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Single-pion production in electron-proton interactions
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This paper presents an extension of the MK single-pion production model [Kabirnezhad, Phys. Rev. D 97,
013002 (2018); 102, 053009 (2020)] to high hadron invariant mass (W ) and high momentum transfer (Q2) to
conform to the predictions of perturbative QCD due to the quark-hadron duality evidence. New form factors
for several resonances and nonresonant background in the electron-nucleon cross sections are determined taking
into account the experimental data and improved evaluation techniques. Fits to electron-proton scattering data
are used to constrain free parameters and to assign the related uncertainties of the model. The results from this
work can be used to determine the vector current in the corresponding neutrino-nucleon cross sections, which is
an important input for event generators in long-baseline neutrino-oscillation measurements.
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I. INTRODUCTION

Neutrino interactions that produce a single pion in the final
state are of critical importance to accelerator-based neutrino
experiments. Single-pion production (SPP) channels make up
the largest fraction of the inclusive neutrino-nucleus cross
section in the 1–3 GeV region covered by most accelerator-
based neutrino beams. Models of SPP cross-section processes
are required to accurately predict the properties of the final
state (number of particles and their kinematics) in neu-
trino interactions. Full predictions incorporate models of the
neutrino-nucleon interactions [1–17], models of the nucleus
[13,18–22] (in which the target nucleon resides and which
must be traversed by the interaction’s final-state particles), and
models of detector response.

An accurate model for the neutrino-nucleon reaction is
essential for an accurate description of neutrino-nucleus inter-
actions. However, a nuclear model is still required to perform
comparisons with neutrino-nucleus data. Model comparisons
can only test the convolution of nucleon level plus nuclear
models. However, if the nucleon level model is known to be
accurate, comparison can be used to infer information about
the suitability of the nuclear model.

The underlying fundamental theory of SPP from a nucleon
is quantum chromodynamics (QCD), and QCD calculations
provide important and reliable predictions in the perturbative
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(high-Q2) domain. However, in the resonance region (low-
Q2, nonperturbative domain), phenomenological models are
necessary to describe SPP. Fortunately, quark-hadron dual-
ity [23–25] (which establishes a relationship between the
quark-gluon description at high Q2, and the hadron-meson
description at low Q2) allows for the use of perturbative
QCD calculations to constrain the asymptotic (high-Q2) be-
havior of form factors in the phenomenological models.
Incorporating duality into the model building ensures that
the phenomenological constraints from data tend towards the
QCD predictions as Q2 increases.

Most phenomenological models are developed in the low-
Q2 region [Q2 < 1.5 (GeV/c)2] without using the perturbative
QCD constraints of the high-Q2 limit. They include a descrip-
tion of single-pion production through two distinct channels:
(i) resonance production is where the exchange boson has
the requisite four-momentum to excite the target nucleon to
a resonance state, which then promptly decays to produce a
final-state meson, and (ii) nonresonant production, where the
pion is created at the interaction vertex (with the outgoing
nucleon), which produces final states identical to resonance
production that results in non-negligible interference terms.

The majority of SPP models are in quantitative agree-
ment with the experimental data in the first resonance region
(W < 1.3 GeV) where the resonance structure and the de-
cay amplitude of the � resonance are well characterized.
However, understanding SPP in the second resonance and the
third resonance regions (higher W ), where several resonances
overlap and interfere with each other, is crucial for neutrino-
oscillation experiments such as NoνA and DUNE. The most
onerous challenge in developing a high-precision SPP neu-
trino interaction model is to correctly include the effects
of overlapping structures from the many resonances, each
with their own form factors, that contribute to the hadronic
tensor.
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SPP models must contain adjustable parameters associated
with each resonance form factor, which can be constrained
by data. These parameters from the vector current can be fit
to existing electron-scattering data, as discussed in Ref. [2].
However, in this paper, the model is extended to a region with
higher Q2 and W , known as the transition region between res-
onance and deep-inelastic-scattering (DIS) regions (Sec. II).
Therefore, all available electron-scattering SPP data are in-
cluded in the analysis. We also improved the analysis and
the evaluation of the systematic uncertainties, as discussed in
Sec. III.

II. THE UPDATE OF THE MK MODEL

The first iteration of the MK model [1,2] provides a full
kinematic description of SPP in neutrino-nucleon interactions,
including the resonant and the nonresonant interactions plus
their interference terms in the helicity basis. In this frame-
work, the cross section is defined (Eq. (18) of Ref. [1]) from
the summation of all helicity amplitudes of resonances and
nonresonant backgrounds.

The helicity amplitudes are defined by the incident nucleon
helicity (λ1), the outgoing nucleon helicity (λ2), and the gauge
boson’s polarization (λk):

F̃λk
λ2,λ1

= 〈Nπ |eρ

λk

(
1

2M

)
JV
ρ |N〉, (1)

where JV is the hadronic vector current and eλk (eL, eR, e±) are
polarizations of the gauge boson (transverse and longitudinal)
vectors:

eα
L = 1√

2
(0 1 − i 0),

eα
R = 1√

2
(0 − 1 − i 0),

eα
λ = 1√∣∣(ε0

λ

)2 − (
ε3
λ

)2∣∣
(
ε0
λ 0 0 ε3

λ

)
,

where λ = ∓ and ε0
λ (ε3

λ) is the first (last) component of the
lepton currents:

ε
ρ
λ = ūl ′λ (k2)γ ρ (1 − γ5)ul (k1). (2)

