FLOW

Bjorken expansion is defined by the flow velocity field
vx = vy = 0, vz = z/t [49]. Symmetries dictate that all
macroscopic quantities are independent of transverse position
(x, y) and space-time rapidity ηs ≡ tanh−1(z/t ), and thus de-
pend only on Milne proper time τ ≡ √

t2 − z2. Together with
invariance under longitudinal reflections (ηs → −ηs), these
symmetries force the dissipative part of the conserved baryon
current to vanish, and the shear stress tensor reduces to a
single independent component π (τ ) ≡ πηs

ηs
(τ ). The hydrody-

namic evolution equations reduce to [34,50,51]

de

dτ
= − 1

τ
(e + P + � − π ), (1)

dn

dτ
= −n

τ
, (2)

d�

dτ
= −�

τR
− β�

τ
− δ��

�

τ
+ λ�π

π

τ
, (3)

dπ

dτ
= − π

τR
+ 4

3

βπ

τ
−
(

1

3
τππ + δππ

)
π

τ
+ 2

3
λπ�

�

τ
, (4)

where e and n are the energy and net quark density, P is
the thermal equilibrium pressure, given by the equation of
state P(e, n) = P(T, μ), and � and π are the bulk and shear
viscous stresses. τR is the microscopic relaxation time in an
underlying kinetic description to be discussed below, and
βπ, β�, δππ , δ��, τππ , λπ�, λ�π are associated transport
coefficients, derived in Appendix A using the Chapman-
Enskog expansion [51].

In Bjorken flow the system volume grows linearly with
Milne time τ . Equation (2) thus reflects conservation of the
comoving net quark number per unit transverse area, nτ ,
owing to the lack of net quark diffusion out of a fluid cell.
Equation (1) shows that the same is not true for the en-
ergy density: As long as the effective longitudinal pressure
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P + � − π is positive, the comoving energy density per unit
area, eτ , decreases with τ due to work done by the pressure
which converts some of the thermal energy into kinetic motion
energy associated with the collective longitudinal expansion.

The evolution equations (3) and (4) for the bulk and shear
viscous stresses are derived by iteratively solving (up to
second-order in velocity gradients) the Boltzmann equation in
relaxation-time approximation, followed by coarse graining
and partial resummation of the gradient terms [41,51]. We
parametrize the relaxation time τR in terms of the local tem-
perature T as T τR = 5C where C is a unitless constant.2

As we will be interested in obtaining the hydrodynamic
trajectories in the (T, μ) plane, we shall directly solve
Eqs. (1)–(4) in terms of the Lagrange parameters, xa ≡ {T, μ},
instead of the associated densities Xa = {e, n}. Making use of
the Landau matching conditions (A4) (see Appendix A) we
express Xa in terms of xa using the equilibrium distributions

f q
eq = 1

exp(βEp − α) + 1
, f q̄

eq = 1

exp(βEp + α) + 1
,

f g
eq = 1

exp(βEp) − 1
. (5)

Here β is the inverse temperature, α ≡ βμ, and Ep =√
p2 + m2 is the energy of a particle of momentum p and mass

m in the fluid rest frame.
For massless quarks and gluons with degeneracy factors gq

and gg, respectively, the desired relations are simply

eeq(T, μ) = T 4

[
(4gg + 7gq )π2

120
+ gq

4

(μ

T

)2
+ gq

8π2

(μ

T

)4
]

= 3Peq(T, μ), (6)

neq(T, μ) = T 3

[
gq

6

(μ

T

)
+ gq

6π2

(μ

T

)3
]
, (7)

which we use to compute dxa = M b
a dXb and convert Eqs. (1)

and (2) into evolution equations for T and μ. We use gq =
2 × Nc × Nf = 12 (with Nc = 3 colors and Nf = 2 flavors)
for quarks and antiquarks and gg = 2 × (N2

c − 1) = 16 for
gluons.

Giving the (anti)quarks a mass m �= 0 changes these rela-
tions to

eeq(T, μ) = T 4

2π2

∫ ∞

0
du u2

{√
u2 + m2

T 2
gq

[
f̃ q
eq

(
u,

m

T
,
μ

T

)

+ f̃ q̄
eq

(
u,

m

T
,
μ

T

)]
+ u gg f̃ g

eq(u)

}
, (8)

2This is strictly justified only in the massless limit where the tem-
perature is the only energy scale in the problem but we checked that
corrections in powers of m/T are small enough to not affect any of
the qualitative features of our new results.For a conformal system at
vanishing chemical potential, the relation τRβπ ≡ η (where η is the
shear viscosity), along with the parametrization τR = 5C/T , implies
C = η/s. However, for μ �= 0, the same pair of relations implies
C = η/s × [1 + (μ/T )(n/s)]−1.

Peq(T, μ) = T 4

6π2

∫ ∞

0
du u3

{
u√

u2 + m2

T 2

gq

[
f̃ q
eq

(
u,

m

T
,
μ

T

)

+ f̃ q̄
eq

(
u,

m

T
,
μ

T

)]
+ gg f̃ g

eq(u)

}
, (9)

neq(T, μ) = T 3

2π2

∫ ∞

0
du u2 gq

[
f̃ q
eq

(
u,

m

T
,
μ

T

)

− f̃ q̄
eq

(
u,

m

T
,
μ

T

)]
, (10)

where f̃ i
eq(u, z, α) = [exp(

√
u2+z2 − αi ) − θi]

−1
with αq =

−αq̄ = α, αg = 0 as well as θq = θq̄ = −1, θg = 1.

III. EXPANSION TRAJECTORIES IN IDEAL
HYDRODYNAMICS

We first solve the hydrodynamic equations in the absence
of dissipation, by setting the shear and bulk viscous stresses
to zero throughout the evolution: π = � = 0. The ideal ex-
pansion trajectories are shown in Fig. 1, for the massless
(conformal) case in panel (a) and for a quark-gluon gas with
massive (m = 1 GeV) quarks and antiquarks in panel (b).
Throughout this work, initial conditions are imposed at initial
Milne time τ0 = 0.1 fm/c. In panel (a) the initial tempera-
ture and chemical potentials (T0, μ0) are chosen to yield the
integer s/n ratios indicated.3 For the nonconformal case, the
same initial values (T0, μ0) correspond to the larger s/n ratios
listed in panel (b). In ideal fluids both entropy and net quark
number of a fluid element in its local rest frame are conserved
during evolution, and the decrease of the associated comoving
densities arises entirely from volume expansion. This follows
directly from the thermodynamic relations de = T ds + μ dn
and s = (e + P − μn)/T , which allow us to re-cast Eqs. (1)
and (2) as

ds

dτ
= − s

τ
,

dn

dτ
= −n

τ
, (11)

with the straightforward solution s/n = const. Since for
Bjorken flow Milne coordinates serve as a comoving coordi-
nate system, s/n remains constant as a function of Milne time
τ , which can be used as a line parameter along each of the
trajectories shown in Fig. 1.

For the conformal case shown in panel (a), with massless
constituents yielding the EoS (6) and (7), lines of constant
s/n correspond to lines of constant μ/T . This follows from
conformality: in a system devoid of any dimensionful micro-
scopic scales, s and n (which share the same units) must be
related by

s(T, μ) = g(T, μ) n(T, μ), (12)

where g can depend on T and μ only through the dimen-
sionless ratio α = μ/T . Thus s/n = g(α) = constant implies

3Note that n = 1
3 nB is the net quark density such that s/n = 1

3 (S/A),
where S and A are the total entropy and net baryon number of the
system.
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FIG. 1. Ideal hydrodynamic expansion trajectories in the (T, μ)
plane for a conformal [m = 0, panel (a)] and a non-conformal [mq =
mq̄ = 1 GeV, mg = 0, panel (b)] quark-gluon gas with nonzero con-
served net baryon charge, for identical sets of initial values (T0, μ0 )
in (a) and (b). The corresponding conserved entropy/baryon charge
values s/n are indicated.

constancy of α. As a result, all the trajectories in Fig. 1(a) are
straight lines passing through the origin.4

The analogous expansion trajectories for a nonconformal
quark-gluon gas are shown in Fig. 1(b). In this case, since the
function g = s/n now depends on two dimensionless ratios
μ/T and m/T , they are no longer straight lines. To illustrate
the effect we have chosen a rather large quark mass of 1
GeV such that the quark mass effects are clearly visible at
all temperatures shown. While at high temperatures T/m ≈ 1
the expansion trajectories still exhibit approximately linear
behavior as observed in the massless case, they drastically
change shape at lower temperatures T/m ≈ 0.2–0.3, where

4For each trajectory, its mirror image with respect to the tempera-
ture axis is itself a solution with the opposite sign of s/n, reflecting
the oddness of the function g(α).

they veer sharply to the right. This is forced by the existence of
a non-vanishing net baryon charge which, due to Fermi statis-
tics, requires μ → m = 1 GeV in the zero-temperature limit
T → 0.5 The rightward bend of the trajectories near T/m ≈
0.2–0.3 reflects the transition from a high-temperature state
where quarks, antiquarks and gluons contribute democrati-
cally to the thermodynamic quantities, to a low-temperature
state where antiquark and gluon contributions to n are ex-
ponentially suppressed relative to those from quarks by
combined mass and fugacity effects.

The late-time slopes of the various trajectories can be ob-
tained from thermodynamic arguments: At low temperatures,
quarks dominate over antiquarks and gluons, and their rest
mass dwarfs their kinetic energy, such that P � e. As a result,
work done by the pressure can be neglected and the energy
density falls off ∝ 1/τ while the ratio between energy and
entropy density, e/s, stays approximately constant. Using this
in the thermodynamic relation T s = e + P − μn yields

T ≈ − 1

(s/n)
μ + C, (13)

where C = e/s ≈ constant. Thus, at late times the isentropic
trajectories are straight lines with negative slopes whose
magnitude is inversely proportional to s/n, as borne out in
Fig. 1(b).

We note for later use that it follows from Fig. 1 that in ideal
fluids at fixed temperature g = s/n is a monotonic function of
μ, i.e., μ decreases when the specific entropy s/n increases.

IV. DISSIPATIVE EXPANSION TRAJECTORIES FOR
CONFORMAL SYSTEMS WITH NONZERO BARYON

CHEMICAL POTENTIAL

We now proceed to discuss the expansion trajectories for
dissipative systems. We begin in this section with conformal
systems without bulk viscous pressure, � = 0. Nonconformal
systems with nonvanishing values for both the shear and bulk
viscous stresses will be studied in the following Sec. V. In
both sections, we will begin with a discussion of macroscopic
hydrodynamic phenomena, followed by an in-depth micro-
scopic analysis using kinetic theory.

A. Conformal Bjorken hydrodynamics

We turn on dissipation by letting the shear stress tensor
evolve via Eq. (4), with � set to zero. For illustration the
constant C appearing in τR = 5C/T is set to C = 10/4π , and
we consider two sets of initial temperatures and chemical
potentials at initial time τ0 = 0.1 fm/c: (T0, μ0) = (0.8, 0.5)
GeV and (0.7, 0.83) GeV, shown as blue and green curves
in Fig. 2. For both sets we further consider two different
values for the initial normalied shear stress: (π/4p)0 = 0.2
and (π/4p)0 = −0.3. The resulting dissipative expansion tra-
jectories are shown as dotted and dashed lines in Fig. 2(a),
together with solid lines for ideal expansion starting from the
same point (T0, μ0). Figure 2(b) shows the evolution of the

5This also explains the massless case where μ → m = 0 as T → 0.
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FIG. 2. (a) Expansion trajectories of a conformal gas in the phase
diagram using dissipative hydrodynamics. Solid lines show adiabatic
expansion for comparison. (b) Scaled time evolution of the normal-
ized shear stress tensor.

normalized shear stress π/(e+P) as a function of the scaled
time τ/τR. As the initial temperatures of the green and blue
sets of curves are slightly different, their starting values of
τ/τR = τT/(5C) differ correspondingly. The solid red line
in Fig. 2(b) shows the Navier-Stokes solution πNS = 4η/3τ ,
which can also be written as πNS/(e+P) = 4τR/(15τ ). It is a
universal function of the scaled time and provides a late-time
attractor for the evolution of π/(e+P) [42,52–55].

