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Incoherent approximation for neutron up-scattering cross sections and its corrections
for slow neutrons and low crystal temperatures
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The incoherent approximation (IA) is often used for calculating the one-phonon inelastic neutron scattering
cross section for arbitrary solids. It is valid for thermal neutrons but for slow neutrons it requires a correction,
which is significant for isotopes that are strong coherent scatterers. In this article, we present the extension
of the Placzek–Van Hove corrections for slow neutrons in the limit of low temperatures using the example of
solid ortho-deuterium (sD2). Our approach yields realistic one-phonon up-scattering cross sections for sD2 and
shows the IA to be a factor of 2–5 too high for ultracold neutron (UCN) up-scattering in sD2. Our calculations
are compared with previously published Monte Carlo calculations of the one-phonon cross section based on
the dynamic structure function S(q, ω) of polycrystalline ortho-deuterium and are found to be consistent with
them. Furthermore, we provide the means for easily replicable calculations of the one-phonon up-scattering
cross sections of solid ortho-deuterium for slow neutrons. These should from now on be used in calculations and
simulations of UCN scattering in sD2.
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I. INTRODUCTION

The slowest neutrons—ultracold neutrons (UCNs)—can
be produced by various methods. One of them is the su-
perthermal production process, in which a cold neutron
excites a phonon or rotational transition in a solid or liquid
converter medium and becomes so slow that it falls in the
velocity range of UCNs, from 0 to about 10 m/s. The UCNs
produced need to be extracted from the converter within
their lifetime to achieve a maximum UCN flux available
for experiments, most of which are in the fields of particle
and astrophysics. According to Golub and Pendlebury [1],
this lifetime of UCNs inside the converter is determined by
(i) the absorption of the neutron by a nucleus of the converter
medium, (ii) loss of the neutron on the converter wall, and
(iii) inelastic up-scattering.

The inelastic up-scattering cross section of ortho-
deuterium for UCNs is thus an important parameter in the
calculations of UCN extraction rates from converters based
on solid ortho-deuterium (sD2). In sD2, the vibrational lev-
els are not populated and of the rotational levels J only the
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lowest, the ortho level (J = 0), is populated in thermal equi-
librium at temperatures below 18 K [2]. Therefore, a UCN
can absorb energy—and hence be up-scattered to a higher-
energy range—only from a phonon in the material. For the
up-scattering of UCNs, only one-phonon inelastic scattering
plays a role. According to calculations by Placzek [3,4], two-
and multiphonon processes can be neglected.

The incoherent approximation (IA) is often used for cal-
culating the inelastic neutron scattering cross section for
arbitrary solids by equating coherent with incoherent scatter-
ing, and neglecting the interference term in the correlation
function of the double-differential scattering cross section.
However, for slow neutrons, it requires a correction for the ne-
glected interference term, especially for isotopes with a strong
coherent contribution to the scattering process. In the follow-
ing, we present such corrections for solid ortho-deuterium in
the UCN limit and show that the uncorrected IA, which has
hitherto been used to explain the entire UCN scattering cross
section [5], is a factor of 2–5 too high. This finding sheds
new light on the existence of crystal defects in sD2 [6], which
must be taken into account in the design and upgrade of UCN
converters based on sD2.

II. DEUTERIUM MOLECULAR CROSS SECTIONS

Hamermesh and Schwinger [7] developed models to
calculate the scattering cross sections of free deuterons and
interaction-free deuterium molecules for various spins
(ortho and para species), vibrational, and rotational
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transitions. These cross sections are self cross sections,
meaning they do not take into account collective dynamics of
the deuterium sample but only the interaction of the neutron
with a single scattering particle. They calculated these cross
sections for thermal and subthermal neutrons in deuterium
gas at low temperatures.