The explicit expressions of the helicity amplitude for reso-
nances and nonresonant backgrounds [1,2] are reproduced in
Appendixes A and B. The helicity amplitudes of the reso-
nances are a product of the resonance production amplitudes
( f V

−1, f V
−3, and f V (λ)

0+ ) and the decay amplitudes. Resonance
production in the MK model [2] follows the Rarita-Schwinger
formalism [26] for the first and the second resonance re-
gions (W < 1.6 GeV) and the formalisms of the Rein-Sehgal
model [4] in the third region (W > 1.6 GeV). The nonresonant
interactions follow the Hernandez et al. model [7], which
is deduced from the chiral-perturbation (ChPT) theory La-
grangian of the pion-nucleon system and it is not reliable
at high hadron invariant mass (W > 1.4 GeV). The vector
form factors were defined to improve agreement with exclu-
sive electron-scattering data in the resonance region (Q2 <

1 GeV/c)2.

TABLE I. Vector-meson masses.

k ρ group m(ρ )k (GeV) ω group m(ω)k (GeV)

1 ρ(770) 0.77526 ω(782) 0.78265
2 ρ(1450) 1.465 ω(1420) 1.410
3 ρ(1700) 1.720 ω(1650) 1.670
4 ρ(1900) 1.885 ω(1960) 1.960
5 ρ(2150) 2.149 ω(2150) 2.148

In the updated approach presented here, the MK model is
extended to higher momentum transferred (Q2) by introduc-
ing form factors based on vector meson dominance (VMD)
models consistent with the QCD theory. The form factors
should exhibit a certain asymptotic Q2 behavior to satisfy the
asymptotic condition for helicity amplitudes at Q2 → ∞, as
prescribed by perturbative QCD (pQCD) [23,24].

The VMD model is based on the strongly interacting vir-
tual vector mesons as intermediaries in the coupling between a
virtual photon and a nucleon. The model has been a successful
theory to determine form factors1 at low Q2 and can reproduce
Q2 evolution of form factors at high Q2, to join smoothly
with pQCD calculations [27]. Thus, the VMD models being
consistent with pQCD predictions show a satisfactory result
in both perturbative and nonperturbative domains [23,28]. A
list of vector mesons [23] is shown in Table I.

A. Resonant interactions

The resonance production amplitudes, f V
−1, f V

−3, and
f V (λ)
0+ , contain the transition nucleon form factors. They

are presented in the previous paper [2] and as the elec-
tron scattering data is used in this work too. When used
in neutrino interactions, the mass of the outgoing charged
lepton cannot be ignored for charge current interactions.
Therefore, the more general vector helicity amplitudes for
the P33(1232), P11(1440), D13(1520), and S11(1535) reso-
nances, which can be used for both electron and neutrino
interactions, are presented2 in Eqs. (3)–(6) (Note that for
consistency all the notations in the following relations are
taken from the previous works [1,2], such as the nu-
cleon’s mass (M), the invariant mass (W ), W± = W ± M,
k = k1 − k2, where k1(2) is the momentum of the incom-
ing (outgoing) lepton, Q2 = −k2 = −(k1 − k2)2 = k2 − k2

0 ,
and Ek = √

M2 + k2.):

(i) resonance P33(1232)

f V
−3 = − |k|√

2W (Ek + M )

[
C3W+

M
+ C4

M2
W k0

+ C5

M2
(W k0 − k2)

]
,

1The dipole form factor would be obtained if vector mesons propa-
gate between the virtual photon and the nucleon.

2For the rest of the resonances, the helicity amplitudes in the Rein-
Sehgal model with the lepton mass correction are used [1,2].
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f V
−1 = |k|√

6W (Ek + M )

[
C3

MW
(k2 − MW+)

+ C4

M2
W k0 + C5

M2
(W k0 − k2)

]
,

f V (λ)
0+ = − 1

Cλ

|k|√
3W (Ek + M )

(|k|ε0
λ − k0ε

3
λ

)[C3

M

+ C4

M2
W + C5

M2
(W − k0)

]
, (3)

(ii) resonance D13(1520)

f V
−3 =

√
Ek + M

2W

[
C3

M
W−+ C4

M2
W k0

C5

M2
(W k0−k2)

]
,

f V
−1 =

√
Ek + M

6W

[
C3

M

(
W− − 2

k2

Ek + M

)

+ C4

M2
W k0 + C5

M2
(W k0 − k2)

]
,

f V (λ)
0+ = 1

Cλ

√
Ek + M

3W

(|k|ε0
λ − k0ε

3
λ

)[C3

M
+ C4

M2
W

+ C5

M2
(W − k0)

]
, (4)

(iii) resonance P11(1440)

f V
−1 = |k|√

W (Ek + M )

[
g1 − g2

W 2+
k2

]
,

f V (λ)
0+ = − 1

Cλ

|k|√
2W (Ek + M )

(|k|ε0
λ − k0ε

3
λ

)
× 1

W+
[g1 − g2], (5)

(iv) resonance S11(1535)

f V
−1 =

√
(Ek + M )

W

[
g1

W 2+
k2 − g2

W+
W−

]
,

f V (λ)
0+ = 1

CV
λ

√
Ek + M

2W

(|k|ε0
λ − k0ε

3
λ

)[−g1W−
W 2+

+ g2

W+

]
,

(6)

where the lepton mass appears in Cλ =
√

|(ε0
λ )2 − (ε3

λ )2|. CV
3 ,

CV
4 , and CV

5 (gV
1 and gV

2 ) are the VMD form factors for res-
onances with spin-3/2 (spin-1/2). Using the parametrization
suggested by Vereshkov and Volchanskiy [23] yields