Looking at panel (a) we notice immediately that, in spite
of the production of additional entropy by dissipation, only
the dotted lines (where the initial shear stress π0 is positive)
exhibit the well-known phenomenon of viscous heating where
the dissipative fluid cools more slowly than the ideal one. The
dashed lines, corresponding to negative initial shear stress,
instead deviate from the ideal expansion trajectories initially
towards the right (i.e., towards larger μ or lower T , depending
on your point of view), i.e., they initially exhibit viscous
cooling where the dissipative fluid cools more rapidly than the

ideal one. Only at later times do the dashed lines cross over to
the left, towards smaller μ.6

At first sight this feature appears to contradict the argu-
ment from the preceding subsection that points with larger
(s/n)(τ ) > (s/n)0 should be located in the phase diagram to
the left of the isentropic expansion trajectory with (s/n)eq =
(s/n)0. When (incorrectly) interpreted within the ideal ther-
modynamic framework used in that subsection, the specific
entropy s/n initially seems to decrease along the dashed
trajectories. The flaw in that argument is that it does not
recognize the fact that the dissipative stresses describe devi-
ations of the microscopic phase-space distributions from local
thermal equilibrium which manifest themselves in nonequi-
librium corrections to the entropy density. Initial conditions
with nonvanishing shear stress (or, for that matter, any other
dissipative flows) have different (s/n)0 than an ideal fluid pre-
pared with the same initial temperature and chemical potential
(T0, μ0). An initial condition with a large negative nonequilib-
rium correction to the entropy density can produce additional
total entropy by dissipative heating (thus satisfying the second
law of thermodynamics) while, at the same time, reducing
the equilibrium entropy, by transferring negative entropy from
the non-equilibrium to the equilibrium part as the system
thermalizes and moves closer to local equilibrium.

A little manipulation of Eqs. (1) and (2) in the presence of
dissipation leads (for � = 0) to

d (seqτ )

dτ
= π

T
. (14)

Here seq is the equilibrium entropy density, related to e, p,
and n via the fundamental relation which holds in thermal
equilibrium. Clearly, the equilibrium entropy per transverse
area of a fluid cell can decrease with time whenever the
shear stress π is negative (i.e., far from its positive first-order
Navier-Stokes limit for Bjorken flow). This is precisely the
case for the dashed curves in Fig. 2(a). Since in these cases
it takes some time for π to turn positive [see Fig. 2(b)], the
growth with time of the total specific entropy by viscous
heating is reflected also in its equilibrium contribution only
at later times.

For a conformal gas of quarks and gluons at finite chemical
potential, the second-order out-of-equilibrium entropy four-
current using kinetic theory is7

Sμ = seq uμ − α nμ − β

4βπ

uμ παβ παβ + cnn uμ nα nα

+ cnπ πμα nα, (15)

where πμν is the shear stress tensor and nμ is the net-quark
diffusion current. Due to the vanishing of baryon diffusion in

6Qualitatively similar features were first observed by the authors of
[34] (see also [35]). In their work, which also includes bulk viscous
effects, some dissipative expansion trajectories even started moving
towards the right of the starting point (T0, μ0 ), not just right of
the ideal isentrope with (s/n)(τ ) = (s/n)0. We will return to this
observation further below.

7This is derived in Appendix B, along with the coefficients cnn and
cnπ .
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FIG. 3. Evolution of the total specific entropy stot/n computed
from Eq. (16), along trajectories of corresponding line style and
color shown in Fig. 2(a). The brown curves are obtained using the
equilibrium definition.

Bjorken flow, the second-order entropy density simplifies to

stot = seq − 3β

8βπ

π2, (16)

where the second term is a (negative) nonequilibrium cor-
rection. The entropy density is largest in local thermal
equilibrium and reduced by dissipative corrections: stot < seq.
The second law of thermodynamics applies only to the total
specific entropy stot/n but not to the equilibrium part seq/n
in isolation. This is illustrated in Fig. 3 where only stot/n is
seen to always grow monotonically with time while for the
dashed lines (corresponding to initially negative shear stress)
the equilibrium part seq/n initially decreases with time.8 As
the system approaches local thermal equilibrium at late times,
dissipative effects become small and the total and equilibrium
specific entropies converge and saturate.

We next turn to solving kinetic theory for Bjorken flow
in order to find out whether, and to what extent, the features
observed in hydrodynamics also manifest themselves in the
underlying microscopic theory from which Chapman-Enskog
(CE) hydrodynamics is obtained.

B. Kinetic theory for a system of massless quarks and gluons

Let us consider a system of massless quarks, antiquarks,
and gluons whose evolution is governed by the Boltzmann

8It should be mentioned that for certain extreme off-equilibrium
initialisations with negative shear stress, even the total entropy of
a fluid element, computed within hydrodynamics using the approx-
imate expression (16), may decrease with time, thus violating the
second law (see Appendix D). We have checked that this does not
happen for the specific sets of initial conditions studied in this paper.

equation with a relaxation-type collision kernel, sharing a
common relaxation time τR:

pμ∂μ f i(x, p) = −u · p

τR

(
f i − f i

eq

)
. (17)

Their equilibrium distributions are given by Eqs. (5), setting
m = 0. Energy-momentum and net-baryon number conser-
vation by the RTA collision kernel are ensured (see, e.g.,
[38,42,44–46]) if the macroscopic parameters β = 1/T , α =
μ/T , and fluid four-velocity uμ are defined by the Landau
matching conditions:

uμuνT μν =
∫

dP (p · u)2 [gq( f q+ f q̄) + gg f g]

= eeq(T, μ), (18)

uμNμ =
∫

dP (p · u) gq( f q− f q̄) = neq(T, μ), (19)

with the right-hands sides given by Eqs. (6) and (7). The
Lorentz invariant integration measure is defined as dP ≡
d3 p/[(2π )3Ep], with Ep = p here.

For a system undergoing Bjorken expansion, Eq. (17)
reduces in Milne coordinates to the ordinary differential equa-
tion

df i

dτ
= − f i − f i

eq

τR
, (20)

where the superscript i denotes the species considered. The
formal solution of the above equation is [40,56]

f i(τ ; pT ,w) = D(τ, τ0) f i
in(τ ; pT ,w)

+
∫ τ

τ0

dτ ′

τR(τ ′)
D(τ, τ ′) f i

eq(τ ′; pT ,w), (21)

where w ≡ pη is the longitudinal momentum in Milne coor-
dinates and the damping function D is defined by

D(τ2, τ1) = exp

(
−
∫ τ2

τ1

dτ ′

τR(τ ′)

)
. (22)

For the initial momentum distributions we choose a
Romatschke-Strickland type parametrization [57]:9

f q
in = 1

exp
(√

p2
T + (1 + ξ0)w2/τ 2

0 + m2/�0 − ν0
�0

)+1
, (23)

f q̄
in = 1

exp
(√

p2
T + (1 + ξ0)w2/τ 2

0 + m2/�0+ ν0
�0

)+1
, (24)

f g
in = 1

exp
(√

p2
T + (1 + ξ0)w2/τ 2

0 /�0
)− 1

, (25)

9We note that this parametrization does not allow for a full explo-
ration of all possible values for the bulk viscous pressure � allowed
in kinetic theory [58]. Very large negative values of � require an
additional fugacity factor that allows for oversaturation of at least one
of the three particle species considered here. However, for reasons
discussed below, we are not primarily interested in this work in large
negative � values; the hydrodynamic expansion trajectories develop
their most striking features when the initial value for � is positive.
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where in this subsection we set the quark mass to m = 0.
For simplicity we have taken a common anisotropy parameter
ξ0 and momentum scale �0 for all three species, and the
same parameter ν0 for quarks and antiquarks characterizing a
nonzero initial net-quark density. To solve for temperature and
chemical potential we use the Landau matching conditions
[40,59]

eeq(T (τ ), μ(τ )) = D(τ, τ0)E (τ )

+
∫ τ

τ0

dτ ′

τR(τ ′)
D(τ, τ ′)He

(
τ ′

τ

)

× eeq(T (τ ′), μ(τ ′)), (26)

neq(T (τ ), μ(τ )) = τ0

τ
nin. (27)

Noting the absence of net-quark diffusion in Bjorken flow,
we directly used the nondiffusive solution for the net-quark
density in the number matching condition. The He function is
defined as

He(x) ≡ 1

2

⎛
⎜⎝x2 +

tanh−1
(√

1 − 1
x2

)
√

1 − 1
x2

⎞
⎟⎠. (28)

The time-dependent function E arises from the momentum
integral of the initial distributions:

E (τ ) = He

(
τ0

τ
√

1 + ξ0

)
eeq(�0, ν0). (29)

The initial net-quark density is given by nin =
neq(�0, ν0)/

√
1 + ξ0.

The integral equations (26) and (27) are solved itera-
tively for the temperature and chemical potential by numerical
quadrature. After finding the solutions (T (τ ), μ(τ )) we use
them to compute the shear stress tensor component π ≡ πη

η :

π (τ ) = D(τ, τ0) C(τ )

+
∫ τ

τ0

dτ ′

τR(τ ′)
D(τ, τ ′)Hπ

(τ ′

τ

)
eeq(T (τ ′), μ(τ ′)),

(30)

where we defined

Hπ (x) ≡ 1

6(1 − x2)

[
x2 (1 + 2 x2)

+ (1 − 4x2)
tanh−1

(√
1 − 1

x2

)
√

1 − 1
x2

]
, (31)

as well as

C(τ ) = Hπ

(
τ0

τ
√

1 + ξ0

)
eeq(�0, ν0). (32)

We are particularly interested in computing the evolution
of the out-of-equilibrium entropy density in kinetic theory.
For this, we start from the following definition of the entropy

FIG. 4. Comparison of the expansion trajectories (a) and the
evolution of the inverse Reynolds number (b) between exact kinetic
theory (magenta and black curves) and their second-order conformal
hydrodynamic approximation (blue and green curves).

current of a gas of quarks, antiquarks, and gluons:

Sμ(x) = −
3∑

i=1

gi

∫
dP pμ φi[ f i]. (33)

Here i = 1, 2, 3 labels quarks, antiquarks, and gluons, respec-
tively. The function φi[ f i] is defined by

φi[ f i] = f i ln( f i ) − 1 + θi f i

θi
ln(1 + θi f i ). (34)

It distinguishes between statistics of the constituents via the
parameter θi: θ1 = θ2 = −1 (Fermi-Dirac) and θ3 = 1 (Bose-
Einstein). For Bjorken flow, the entropy density stot ≡ uμSμ is
given by

stot (τ ) = −
3∑

i=1

gi

∫
d pT dw pT

4π2τ
φi[ f i(τ ; pT ,w)], (35)

where f i(τ ; pT ,w) is the solution given in Eq. (21).
In Fig. 4 we compare, for identical initial conditions, the

dissipative expansion trajectories through the phase diagram
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TABLE I. Initial parameters (�0, ν0, ξ0) used to generate the
kinetic theory trajectories in Fig. 4. Due to conformal invariance, π̄0

depends only on ξ0. Hence, the ξ0 values for the dotted (π̄0 = 0.2)
and dashed (π̄0 = −0.3) pairs of curves are each identical.

