Erratum: Precision mass measurements of ${ }^{67} \mathrm{Fe}$ and ${ }^{69,70} \mathrm{Co}$: Nuclear structure toward $N=40$ and impact on r-process reaction rates [Phys. Rev. C 101, 041304(R) (2020)]

L. Canete ©, S. Giraud, A. Kankainen ©, B. Bastin, F. Nowacki, A. Poves, P. Ascher, T. Eronen, V. Alcindor, A. Jokinen, A. Khanam, I. D. Moore, D. A. Nesterenko, F. De Oliveira Santos, H. Penttilä, C. Petrone, I. Pohjalainen, A. de Roubin, V. A. Rubchenya, M. Vilen, and J. Äystö

(Received 5 January 2021; published 25 February 2021)

DOI: 10.1103/PhysRevC.103.029902

In the original paper, we reported on precision mass measurements of neutron-rich Fe and Co isotopes. After the publication, typographical errors were found in the frequency-ratio uncertainties listed in Table I. All mass-excess values and their uncertainties were also rechecked and updated. Only minor changes were found. The uncertainties for the ground and isomeric states of ${ }^{69} \mathrm{Co}$ were revised and Figs. 2-4 updated accordingly (see Figs. 1-3 of this erratum). The changes in Fig. 5 are negligible and, hence, not updated here. The values reported here (see Table I) should be used instead of Table I of the original paper. The reported changes do not affect the results or conclusions of the paper.

On p. 2 the text should be "The mass-excess values for the longer- and shorter-living states $\left(\Delta_{l, s}\right)$ were determined from the measured mass-excess values $\left[\Delta_{\text {meas }}(t=226 \mathrm{~ms})=-50296(17)\right.$ and $\left.\Delta_{\text {meas }}(t=726 \mathrm{~ms})=-50238(25) \mathrm{keV}\right]$ using $\Delta_{\text {meas }}(t)=\left[1-f_{l}(t)\right] \Delta_{s}+f_{l}(t) \Delta_{l}$. The determined mass-excess value for ${ }^{69} \mathrm{Co},-50385(86) \mathrm{keV}$ agrees well with the most recent AME16 [8] value based on measurements using the TOFI spectrometer [10,11], B ρ-time-of-flight method [12,13], and isochronous mass spectrometry [14]. The obtained mass-excess value for the isomer ${ }^{69} \mathrm{Co}^{m},-50203(50) \mathrm{keV}$ is in perfect agreement with the ground-state value of $-50214(14) \mathrm{keV}$ [9], reported recently from the LEBIT Penning trap, suggesting they have actually measured the isomer."

On p. 3, the text should now be "We have determined the excitation energy $E_{x}=182(100) \mathrm{keV}$ for the longer-living $\left(1 / 2^{-}\right)$ state in ${ }^{69} \mathrm{Co}$ for the first time."

On p. 4, the text should be "The mass of ${ }^{69} \mathrm{Co}$ was also found to be around 100 keV lower and 1.6 more precise than in AME16 [8]." On the same page, the Q value for ${ }^{68} \mathrm{Co}(n, \gamma){ }^{69} \mathrm{Co}$ based on our result on ${ }^{69} \mathrm{Co}$ and ${ }^{68} \mathrm{Co}$ from Ref. [8] is $Q=6.53(21) \mathrm{MeV}$ instead of $Q=6.52(20) \mathrm{MeV}$ in the original paper.

TABLE I. The half-lives, spins, and parities for the ions of interest based on Ref. [15], measured frequency ratios $r=v_{\text {ref }} / v$, and massexcess values Δ in comparison with the literature values from Refs. [8,15]. "\#" denotes a value based on extrapolations or systematics. Singly charged ions of ${ }^{84} \mathrm{Kr}(m=83.911497729(4) u$ [8]) were used as a reference for all studied cases.