C(p)
α (k2) = C(p)

α (0)

L(p)
α (k2)

K∑
k=1

aαkm2
k

m2
k − k2

(α = 3–5), (7)

g(p)
β (k2) = g(p)

β (0)

L(p)
β (k2)

K∑
k=1

bβkm2
k

m2
k − k2

(β = 1–2). (8)

Here m2
k = m2

(ρ)k for the � [P33(1232)] resonance and m2
k =

(m2
(ω)k + m2

(ρ)k )/2 for the resonances in the second region:
P11(1440), D13(1520), and S11(1535). Table I gives the masses
m(ρ)k and m(ω)k . The logarithmic renormalizations L(p)

α (k2)

and L(p)
β (k2) are defined to retain the asymptotic behavior as it

is predicted by pQCD [23]:

L(p)
α(β )(k

2) =
[

1 + h(V )
α(β ) ln

(
1 − k2

�2
QCD

)

+ k(V )
α(β ) ln2

(
1 − k2

�2
QCD

)]nα(β )/2

, (9)

where n1 = n3 	 3, n1 > n2, and n5 > n3 > n4.
The parameters aαk and bβk must obey a number of rela-

tions to fulfill asymptotic QCD (quark-hadron duality). They
are referred to as linear superconvergence relations as dis-
cussed in Ref. [23].

For α = 3,

K∑
k=1

a3k = 1,

K∑
k=1

a3km2
k = 0, (10)

K∑
k=1

a3km4
k = 0.

For α = 4 and 5,

K∑
k=1

aαk = 1,

K∑
k=1

aαkm2
k = 0,

K∑
k=1

aαkm4
k = 0,

K∑
k=1

aαkm6
k = 0. (11)

For β = 1,

K∑
k=1

b1k = 1,

K∑
k=1

b3km2
k = 0, (12)

K∑
k=1

b1km4
k = 0.

For β = 2,

K∑
k=1

b2k = 1,

K∑
k=1

b2km2
k = 0,

K∑
k=1

b2km4
k = 0,

K∑
k=1

b2km6
k = 0. (13)

B. Nonresonant background

The helicity amplitudes of nonresonant backgrounds from
the ChPT diagrams were calculated in the previous work [1]
and are reproduced in Appendix B. In this work, the dipole
vector form factors of ChPT theory (low W ) are changed to
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VMD form factors as suggested by Lomon [28]. They are

F iv
1 (k2) = N

2

1.0317 + 0.0875(1 − k2/0.3176)−2

1 − k2/0.5496
F ρ

1 (k2)

+Rρ ′
m2

ρ ′

m2
ρ ′ − k2

Fρ
1 (k2)

+ (1 − 1.1192N/2 − Rρ ′ )F D
1 (k2),

F iv
2 (k2) = N

2

5.7824 + 0.3907(1 − k2/0.1422)−1

1 − k2/0.5362
F ρ

2 (k2)

+ κρ ′Rρ ′
m2

ρ ′

m2
ρ ′ − k2

Fρ
2 (k2)

+ (κv − 6.1731N/2 − κρ ′Rρ ′ )F D
2 (k2),

F is
1 (k2) = Rω

m2
ω

m2
ω − k2

Fω
1 (k2)

+Rφ

m2
φ

m2
φ − k2

Fφ

1 (k2) + (1 − Rω )F D
1 (k2),

F is
2 (k2) = κωRω

m2
ω

m2
ω − k2

Fω
2 (k2)

+ κφRφ

m2
φ

m2
φ − k2

Fφ

2 (k2)

× (κs − κωRω − κφRφ )F D
2 (k2), (14)

where κv = 3.793, κs = −0.12, mρ ′ = 1.465 GeV, mω =
0.782 65 GeV, and mφ = 1.020 GeV. The vector form factors,
Fρ

1,2, Fω
1,2, and F D

1,2, are given by

FM,D
1 (k2) = �2

1,D

�2
1,D − k̃2

�2
2

�2
2 − k̃2

,

FM,D
2 (k2) = �2

1,D

�2
1,D − k̃2

(
�2

2

�2
2 − k̃2

)2

, (15)

where M = ρ and ω and �1,D is �1 for FM
1,2 and �D for F D

1,2,

Fφ

1 (k2) = FM
1

( −k2

�2
1 − k2

)3/2

, Fφ

1 (0) = 0,

Fφ

2 (k2) = FM
2

(
μ2

φ − �2
1k2

μ2
φ�2

1 − k2

)3/2

, (16)

where

k̃2 = k2
ln

[(
�2

D − k2
)
/�2

QCD

]
ln

(
�2

D/�2
QCD

) .

The nonresonant background of the MK model is ex-
tended to high W (W > 1.4 GeV), using the Regge trajectory
approach [29]. The propagators of the t-channel meson ex-
change ChPT diagrams are replaced by the corresponding
Regge propagators (ReChi). The expressions of the Regge
propagators for the meson trajectories of the π and ρ are the

following:

Pπ (t, s) = −α′
π�[−απ (t )]

(
S

Sπ
0

)απ (t )

,

Pρ (t, s) = −α′
ρ�[−αρ (t )]

(
S

Sρ
0

)[αρ (t )−1]

, (17)

where Sπ
0 and Sρ

0 are adjustable parameters. The Regge trajec-
tory of π and ρ are as follows:

απ (t ) = 0.75
(
t − m2

π

)
,

αρ (t ) = 0.53 + 0.85t . (18)

Following the Hybrid model’s parametrization [11], the helic-
ity amplitudes for nonresonant background will be

F̃ = cos2 φ(W )F̃ChPT + sin2 φ(W )F̃ReChi, (19)

where F̃ = F̃λk
λ2,λ1

and

φ(W ) = π

2

(
1 − 1

exp(W −1.7)
0.1

)
. (20)

F̃ChPT are the helicity amplitudes for the ChPT background
and F̃ReChi are the modified helicity amplitudes with Regge
propagators.