Later, Young and Koppel [8] calculated the double-
differential scattering cross sections of ortho- and para-
deuterium for a wider temperature and energy range, taking
into account rotation, vibration, and translation of the
molecule. The latter was treated as unperturbed by neighbor-
ing molecules. The special case of a liquid was also described
but is applicable only to neutron energies above the Debye
temperature of the sample. For ortho-deuterium, the Debye
temperature is around �D = 110 K, i.e., 9.48 meV, at low
sample temperatures of T = 0–18 K [9,10].

III. THE INCOHERENT APPROXIMATION
FOR THERMAL NEUTRONS

One-phonon inelastic scattering can be both coherent
and incoherent. Both can be separately described and con-
tribute to the total double-differential cross section [4,11,12],
d2σ/d�dE ,

d2σ±1ph
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= 1

4π
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n
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The quantities σ coh and σ inc represent the coherent and inco-
herent molecular scattering cross section of a given rotational
transition of the deuterium molecule (J = 0 → J ′ = 0, 1 →
1, 1 → 0). The spherical Bessel functions j2

n ( aq
2 ) represent

the shape of the deuterium molecule in its different rotational
states [8], ki is the wave vector of the incoming neutron, and
kf that of the scattered neutron. The momentum transfer to
the scattering neutron is q = ki − kf, and h̄ω = Ei − Ef is the
sample’s energy change. Variable a is the equilibrium distance
of the two deuterons in the deuterium molecule. The collective
dynamics of the scattering system are included in the coherent
and incoherent scattering functions Scoh(q, ω) and Sinc(q, ω),
respectively. Both are related to integrals of correlation func-
tions, which are explained in textbooks [4,11,12] and shall not
be repeated here.

When the coherent and incoherent double-differential cross
sections are added up to calculate the total, the first term is
a correlation function with a structure the same as that for
incoherent scattering. Approximating coherent scattering in
Eq. (1) by the incoherent scattering law—in other words, all
scattering events are treated as uncorrelated and interference
effects are neglected—leads to a much simpler expression.
The incoherent scattering law is then weighted with the sum
of the coherent and incoherent molecular scattering cross sec-
tions, σ sc = σ coh + σ inc. This simplifying approach is called
the incoherent approximation (IA) [4],
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It is only applicable when the wavelength of the incoming
neutron is not larger than the intermolecular distances in the
scattering system [13]. These distances of a few angstroms
correspond to neutron energies of a few meV (subthermal
neutrons). In other words, for scattering of very cold and
ultracold neutrons, the IA is not valid and interference effects
need to be taken into account—for homogeneous substances
as well as for substances with long-range order [4].

Inserting into Eq. (2) the textbook result for S1ph
inc (q, ω)

for cubic crystals, e.g., from Gurevich and Tarasov [14] or
Lovesey [15], yields

d2σ±1ph

d�dE
= σ sc

4π

kf

ki
e−2W (q) q2

2M

Z (ω)

ω

{
n(ω) + 1, ω > 0,

n(ω), ω < 0.

(3)

Here, exp[−2W (q)] is the Debye-Waller factor with 2W (q) =
〈u2(t )〉q2/3 and 〈u2(t )〉 including the zero-point motion of the
scattering molecules of mass M at low temperatures [16]. The
energy transfer direction is given by h̄ω. For energy gain of the
scattered slow neutron, i.e., energy loss of the sample (h̄ω <

0), the Bose factor is n(ω) = [exp(h̄ω/kBT ) − 1]−1 with kB

the Boltzmann constant. This neutron up-scattering by phonon
annihilation is known to be the main loss channel for UCNs
in sD2 at low temperatures.

Using the Debye approximation for the density of states
(DOS), Z (ω) = 3ω2/ω3

D for ω � ωD, with ωD the Debye fre-
quency of the solid, the integration of the phonon annihilation
part of Eq. (3) (superscript −1ph) over the kinematic region
yields [14]

σ
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with the dimensionless variables η ≡ q
2ki

and ξ ≡ h̄ω
Ei

. Ei rep-
resents the kinetic energy of the neutron before the scattering
event and mn stands for the neutron mass. The spherical Bessel
function j2

0 (akiη) was added to the equation to account for the
shape of the ortho-deuterium molecule in its rotational ground
state. Phonon creation can be neglected in the case of UCNs.

