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Model comparison for initial density fluctuations in high-energy heavy-ion collisions

Stefan Floerchinger,'" Eduardo Grossi®,>" and Kianusch Vahid Yousefnia®'-¥
Institut fiir Theoretische Physik, Universitiit Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
2Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA

® (Received 3 June 2020; accepted 26 October 2020; published 30 November 2020)

Four models for the initial conditions of a fluid dynamic description of high-energy heavy-ion collisions
are analyzed and compared. We study expectation values and event-by-event fluctuations in the initial transverse
energy density profiles from Pb-Pb collisions. Specifically, introducing a Fourier-Bessel mode expansion for fluc-
tuations, we determine expectation values and two-mode correlation functions of the expansion coefficients. The

analytically solvable independent point-sources model is compared to an initial-state model based on Glauber
theory and two models based on the color glass condensate framework. We find that the large-wavelength modes
of all investigated models show universal properties for central collisions and also discuss to what extent general
properties of initial conditions can be understood analytically.

DOLI: 10.1103/PhysRevC.102.054914

I. INTRODUCTION

Relativistic heavy-ion collisions arguably constitute one of
the most spectacular physical experiments mankind is capable
of conducting in a laboratory. At collider facilities like the
Relativistic Heavy Ion Collider and the Large Hadron Col-
lider (LHC), physicists focus beams of nuclei and make them
collide at relativistic energies, producing thousands of new
particles per nucleus-nucleus collision [1-4].

The incident nuclei are Lorentz-contracted discs consisting
of quarks and antiquarks as well as gluons. The total-energy
density is maximal at the collision time of the nuclei. At
this moment, these constituents of the nucleus strongly cou-
ple to each other and form a collective medium called the
quark-gluon plasma (QGP). During LHC experiments, the
energy density of this extremely dense state of matter directly
after the collision is 20 times as high as that of a hadron
[5-8]. A droplet of QGP quickly expands and cools down.
Below a critical temperature, new hadrons are formed, which
is referred to as chemical freeze-out. These particles are still
interacting; only once the kinetic freeze-out has occurred, they
move freely [5-8].

In recent years, we understood that the QGP can be con-
sidered as a dissipative (and almost ideal) relativistic fluid,
which offers the interesting possibility to study the relation-
ship between microscopic properties described by quantum
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chromodynamics and macroscopic fluid fields like densities of
energy or entropy. A recent numerical scheme for solving the
relativistic fluid equations of motion is described in Ref. [9].
While these simulations can compute the time evolution of
fluid dynamic fields including their fluctuations, they need
information about initial field configurations as input. These
initial conditions cannot be directly measured because experi-
mentally accessible QGP properties like hadron spectra result
from an integrated history of time evolution, during which
fluctuations in the initial conditions can be intensified or at-
tenuated [10,11]. An additional complication rises from the
fact that the initial conditions and in particular their symmetry
properties depend on the collision centrality, i.e., whether the
two nuclei collide head-on or in a peripheral manner. The
underlying geometric quantity, the impact parameter, is not
directly measurable either. Most importantly, initial fields are
subject to quantum fluctuations, meaning that the initial con-
ditions vary from event to event.

In principle, given an ensemble of initial field config-
urations, there are two strategies to calculate final-state
observables. One is to time evolve each initial field event
separately in so-called event-by-event simulations. This is
numerically expensive and has the drawback that only one
initial-state model can be studied at a time. An alternative
consists of splitting up the initial fields into a background
field plus fluctuations around it and to evolve the fluctuations
through response functions. If these fluctuations are expanded
in a basis of appropriately chosen modes, it suffices to solve—
just once for a given ensemble of events—the fluid dynamic
equations of motion for the background field and the response
functions for the perturbations around this [12]. The response
functions can actually be used to compare models of the initial
state that agree in the background configuration but differ in
the initial conditions for perturbations.