This approach with the linear Regge trajectories [Eq. (18)]
is valid at high-energy and low-momentum transfer. To en-
sure that the model reproduces data at high-momentum
transfer, the trajectories are multiplied by a factor of (1 +
2.4Q2/W 2)−1, as suggested in Ref. [30]. The adjustable pa-
rameters in the Regge trajectory and VMD form factors are fit
to the available exclusive electron-scattering data in the next
section.

III. ANALYSIS OF ELECTRON-INDUCED
EXCLUSIVE DATA

Exclusive SPP electron-proton-scattering data are used to
fit the relevant free parameters of the model. Fits were used
to determine the Q2 dependence of the transition form fac-
tors for resonance production and nonresonant background
SPP. The analysis method is similar to the previous work
[2]. There measurements of the single-pion differential cross
sections for electrons scattering off of a hydrogen target in
a limited kinematic region [31,32] were used in the fits.
However, in this analysis, all available data from the CLAS
Collaboration [31–35] in the relevant kinematic region (Q2 ∈
[0.16–6.00] (GeV/c)2 and W ∈ [1.1–2.01] GeV) were used.

A list of resonances with vector currents, used in this
updated MK model, is given in Table II. All resonances are
included since data with higher W are included in the fit.
Therefore, all resonances in Table II will have their own form
factors. This differs from the previous analysis where only
data with W < 1.68 GeV were included in the fit.

The use of external data to constrain the free parameters
of the model has a large impact on the model predictions. It
is, therefore, crucial to minimize the bias that would come
from a single experiment’s measurement via systematic un-
certainties or by extrapolating data outside the regions of that
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TABLE II. Nucleon resonances, resonance’s mass (MR), reso-
nance’s width (�0), branching ratio (χE ), resonance’s signs (σ D), and
resonance’s phases.

Resonance MR (MeV) �0 (MeV) χE σ D Phase

P33(1232) 1236 130 0.994 + 0.55
P11(1440) 1410 423 0.65 + 0.0
D13(1520) 1519 120 0.60 + 1.68
S11(1535) 1545 175 0.45 − 1.60
P33(1600) 1.64 200 0.16 + 1.98
S31(1620) 1610 130 0.3 + –
F15(1680) 1685 120 0.65 − –
D33(1700) 1710 300 0.15 + –
P11(1710) 1710 140 0.11 − –
P13(1720) 1720 250 0.11 + –
F35(1905) 1880 330 0.12 − –
P31(1910) 1900 300 0.22 + –
P33(1920) 1920 300 0.12 − –
F37(1950) 1930 285 0.40 + –

experiment’s kinematic coverage. A simultaneous fit to the
full dataset properly accounts for correlations in the experi-
mental data. The evaluation provides a covariance matrix for
the fit parameters required to fully characterize the systematic
uncertainty of the model. By design this matrix properly in-
cludes correlations in the data as well as those enforced by the
model.

As a practical matter, the addition of several datasets from
different channels and kinematic regions can lead to Peelle’s
Pertinent puzzle [36]. It is likely to occur when a significant
discrepancy exists or some experimental uncertainties are un-
accounted for or underestimated. As described in Ref. [37],
some of the electron-scattering data used in this fit do not
have systematic uncertainties evaluated for all angular bins,
and in some cases, no systematic uncertainties are reported. In
addition, the measurements (see Table III) for the ep → enπ+
channel at high Q2 (or W ) have uncertainties lower than
those for measurements of other channels. This result tends
to favor the data used to constrain these channels noticeably
over the ep → epπ0 channel. Therefore, weighting factors are
introduced for problematic datasets in order to avoid Peelle’s

TABLE III. Datasets analyzed by the CLAS Collaboration over
a vast kinematic range for two channels and their weighting factors
(WF) used in this analysis.

Channel Ee (GeV) Q2 (GeV/c)2 W (GeV) WF

ep → epπ 0 1.046 0.16–0.32 1.1–1.34 0.85
ep → enπ+ 1.046 0.16–0.32 1.1–1.34 0.5
ep → enπ+ 1.515 0.30–0.60 1.11–1.57 1
ep → epπ 0 1.645 0.40–0.90 1.1–1.68 1
ep → epπ 0 2.445 0.65–1.80 1.1–1.68 1
ep → enπ+ 5.499 1.80–4.00 1.62–2.01 0.5
ep → enπ+ 5.754 1.72–4.16 1.15–1.67 0.5
ep → epπ 0 5.754 3.00–6.00 1.11–1.39 1

TABLE IV. Fit parameters (spin-3/2 resonances). Dependent pa-
rameters are tabulated in the lower part of the table.

Parameters P33(1232) D13(1520)

aV
14 −1.4533 −1.410

CV
3 (0) 1.98 2.70

CV
4 (0) −1.4285 −2.598

CV
5 (0) 0.0 0.883

�V 0.26 0.116
hV

3 −0.0415 0.1751
kV

3 0.0216 −0.0338
hV

4 −0.0642 0.0
kV

4 0.0341 0.0
hV

5 – 0.0
kV

5 – 0.0
aV

11 2.0897 2.3544
aV

12 −3.4146 −4.5682
aV

13 3.7782 4.6238
aV

21 2.101 2.142
aV

22 −3.586 −3.41
aV

23 4.033 3.146
aV

24 −1.548 −0.879

Pertinent puzzle and to reduce any bias to regions not covered
by those data. The weighting factors for different datasets used
in this analysis are shown in Table III.