Since the kinematic region is narrow (see Fig. 1), the
Debye-Waller factor (DWF) and the Bessel function can be
calculated for an average value of their integration variables.
In doing so, they become constants in η and can be pulled out
of the integral over dη. Now the inner integral over η can be
solved analytically, which yields [6]
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This integral has to be solved numerically and yields the full
incoherent approximation.

054606-2



INCOHERENT APPROXIMATION FOR NEUTRON … PHYSICAL REVIEW C 103, 054606 (2021)

τ1
q

τ2 τ3

cs

ωω

ωD ωD 

- q2 
2m 2m 
- q2 
2m 

τ4kmax

FIG. 1. Kinematic region and coherent UCN up-scattering in the
Debye approximation after Turchin [4]. Lattice vectors τi beyond
kmax ≈ ( 2mωD

h̄ )1/2, with ωD the Debye frequency, do not contribute
to the coherent scattering. ω = csq with cs the sound velocity. The
dispersion curve of the free neutron is given by ω = −h̄q2/2mn.

For the limit of T → 0 and Ei → 0 (very slow neutrons),
an analytical solution is known as the Stepanov equation [17],
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)3

, (6)

where ζ (x) is the Riemann zeta function [18].
This equation neglects the exact forms of the Debye-Waller

factor (DWF) and the Bessel function j2
0 by setting both of

them equal to 1. Furthermore, the upper integration limit is
taken as infinity instead of the actual energy relation, which
greatly simplifies the integration of the double-differential
cross section over the kinematic region; it can now be carried
out analytically. This simplification, however, comes at the
price of limited validity. The Stepanov equation is only valid
at low temperatures (T < 5 K for deuterium) and low neu-
tron energies. At a deuterium temperature of T = 18 K, the
Stepanov equation delivers one-phonon cross sections about
40% above the full IA (see Table I). Therefore, it is not suited

TABLE I. The Placzek–Van Hove correction terms δS
Sinc calcu-

lated for solid ortho-deuterium are given for various temperatures.
Inserting these numbers along with the nuclear cross sections into
Eq. (8) allows us to calculate σ−1ph—the corrected incoherent ap-
proximation for the scattering cross section of sD2. The ratios of
corrected IA σ−1ph to “old” IA σ IA are given as χD2. These ratios
compare well with those obtained by Liu et al. [26], χLiu

D2 . The
scattering cross sections σ Stepanov yielded by the Stepanov formula are
shown for comparison. All cross sections are given for one molecule
and have been calculated for a UCN velocity of 10 m/s. They scale
with 1/v for other velocities v in the UCN range, i.e., σv = const.

Temp. δS
Sinc σ Stepanov σ IA σ−1ph χD2 = χLiu

D2

(K) (b) (b) (b) σ−1ph/σ IA

5 −0.9915 0.21 0.19 0.04 0.19 0.22
10 −0.8381 2.36 1.99 0.63 0.32 0.37
15 −0.6679 9.74 7.39 3.40 0.46 0.50
18 −0.5904 18.4 12.9 6.70 0.52 0.54

for calculating the one-phonon up-scattering cross section in
“warm” deuterium crystals of T = 10–18 K.

IV. THE PLACZEK–VAN HOVE CORRECTION

Placzek and Van Hove (PVH) developed a detailed ap-
proach [19] to account for the interference term arising from
coherent scattering, which is neglected by the incoherent ap-
proximation. In this section, we apply the “PVH correction”
to scattering cross sections calculated using the IA for thermal
and slow neutron scattering in samples at room temperature,
and compare our results with calculations by others as well
as experimental results—to verify our correct understanding
of it. Eventually, we expand the PVH correction to the limit
of low temperatures and calculate correction terms for sD2.
Then we compare the corrected one-phonon scattering cross
sections of sD2 for UCNs with other calculation methods.