Color �0 (GeV) ν0 (GeV) ξ0

Magenta dotted 5.671 4.142 9.258
Magenta dashed 2.651 1.997 −0.885
Black dotted 4.856 6.892 9.258
Black dashed 2.257 3.326 −0.885

[panel (a)] and the evolution of the shear inverse Reynolds
number π/(e+P) [panel (b)] obtained from the exact solution
[Eqs. (26) and (27)] of conformal kinetic theory (magenta
and black curves) with those computed with second-order
conformal hydrodynamics (blue and green curves, same as
those shown in Fig. 2). This comparison tests the accuracy
of the hydrodynamic approximation to the underlying micro-
scopic dynamics described by the RTA Boltzmann equation.
In particular, the phenomenon of viscous cooling exhibited by
the dashed-line trajectories in panel (a) is seen to be a robust
feature of the exact solution to the underlying microscopic
kinetic theory and not an artifact of the macroscopic hydro-
dynamic approximation. The corresponding initial parameters
(�0, ν0, ξ0) in the initial distribution functions (23)–(25) are
listed in Table I.

In panel (a) the magenta and black curves for kinetic theory
lie slightly to the right of the corresponding blue and green
hydrodynamic trajectories, suggesting that their specific en-
tropies are somewhat smaller in kinetic theory than in the
hydrodynamic approximation. This is further substantiated in
Fig. 5. Consistent with this observation, the normalized shear
stress shown in panel (b) is somewhat smaller in kinetic theory
than for hydrodynamics, which is seen to overpredict the
deviation from equilibrium, especially if the initial shear stress
is large and positive (dotted curves). Up to these differences,
hydrodynamics shows excellent agreement with kinetic theory
for conformal Bjorken evolution.

As noted earlier in a different context [60], differences be-
tween hydrodynamics and kinetic theory become more readily
apparent in the evolution of the out-of-equilibrium specific
entropy. Its time evolution is shown in Fig. 5(a). Similar to
Fig. 4, the black and magenta curves in Fig. 5(a) denote
kinetic theory trajectories, whereas the green and blue curves
correspond to hydrodynamics. The hydrodynamic solutions
are identical to those shown in Fig. 3. All kinetic theory
solutions lie below the hydrodynamic ones, consistent with
the observations made in Figs. 4(a) and 4(b). For exam-
ple, for π̄0 = 0.2 (dotted lines) the initial value of the total
specific entropy, stot/n, computed in kinetic theory is about
7% percent less than the one obtained within hydrodynam-
ics. For the dotted black and magenta curves, kinetic theory
yields (stot/n)0 = sin(�0, ν0)/nin(�0, ν0) ≈ 5.92 and 11.23,
respectively, whereas the dotted green and blue hydrodynamic
curves correspond to (stot/n)0 ≈ 6.39 and 11.98. This initial
difference between dotted kinetic theory and dotted hydrody-
namic results persists throughout the evolution, resulting in an
error of approximately 10% at late times.

FIG. 5. (a) Comparison of the out-of-equilibrium specific en-
tropy evolution in conformal RTA Boltzmann theory and its
hydrodynamic approximation. Line styles and colors are identical
to Fig. 4. (b) Comparison of the kinetic evolution of stot/n with
its equilibrium part seq/n (red lines) along the magenta and black
trajectories shown in Fig. 4(a).

For the other initial condition, π̄0 = −0.3 (dashed lines),
the kinetic theory and hydrodynamic trajectories start from
approximately the same initial value for stot/n. However, the
hydrodynamic trajectories are characterised by larger entropy
production and therefore differ at late times from the micro-
scopic theory prediction by ≈7%. It is fascinating to note the
sensitivity of entropy production to the initial conditions of
the fluid: in spite of starting from nearly equal initial values
of stot/n, the dotted and dashed kinetic theory solutions (cor-
responding to π̄0 = 0.2 and π̄0 = −0.3, respectively) differ
appreciably in the late time values of stot/n. For the dashed
black and magenta trajectories in Fig. 4(a), the late-time s/n
is approximately twice its initial value, whereas for the dot-
ted trajectories the viscous heating factor is more than three
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times. The reason for this is the following: the total amount
of specific entropy �(s/n) that can be generated during the
fluid’s equilibration is

�
( s

n

)
= −

(
δsneq

n

)
0

+ 1

(nτ )0

∫ ∞

τ0

dτ

T (τ )
π (τ ), (36)

where δsneq = stot − seq. Although both dotted and dashed ki-
netic theory trajectories have nearly equal (δsneq/n)0 initially,
the dotted lines are characterized by positive shear throughout,
leading to a larger value of the integral in Eq. (36) than for
the dashed ones where the integrand has both negative and
positive contributions.

In Fig. 5(b) we compare the evolution of the equilib-
rium specific entropy (seq/n, red curves) with the out-of-
equilibrium stot/n (magenta and black), both computed using
kinetic theory. The magenta and black curves are the same as
those in panel (a). The observed features are qualitatively sim-
ilar to Fig. 3 obtained within hydrodynamics. For initialization
π̄0 = 0.2 (dotted lines), seq/n increases monotonically, con-
sistent with the dotted magenta and green phase trajectories in
Fig. 4(a) lying to the left of the isentropic straight line trajec-
tories shown in Fig. 2. In contrast, the dashed red curves for
π̄0 = −0.3 show seq/n evolving nonmonotonically: the equi-
librium part of the specific entropy initially decreases before
starting to increase after τ/τR ≈ 0.3. This reflects a transfer
of large negative specific entropy from the nonequilibrium to
the equilibrium sector at early times. During this stage the
local momentum distribution forms a prolate ellipsoid whose
deformation is continuously decreasing via free streaming
which redshifts the longitudinal momenta. Once the momen-
tum distribution reaches local isotropy, the sign of the shear
stress π flips and, according to Eq. (14), so does the direction
of entropy flow between the nonequilibrium and equilibrium
sectors. In Figure 4(a) the initial decrease of seq/n manifests
itself by causing the dashed magenta and black curves to first
move to the right of the straight-line ideal expansion trajectory
before veering left at late times, eventually crossing the ideal
line (see Fig. 2) due to the overall production of entropy by
viscous heating and the approach to local equilibrium at late
times.

This transfer of entropy from the nonequilibrium to the
equilibrium sector is a novel effect which to our knowledge
has not been previously described. The second law of ther-
modynamics demands (i) s/n � seq/n and (ii) d (s/n)/dτ �
0, where s = stot stands for the total specific entropy [i.e.,
the sum of its equilibrium contribution (seq/n)(T, μ) and its
nonequilibrium correction which depends on the dissipative
flows]. As time evolves, entropy can be transferred from the
(negative) nonequilibrium correction to the equilibrium part.
Therefore d (seq/n)/dτ does not need to be positive definite.

Comparison of the dashed and dotted curves in Fig. 4(b)
shows that the rate (sign and magnitude) at which entropy
flows from the nonequilibrium to the equilibrium sector de-
pends on the values of the dissipative fluxes. Within the
hydrodynamic framework this is expressed by Eq. (14). How-
ever, while the dashed lines in Fig. 4(a) move to the right of
the ideal expansion trajectories, they do not move towards
larger chemical potential as has been observed for some ex-

pansion trajectories shown in Refs. [34,35]. In the following
subsection we will therefore discuss the criteria that must be
satisfied for obtaining dissipative expansion trajectories that
start out by moving towards larger μ. We will see that this is
very hard to achieve in conformal systems but much easier in
nonconformal systems. This will set the stage for discussion
of non-conformal expansion trajectories in Sec. V.

C. Criteria for generating trajectories
with increasing chemical potential

Let us explore the necessary conditions required to gen-
erate Bjorken expansion trajectories where the chemical
potential increases with Milne time. The discussion will be
general, including both shear and bulk viscous stresses. We
start with the thermodynamic relations among differentials of
the Lagrange parameters xa = {T, μ} and the densities Xa =
{e, n}: (

dT
dμ

)
= 1

A
(

a4 −a2

−a3 a1

)(
de
dn

)
, (37)

with the determinant A ≡ (a1a4 − a3a2) and the positive def-
inite thermodynamic response functions

a1 =
(

∂e

∂T

)
μ

, a2 =
(

∂e

∂μ

)
T

,

a3 =
(

∂n

∂T

)
μ

, a4 =
(

∂n

∂μ

)
T

. (38)

The determinant A is also positive since a thermodynamic
transformation (de > 0, dn=0) must lead to dT > 0.10 Thus,
the criterion for an increase in chemical potential, dμ/dτ �
0, is

−a3
de

dτ
+ a1

dn

dτ
� 0 ⇒ a3

e + P − φ

τ
− a1

n

τ
� 0, (39)

where we used the equations of motion (1) and (2) and in-
troduced the shorthand φ ≡ π − �. Accordingly, the amount
of normalized dissipative stress, φ̄ ≡ φ/(e+P), required for
generating dμ > 0 trajectories is

φ̄ � 1 − a1

a3

n

(e+P)
≡ ψ. (40)

This obviously prefers negative shear stress values, π < 0,
and positive bulk viscous pressure, � > 0. Both are “unnat-
ural” for Bjorken expansion where the Navier-Stokes values
for the dissipative fluxes have the opposite signs.

Let us first explore the implications of this criterion for
the simpler case of a conformal system (� = 0) of massless
quarks, antiquarks, and gluons at nonzero net baryon den-
sity.11 In this case the response functions a1 and a3 simplify

10Similarly, a transformation where de = 0 and dn > 0 must yield
dμ > 0. We spot-checked both expectations numerically.

11Note that the upper limit of φ̄ depends on the equation of state of
the system. Accordingly, the bound changes somewhat when replac-
ing quantum statistics (which we use here) by classical Boltzmann
statistics, or changing the degeneracy factors for (anti)quarks or
gluons.
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0 1 2 3 4 5 6 7 8
α

-0.5

-0.48
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-0.44

-0.42
ψ
c(α
)

FIG. 6. The solid blue line shows the upper bound on the nor-
malized shear stress that ensures dμ/dτ > 0 in conformal Bjorken
dynamics. The dashed black line, ψc = −0.5, represents the lower
bound on π̄ allowed by kinetic theory.

to

a1 = 3 seq, a3 = gq

3
T μ, (41)

such that the condition (40) yields

π̄ � 1 − 3

(
1

2
+ α2

2π2

)/(
1 + α

n

seq

)
≡ ψc(α). (42)

A plot of ψc(α) is shown in Fig. 6. For the trajectory
to move towards the right in the phase diagram, dμ > 0, π̄

must lie below the blue curve. In kinetic theory there is a
lower bound on the normalized shear, π̄ � −0.5 (arising from
the condition of non-negative effective transverse pressure,
PT = P + π/2 � 0), indicated by the black dashed line. In
conformal kinetic theory the condition dμ > 0 thus restricts
π̄ to a very thin sliver of parameter space bounded by the solid
blue and dashed black lines which covers only a small fraction
of the overall parameter space π̄ ∈ [−0.5, 0.25]. Moreover,
even if the system is initialized within this sliver at early
times, it quickly moves out of it as the normalized shear
stress rapidly approaches the free-streaming attractor π̄ ≈
0.25. Thus, in conformal kinetic theory it is nearly impossible
to find trajectories characterized by substantial increase in
chemical potential.

However, the introduction of masses for the quarks changes
the equation of state of the system, and accordingly all ther-
modynamic quantities determining the upper bound of φ̄ on
the right-hand side (r.h.s.) of Eq. (40) change, too. As φ̄ is di-
mensionless, the bound can depend only on the dimensionless
variables α = μ/T and z ≡ m/T . A plot of ψnc(α, z) [defined
by the r.h.s. of the inequality (40)] is shown in Fig. 7, where in
panel (a) α is varied while keeping z constant, and vice versa
in panel (b). Clearly, with increasing quark mass the allowed
domain of φ̄ that allows for trajectories with dμ/dτ > 0
significantly increases. For instance, for typical initial values
α0 ≈ 1 and m/T0 ≈ 1, one needs φ̄0 � −0.36, which is much
less restrictive than the requirement φ̄0 � −0.49 for the same
α0 in the conformal case.