The 88 free parameters cover all 14 transition form fac-
tors for resonance production and nonresonant backgrounds.
These parameters are fit to the experimental data using the
MIGRAD algorithm in the MINUIT2 software package. The best-
fit results with a reduced χ2 of 3.05 are discussed below.

A. VMD form factors for spin-3/2 resonances

There are two spin-3/2 resonances in the first and the
second resonance regions, i.e., � [P33(1232)] and D13(1520),
with the form factors given in Eq. (7). According to Ref. [23],
the first four mesons in Table I are enough to describe the
VMD form factors of the spin-3/2 resonances. Therefore,
K = 4 in Eq. (7). All the parameters in aαk , α = 4 and 5,
are fixed by the four superconvergence relations in Eq. (11).
However, the parameters a3k satisfy three superconvergence
relations [Eq. (10)] and only one free parameter remains. The
QCD scale in the logarithmic renormalization [Eq. (9)] can
vary between �QCD ∈ [0.19–0.24] GeV [23] and nα=3 = 3,
nα=4 = 2, and nα=5 = 4. Also, a cutoff form factor is multi-
plied by the form factor of the � resonance, as is suggested in
Refs. [30,38]:

F (p�) = λ4
�/

[
λ4

� + (
p2

� − M2
�

)2]
, (21)

where p� and M� are the mass and the momentum of the �

resonance and λ� is a free parameter. The λ� parameter and
other adjusted parameters related to spin-3/2 resonances are
reported in Table IV.
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TABLE V. Fit parameters (spin-1/2 resonances). Dependent pa-
rameters are tabulated in the bottom part of the table.

Parameters P11(1440) S11(1535)

bV
14 48.8104 −35.7166

bV
15 −15.7527 44.4834

bV
25 9.259 04 −23.5822

gV
1 (0) −0.0597 49.7948

gV
2 (0) 44.5325 0.05281

�V 0.1172 0.116
hV

1 −0.495 84 25.5208
kV

1 0.064 03 −1.8348
hV

2 7.3580 −0.7442
kV

2 −0.5423 0.1412
bV

11 3.1765 −42.9822
bV

12 10.6432 187.041
bV

13 −45.8774 −151.826
bV

21 5.8018 −7.1802
bV

22 −34.9428 76.908
bV

23 61.6342 −145.823
bV

24 −40.7521 100.677

B. VMD form factors for spin-1/2 resonances

There are two spin-1/2 resonances in the second resonance
region, i.e., P11(1440) and S11(1535) with the form factors in
Eq. (8). Five mesons in Table I are taken into account, as
suggested in Ref. [23]. Therefore, K = 5 for spin-1/2 res-
onances. As a result there will be two free parameters in
b1k due to the three superconvergence relations [Eq. (12)],
and one free parameter will be allowed for b2k due to the
four superconvergence relations in Eq. (13). The QCD scale
in the logarithmic renormalizations (L(p)

β ) can vary between
�QCD ∈ [0.19–0.24] GeV and nβ=1 = 3 and nβ=2 = 2. All
adjusted parameters related to spin-1/2 resonances are re-
ported in Table V.

C. Dipole form factors for resonances in the third region

The characteristic feature of the third region is overlapping
structures of several resonances, each with a smaller overall
contribution to the hadronic tensor. The Rein-Sehgal model
with a simple dipole form factor for each resonance is used

TABLE VI. Fit result for the third resonance region.

Resonance FV (0) MV (GeV) n

P33(1600) 2.399 1.01 2
S31(1620) 0.10 0.10 1
F15(1680) 1.362 0.692 2
D33(1700) 1.297 0.10 1
P11(1710) 0.10 0.10 2
P13(1720) 3.00 0.278 2
F35(1905) 3.00 1.141 2
P31(1910) 3.00 0.697 2
P33(1920) 0.10 10.00 2
F37(1950) 3.00 0.576 2

TABLE VII. Fit result for nonresonant interactions

Parameters Best-fit value Parameters Best-fit value

Rρ′ −1.358 N 1.20
κρ ′ −3.821 �QCD 0.260
Rω 0.862 �D 2.111
κω −49.899 �1 0.841
Rφ −7.605 �2 0.419
κφ 0.081 Sπ

0 3.995
μφ 0.130 Sρ

0 0.769

to avoid having a relatively large number of parameters (as
is done with VMD form factors) in a small phase space.
The hadron current of each resonance in the third resonance
region was related to a dipole form factor with two adjustable
parameters, FV (0) and MV :

FV (k2) = FV (0)

(
1 − k2

M2
V

)−2(
1 − k2

M2

)n/2

, (22)

where n is the number of oscillators from the Rein-Sehgal
model. The number of oscillators and parameters FV (0) and
MV are reported in Table VI for resonances in the third region.

D. The VMD form factors for nonresonant interactions

The update for nonresonant interaction was presented in
Sec. II B. The adjustable parameters for nonresonant form
factors are defined in Eqs. (14)–(16) and the adjustable pa-
rameters for Regge propagators are defined in Eq. (17). All
parameters related to nonresonant interactions and their best
fits are reported in Table VII.