In the case of thermal neutrons, the IA is valid for large mo-
mentum transfers q, as shown by Oskotskii [20] and Schober
[21]. Corrections to it are of the order of (λ/d )2, with d the
interatomic distances in the lattice of the scattering system and
λ the neutron wavelength [4,13]. Calculating these corrections
for copper and aluminum, we found only marginal correction
terms of −1.6% (Cu) and −0.1% (Al). Hence, the IA is fully
justified for thermal neutrons.

In the slow neutron limit, we calculated PVH corrections
for various metals at room temperature. For copper, we found
a correction to the IA of −8%, and for aluminum of +11%
[22]. These values are in line with those published earlier for
slow neutrons [4,19].

Next, we used the general approach of PVH to consider
the limit of low temperatures and low neutron energies in the
range below 1 μeV (v < 15 m/s), and applied the results to
solid ortho-deuterium. We only repeat equations from PVH’s
paper where necessary for understanding.

A. General formulas

Using the notation of PVH, Eq. (1) can be written as

σ−1ph = σ incSinc + σ cohScoh, (7)

where Scoh and Sinc stand for the coherent and incoherent
scattering law integrated over the kinematic region. Introduc-
ing δS = Scoh − Sinc and expanding this equation to σ−1ph =
(σ coh + σ inc)Sinc + σ cohδS, we obtain

σ−1ph = σ scSinc︸ ︷︷ ︸
σ IA

[
1 + σ coh

σ sc

(
δS

Sinc

)]
︸ ︷︷ ︸

correction factor χ

, (8)

where σ IA represents the IA and the second factor is the
correction factor χ arising from interference effects due to
the collective dynamics in the solid. For ortho-deuterium
σ coh = σ coh

00 and σ sc = σ sc
00. δS/Sinc is the Placzek–Van Hove

correction term and the key parameter to be calculated.

B. Qualitative discussion

Before we evaluate the correction term quantitatively, it
seems instructive to qualitatively discuss the contributions to
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σ−1ph. To this end, Fig. 1 shows the relevant part of the kine-
matic region for one-phonon up-scattering of UCNs (ω < 0).

All incoherent one-phonon up-scattering events fall be-
tween the two limiting blue parabolas representing forward
and backward scattering of UCNs in the q-ω plane. Both
parabolas follow closely the free-particle dispersion curve of
the neutron (black dashed curve). In the Debye approximation
(DA), as used here, the ordinate is limited at |ω| � ωD, with
ωD = kB�D/h̄. As a consequence, the relevant range on the
abscissa is also limited, at kmax ≈ (2mnωD/h̄)1/2 (the dotted
straight lines in Fig. 1). Beyond these points, no one-phonon
up-scattering is possible and thus the integration of Eq. (4)
needs to be carried out over the kinematic region between the
parabolas up to ωD and kmax.

The coherent one-phonon scattering events emanate from
the intersections of the sound dispersion ω = csq (cs is the
sound velocity of the medium in DA, red lines in Fig. 1)—
originating at various lattice vectors τi—with the free UCN
dispersion curve ω = −h̄q2/2mn. Two features of Fig. 1 are
worth noting: (i) Only a limited number of lattice vectors τi

are “active” as Bragg peaks and fulfill momentum and energy
conservation simultaneously for UCNs [12,19], and (ii) the
crossings of the phonon dispersion with the kinematic region
(red dots in Fig. 1) stand, in the case of UCNs, for a very
small area of width �q ∝ ki and �ω ∝ Ei. Hence, together
with the limited number of Bragg peaks, the integration area
in the coherent case is only a small fraction of the whole
kinematic region. This means that, in the case of UCNs, co-
herent phonon scattering makes a much smaller contribution
to the total one-phonon up-scattering than incoherent events.
For UCNs, the obvious conclusion from this is that the IA
significantly overestimates the total one-phonon up-scattering
cross section.