FIG. 7. The upper bound ψnc(α, z) in nonconformal systems, as
(a) a function of α = μ/T for fixed values of z = m/T and (b) a
function of z for fixed values of α. For φ̄ < ψnc expansion trajectories
are characterized by dμ/dτ > 0.

V. DISSIPATIVE EXPANSION TRAJECTORIES FOR
NONCONFORMAL SYSTEMS WITH

A CONSERVED CHARGE

A. Nonconformal Bjorken hydrodynamics

We now relax the restriction to conformal symmetry and
restore the bulk viscous pressure � in the second-order vis-
cous hydrodynamic equations (1)–(4) and solve them with
initial conditions imposed at τ0 = 0.1 fm/c using the transport
coefficients obtained in Appendix A for a massive quark-
gluon gas at μ �= 0. The resulting expansion trajectories in
the temperature-chemical potential plane [panel (a)] and the
energy-(quark)density plane [panel (b)] are shown in Fig. 8.
We consider two sets of initial conditions taken from Fig. 1,
with (T0, μ0) ≈ (0.8, 0.5) GeV (set I) and ≈ (0.7, 0.83) GeV
(set II), respectively.12 The corresponding ideal expansion
trajectories from Fig. 1(b) are shown as green dash-dotted
lines for orientation. In both panels the blue and black curves

12These correspond to initial energy and net-quark den-
sities of (e0, n0) ≈ (667 GeV/fm3, 70/fm3) (set I) and ≈
(476 GeV/fm3, 94/fm3) (set II).
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FIG. 8. Expansion trajectories from second-order nonconformal
hydrodynamics for a massive quark-gluon gas with nonzero net
quark number, in the T -μ plane (a) and e-n plane (b). The green dash-
dotted lines show the corresponding ideal expansion trajectories from
Fig. 1(b) (for s/n = 14.8 and 8.2) for comparison. The other lines are
explained in the text.

show dissipative expansion trajectories for two choices of
the coupling strength, parametrized by the relaxation time
constant C as given in the legend, while solid and dashed lines
distinguish between different initial conditions for the dissipa-
tive flows: dashed lines use local equilibrium initial conditions
π̄0 = �̄0 = 0 whereas solid lines correspond to π̄0 ≈ −0.437,
�̄0 ≈ 0.012 for set I and π̄0 ≈ −0.439, �̄0 ≈ 0.010 for set II,
such that for both sets φ̄0 ≡ π̄0 − �̄0 = −0.45.13

Similarly to the conformal case shown in Fig. 2, the dashed
and solid lines in Fig. 8 form two qualitatively different

13The specific choice of these somewhat arbitrary-looking values
is motivated by the comparison with kinetic theory in Sec. V B
below. As explained in footnote 9, the three-parameter Romatschke-
Strickland distributions (23)–(25) limit the range of initial dissipative
flows that can be generated; in particular, this parametrization takes
away the freedom of choosing π̄0 and �̄0 independently once their
difference φ̄0 is specified.

classes of dissipative expansion trajectories. The differences
between them are much more pronounced in the T -μ plane
[panel (a)] than in the e-n plane [panel (b)]: the dashed lines,
corresponding to equilibrium initial conditions, first graze
along the ideal trajectories before viscous heating drives them
left towards larger equilibrium specific entropies. Since larger
C values (longer relaxation times) describe more weakly cou-
pled systems with larger shear and bulk viscosities, they lead
to stronger viscous entropy production. The solid lines, on
the other hand, which correspond to large negative initial
values for the (normalized) shear and bulk stress combina-
tion φ̄ ≡ π̄ − �̄, exhibit viscous cooling: in panel (a) they
move initially right, i.e., towards larger chemical potentials,
as anticipated in Sec. IV C, and cool more rapidly than the
ideal fluid. Again, this phenomenon lasts longer for more
viscous systems described by larger C values.14 The decrease
in equilibrium specific entropy along these curves is due to
their initialization with large negative φ, as dictated by the
nonconformal version of Eq. (14),

d (seqτ )

dτ
= φ

T
= π − �

T
. (43)

As described in Secs. IV A and IV B, it reflects the transfer
of negative viscous entropy between the nonequilibrium and
equilibrium contributions to the total specific entropy.

As the system evolves one expects the shear and bulk vis-
cous pressures to approach their Navier-Stokes limits (which
is positive for shear stress and negative for the bulk viscous
pressure). This is illustrated in Fig. 9.15 When this happens,
φ turns positive and seq/n increases again, forcing the solid
curves in Fig. 8 to turn left, towards regions of smaller chemi-
cal potential. As the overall result of dissipation is an increase
of total entropy, the solid lines eventually have to cross the
ideal expansion trajectories and end up to their left where
seq/n > (s/n)0.

As the system approaches local thermal equilibrium seq/n
saturates, for different initial conditions generally at differ-
ent values, and the expansion trajectories settle on isentropic
trajectories corresponding to these asymptotic s/n values.
Therefore, once T/m drops below about 0.3, all trajectories
again turn to the right, due to the nonzero mass of the carriers
of the conserved baryon charge as explained in Sec. III. A
deeper understanding of this on a microscopic level will be
obtained in the next subsection where the same phenomena
are seen to arise in nonconformal kinetic theory.

We close this subsection with some additional discussion
of Fig. 9. Remember that the dashed trajectories start with
equilibrium initial conditions whereas the solid lines corre-
spond to large negative initial shear combined with a much
smaller initial bulk viscous pressure. Panel (a) shows that for

14In the e-n plane [panel (b)] the differences arising from different
coupling strengths C are almost unrecognizable: the blue and black
dashed trajectories are indistinguishable, and also their solid analogs
(corresponding to off-equilibrium initial conditions) are very close to
each other.

15To avoid clutter we show the evolution of π̄ and �̄ only for set II.
The results for set I are qualitatively similar.
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FIG. 9. Scaled time evolution of (a) shear and (b) bulk inverse
Reynolds numbers obtained from second-order hydrodynamics, cor-
responding to the expansion trajectories (of same color and line
style) in set II of Fig. 8. The dotted curves show the Navier-Stokes
limit. (Note that, for fixed τ0 = 0.1 fm/c, different C values result in
different scaled initial times τ0/τR.)

both types of initial conditions π̄ initially grows rapidly to sig-
nificantly large positive values, on a rapid timescale τ � τR,
i.e. before microscopic collisions become effective. This is
caused by the rapid longitudinal expansion which redshifts
the longitudinal momenta and reduces the longitudinal pres-
sure of the system [54,55,58].16 At much later times τ  τR

the shear stress joins its first-order Navier-Stokes limit (here
shown for C = 10/4π ) π̄NS = 4/3 × [βπ/(e + P)]/(τ/τR),
where the dimensionless quantity βπ/(e+P) is a function of
μ/T and m/T that approaches 1/5 in the massless limit.

Panel (b) of Fig. 9 shows that the bulk viscous pres-
sure evolves in a rather complex fashion which, for the case
of equilibrium initial conditions, even features oscillations
driven by the bulk-shear coupling terms in Eqs. (3) and (4)
(qualitatively consistent with hydrodynamic results obtained
in [51,61] for a single-species massive Boltzmann gas at van-

16This argument holds strictly only as long as �̄ is small, which
applies here.

ishing chemical potential).17 Also, it approaches its first-order
Navier-Stokes limit �̄NS = −[β�/(e+P)]/(τ/τR) [shown as
dotted lines for both choices of C in Fig. 9(b)] only at
much later times than the shear stress (even outside the time
range shown here). We checked that this is, too, is caused by
bulk-shear coupling [48] with a shear stress that exceeds the
magnitude of �̄ by more than an order of magnitude.

B. Kinetic theory for a nonconformal quark-gluon
gas with net baryon charge

1. Formal solution

The RTA Boltzmann equation (20) for a system of glu-
ons and massive quarks with Boltzmann statistics undergoing
Bjorken flow has been solved in Refs. [62,63]. For reasons
of uniformity of notation we briefly review this solution,
generalizing it along the way to include quantum statistics in
the distribution functions. The solution will be expressed in
terms of macroscopic quantities, i.e., the temperature, chem-
ical potential, shear, and bulk viscous pressures. The initial
conditions for the shear and bulk viscous pressures are gener-
ated from Eqs. (23)–(25). With these initial distributions, the
exact evolutions of the temperature and chemical potential are
obtained by the Landau matching conditions (26) and (27),
generalized to nonzero quark mass:

eeq(T (τ ), μ(τ )) = D(τ, τ0)
�4

0

4π2
H̃e

(
τ0

τ
√

1 + ξ0
,

m

�0
,

ν0

�0

)

+ 1

4π2

∫ τ

τ0

dτ ′

τR(τ ′)
D(τ, τ ′) T (τ ′)4

× H̃e

(
τ ′

τ
,

m

T (τ ′)
,
μ(τ ′)
T (τ ′)

)
, (44)

neq(T (τ ), μ(τ )) = τ0

τ
nin. (45)

Here

H̃e(y, z, α) ≡
∫ ∞

0
du u3

[
gg f̃ g

eq(u) He(y, 0)

+ gq
(

f̃ q
eq(u, z, α) + f̃ q̄

eq(u, z, α)
)

He(y, z/u)
]
,

(46)

with f̃eq from Eqs. (8)–(10) above and

He(y, z) ≡ y

⎛
⎝√y2 + z2 + 1 + z2√

y2 − 1
tanh−1

√
y2 − 1

y2 + z2

⎞
⎠.

(47)

Equations (44) and (45) are solved by numerical iteration to
obtain solutions for T (τ ) and μ(τ ). Once these are known
the distribution function f (τ ; pT ,w) itself can be determined
at any τ using Eq. (21), and all macroscopic hydrodynamic
quantities can be obtained by taking appropriate moments
of f . For example, the out-of-equilibrium entropy density is

17Due to the smallness of �̄ its back-reaction on the evolution of π̄

is negligible.
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given by Eq. (35). The shear and bulk viscous stresses are
obtained from the effective longitudinal and transverse pres-
sures, PL and PT , using π ≡ 2(PT − PL )/3 and � ≡ (PL +
2PT − 3P)/3, where

PL,T = D(τ, τ0)
�4

0

4π2
H̃L,T

(
τ0

τ
√

1 + ξ0
,

m

�0
,

ν0

�0

)

+ 1

4π2

∫ τ

τ0

dτ ′

τR(τ ′)
D(τ, τ ′) T 4(τ ′)

× H̃L,T

(
τ ′

τ
,

m

T (τ ′)
,
μ(τ ′)
T (τ ′)

)
, (48)

with

H̃L,T (y, z, α) ≡
∫ ∞

0
du u3

[
gg f̃ g

eq(u)HL,T (y, 0)

+ gq
(

f̃ q
eq(u, z, α)+ f̃ q̄

eq(u, z, α)
)
HL,T

(
y,

z

u

)]
,

(49)

where

HL(y, z) = y3

(y2 − 1)3/2

(√
(y2 − 1)(y2 + z2)

− (z2 + 1) tanh−1

√
y2 − 1

y2 + z2

)
, (50)

HT (y, z) = y

2(y2 − 1)3/2

(
−
√

(y2 − 1)(y2 + z2)

+ (z2 + 2y2 − 1) tanh−1

√
y2 − 1

y2 + z2

)
. (51)

2. Numerical results

Figure 10(a) shows the expansion trajectories obtained
from nonconformal kinetic theory, for the same initial con-
ditions as for the hydrodynamic solutions presented in the
preceding subsection, and the associated scaled-time evo-
lution of the shear and bulk viscous stresses is shown in
Fig. 11. Line styles and colors have the same meaning as for
the corresponding hydrodynamic solutions shown in Figs. 8
and 9. The initial Romatschke-Strickland parameters for the
nonequilibrium initial conditions used to generate the solid
lines are listed Table II.