The present paper aims at studying the statistical prop-
erties of event-by-event initial field fluctuations in the
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experimentally relevant ensembles of centrality classes with
randomized reaction planes. Specifically, choosing a partic-
ular mode expansion for field fluctuations, we will examine
expectation values and two-mode correlation functions of the
corresponding expansion coefficients. The set of basis func-
tions constitutes Fourier and Bessel modes and turns out to be
advantageous for the decomposition of profiles that exhibit on
event-average rotation symmetry around the beam axis.

As the initial fields of a heavy-ion collision are not directly
measurable, we will have to rely on initial condition models. A
large class of them is based on Glauber theory [13,14]. These
models consider a nucleus-nucleus collision as a superposi-
tion of independent nucleon-nucleon interactions and promote
the number of nucleons participating in the collision as well
as the number of binary collisions to relevant quantities. Initial
event distributions are then sampled according to the position
of these variables. We will make use of the initial condition
model TRENTO, which is based on a similar ansatz and proved
to reproduce a large number of LHC experiments [15].

The two-mode correlation functions of Fourier-Bessel co-
efficients are compared to predictions of three additional
initial condition models: the independent point-sources model
(IPSM) of initial conditions [14,16—19]. This particular model
assumes fluctuations to originate from independent point-
shaped contributions and allows closed-form expressions for
the statistical quantities of interest. As we will see, while be-
ing limited in describing finer structures in position space, the
IPSM still allows us to qualitatively explain many properties
of two-mode correlators.

As a further model we consider the color glass condensate
(CGC) [20-24] (we concentrate on the leading approximation
for large N.), where two-point functions of energy density
have been recently derived [25]. A variation of this model
called MAGMA [26] will also be considered.

Let us mention here that all investigated models address the
initial state directly after the collision. It is generally expected
that a fluid description which propagates (correlations of) the
energy momentum tensor to the final state becomes valid
only after some period of early time nonequilibrium quantum
field dynamics. During such a far-from-equilibrium phase the
energy-momentum tensor and its correlation function can get
modified. However, when this phase is relatively short, the
modifications cannot be too large, as a consequence of rela-
tivistic causality. In terms of the mode expansion we introduce
below, it is mainly the short-wavelength modes corresponding
to larger values of the wave numbers m and / that might be
influenced, while one can expect that the large-wavelength
modes are not strongly affected, except for overall dilution
as a consequence of longitudinal expansion.

This paper is structured as follows. In Sec. II, we put for-
ward our procedure of characterizing fluctuations in terms of
Fourier and Bessel modes. In Sec. III we discuss general sta-
tistical properties of the event ensembles we study. In Sec. IV
we present the four initial condition models that are examined
in the course of this paper. For each model, its main ideas
are highlighted. Special emphasis is put on how the individual
models allow us to compute correlation functions. A detailed
comparison of two-mode fluctuations in the four models is
carried out in Sec. V and we draw conclusions in Sec. VI.

II. MODE EXPANSION FOR INITIAL
FIELD FLUCTUATIONS

It is convenient to express the fluid dynamic fields of inter-
est at the initialization time in polar coordinates because they
exhibit on average rotation symmetry around the beam axis
(in a coordinate system that is conveniently centered). We will
express a given event profile €(r, ¢) in terms of a background
field plus fluctuations, and decompose the fluctuation part in
terms of Fourier and Bessel modes, following the approach
developed in Refs. [9,27-29].

The background field will be taken to correspond to an
event average. For this purpose, we introduce the following
function:

1 2
W) = EA do(e(r, ¢)). ey
Throughout this paper, angle brackets (-) denote averages
over a certain ensemble of events, for instance, a centrality
class. (Centrality classes will be discussed in more detail in
Sec. VA.) We will assume that €(r, ¢) is non-negative ev-
erywhere and in a given ensemble on average normalized to
unity:

o0 2
f drr/ dole(r, ¢)) = 1. 2)
0 0

In other words, €(r, ¢) corresponds to the transverse energy
density divided by the corresponding integral over the trans-
verse plane for a given ensemble or centrality class.