Nuclide	$T_{1 / 2}(\mathrm{~ms})$	I^{π}	r	$\Delta_{\text {JYFL }}(\mathrm{keV})$	$\Delta_{\text {lit }}(\mathrm{keV})$	Difference (keV)
${ }^{67} \mathrm{Fe}$	$394(9)$	$\left(1 / 2^{-}\right)$	$0.797874191(49)$	$-45709.1(3.8)$	$-45610(270)$	$-99(270)$
${ }^{69} \mathrm{Co}$	$180(20)$	$7 / 2^{-} \#$	$0.82164916(110)^{\mathrm{a}}$	$-50385(86)$	$-50280(140)$	$-105(170)$
${ }^{69} \mathrm{Co}^{m}$	$750(250)$	$1 / 2^{-} \#$	$0.82165149(64)^{\mathrm{a}}$	$-50203(50)$	$-49780(240) \#$	$-423(250) \#$
${ }^{70} \mathrm{Co}^{\mathrm{b}}$	$508(7)[16]$	$\left(1^{+}, 2^{+}\right)[16]$	$0.83361594(15)$	$-46525(11)$	$-46430(360) \#$	$-95(360) \#$

${ }^{\mathrm{a}}$ Calculated based on the isomeric fractions f_{l} for the longer-living state and the frequency ratios determined from the files using the $226-\mathrm{ms}$ cycle $\left[f_{l}=49(13) \%, r=0.82165030(21)\right]$ and the $726-\mathrm{ms}$ cycle $\left[f_{l}=81(9) \%, r=0.82165105(32)\right]$, see the text for details.
${ }^{\mathrm{b}}$ Assigned as the ground state in Ref. [16]. Considered as a $3^{+} \#$ isomer $200(200) \# \mathrm{keV}$ above a ($6^{-}, 7^{-}$), $T_{1 / 2}=112(7)$-ms state in Ref. [15].

FIG. 1. Revised Fig. 2 of the original paper. Experimental level schemes for ${ }^{67} \mathrm{Co}[1,2]$ and ${ }^{69} \mathrm{Co}$ in comparison with the shell-model calculations for the spherical (SB) and $1 / 2^{-}$intruder (IB) bands in ${ }^{67,69,71} \mathrm{Co}$. The $1 / 2^{-}$states in Co (in blue and in red from the Rapid Communication) follow a similar trend as the 2^{+}and prolate 0^{+}[3-6] intruder states in Ni (in magenta) and $7 / 2^{-}$[7] states in Cu isotones (in green).

FIG. 2. Revised Fig. 3 of the original paper. Two-neutron separation energies based on experimental values from atomic mass evaluation (AME16) [8] (in blue) and including the results from this erratum (in red). The recent ${ }^{68,69} \mathrm{Co}$ measurements at LEBIT [9] (in green) introduce a kink, the same is true if only the result for ${ }^{68} \mathrm{Co}$ from Ref. [9] is included, indicating that it is likely to belong to the isomer ${ }^{68} \mathrm{Co}^{m}$. For ${ }^{70} \mathrm{Co}$, AME16 is based on extrapolations (indicated with an open symbol), and our value is for the ($1^{+}, 2^{+}$) state.