The qualitative and quantitative similarities between the
kinetic theory results shown in Figs. 10(a) and 11 and the hy-
drodynamic results shown earlier in Figs. 8 and 9 are obvious.
Some of the quantitative differences are discussed in Ap-
pendix C but they do not impact our qualitative observations.
Additional insights into the mechanisms at work in Fig. 10(a)
can be gleaned from Fig. 10(b).18 In kinetic theory Eq. (35)

18Lacking an expression for the nonequilibrium entropy density in
nonconformal second-order dissipative hydrodynamics, there was no
analogous plot provided for the hydrodynamic solutions presented in
Sec. V B 1.

FIG. 10. (a) Expansion trajectories from nonconformal kinetic
theory with quark mass m = 1 GeV. Initial conditions are the same
and line colors and styles have the same meaning as in Fig. 8(a).
(b) Solid lines: evolution of the full (nonequilibrium + equilibrium)
specific entropy stot/n obtained from kinetic theory for the identically
colored solid lines in panel (a). Dotted lines show the corresponding
equilibrium contributions seq/n for comparison.

provides an unambiguous definition of the total entropy den-
sity, and it can be easily split into an equilibrium part and a
nonequilibrium correction. For the expansion trajectories cor-
responding to the set of far-from-equilibrium initial conditions
listed in Table II and shown as solid lines in Fig. 10(a), panel
(b) plots the scaled time evolution of the full specific entropy
using solid lines, together with the corresponding equilibrium
contributions seq/n using dotted lines. Note that, up to overall
larger specific entropies at smaller μ/T values, the qualitative
characteristics of the curves shown in Fig. 10(b) are the same
for initial condition sets I and II, and we will therefore discuss
them together.

These expansion trajectories are characterized by large
initial dissipative fluxes, resulting in large negative nonequi-
librium corrections to the initial specific entropy (i.e., the solid
lines start at much lower s/n values than the dotted lines).
The large negative deformation parameters ξ0, close to their
absolute lower limits ξmin = −1 (see Table II), imply that
initially the longitudinal local momentum distribution is much
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FIG. 11. Same as Fig. 9 but for the solutions obtained from
kinetic theory.

wider than the transverse one and almost flat. Accordingly,
the total (s/n)0 is much smaller than its initial equilibrium
contribution (seq/n)0. Note that, for both sets I and II, the
starting values of s/n (both equilibrium and nonequilibrium
parts) are the same for the blue and black lines; they start,
however, at different τ/τR due to different values for C. At
first sight, the steep initial drop of all the dotted seq/n lines
seems to indicate a rapid approach towards local thermal
equilibrium, on a timescale τ � τR, but, once seq/n reaches
the solid line showing the total s/n, it does not stay there but
“bounces off,” settling on the solid line for good only much
later at τ  τR.

The clue to understanding this phenomenon is the obser-
vation that the initial “fake” equilibrium state (when stot/n

TABLE II. Initial parameters (�0, ν0, ξ0 ) used to generate the
blue and black solid curves in the sets I and II of Fig. 10. As before φ̄0

denotes the corresponding initial value of φ̄ = π̄ − �̄. ψnc,0 denotes
the maximum value of φ̄0 that leads to trajectories for which initially
dμ/dτ > 0.

Set �0 (GeV) ν0 (GeV) ξ0 φ̄0 ψnc,0

I 0.342 0.597 − 0.981 −0.45 −0.301
II 0.209 1.001 −0.986 −0.45 −0.269

and seq/n coincide for the first time) happens at τ < τR, i.e.,
before microscopic collisions have had much of an effect.
It is rather a consequence of approximate free streaming at
very early times in Bjorken flow [54,55,58,64] which redshifts
the longitudinal momenta, causing the momentum distribu-
tion to eventually cross from its initially strongly prolate
(PL > PT ) to an oblate (PL < PT ) ellipsoidal shape.19 Near
the crossing point, when the momentum distribution is spher-
ical, the full specific entropy stot/n approximately20 coincides
with its equilibrium part seq/n, but since collisions require
more time they cannot keep the system in this “fake” equi-
librium state; instead, the momentum distribution becomes
anisotropic again by turning oblate. Only much later are colli-
sions able to locally isotropize the momentum distribution and
keep it there. At that stage the dotted lines for seq merge with
the solid lines for stot, and both measures for s/n saturate at
their common asymptotic, global thermal equilibrium value.

The time when seq/n approaches its minimum roughly
marks the point where viscous cooling turns into viscous heat-
ing and the initially rightward moving expansion trajectories
in Fig. 10(a) turn again towards the left of the phase diagram.
The solid lines show that the total specific entropy grows in
two spurts: The first of these (the viscous cooling stage) occurs
early, before the system reaches its “fake” equilibrium state,
and is driven by longitudinal momentum-stratification via free
streaming. The second spurt is caused by local thermalization
via microscopic interactions which lead to viscous heating.21

From the work of Israel and Stewart [65] it is known that,
in viscous hydrodynamics, the rate of entropy production is
quadratic in the bulk and shear stresses, ∝ π2/2η + �2/ζ .
The evolution of π and � for the initial condition set II is
shown in Fig. 11. Comparison of the solid lines for set II
in Fig. 10(b) with those in Fig. 11 confirms that the plateau
for s/n indeed lies close to the time when π passes through
zero, although slightly shifted by the contribution from the
bulk viscous entropy production rate.

C. (Absence of) early-time universality

In Refs. [58,64] it was shown that in non-conformal RTA
kinetic theory with Bjorken flow there is an early-time, far-
from-equilibrium attractor for the longitudinal pressure PL =
P + � − π (driven by the approximate free-streaming dy-
namics at early times) while no such attractor exists for the
shear and bulk viscous stresses π and � separately. That the

19Note that a noninteracting (i.e., free streaming) system initial-
ized with Romatschke-Strickland distributions characterized by two
energy scales (�0, ν0) and a negative ξ0 passes through such a
“fake thermal equilibrium” state. This happens at τfte = τ0/

√
1 + ξ0

when the free-streaming distribution function takes a thermal form:
f i(τfte; pT , pz ) = f i

RS(τ ; pT , (τfte/τ0 )pz ) = f i
eq(�0, ν0; p).

20That is, up to deviations caused by a nonexponential energy
dependence and a nonequilibrium normalization value.

21We note that the first spurt is larger for the more strongly coupled
(less viscous) system with C = 3/4π but the second spurt and overall
entropy production is higher for the less strongly coupled (more
viscous) system with C = 10/4π .
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FIG. 12. Evolution of the scaled effective longitudinal pressure
PL/P as a function of the inverse Knudsen number τ/τR. The red-
dotted line is the Navier-Stokes solution obtained with initial (T0, μ0 )
corresponding to set II of Fig. 8.

early-time evolution of π and � is not ruled by a univer-
sal attractor at early times is seen in Fig. 11 which shows
strong sensitivity to the initial conditions, with convergence
to the first-order Navier-Stokes attractor only at very late
times τ/τR  1 (i.e. small Knudsen number).22 In contrast, an
early-time, far-from-equilibrium attractor for PL/P, to which
all initial conditions converge on very short time scales τ �
τR, is seen in Fig. 12. Figure 14 in Appendix C demonstrates
that this attractor is not reproduced by the hydrodynamic
approximation studied in Sec. V A. All this is consistent with
earlier work [58,64] and extends it to systems with non-zero
net baryon number.

VI. CONCLUSIONS

In this paper we explored the evolution of phase trajec-
tories of a system of quarks and gluons undergoing Bjorken
expansion, comparing second-order Chapman-Enskog hydro-
dynamics and kinetic theory. Using this bare-bones model
we were able to reproduce the findings in Ref. [34] which,
under certain circumstances, suggest at first sight a loss
of entropy, violating the second law of thermodynamics.
This phenomenon is accompanied by a novel feature of far-
off-equilibrium expansion dynamics which we call viscous
cooling: the dissipative fluid cools more rapidly than an ideal
one, contrary to the more common internal friction effect in
dissipative fluids known as viscous heating. We found that
viscous cooling arises only for far-off-equilibrium initial con-
ditions where both the shear and bulk viscous stresses have the
opposite signs of their Navier-Stokes values, to which they

22This brief analysis does not rule out the existence of an early-
time attractor in the full phase-space of variables, (T, μ, π, �), as
often considered in the theory of nonautonomous dynamical systems.
Attractors using such generalized definitions have been pursued for
conformal and nonconformal fluids at vanishing chemical potential
[66,67].

relax over time. Its most dramatic manifestation, where the
cooling system initially moves towards larger μB whereas an
ideal fluid would have evolved towards smaller μB, requires
nonzero quark masses, large negative shear stress, and (rela-
tively) large positive initial bulk viscous pressures.23

As the origin of this phenomenon we identified a transfer
of negative entropy from the (large) dissipative correction in
the initial state to the equilibrium sector. For the massless
(conformal) case we succeeded in deriving a macroscopic ex-
pression for the dissipative entropy correction, and hence we
were able to check this mechanism in both the macroscopic
hydrodynamic and microsopic kinetic theory approaches. For
the massive (nonconformal) system our detailed quantitative
analysis relied entirely on the unambiguous microscopic defi-
nition (35) from kinetic theory. On a qualitative level, though,
the sign (i.e., the direction) of this entropy transfer can in
both cases be obtained from the macroscopic equation (43).
We confirmed that the total entropy (i.e., the sum of the
equilibrium contribution and the nonequilibrium correction)
always increases with time, as required by the H-theorem.

It is worth contemplating how the phenomenon of vis-
cous (or, more generally, dissipative) cooling generalizes to
systems undergoing arbitrary three-dimensional expansion,
without Bjorken symmetry. A particularly interesting prob-
lem arising in this context is to identify a general criterion
for far-off-equilibrium initial conditions (for both the flow
velocity profile and the dissipative fluxes) that lead to dis-
sipative cooling. For systems that ultimately move towards
local thermal equilibrium we expect dissipative cooling to be
a transient phenomenon that turns to dissipative heating once
the dissipative fluxes approach their Navier-Stokes values and
become weak. But there may exist (possibly externally driven)
flow profiles where this does not happen. It will be very
interesting to establish conditions for dissipative cooling that
can be realized in laboratory experiments and make the phe-
nomenon directly observable. These questions are the subject
of ongoing research.
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APPENDIX A: SECOND-ORDER HYDRODYNAMICS FOR
A MASSIVE QUARK-GLUON GAS

The energy-momentum tensor of a gas of quarks, anti-
quarks, and gluons is

T μν =
3∑

i=1

∫
dPi pμ

i pν
i f i = e uμuν − (P + �)�μν + πμν,

(A1)

23We stress that the natural scales for the (smaller) bulk and (larger)
shear viscous pressures differ by about an order of magnitude in our
system; see Figs. 9 and 11.
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where i differentiates between the species which have masses
m1 = m2 = m (quarks and antiquarks) and m3 = 0 (gluons),
and dPi ≡ gid3 p/[(2π )3Ep,i] with Ep,i =

√
p2 + m2

i . In the
constitutive relation, e is the energy density in the fluid
rest frame, P and � are the equilibrium and bulk viscous
pressures, respectively, and πμν is the shear stress tensor.
The projection tensors uμuν and �μν = gμν − uμuν select the
components of T μν along the temporal and spatial directions
in the local fluid rest frame, defined by uμ

LRF = (1, 0, 0, 0).
The conserved net-quark charge current is given by

Nμ = n uμ + nμ = Nμ
1 − Nμ

2 , (A2)

where n is the LRF net quark density and nμ the quark number
diffusion current, with

Nμ
i =

∫
dPi pμ

i f i. (A3)