IV. RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

In this section, the fit results from the updated MK model
including the 1σ error band are presented. The systematic er-
ror band is constructed by randomly throwing the complete set
of fit parameters within their post-fit correlated uncertainties
(as encoded by the post-fit covariance matrix). The 1σ error
on each bin and bib to bin correlations are calculated from
the range containing 68% of the throws closest to the best-fit
model prediction. The standard cross-section formula for the
single-pion electroproduction in the resonance rest frame is
the following:

d5σep→e′πN

dEe′d�e′d�∗
π

= �em

[
dσT

d�∗
π

+ ε
dσL

d�∗
π

+
√

2ε(1 + ε)
dσLT

d�∗
π

cos φ∗
π

+ ε
dσT T

d�∗
π

cos 2φ∗
π + he

√
2ε(1 + ε)

dσLT ′

d�∗
π

sin φ∗
π

]
,

(23)
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where �∗
π is the polar and azimuthal pion angles in the reso-

nance rest frame and

�em = α

2π2Q2

Ee

Ee′

qγ

1 − ε
(24)

is the virtual photon flux factor with qγ = (W 2 − M2)/2M,
and ε = [1 + 2(q2

γ /Q2) tan2(δ/2)]−1 where δ is the scattering
angle of electron.

Some SPP models were developed prior to the MK model.
They used different theoretical calculations and parametriza-
tion, but fit to the same experimental data. They include the
following.

(i) Unitary isobar model: MAID2007 [39] is the lat-
est version of unitary isobar model for partial wave
analysis on the world data of pion photo- and
electroproduction in the resonance region (Q2 < 5.0
(GeV/c)2).

(ii) Dynamical coupled-channels (DCC) model [9,40–
43]: DCC analysis uses the limited pion photo- and
electroproduction data (Q2 < 3.0 (GeV/c)2).

(iii) Hybrid model [11]: Only valid at low Q2, the Rarita-
Schwinger formalism plus Regge approach is used for
the resonant and nonresonant interactions like the MK
model. However the form factors in the two models
are different. The form factors in the hybrid model
are from a fit to the MAID result [26].

The selected results, in Figs. 1 and 2, are chosen to show
a broad range of Q2 (∈ [0.16–6.00] (GeV/c)2) and W (∈
[1.1–2.01] GeV) for two channels with pπ0 and nπ+ final-
state hadrons. Note that the valid region for the above models
is smaller than that for the MK model. Therefore, the missing
results from the above models in Figs. 1–4 are due to the
model’s stated limitations.

Figure 1 shows the cross section for the ep → enπ+ chan-
nel and Fig. 2 shows the cross section for the ep → epπ0

channel in terms of the pion polar angle in the resonance rest
frame, cos θ∗. Plots at very low invariant mass (W < 1.15
GeV) are dominated by nonresonant background contribu-
tions where all models show relatively good agreement with
the data. At higher W , the � resonance has a dominant con-

tribution in plots with W ∈ [1.18–1.3 GeV] where the hybrid
model deviates from the data above the � resonance’s peak
(W > 1.23 GeV) as seen in the second group of plots in
Figs. 1 and 2.

At still higher invariant mass of the second resonance
region (W ∈ [1.4–1.6 GeV]), the next three resonances
[P11(1440), D13(1520), and S11(1535)] dominate. The second
group of plots in Fig. 2 shows that the DCC results overesti-
mate the data but the shape agrees with the data. The hybrid
model does not predict the backward pion well. It also under-
predicts the data in the dip region between the first and the
second resonance regions, i.e., W ∈ [1.28 − 1.4 GeV], which
is visible in Figs. 1 and 2.

The MAID results [44] show agreement with data at low
Q2 (two top groups of plots in Fig. 1 and 2); however, at higher
Q2, the result favors data from the ep → epπ0 channel over
the ep → enπ+ channel.

The rest of the resonances in the Table II contribute to the
third resonance region (W > 1.6 GeV) and only one measure-
ment for the ep → enπ+ channel exists. This is presented in
the third group of plots in Fig. 1 where the MAID results
deviate by more than 3σ from the data.

Some of the datasets in Table III are over a large range of
hadron invariant mass which will allow the cross section in
different resonance regions to be shown. See Fig. 3 (Fig. 4)
for low (medium) Q2. Comparing the two channels in each fig-
ure reveals the different W distributions, which are mainly due
to the different Clebsch-Gordan coefficients for isospin-3/2
and -1/2 resonances. The first resonance region is dominant
in the ep → epπ0 channel due to larger Clebsch-Gordan
coefficients for the � (isospin-3/2) resonance. The second
resonance region is more pronounced for the ep → enπ+
channel because this region is populated mainly by isospin-
1/2 resonances that have larger Clebsch-Gordan coefficients
for this channel. The isospin Clebsch-Gordan coefficients are
given in Table IX.