This implies that the function

p(r) = /2/rdr’r’W(r’), 3)
0

dpp=drW(r)r, 4)

with

defines a map from the unbound interval [0, co) to [0, 1). The
function W (r) is typically nonvanishing for small radii and
decays over a length scale specific to the given centrality class,
which allows a centrality-specific parametrization of the radial
dependence of a given event profile in terms of p. Because it
is always defined on the same interval, p is particularly suited
for the Bessel expansion to be discussed below.
The functions p(r) and W (7) define a scalar product,

(fg) = /0 dr rW(r) f*(r) g(r)

1
- / dp p f1r(o) glr(p)]. 5)
0

which can be used conveniently to construct an orthonormal
basis set. One possible choice could be a polynomial basis set
constructed using the Gram-Schmidt procedure [9]. Another
option is to use a set of special functions that satisfy the same
orthogonality properties and convenient boundary conditions,
for example, the cylindrical Bessel functions J,,(z).

For m #£ 0, let zl(m) denote the /th positive zero crossing of
J),(z), the first derivative of the cylindrical Bessel function of
order m. Any choice of nodes will lead to the imposition of
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a specific boundary condition; in particular, the latter corre-
sponds to Neumann boundary conditions [9]. For m = 0 we
also include the zero crossing of Jj(z) at the origin in the
counting, i.e., zﬁo) =0.

The set of functions J,, (Z,(m) p) are then orthogonal to each
other with respect to the scalar product in Eq. (5) [30]:

1
/ dp pJn(5" 0)In(z"p) = ¢ 810 ©)
0

with

7, (2™ 1
R S
2(5"™)
(m)

1 7
With the case distinction in our definition of z,
with Jo(zgo)p) =1 a basis function with no positive zero
crossings and nonvanishing behavior for p — 0. This makes
our set of basis functions complete.

In summary, these considerations motivate the following

mode expansion:

0o
e(r, ¢): Z Zel(m)eimtﬁq;m)(r)’

m=—o00 [=1
g™ (r) = W[z p(r)]. (8)

Equation (8) defines a mode expansion for the transverse en-
ergy density. Note that one can understand m as an azimuthal
wave number and similarly [ as a radial wave number with
larger values corresponding to more zero crossings and there-
fore describing finer details in space.

The inverse relation for the coefficients el(m)

) 2
/ drrd,[z2" p(r)] / dpe "e(r, ¢).
0 0

C))

One can easily convince oneself that for real-valued fields
€(r,®) € R one has

e = (=1)"e™". 10)

, we include

is given by

o _ 1
€ - (m)
2mc,

Note that we have concentrated here on scalar fields, but the
expansion technique can also be used in slightly modified
form for vector or tensor fields such as, e.g., fluid velocity
and shear stress [28].

III. STATISTICAL DESCRIPTION

The discussion in this section follows partly the general
principles introduced in Ref. [29] for a statistical character-
ization of initial conditions. Let us assume that the events
have been classified into centrality classes of sufficiently small
extent, for example, 1%. Each of these classes contains events
with random orientation of the reaction plane, so that there is
a statistical azimuthal rotation symmetry.

One may then characterize the transverse density in such a
class by an expectation value

€(r) = (e(r, 9))os an

where we denote by (-), an expectation value for an ensem-
ble with statistical azimuthal rotation symmetry (for a more
detailed discussion see Sec. III A below, as well as Ref. [29]).

As a consequence of the statistical rotation symmetry, the
expectation value is actually independent of the azimuthal
angle ¢. The function in Eq. (11) is normalized according to
Eq. (2). (This means that the overall normalization or inte-
grated transverse energy must also be specified to characterize
a given ensemble or centrality class.) One can use &(r) to
define the function W (r) according to Eq. (1). In terms of the
Bessel-Fourier expansion in Eq. (8) the expectation value or
one-point function is characterized by the expectation value
of weights:

1
(™). = —3m 0011 (12)

In other words, for a rotation symmetric ensemble, only
the (m = 0,1 = 1) coefficient has a nonvanishing expectation
value, and as a consequence of the normalization (2) it is given
by 1/m.