In the Landau matching scheme the energy and net quark den-
sities are written in terms of the local equilibrium distributions
as

e = uα uβ

3∑
i=1

∫
dPi pα

i pβ
i f i

eq, (A4)

n = uα

2∑
i=1

(−1)i−1
∫

dPi pα
i f i

eq, (A5)

which defines the values for the inverse temperature and
chemical potential in the latter:

f i
eq = 1

exp (βu · pi − αi ) − θi
. (A6)

Here β = 1/T is the inverse temperature and αi = μi/T the
normalized chemical potential of species i (α1 = −α2 = α,
α3 = 0), and θ1 = θ2 = −1, θ3 = 1 distinguishes between
Fermi-Dirac and Bose-Einstein statistics. The dynamics of the
system is governed by conservation of energy-momentum and
charge current: ∂μT μν = 0 and ∂μNμ = 0. Projection of the
former along the fluid velocity, uμ∂νT μν = 0, and the latter
yield the comoving evolution of energy and number densi-
ties, whereas projection of the former orthogonal to the flow,
�

γ
ν ∂μT μν = 0, determines the acceleration of a fluid element:

ė = −(e + P)θ − �θ + πμν σμν, (A7)

ṅ = −nθ − ∂μnμ, (A8)

(e+P)u̇γ = ∇γ Peq − � u̇γ + ∇γ � − �γ
ν ∂μπμν. (A9)

Here we defined the comoving time derivative Ȧ = uμ∂μA, the
spatial derivative in the fluid rest-frame ∇μ = �μν∂ν , the fluid
expansion rate θ = ∇μuμ, and the velocity shear tensor σμν =
�

μν
αβ ∇αuβ , where

�
μν

αβ = (
�μ

α �ν
β + �

μ

β �ν
α

)/
2 − 1

3 �μν �αβ (A10)

projects any rank-2 tensor on its traceless part and locally
spatial components.

In Eqs. (A7)–(A9), the first terms on r.h.s. stem from ideal
hydrodynamic constitutive relations, while the others arise

due to dissipation. We shall eventually express comoving
derivatives of energy density and net-quark density in terms of
derivatives of inverse temperature β and normalized chemical
potential α. For this, we use the definitions given by Eqs. (A4)
to write

ė = −β̇ I (0)
3,0 − α̇

2∑
i=1

(−1)i I (0),i
2,0 ,

ṅ = β̇

2∑
i=1

(−1)i I (0),i
2,0 + α̇

2∑
i=1

I (0),i
1,0 , (A11)

where we used the notation I (r)
n,q = ∑3

i=1 I (r),i
n,q , with24

I (r),i
n,q ≡ 1

(2q + 1)!!

∫
dPi (u · pi )

n−r−2q
(
�αβ pα

i pβ
i

)q F i
eq.

(A12)

The function F i
eq stems from taking a derivative of f i

eq and is
defined as F i

eq = f i
eq f̃ i

eq, where f̃ i
eq = 1 + θi f i

eq.25

Using Eqs. (A11) along with the time evolution equa-
tions for e and n in Eqs. (A7) and (A8) we obtain

β̇ = −Gβ θ − Hβ (�θ − πμν σμν ),

α̇ = −Gα θ − Hα (�θ − πμν σμν ). (A13)

The functions G and H are defined as

Gβ = 1

D

[
(e + Peq )

2∑
i=1

I (0),i
1,0 + n

2∑
i=1

(−1)iI (0),i
2,0

]
, (A14)

Gα = − 1

D

[
(e + Peq )

2∑
i=1

(−1)iI (0),i
2,0 + n I (0)

3,0

]
, (A15)

Hβ =
∑2

i=1 I (0),i
1,0

D , Hα = −
∑2

i=1(−1)i I (0),i
2,0

D , (A16)

D ≡
(

2∑
i=1

(−1)i I (0),i
2,0

)2

− I (0)
3,0

2∑
i=1

I (0),i
1,0 . (A17)

In the conformal case, the coefficients Gβ and Gα simplify to
Gβ = −β/3, Gα = 0, consistent with [68].26 To compute the
bulk viscous pressure and shear stress tensor of the system we

24The superscript index r is somewhat redundant in the notation as
the moment depends only on the difference n−r, and one could have
simply defined Ji

n,q = I (0),i
n,q . However, we continue using it for ease

of comparison of our transport coefficients with those obtained pre-
viously for a single-component massive Boltzmann gas at vanishing
chemical potential [51].

25For later use we note that the function F i
eq has the follow-

ing properties: F i
eq = −1/(u · pi ) × ∂ f i

eq/∂β, F q
eq = ∂ f q

eq/∂α, and
F q̄

eq = −∂ f q̄
eq/∂α.

26We use the conformal relations, e(β, α) and n(β, α), given in
Eqs. (6) and (7) to simplify some of the terms appearing in Gβ and Gα:∑2

i=1(−1)iI (0),i
2,0 = −∂e/∂α = −3n/β and I0

3,0 = −∂e/∂β = 4e/β.
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start from their respective definitions

� = −�αβ

3

3∑
i=1

∫
dPi pα

i pβ
i δ f i,

πμν = �μν
αβ

3∑
i=1

∫
dPi pα

i pβ
i δ f i. (A18)

These off-equilibrium corrections are obtained by solving the
RTA Boltzmann equation

pμ
i ∂μ f i = −u · pi

τR

(
f i − f i

eq

)
(A19)

iteratively in powers of δ f i = f i − f i
eq. The leading order

correction is

δ f i
(1) = − τR

u · pi
pμ∂μ f i

eq = −τR

(
ḟ i
eq + 1

u · pi
pμ∇μ f i

eq

)
.

(A20)

With Eq. (A6) this can be written as

δ f i
(1) = τR

[
(u · pi )β̇ − α̇i + β θ

3(u · pi )
�μν pμ

i pν
i

]
F i

eq

+ τR β

(u · pi )
pμ

i pν
i σμν F i

eq

+ τR

[
β(u̇ · pi ) + pμ

i ∇μβ − pμ
i

u · pi
∇μαi

]
F i

eq.

(A21)

The terms in the first square brackets give rise to the bulk
viscous pressure, the second term involving σμν yields the
shear stress tensor, and the terms in the second line result in
the first-order quark diffusion current. Since it is not needed
for Bjorken flow we shall neglect the quark diffusion current
in the following. Also, we convert time derivatives of β and α

into velocity gradients using Eqs. (A13) to obtain

δ f i
(1) = τR θ

[
−Gβ (u · pi ) + G i

α + β�μν

3(u · pi )
pμ

i pν
i

]
F i

eq

+ τR β

(u · pi )
pμ

i pν
i σμν F i

eq

+ τR (�θ − πμν σμν )
[Hi

α − Hβ (u · pi )
]
; (A22)

here we defined G1
α = −G2

α = Gα,G3
α = 0 and H1

α = −H2
α =

Hα,H3
α = 0, with Gα and Hα given by Eqs. (A15) and (A16).

Note that the terms in the first line of the r.h.s. of Eq. (A22) are
of first order in velocity gradients whereas those in the second
line are of second order. Using Eq. (A22) in the definitions
(A18) of the bulk viscous pressure and shear stress tensor and
retaining terms only up to first order in gradients, we obtain
the Navier-Stokes expressions for � and πμν :

� = − τR β� θ, πμν = 2τR βπ σμν. (A23)

The coefficients β� and βπ are given by27

β� = 5

3
β I (1)

4,2 +
3∑

i=1

G i
α I (0),i

2,1 − Gβ I (0)
3,1

= 5

3
βπ − (e + P)c2

s ,

βπ = β I (1)
4,2 . (A24)

We simplified the coefficient β� using the definition of
squared speed of sound,28

c2
s ≡

(
∂P

∂e

)
s/n

= 1

(e + P)D
[
∂P

∂β

(
(e + P)

∂n

∂α
+ n

∂n

∂β

)

+ ∂P

∂α

(
(e + P)

∂e

∂α
+ n

∂e

∂β

)]
, (A25)

where D is given by Eq. (A17). Moreover, using the properties
of F i

eq one finds the following relations:

I (0),1
2,1 = −∂P1

∂α
, I (0),2

2,1 = ∂P2

∂α
, I (0)

3,1 = ∂P

∂β
. (A26)

Here P1 and P2 are the partial pressures of quarks and anti-
quarks, respectively. This yields29

3∑
i=1

G i
α I (0),i

2,1 − Gβ I (0)
3,1 = −Gα

∂P

∂α
− Gβ

∂P

∂β
= −(e+P) c2

s .

(A27)

To derive second-order relaxation-type evolution equa-
tions for the bulk and shear stresses one takes comoving
time-derivative of Eqs. (A18) and then uses the RTA Boltz-
mann equation; one finds

�̇ = −�

τR
+ �αβ

3

3∑
i=1

∫
dPi pα

i pβ
i

[
− δ f i

(1)

τR

+ 1

u · pi
pγ

i ∇γ δ f i

]
, (A28)

π̇ 〈μν〉 = −π 〈μν〉

τR
− �

μν
αβ

3∑
i=1

∫
dPi pα

i pβ
i

[
− δ f i

(1)

τR

+ 1

u · pi
pγ

i ∇γ δ f i

]
. (A29)

The momentum integration over δ f i
(1) is performed after using

Eq. (A22); as we are interested in computing the dissipative

27We have checked that in the conformal limit βπ → 4P/5 as
obtained in [68] for a conformal quark-gluon gas at finite μB. Also,
in this limit e = 3P and c2

s = 1/3 such that β� → 0 as expected.
28To obtain the following relation, we write dP/de = ∂P/∂β ×

dβ/de + ∂P/∂α × dα/de, and then use the condition of fixed spe-
cific entropy, i.e., d (s/n)eq = 0 ⇒ n de = (e + P) dn, to express the
derivatives dβ and dα in terms of de.

29To write Gβ and Gα in terms of the quantities appearing
in Eq. (A25) we used Eqs. (A13) to identify I (0)

3,0 = −∂e/∂β,∑2
i=1(−1)i I (0),i

2,0 = −∂e/∂α = ∂n/∂β, and
∑2

i=1 I (0),i
1,0 = ∂n/∂α.
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evolution to second order in gradients we also include the
second-order terms in Eq. (A22):

�̇ = −�

τR
− β� θ + K0(�θ − πμν σμν ) + 1

3
�αβ Kαβ,

(A30)

π̇ 〈μν〉 = −πμν

τR
+ 2βπ σμν − �

μν

αβ Kαβ, (A31)

with K0 ≡ (Hβ I (0)
3,1 −∑3

i=1 Hi
α I (0),i

2,1 ).30 We introduced a
rank-2 tensor Kαβ with contributions from a rank-4 tensor,
ρ

αβγ δ

2 , and from gradients of a rank-3 tensor, ρ
αβγ

1 :

Kαβ ≡
(

∇γ ρ
αβγ

1 + σγ δ ρ
αβγ δ

2 + θ

3
�γδ ρ

αβγ δ

2

)
. (A32)

These tensors are defined in analogy to Iμ1···μn
q , by ρμ1...μn

q ≡∑3
i=1 ρμ1···μn,i

q . The ρ tensors for each species stem from
deviations of the corresponding distribution functions from
equilibrium:

ρμ1···μn,i
q =

∫
dPi

(u · pi )q
pμ1

i · · · pμn
i δ f i. (A33)

In the rest of this Appendix we compute those ρμ1···μn
q that are

required to obtain Kαβ . We start by noting from Eq. (A32) that
Kαβ is at least of second order in gradients. This implies that
we can simply use the first-order terms of δ f i

(1) in Eq. (A22).
However, it is customary to rewrite δ f i

(1) such that it contains
only dissipative fluxes, � and πμν , and not gradients of veloc-
ity (like θ and σμν). This is implemented by substituting the
Navier-Stokes equations (A23) into the expression (A22) for
δ f i

(1) [41]. We denote the resulting correction as δ f i
(1),r where

the subscript r denotes resummation:

δ f i
(1),r = �

β�

[
Gβ (u · pi ) − G i

α − β

3(u · pi )
�μν pμ

i pν
i

]
F i

eq

+ β

2 βπ (u · pi )
pμ

i pν
i πμν F i

eq. (A34)

With this we express the ρ tensors as momentum integrals
over F i:

ρμ1···μn
q = �

β�

Gβ Iμ1···μn
q−1 − �

β�

2∑
i=1

G i
α Iμ1···μn,i

q

− �β

3β�

�γδ Iμ1···μn γ δ

q+1 + β

2βπ

πγδ Iμ1···μn γ δ

q+1 .