C. Outline of the Placzek–Van Hove theory
and expansion to low temperatures

In the following quantitative calculation we adopt reduced
variables for wave vectors �q′, lattice vectors �τ ′, and tempera-
ture T ′ as used by PVH,

�q′ = �q
qD

, �τ ′ = �τ
qD

, T ′ = T

�D
, (9)

with the Debye vector qD = (6π2n0)1/3, n0 the number den-
sity of molecules in the crystal, and �D its Debye temperature.

Using these variables, the scattering surface becomes [see
Eq. (5.12) in PVH [19]]

(�τ ′ + �q′)2 = f q′ (10)

with

f =
(

kmax

qD

)2

(11)

resulting in

τ ′
max �

√
f + 1. (12)

f is the crucial parameter of the PVH theory and shall be
called the fill factor because f 3/2 is defined as the ratio of the
energetically accessible k space to the volume of a Brillouin

zone. For a large variety of elements f � 10, which means
that only a few lattice vectors of finite length τ ′

i are involved
in coherent UCN scattering processes.

The correction term δS/Sinc for ki → 0 (UCN limit) can be
expressed as

δS

Sinc
= −1 + 1

N

τ ′
max∑
τ ′

i

1

2 f 1/2τ ′

∫ q′
max

q′
min

g(τ ′)�(q′, T ′)q′dq′,

(13)

according to PVH [19], Eq. (5.20). Here, the positive term
represents the coherent contribution to δS/Sinc, g(τ ′) is the
number of vectors of length τ ′, i.e., the multiplicity of τ ′ [13],
while �(q′, T ′) describes the product of the DWF and the
Bose factor n(ω) in PVH notation,

�(q′, T ′) = e−6m/M×φ(T ′ )q′

eq′/T ′ − 1
. (14)

φ(T ′) is the effective temperature of the scattering system.
PVH considered only the high-temperature limit of φ(T ′). We
calculated it for the quantum crystal sD2 at low T ′, including
quantum effects, such as zero-point motion at low tempera-
tures. The reduced vectors q′

min,max are given by PVH in their
Eqs. (5.18) and (5.19), respectively. The normalization factor
N in Eq. (13) stands for the incoherent approximation in PVH
notation,

N = 3
∫ 1

0
�(q′, T ′)q′5/2dq′. (15)

In summary, the equations of the PVH correction given in this
section allow for the calculation of the interference correction
term δS/Sinc, now also for low temperatures.

It should be mentioned that Binder [23] worked out a cal-
culation of δS (ki → 0) in real-space representation. However,
his ansatz shows an extremely poor convergence in compari-
son to the Fourier-space representation of PVH [19].

D. Parameters of sD2 for quantitative calculations

In this section, we give the parameters used in our calcu-
lations of the corrections to the IA for solid ortho-deuterium.
All parameters, other than the reduced temperature T ′, were
regarded to be independent of temperature as they change only
little from 5 to 18 K, which is the relevant temperature range
for sD2. The parameters are as follows: mass ratio MD2/mn =
4, number density n0 = 3.0 × 1022 cm−3, Debye temperature
�D = 70 K (only for acoustic phonon modes, see explanation
below), Debye vector qD = 1.21 Å−1, kmax = 1.71 Å−1, and
the fill factor f = 1.98.

These parameters are quasi-independent of the solid’s
structure, whether it be an fcc or bcc crystal [19]. The PVH
approach is only valid for Bravais lattices, i.e., with one atom
per primitive cell. Real deuterium, however, has an hcp lattice
with a = 3.60 Å and an ideal c/a ratio of 1.63 [24], giving
a volume of Vp.c. = 65.86 Å3 for the primitive cell with two
deuterons, and a number density of 3.04 × 1022 cm−3. An fcc
structure of the same number density has a lattice constant of
afcc = 5.09 Å. In fact, deuterium assumes an fcc structure with
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a = 5.084 ± 0.004 Å below 2.8 K [25]. Hence, the treatment
of real sD2 as its equivalent fcc structure is justified.