Fluctuations around the event-averaged profile can now be
characterized in terms of correlation functions such as the
connected two-point correlation function

([e(r1, @1) — E(rDIe(r2, ¢2) — E(r2)])
= (e(r1, p1)E(r2, 2))c- 13)

Through Eq. (8), this can also be written in terms of the
variance of Bessel-Fourier coefficients:

(6 = e L) el = (L)) = ) a9
As a consequence of the statistical azimuthal rotation sym-

metry, the correlator in Eq. (14) is only nonvanishing when
my +my = 0.

A. Geometry

In the following sections we will investigate three initial-
state models for which the one-point function is used to
specify the properties of the model. Specifically, for the
independent point-sources model, the one-point function de-
termines the probability distribution of sources and for the
saturation models it determines the local saturation scale.
For noncentral collisions, the collision geometry will have a
particular role.

One can in fact describe the collision geometry in these
models by introducing a nonsymmetric one-point function in
a first step. It describes the expectation value of the transverse
density for an ensemble with fixed reaction plane angle ¢g.
For such an ensemble, the expectation value of the complex
Bessel-Fourier weights is actually nontrivial and of the form

(El(m)> — El(m)efimqﬁkl (15)
The coefficients él(m) are real-valued and nonvanishing only
for even values of m as a consequence of the two discrete
symmetries ¢ — ¢r — ¢ —dpand d —pr — ¢ — P + 7.

Note that under averaging of the reaction plane
angle ¢g on the interval [0,27) with uniform dis-
tribution the expression in Eq. (15) reduces to the
one in Eq. (12). In particular, all components with
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m # 0 are annihilated by this operation, while the
m =0 component is unchanged. This also implies that
the m = O components of (15) are actually given by Eq. (12),
ie., 61 =é1/m.

Let us now consider two-point correlation functions. For
fixed reaction plane ¢, they are of the form

<6[(1m])€l(2m»)) (El(lrm)el(’mz)> + E(ml) ('nz) e~ im+m)er (16)
In particular, the right-hand side features not only a connected
part but also a disconnected one as a consequence of nonvan-
ishing expectation values.

If one now performs an average over the reaction plane
angle ¢, one obtains for the correlation function in a rotation
symmetric ensemble

1 2
(my) (mp)\ __ (my) _(m2)
(61] €, )o =~ o / dér (61] €, )(,'
+ &,y 0 (17)

The first part results from the averaging of the connected cor-
relation function. The second term on the right-hand side of
(17) arises from the geometry of the collision at nonvanishing
impact parameter. It has nontrivial components in particular
for m = 2 (and more general even m).

B. Nonlinear transformations between fields

Some initial-state models are formulated for the entropy
density s(x) and others for the energy density €(x). In order
to be able to compare them, we need to do appropriate field
transformations. In a close-to-equilibrium scenario, such a
transformation can be done using the thermodynamic equa-
tions of state. A difficulty arises here because the relation
between the different fields is in fact nonlinear and as such
is difficult to implement in a stochastic theory. For our present
purpose, it is convenient to expand the fields around some
background configuration, e.g., for entropy density s(x) =
5(x) 4+ 8s(x) and similarly for energy density e(x) = &(x) +
de(x). Using thermal equilibrium relations in the absence of
any conserved quantum numbers besides energy and momen-
tum, one can relate the perturbations of entropy and energy
density through

Se(x) = T (x)ds(x), (18)

where T (x) is the background temperature. Using (18) one
can relate the connected correlation functions [defined as in
Eq. (13)]:

(e@eMe =TT ) (s(X)s())e- 19

While the fields used here are physical fields, not following
the normalization condition (2), it is clear that overall normal-
ization factors can be included easily.

IV. INITIAL CONDITION MODELS

Having put forward a mode expansion to characterize ini-
tial fluid field fluctuations, we shall now turn to some currently
popular models for the initial condition of heavy-ion colli-
sions. For each model, we will recall how one can compute

initial field configurations and characterize event averages and
fluctuations in terms of correlations using the mode expansion
introduced in Sec. II.

We will start with the TRENTO model, which is a Monte-
Carlo implementation of a generalized Glauber model. From
the numerical implementation one can obtain expectation
functions and arbitrary correlation functions of transverse
densities in different centrality classes.