(A35)

To obtain the evolution of the bulk viscous pressure we
evaluate the projection of the tensor Kαβ along �αβ . For
the sake of clarity we show the contributions from the term
involving the gradient of ρ

αβγ

1 and those involving ρ
αβγ δ

2

30Using Hβ = (1/D) × ∂n/∂α, Hα = (1/D) × ∂e/∂α, along with
the definitions (A26), the coefficient K0 simplifies to K0 = (∂P/∂e)n.

separately:

1

3
�αβ ∇γ ρ

αβγ

1 = K1 �θ + 2

3
πμν σμν,

�αβ

3

(
σγ δ ρ

αβγ δ

2 + θ

3
�γδ ρ

αβγ δ

2

)
= K2 �θ + K3 πμν σμν.

(A36)

The coefficients occurring in these expressions are

K1 = 5

3β�

[
Gβ I (0)

3,1 −
3∑

i=1

G i
α I (1),i

3,1 − 5

3
βπ

]
= −5

3
,

K2 = 5

3β�

[
Gβ I (1)

4,2 −
3∑

i=1

G i
α I (2),i

4,2 − 7β

3
I (3)
6,3

]
,

K3 = 7β

3βπ

I (3)
6,3 . (A37)

Similarly, for the shear stress tensor evolution we compute the
projection of Kαβ along �

μν

αβ . This gives rise to the contribu-
tions

�
μν

αβ ∇γ ρ
αβγ

1

= K4 �σμν − 2 π 〈μ
γ ων〉γ + 2 π 〈μ

γ σ ν〉γ + 5

3
πμν θ,

�
μν

αβ

(
σγ δ ρ

αβγ δ

2 + θ

3
�γδ ρ

αβγ δ

2

)

= K5 �σμν + 4β

βπ

I (3)
6,3 π 〈μ

γ σ ν〉γ + K6 πμν θ, (A38)

with

K4 = 2

β�

[
Gβ I (0)

3,1 −
3∑

i=1

G i
α I (1),i

3,1 − 5

3
βπ

]
= −2,

K5 = 2

β�

[
Gβ I (1)

4,2 −
3∑

i=1

G i
α I (2),i

4,2 − 7 β

3
I (3)
6,3

]
= 6

5
K2,

K6 = 7β

3βπ

I (3)
6,3 = K3. (A39)

Putting everything together we finally arrive at the following
second-order nonconformal evolution equations for the bulk
and shear viscous stresses for a quark-gluon gas:

�̇ = −�

τR
− β� θ − δ�� �θ + λ�π πμν σμν, (A40)

π̇ 〈μν〉 = −πμν

τR
+ 2 βπ σμν + 2 π 〈μ

γ ων〉γ − τππ π 〈μ
γ σ ν〉γ

−δππ πμν θ + λπ� �σμν. (A41)

The transport coefficients are given by

δ�� = −(K0 + K1 + K2) = −K0 − 5

9
χ, (A42)

λ�π = 2

3
− K0 + K3 = 2

3
− K0 + 7 β

3 βπ

I (3)
6,3, (A43)

τππ = 2 + 4 β

βπ

I (3)
6,3, (A44)
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δππ = 5

3
+ 7β

3βπ

I (3)
6,3, (A45)

λπ� = −(K4 + K5) = −2

3
χ, with (A46)

χ ≡ 3

β�

[
Gβ

(
I (0)
3,1 + I (1)

4,2

)−
3∑

i=1

G i
α

(
I (1),i
3,1 + I (2),i

4,2

)

− β

3

(
5 I (2)

5,2 + 7I (3)
6,3

)]
. (A47)

At vanishing chemical potential and ignoring quantum statis-
tical effects, the expressions for τππ and δππ are identical to
those found in [51] for a single-species massive Boltzmann
gas. Moreover, in this limit the coefficient K0 = (∂P/∂e)n

becomes equal to the squared speed of sound c2
s , and the

coefficient χ reduces to31

χ = β

β�

[− 3 c2
s

(
I (0)
3,1 + I (1)

4,2

)− 5 I (2)
5,2 − 7 I (3)

6,3

]
. (A48)

Using Eqs. (8) and (9) in Ref. [51], this expression for χ is
found to match with their Eq. (40). Accordingly, the transport
coefficients obtained in this section fully reduce to those ob-
tained in [51] for a single-component Boltzmann gas at μ = 0
in the appropriate limit.

Also, in the conformal limit (m = 0), the coefficient I (3)
6,3 →

−βπ/(7β ). Accordingly, τππ → 10/7, δππ → 4/3, such that
Eq. (A41) reduces to the shear stress evolution equation de-
rived in [68] for a conformal quark-gluon gas at finite quark
density.

APPENDIX B: SECOND-ORDER ENTROPY CURRENT
FROM CONFORMAL KINETIC THEORY

We start with the general definitions (33) and (34) for the
entropy current in kinetic theory, assuming small deviations of
the distribution functions from their equilibrium forms: f i =
f i
eq + δ f i. One can then write

Sμ = sequμ + δSμ, (B1)

where seq is the equilibrium entropy density of the system and
the deviation δSμ can be Taylor expanded about equilibrium
as32

δSμ =−
3∑

i=1

gi

∫
dP pμ

(
φ′

i[ f i
eq] δ f i + φ′′

i

[
f i
eq

]
2

(δ f i )2+ · · ·
)

.

Here φ′
i[ f i

eq] and φ′′
i [ f i

eq] denote the first and second derivative
of φi[ f i] with respect to f i, evaluated at f i = f i

eq.

31For this, we substitute Gβ = −(e + P)/I (0)
3,0 = −βc2

s and Gα = 0
in Eq. (A47).

32Differently from Appendix A we here shall not include any de-
generacy factors in the integration measure but simply write dP ≡
d3 p/[(2π 3) p]. Also, as all particles are massless, we use a common
four-momentum pμ.

The leading-order term in δSμ (i.e., the one linear in δ f )
can be simplified using the Landau matching conditions. Tak-
ing the first derivative of Eq. (34),

φ′
i[ f i

eq] = ln

(
f i
eq

1 + θi f i
eq

)
, (B2)

and inserting the equilibrium distributions for quarks, an-
tiquarks, and gluons yields φ′

i[ f i
eq] = −β(u · p) + αi, where

αq = −αq̄ = α, αg = 0. With this the first term in δSμ evalu-
ates to

δSμ
1 = βuν

∫
dP pμ pν [gq(δ f q + δ f q̄) + gg δ f g]

− α

∫
dP pμ gq(δ f q − δ f q̄) (B3)

= β uνδT μν − α nμ = −α nμ; (B4)

here nμ is the net-quark diffusion current, and we used the
matching condition uνδT μν = 0. This result could have been
anticipated because to linear-order in dissipation the only
available four-vector is nμ [69]. Moreover, this shows that
the nonequilibrium correction to the entropy density uμSμ is
necessarily of second order in the dissipative fluxes as uμnμ =
0. This is also expected, because for a system with given
values of energy and conserved charge densities the thermal
equilibrium state represents a maximum of the entropy density
where its first derivatives with respect to the dissipative flows
vanish.

Let us now compute the corrections of O[(δ f )2] in the
entropy four-current:

Sμ = seq uμ − α nμ −
3∑

i=1

gi

∫
dP pμ

φ′′
i

[
f i
eq

]
2

(δ f i )2.

With f̃ i
eq = 1 + θi f i

eq, φ′′
i [ f i

eq] = 1/( f i
eq f̃ i

eq ) ≡ 1/F i
eq, and the

(δ f )2 correction to the entropy current is

δSμ
2 = −

3∑
i

gi

2

∫
dP pμ (δ f i )2

F i
eq

. (B5)

From Ref. [68] we know that to first order in the Chapman-
Enskog expansion

δ f q

Fq
eq

= Aμν
p πμν + Bp pμ nμ, (B6)

δ f q̄

F q̄
eq

= Aμν
p πμν + B̄p pμ nμ, (B7)

δ f g

Fq
eq

= Aμν
p πμν, (B8)

with

Aμν
p ≡ β

2(u · p)βπ

pμ pν,

Bp ≡ 1

βn

(
n

e+P
− 1

u · p

)
,

B̄p ≡ 1

βn

(
n

e+P
+ 1

u · p

)
; (B9)
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here βπ ≡ 4P/5 and βn ≡ 1
3 (∂n/∂α)β − n2T/(4P). Using

these definitions one obtains
3∑

i=1

gi
(δ f i )2

F i
eq

= β2

4β2
π

παβ πγ δ pα pβ pγ pδ 1

(u · p)2

× [
gq
(Fq

eq+F q̄
eq

)+ gg Fg
eq

]
+ 1

β2
n

nα nβ pα pβ gq

[(
n2

(e+P)2 + 1

(u · p)2

)

× (Fq
eq+F q̄

eq

)− 2n

(e+P)

1

u · p

(Fq
eq−F q̄

eq

)]

+ β

βπβn
παβ nγ pα pβ pγ 1

u · p
gq

[
n

e+P

× (Fq
eq+F q̄

eq

)− 1

u · p

(Fq
eq−F q̄

eq

)]
. (B10)

To obtain δSμ
2 we will substitute the above expression in

Eq. (B5). The term quadratic in the shear stress yields

δSμ
2,ππ = − β2

8 β2
π

παβ πγ δ

∫
dP

(u · p)2
pμ pα pβ pγ pδ

× [
gq
(Fq

eq+F q̄
eq

)+ gg Fg
eq

]
= − β2

4 β2
π

uμ παβ παβ

[
gq
(
Jq

3,2+Jq̄
3,2

)+ ggJg
3,2

]
, (B11)

where we introduced the thermodynamic integrals

Ji
n,l ≡ 1

(2l + 1)!!

∫
dP (u · p)n F i

eq. (B12)

Noting that

F i
eq = f i

eq f̃ i
eq = − 1

u · p

∂ f i
eq

∂β
(B13)

(with the derivative to be taken at fixed α) we simplify

gq
(
Jq

3,2 + Jq̄
3,2

)+ ggJg
3,2 = − 1

15

∑
i

gi

∫
dP (u · p)2

∂ f i
eq

∂β

= − 1

15

∂eeq

∂β
= βπ

β
(B14)

such that

δSμ
2,ππ = − β

4βπ

uμ παβ παβ. (B15)

The term in Eq. (B10) quadratic in the quark diffusion current
is manipulated similarly:

δSμ
2,nn = − gq

2β2
n

nαnβ

∫
dP pμ pα pβ

[
− 2n

(Fq
eq−F q̄

eq
)

(e+P)(u · p)

+
(

n2

(e+P)2 + 1

(u · p)2

)(Fq
eq+F q̄

eq

)]

= gq

2β2
n

uμ nαnα

[
n2

(e+P)2

(
Jq

3,1+Jq̄
3,1

)+ (
Jq

1,1+Jq̄
1,1

)

− 2n

e+P

(
Jq

2,1−Jq̄
2,1

)]
. (B16)

With Eq. (B13) this simplifies further to

gq
(
Jq

3,1 + Jq̄
3,1

) = −1

3

∂

∂β

∫
dP (u · p)2gq

(
f q
eq + f q̄

eq

)

= −1

3

∂
(
eq

eq + eq̄
eq
)

∂β
. (B17)

To compute gq(Jq
1,1 + Jq̄

1,1) we use Fq
eq = (∂ f q

eq/∂α), F q̄
eq =

−(∂ f q̄
eq/∂α) and obtain

gq
(
Jq

1,1+Jq̄
1,1

) = 1
3

∂
∂α

∫
dP (u · p) gq

(
f q
eq− f q̄

eq
) = 1

3
∂n
∂α

.