In the fcc structure, only the smallest two reduced lat-
tice vectors of lengths τ ′

1/2 fulfill Eq. (12), and are thus
the only ones to be taken into account with their respective
multiplicities.

As Liu et al. [26] have shown, the DOS of sD2 has two
peaks, one at �ac

D = 70 K due to acoustic phonons and one at
�

opt
D = 110 K due to optical phonons. For the PVH treatment

of sD2, we used the reduced Debye temperature of 70 K,
since the approach is only strictly applicable to Bravais-type
crystals, i.e., lattices without optical phonon modes.

To compensate the neglect of the real hcp structure of sD2,
which—in contrast to fcc—contains optical phonon modes,
we consider the simple relation σ

−1ph
coh ∝ √

ω n(ω) for the co-
herent UCN scattering cross section of phonons [12]. For sD2,
the contribution of optical phonons to the scattering is related
to the contribution of acoustic phonons as follows,

σ opt

σ ac
=

√
ω

opt
D

ωac
D

n
(
ω

opt
D

)
n
(
ωac

D

) = 1.254 e−��D/T , (16)

where ��D is the difference between the Debye temperatures
of the optical and acoustic phonons.

From this estimate, it can be seen that the optical phonons
contribute little to the coherent scattering at low temperatures
due to their small occupancy factor. For sD2 at 5 K, the optical
phonons cause less than one permille additional scattering, at
18 K they contribute an extra 14%. We multiplied the correc-
tion factor (1 + σ opt/σ ac) to the second term of Eq. (13), thus
taking optical phonons into account for the δS/Sinc, σ−1ph, and
χD2 values in Table I.

V. COMPARISON OF RESULTS USING DIFFERENT
CALCULATION METHODS

Placzek and Van Hove provided a way to calculate δS
Sinc ,

which we applied and expanded to the limit of low temper-
atures. The results of our calculations of δS

Sinc for sD2 using
the parameters listed above, as well as various other means
of calculating the one-phonon up-scattering, are shown and
compared with one another in Table I for a selection of typical

solid deuterium temperatures and a UCN (in-medium) veloc-
ity of 10 m/s.

It is obvious that the IA used hitherto yields cross sections
σ IA that are, depending on the temperature, a factor of 2–5 too
high. Such values for sD2 were used, for example, by Atchison
et al. [5,27].

Our corrected one-phonon up-scattering cross sections
σ−1ph lie less than 14% below those of Liu et al. [26], who
used a first-principles Monte Carlo calculation of the dynamic
structure function S(q, ω) of polycrystalline sD2 to obtain
their results. The excellent agreement of the results from
these two very different approaches is a mutual validation
and underlines the pertinence of the corrections to the IA
presented here. The results of both approaches are furthermore
supported by scattering cross-section data obtained from ex-
periments in Ref. [6].

VI. CONCLUSION

The widely used incoherent approximation for neutron
one-phonon scattering cross sections was shown to be a factor
of 2–5 too high for ultracold neutron (UCN) up-scattering
in solid ortho-deuterium (sD2). Applying a correction for
interference effects based on the approach of Placzek and Van
Hove [19], which we expanded to low temperatures, yielded
much lower, realistic one-phonon scattering cross sections.
These should from now on be used in calculations and simula-
tions of UCN up-scattering in sD2. Our results agree very well
with Monte Carlo simulations by Liu et al. [26]. This agree-
ment is a mutual confirmation for both results as they were ob-
tained using completely different methods. Both are further-
more supported by experimental results published in Ref. [6].

The results for this paper were produced as part of the
Ph.D. thesis of Stefan Döge [6]
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