FIG. 3. Revised Fig. 4 of the original publication. Two-neutron shell gap parameter $D_{2 n}(Z, N)=S_{2 n}(Z, N)-S_{2 n}(Z, N+2)$ based on AME16 [8] (in blue) and this erratum (red/magenta). Including ${ }^{68,69} \mathrm{Co}$ from LEBIT [9] (in green), or only ${ }^{68} \mathrm{Co}$ (in black), results in a kink at $N=40$, pointing toward an isomeric state measurement. The inset shows $D_{2 n}$ for $N=40$.
[1] D. Pauwels, O. Ivanov, N. Bree, J. Büscher, T. E. Cocolios, J. Gentens, M. Huyse, A. Korgul, Y. Kudryavtsev, R. Raabe et al., Phys. Rev. C 78, 041307(R) (2008).
[2] F. Recchia, S. M. Lenzi, S. Lunardi, E. Farnea, A. Gadea, N. Mărginean, D. R. Napoli, F. Nowacki, A. Poves, J. J. ValienteDobón, M. Axiotis, S. Aydin, D. Bazzacco, G. Benzoni, P. G. Bizzeti, A. M. Bizzeti-Sona, A. Bracco, D. Bucurescu, E. Caurier, L. Corradi, G. de Angelis, F. Della Vedova, E. Fioretto, A. Gottardo, M. Ionescu-Bujor, A. Iordachescu, S. Leoni, R. Mărginean, P. Mason, R. Menegazzo, D. Mengoni, B. Million, G. Montagnoli, R. Orlandi, G. Pollarolo, E. Sahin, F. Scarlassara, R. P. Singh, A. M. Stefanini, S. Szilner, C. A. Ur, and O. Wieland, Phys. Rev. C 85, 064305 (2012).
[3] C. J. Chiara, D. Weisshaar, R. V. F. Janssens, Y. Tsunoda, T. Otsuka, J. L. Harker, W. B. Walters, F. Recchia, M. Albers, M. Alcorta et al., Phys. Rev. C 91, 044309 (2015).
[4] C. J. Prokop, B. P. Crider, S. N. Liddick, A. D. Ayangeakaa, M. P. Carpenter, J. J. Carroll, J. Chen, C. J. Chiara, H. M. David, A. C. Dombos et al., Phys. Rev. C 92, 061302(R) (2015).
[5] F. Flavigny, D. Pauwels, D. Radulov, I. J. Darby, H. De Witte, J. Diriken, D. V. Fedorov, V. N. Fedosseev, L. M. Fraile, M. Huyse et al., Phys. Rev. C 91, 034310 (2015).
[6] C. Mazzocchi, R. Grzywacz, J. Batchelder, C. Bingham, D. Fong, J. Hamilton, J. Hwang, M. Karny, W. Krolas, S. Liddick et al., Phys. Lett. B 622, 45 (2005).
[7] S. Franchoo, M. Huyse, K. Kruglov, Y. Kudryavtsev, W. F. Mueller, R. Raabe, I. Reusen, P. Van Duppen, J. Van

Roosbroeck, L. Vermeeren et al., Phys. Rev. C 64, 054308 (2001).
[8] M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
[9] C. Izzo, G. Bollen, M. Brodeur, M. Eibach, K. Gulyuz, J. D. Holt, J. M. Kelly, M. Redshaw, R. Ringle, R. Sandler et al., Phys. Rev. C 97, 014309 (2018).
[10] H. L. Seifert, J. M. Wouters, D. J. Vieira, H. Wollnik, X. G. Zhou, X. L. Tu, Z. Y. Zhou, and G. W. Butler, Z. Phys. A 349, 25 (1994).
[11] Y. Bai, D. J. Vieira, H. L. Seifert, and J. M. Wouters, in Exotic Nuclei and Atomic Masses (ENAM 98), edited by B. M. Sherrill, AIP Conf. Proc. No. 455 (AIP, New York, 1998), p. 90.
[12] A. Estradé, M. Matoš, H. Schatz, A. M. Amthor, D. Bazin, M. Beard, A. Becerril, E. F. Brown, R. Cyburt, T. Elliot et al., Phys. Rev. Lett. 107, 172503 (2011).
[13] M. Matoš, A. Estradé, H. Schatz, D. Bazin, M. Famiano, A. Gade, S. George, W. Lynch, Z. Meisel, M. Portillo et al., Nucl. Instrum. Methods Phys. Res., Sect. A 696, 171 (2012).
[14] X. Xing, W. Meng, Z. Yu-Hu, X. Hu-Shan, S. Peng, T. XiaoLin, Y. A. Litvinov, Z. Xiao-Hong, S. Bao-Hua, Y. You-Jin et al., Chin. Phys. C 39, 104001 (2015).
[15] G. Audi, F. Kondev, M. Wang, W. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017).
[16] A. Morales, G. Benzoni, H. Watanabe, Y. Tsunoda, T. Otsuka, S. Nishimura, F. Browne, R. Daido, P. Doornenbal, Y. Fang et al., Phys. Lett. B 765, 328 (2017).