All comments about the model comparisons in the first and
the second resonance regions from Figs. 1 and 2 are visible in
Figs. 3 and 4. The third resonance region is not visible here.
The DCC prediction for the ep → enπ+ channel at low Q2

and forward pion angles (top plots in Fig. 3) overestimate the
data in the second resonance region.
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FIG. 1. Data-model comparisons for the ep → enπ+ channel at Q2 = 0.2, 0.6, 2.6, and 3.48 (GeV/c)2, from top to bottom, respectively.
The MK model result is the solid red line and the 68% confidence interval is shown by the shaded band. The MAID, DCC and hybrid results
are shown by the dashed blue, long-dashed green, and dash-dotted gray lines, respectively.
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FIG. 2. Data-model comparisons for the ep → epπ 0 channel at Q2 = 0.16, 0.4, 3.5, and 6.00 (GeV/c)2, from top to bottom, respectively.
The MK model result is the solid red line and the 68% confidence interval is shown by the shaded band. The MAID, DCC and hybrid results
are shown by the dashed blue, long-dashed green, and dash-dotted gray lines, respectively.
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FIG. 3. Data-model comparisons for low Q2; Q2 = 0.4 (GeV/c)2 for the ep → enπ+ channel (top) and Q2 = 0.65 (GeV/c)2 for the
ep → epπ 0 channel (bottom). The MK model result is shown by the solid red line and the 68% confidence interval is shown by the the shaded
band. The MAID, DCC, and hybrid results are shown by the dashed blue, long-dashed green, and dash-dotted gray lines, respectively.
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FIG. 4. Data-model comparisons for medium Q2; Q2 = 2.05 (GeV/c)2 for the ep → epnπ+ channel (top) and Q2 = 1.45 (GeV/c)2 for
the ep → epπ 0 channel (bottom). The MK model result is shown by the solid red line and the 68% confidence interval is shown by the shaded
band. The MAID, DCC, and hybrid results are shown by the dashed blue, long-dashed green, and dash-dotted gray lines, respectively.

025502-11



M. KABIRNEZHAD PHYSICAL REVIEW C 107, 025502 (2023)

V. CONCLUSION

In this work the vector current description of the MK
model is improved by extending the valid region of the
model by using all exclusive single-pion electroproduction
data and advanced analysis techniques. The MK model is ex-
tended to high momentum transfer by using the vector meson
dominance form-factor model consistent with the quantum
chromodynamics theory through quark-hadron duality. It is
also extended to high hadron invariant mass by using Regge
phenomenology, i.e., by replacing the t-channel Feynman
propagators with the corresponding Regge trajectories.

The free parameters of the model are constructed by fit-
ting to exclusive electron-scattering data in a large kinematic
region. The free parameters determine the behaviors of the
vector form factors of resonances and the proton in the non-
resonant interaction. An advanced analysis method with the
improved parametrization produces a systematic uncertainty
tied to data and minimizes bias.

The goodness-of-fit and the fit results of the analysis used
in defining the MK model (Figs. 1–4) in a broad range of Q2

(∈ [0.16–6.00] (GeV/c)2) and W (∈ [1.1–2.01] GeV) show
the resulting nucleon form factors are adequate to describe
the data for both channels. The overall agreement with data
demonstrates that the VMD model can describe form factors
in both perturbative and nonperturbative domains. Therefore,
reasonable behavior of the MK model now extends outside
the resonant region and into the transition region between
the resonance and DIS regions. The results show some dis-
agreements with the data, especially in regions with high Q2

(see the bottom plots of Fig. 2), but the error bands generally
accommodate the disagreements. This feature is of crucial
importance to experimental efforts in need of a SPP model.

Other models were also compared with data in their own
valid regions. At low Q2, the data (from both channels) are
well described by the MAID model. At higher Q2, the MAID
results show the data agreement for the ep → epπ0 channel
is better than that for the ep → enπ+ channel. Since in theory
the only difference between the two channels is the Clebsch-
Gordan coefficients, this demonstrates a bias in their analysis.

The DCC results overestimate data in the second resonance
region, but the deviation is small as can be seen in the second
group of plots in Fig. 2. However, the model agrees with data
in its stated valid region [Q2 < 3.0 (GeV/c)2]. The hybrid
model predictions, which are not a direct fit result to the ex-
perimental data, are more than 3σ away from the experimental
data, mainly in the second resonance and transition regions.

The hadron currents for resonant and nonresonant interac-
tions from this work will be used in the hadron vector current
of the neutrino-nucleon cross sections. The electron-scattering
data used in this work covers the kinematic regions essential
for all accelerator-based long-baseline neutrino experiments.
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TABLE VIII. Vector helicity amplitudes of resonant interaction.

λ2 λ1 F̃ eL
λ2λ1

(θ, φ) F̃ eR
λ2λ1

(θ, φ)

1
2

− 1
2

1
2

− 1
2

1
2

1
2

− 1
2

− 1
2

±
∑

j

2 j+1√
2
D j (R) f V

−3

[
R
(
I, j = l ± 1

2

)]
d j

3
2

1
2

(θ )e−2iφ

∑
j

2 j+1√
2
D j (R) f V

−3

[
R
(
I, j = l ± 1

2

)]
d j

3
2 − 1

2

(θ )e−iφ

∓
∑

j

2 j+1√
2
D j (R) f V

−1

[
R
(
I, j = l ± 1

2

)]
d j

1
2

1
2

(θ )e−iφ

−
∑

j

2 j+1√
2
D j (R) f V

−1

[
R
(
I, j = l ± 1

2

)]
d j

1
2 − 1

2

(θ )

−
∑

j

2 j+1√
2
D j (R) f V

−1

[
R
(
I, j = l ± 1

2

)]
d j

1
2 − 1

2

(θ )

±
∑

j

2 j+1√
2
D j (R) f V

−1

[
R
(
I, j = l ± 1

2

)]
d j

1
2

1
2

(θ )eiφ

−
∑

j

2 j+1√
2
D j (R) f V

−3

[
R
(
I, j = l ± 1

2

)]
d j

3
2 − 1

2

(θ )eiφ

±
∑

j

2 j+1√
2
D j (R) f V

−3

[
R
(
I, j = l ± 1

2

)]
d j

3
2

1
2

(θ )e2iφ

F̃ e−
λ2λ1

(θ, φ) F̃ e+
λ2λ1

(θ, φ)

1
2

− 1
2

1
2

− 1
2

1
2

1
2

− 1
2

− 1
2

|k|√
−k2

∑
j

2 j+1√
2
D j (R) f V (−)

0+
[
R
(
I, j = l ± 1

2
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d j
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2

1
2
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1
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2
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2
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(
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2
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TABLE IX. Isospin Clebsch-Gordan coefficients.