Finally we calculate

gq
(
Jq

2,1 − Jq̄
2,1

) = 1

3

∂

∂α

∫
dP (u · p)2 gq

(
f q
eq + f q̄

eq

)

= 1

3

∂
(
eq

eq + eq̄
eq
)

∂α
. (B18)

All this allows us to express δSμ
2,nn in compact form:

δSμ
2,nn = 1

6β2
n

uμ nα nα

[
− n2

(e + P)2

∂
(
eq

eq + eq̄
eq
)

∂β
+ ∂n

∂α

− 2n

(e + P)

∂
(
eq

eq + eq̄
eq
)

∂α

]
. (B19)

Finally, we evaluate the cross term between quark diffusion
and shear stress in Eq. (B10):

δSμ
2,nπ = −1

2

β

βπβn
παβ nγ

∫
dP

u · p
pμ pα pβ pγ

×
[

n

e+P

(Fq
eq+F q̄

eq

)− 1

u · p

(Fq−F q̄
eq

)]

= − β

βπβn
πμα nα gq

[
n

e+P

(
Jq

3,2+Jq̄
3,2

)− (
Jq

2,2−Jq̄
2,2

)]
.

Using

gq
(
Jq

3,2 + Jq̄
3,2

) = − 1

15

∂
(
eq

eq + eq̄
eq
)

∂β
,

gq
(
Jq

2,2 − Jq̄
2,2

) = 1

15

∂

∂α

∫
dP (u · p)2 gq

(
f q
eq + f q̄

eq

)

= 1

15

∂
(
eq

eq + eq̄
eq
)

∂α
, (B20)

we write

δSμ
2,nπ = β

15 βπβn
πμα nα

[
n

e + P

∂
(
eq

eq + eq̄
eq
)

∂β

+ ∂
(
eq

eq + eq̄
eq
)

∂α

]
. (B21)

Collecting all contributions we finally obtain for the second-
order entropy current of a conformal gas of quarks and gluons
at finite chemical potential

Sμ = seq uμ − α nμ − β

4βπ

uμ παβ παβ

+ cnn uμ nα nα + cnπ πμα nα, (B22)

044905-20



FAR-OFF-EQUILIBRIUM EXPANSION TRAJECTORIES IN … PHYSICAL REVIEW C 107, 044905 (2023)

FIG. 13. Upper panels compare phase trajectories from kinetic theory (blue and black) and second-order hydrodynamics (orange and
magenta). Panels (a) and (b) correspond, respectively, to initial condition sets I and II. The lower panels compare the evolution of the shear
(c) and bulk (d) inverse Reynolds numbers for set II of initial conditions.

with coefficients cnn and cnπ given by

cnn = 1

6β2
n

[
−
(

n

e + P

)2 ∂
(
eq

eq + eq̄
eq
)

∂β
+ ∂n

∂α

− 2n

e + P

∂
(
eq

eq + eq̄
eq
)

∂α

]
,

cnπ = β

15βπβn

[
n

e + P

∂
(
eq

eq + eq̄
eq
)

∂β
+ ∂

(
eq

eq + eq̄
eq
)

∂α

]
.

(B23)

The last term in Eq. (B22) implies that the entropy flux in
the fluid rest frame is not along the direction of net-quark
diffusion unless the latter points along an eigendirection of
the shear stress tensor.33

APPENDIX C: NONCONFORMAL KINETIC THEORY
VERSUS HYDRODYNAMICS

In this Appendix we compare some of the results obtained
in Sec. V using nonconformal kinetic theory (Sec. V B) and

33Note that at vanishing μB the second-order entropy density, s =
seq − β/(4βπ )παβπαβ , with βπ = 4P/5, is identical in form to that
obtained for a conformal Boltzmann gas [70].

secondorder hydrodynamics (Sec. V A). The insights gained
from this comparison are not new but confirm the findings
reported in Refs. [58,64] and extend them to systems with
nonzero net baryon charge.

Figure 13 compares the phase trajectories (upper panels)
and the evolution of the dissipative flows (lower panels)
from second-order viscous hydrodynamics (“hydro,” taken
from Fig. 8) and kinetic theory (“KT,” taken from Fig. 10).
While the hydrodynamic and kinetic expansion trajectories
agree well for equilibrium initial conditions (where dissipa-
tive effects manifest themselves by viscous heating), and this
agreement gets better with increasing interaction strength,
they differ substantially for the far-off-equilibrium initial con-
ditions for which the expansion initially leads to viscous
cooling. Clearly, the hydrodynamic approach as a macro-
scopic approximation of the underlying microscopic kinetic
theory degrades in far-off-equilibrium situations. This might
not have been expected from the evolutions of the normalized
shear viscous stress shown in panel (c) which shows discrep-
ancies between microscopic and macroscopic approaches that
are of similar size for both sets of initial conditions. On the
other hand, the evolution of the normalized bulk viscous pres-
sure shown in panel (d) also shows much larger discrepancies
between “hydro” and “KT” for the far-off-equilibrium initial
conditions, in particular in the amplitude of its oscillations
around zero at early times. Both features are shared by both
weakly and strongly coupled fluids, at least qualitatively.
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FIG. 14. Evolution of the scaled longitudinal pressure in kinetic
theory (blue curves) and second-order hydrodynamics (magenta
curves). The kinetic theory trajectories are identical to those in
Fig. 12.

Figure 14 illustrates the observation made in Refs. [58,64]
that the failure of the (standard) second-order viscous hydro-
dynamic approximation is most severe at early times when
the expansion rate is large and the system is far away from
equilibrium. During this stage the expansion is dominated
by free streaming and the exact kinetic evolution (blue) of
the longitudinal pressure is ruled by a “far-from-equilibrium
attractor” that is not reproduced in the hydrodynamic approx-
imation (magenta) [64]. The discrepancies are particularly
large for far-from-equilibrium initial condition ((P/PL )0  1
or (P/PL )0 � 1).34 Readers interested in a more detailed dis-
cussion are referred to Refs. [58,64].

APPENDIX D: POSSIBLE VIOLATION OF THE SECOND
LAW IN CONFORMAL SECOND-ORDER

HYDRODYNAMICS

Although the second law of thermodynamics is always
satisfied in kinetic theory where the H-theorem holds exactly,
it can be violated in hydrodynamics as the latter involves a
finite-order truncation (in powers of velocity gradients) of the
microscopic theory.35 In this Appendix we discuss scenarios
for which the conformal second-order hydrodynamic theory
presented in Sec. IV A violates the second law. Let us con-
sider the hydrodynamic entropy current (15) for Bjorken flow

34In the latter case the hydrodynamic approximation even produces
a negative longitudinal pressure at early times, violating a fundamen-
tal kinetic theory limit for the system at hand [64].

35One standard approach for obtaining Israel-Stewart (or
relaxation-type) hydrodynamics is via the “entropy method”
[71] where the second law holds by construction. However, within
this approach one does not capture all the allowed terms in the shear
and bulk evolution equations that were obtained in Appendix A.

where net-quark diffusion vanishes:

Sμ = seq uμ − β

4 βπ

uμ παβ παβ. (D1)

Taking the divergence of the entropy current dμSμ, where dμ

is the covariant derivative, one obtains

dμSμ = παβ

[
β σαβ − D

(
β

4βπ

)
παβ − β

4βπ

παβ θ

− β

2βπ

Dπαβ

]
; (D2)

here D ≡ uμdμ is the comoving time derivative. For Bjorken
expansion the above expression yields

d (sτ )

dτ
= λ π

[
β

λ
− π − π

τ

λ

dλ

dτ
− 2 τ

dπ

dτ

]
, (D3)

where λ ≡ 3β/(8βπ ) and βπ = 4P/5. Using the confor-
mal shear evolution equation given by Eq. (4) with � = 0,
Eq. (D3) becomes

d (sτ )

dτ
= 2 λ π2

[
τ̄ +

(
τππ

3
+ δππ − 1

2

)
− τ

2λ

dλ

dτ

]
, (D4)

where we defined the scaled proper time τ̄ ≡ τ/τR, and the
coefficients are given by τππ = 10/7 and δππ = 4/3. We now
use

τ

λ

dλ

dτ
= − τ

T

dT

dτ
− τ

e

de

dτ

= − a2 n

AT
+ 4

3
(1 − π̄ )

(
1 + a4 e

AT

)
, (D5)

where the response functions a2, a4 and the determinant A =
a1 a4 − a2 a3, are defined in Eqs. (38). We also introduced the
shear inverse Reynolds number π̄ ≡ π/(e + P). Collecting all
these, the entropy production is obtained as

d (sτ )

dτ
= 2 λ π2 (τ̄ + B + C π̄ ), (D6)

where B and C are defined as

B ≡ τππ

3
+ δππ − 7

6
+ 1

2AT

(
a2 n − 4

3
a4 e

)
,

C ≡ 2

3

(
1 + a4 e

AT

)
. (D7)

In the conformal case, the coefficient B can be further simpli-
fied using

a1 = 3 seq, a2 = 3 n, a3 = gq

3
T μ,

a4 = T 2

(
gq

6
+ gq

2 π2

(μ

T

)2
)

, (D8)

such that the term (a2 n − 4 a4 e/3)/(2AT ) → −1/6. Ac-
cordingly, B reduces to a constant independent of μ/T :

B = τππ

3
+ δππ − 4

3
= 10

21
. (D9)

Thus, the entropy of a fluid cell decreases only if
π̄ < −(τ̄ + 10/21)/C ≡ π̄∗. Note that π̄∗ not only depends
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FIG. 15. Examples showing π̄∗ as a function of τ̄ , for expansion
trajectories calculated with second-order CE hydrodynamics, below
which the second law of thermodynamics would be violated. The
dotted and dashed green and blue lines correspond to phase trajecto-
ries in Fig. 2(a) with the same styles and colors. Note that none of the
trajectories of π̄ shown in Fig. 2 dip below the corresponding lines
shown here.

explicitly on τ via the term τ̄ but is also an implicit function
of proper time through its dependence on T (τ ) and μ(τ )
appearing in C; thus π̄∗ depends on the trajectories in the phase
diagram. In Fig. 15 we show using green and blue dashed
and dotted curves the values of π̄∗ calculated, respectively,
along the green and blue dashed and dotted trajectories of
Fig. 2(a). The minimum value of π̄ for the green and blue
dashed curves of Fig. 2(a) [as shown in panel Fig. 2(b)] is
−0.3, which is higher than the maximum of π̄∗ for these
trajectories. Similarly, π̄ for the dotted trajectories are always
larger than the corresponding π̄∗ in Fig. 15. As a result, the
second law holds for all the hydrodynamic trajectories shown
in Fig. 2.

However, for very early initialization (τ̄ ≈ 0) at consider-
ably large initial values of μ/T (for example, T0 = 0.5 GeV
and μ0 = 1 GeV) the initial value of π̄∗ is approximately
−0.44. This is above the lower bound of π̄ = −0.5 allowed by
kinetic theory (shown by the red dashed line in Fig. 15). Thus,
there exist, in general, values of π̄ that are allowed by kinetic
theory for which conformal second-order Chapman-Enskog
hydrodynamics violates the second law of thermodynamics in
certain regions of the phase diagram.
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