Channels C3/2
Nπ C1/2

Nπ

ep → epπ 0
√

2
3 −

√
1
3

ep → enπ+ −
√

1
3 −

√
2
3

APPENDIX A: HELICITY AMPLITUDES FOR THE
RESONANT INTERACTIONS

The helicity amplitudes of the vector current are given in
Table VIII, where f V (R) is the production amplitude given in
Eqs. (3)–(6) and D(R) is the decay amplitude:

D j (R) = 〈Nπ, λ2|RλR〉 = σ DC j
Nπ

√
χEκCI

Nπ fBW, (A1)

where fBW(R) is the Breit-Wigner amplitude,

fBW(R) =
√

�R
2π

(
1

W −MR+i�R/2

)
, (A2)

where

�R = �0(|q(W )|/|q(MR)|)2l+1, (A3)

and

κ =
(

2π2 W 2

M2
2

2 j+1
1
|q|

) 1
2
. (A4)

�0, MR, σ D, and χE are given in Table II and CI
Nπ are the

isospin Clebsch-Gordan coefficients given in Table IX. The
explicit forms of the d j

λ,μ(θ ) functions for j = l + 1
2 are

d j
1
2

1
2

= (l + 1)−1 cos θ
2 (P′

l+1 − P′
l ),

d j

− 1
2

1
2

= (l + 1)−1 sin θ
2 (P′

l+1 + P′
l ),

d j
1
2

3
2

= (l + 1)−1 sin θ
2

(√
l

l+2 P′
l+1 +

√
l+2

l P′
l

)
,

d j

− 1
2

3
2

= (l + 1)−1 cos θ
2

(
−

√
l

l+2 P′
l+1 +

√
l+2

l P′
l

)
, (A5)

where Pl are the Legendre polynomials and P′
l = dPl/d cos θ .

APPENDIX B: HELICITY AMPLITUDES FOR THE
NONRESONANT INTERACTIONS

The helicity amplitudes of the vector current are given in
Table X, where

Fi = KV
i Fi (i = 1, . . . , 6), (B1)

where

F1 = V1 + (V3 − V4)(qk)/W− + V4W− − V6k2/W−,

F2 = −V1 + (V3 − V4)(qk)/W+ + V4W+ − V6k2/W+,

F3 = V3 − V4 + V25/W+,

F4 = V3 − V4 − V25/W−,

F5 = V1(W 2
+ − k2)/2W − V2(qk)(W 2

+ − k2 + 2WW−)/2W

+ (V3 − V4)[W+q0 − (qk)] + V4(W 2
+ − k2)W−/2W

−V5(qk)k0 − V6(W 2
+ − k2)W−/2W + q0V25,

F6 = −V1(W 2
− − k2)/2W + V2(qk)(W 2

+ − k2 + 2WW−)/2W

+ (V3 − V4)[W−q0 − (qk)] + V4(W 2
− − k2)W+/2W

+V5(qk)k0 − V6(W 2
− − k2)W+/2W − q0V25, (B2)

and Vi (i = 1, . . . , 6) are presented in Table XI, where s, u,
and t are invariant Mandelstam variables:

s = (p2 + q)2 = (p1 + k)2 = W 2,

t = (k − q)2, and u = (q − p1)2. (B3)

TABLE X. Vector helicity amplitudes of nonresonant interaction.

λ2 λ1 F̃ eL
λ2λ1

(θ, φ) F̃ eR
λ2λ1

(θ, φ)

1
2

− 1
2

1
2

− 1
2

1
2

1
2

− 1
2

− 1
2

1√
2
e−2iφ sin θ cos θ
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− 1√
2
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√

2e−iφ
[
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]

−
√
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[
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−
√
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TABLE XI. Vector invariant amplitudes.

Amplitude e + p → epπ 0 e + p → enπ+

V1
MgA

fπ

(
1

s−M2 + 1
u−M2 )F1(k2

) + gA
M fπ

μV F2(k2)

V2
MgA

fπ
1

qk

(
1

s−M2 + 1
u−M2

)
F1(k2)

V3 − gA
2 fπ

(
1

s−M2 − 1
u−M2

)
F2(k2)

V4 − gA
2 fπ

(
1

s−M2 + 1
u−M2

)
F2(k2)

V5 0

√
2 MgA

fπ

(
1

s−M2 − 1
u−M2

)
F1(k2)

√
2 MgA

fπ
1

qk

(
1

s−M2 − 1
u−M2

)
F1(k2)

− gA√
2 fπ

(
1

s−M2 + 1
u−M2
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KV
i are given in Ref. [3]:

KV
1 = W−O1+, KV

4 = q2W+O2−,

KV
2 = W+O1−, KV

5 = 1/O2+, (B4)

KV
3 = q2W+O2−, KV

6 = 1/O2−,

where

O1± = [(W 2
± − k2)(W 2

± − m2
π )]

1
2 /2W,

O2± = [(W 2
± − k2)/(W 2

± − m2
π )]

1
2 . (B5)
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