Subsequently we will discuss the IPSM, which is a semi-
analytic model based on the assumption of strongly peaked
(approximately pointlike) sources that are distributed in the
transverse plane according to a given probability distribution.

Next we will illustrate the implementation of the color
glass condensate, starting from the two-point function of the
energy density obtained by [25] (we concentrate on the limit
of a large N,) and its variation called MAGMA [26,31,32], in
which the two-point function is simplified assuming locality
in position space.

A. TRENTO initial condition model

The reduced thickness event-by-event nuclear topology
(TRENTO) initial condition model generates event-by-event
initial transverse entropy density profiles, reproducing the
multiplicity distributions for a wide range of LHC experi-
ments [15]. It constitutes a Monte Carlo model that effectively
interpolates between previously existing initial condition
models. TRENTO describes initial field profiles in terms of two
nucleus thickness functions, 7, and 7. They are modeled
as superpositions of Gaussians centered around previously
sampled participating nucleon positions:

Npan

10 = Y 0 [ depen(@ =50 Q0)
i=1

and similarly 7z(X). The coordmates X; denote the position of
participant i. The strength w! " by which a participant con-
tributes is sampled from a I" distribution with unit mean:

k
P(w) = F(k)w
Here, k > 0 is a continuous shape parameter regulating the
fluctuations. The distribution has a long tail for kK < 1 while
fluctuations are suppressed for k > 1.
Given the fluctuating thickness functions of the two nuclei,
the TRENTO model assumes the initial entropy density profile
to be proportional to the generalized mean of 74 and Tp:

TAp + TBP) 1/p

k=1 exp(—kw). (1)

> (22)
with some normalization constant A/. The dimensionless
parameter p € R controls the mixing of the two nucleus thick-
ness functions. Note that for p = 1 one obtains the Glauber
Monte Carlo model [13]. The parameter k can be tuned to
match measured multiplicity distributions once p has been
chosen.

The code for TRENTO is publicly available [15]. We com-
pute initial transverse entropy density profiles on a grid of
10 x 10 fm? with a grid spacing of 0.2 fm and the following

e(x,y) =./\/<
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parameter values: (1) reduced thickness parameter p = 0, (2)
fluctuation parameter k = 1.4, (3) nucleon width o = 0.6 fm,
(4) overall normalization factor A/ = 16, and (5) inelastic
nucleon-nucleon cross section o) = 6.4 fm2. The values for
p, k, o, and N have been found to best fit Pb-Pb multiplic-
ity measurements [15]. The nucleon-nucleon cross section
depends on the collision energy and has been chosen such
that LHC energies of /sy = 2.76 TeV are reproduced [1].
Impact parameters are sampled from O to 20 fm.

With initial field profiles at hand, we can compute two-
mode correlation functions of TRENTO profiles by numerically
evaluating (9) and averaging over the events of a given cen-
trality class.

While initial fields generated by the TRENTO model corre-
spond to entropy density profiles, we convert them to energy
density profiles. This allows us to compare to models that
are based on energy density fields. Since the energy density
scales with the power 4/3 with the entropy density (for a
thermodynamic equation of state that is approximately of the
ideal gas form p ~ T*), the conversion can be done by raising
each TRENTO profile to the power of 4/3. Furthermore, the
event distributions of a given centrality class are scaled by a
common factor such that they are on average normalized to
unity [see (2)]. In addition, each event is rotated by a random
angle ¢ € [0, 27] in order to realize an ensemble of events
with random orientation of the reaction plane.

B. Independent point-sources model

In contrast to TRENTO, the IPSM remarkably allows us
to derive analytic expressions for correlation functions [29].
Let us assume that a given event profile results from N in-
dependent and identically distributed contributions the spatial
extension of which is small compared to the system size. We
will approximate them as pointlike and write for the energy
density

N
. 1 I
e(x):EE w; 8P (X — X)), (23)
j7

where the positions X; are all sampled from the same probabil-
ity distribution p(X), normalized to unity, f d*x p(x) = 1. The
contribution w; of each point fluctuates in strength, following
a probability distribution p(w) with unit mean and standard
deviation o,,. In addition, we let the contribution number N
fluctuate according to a distribution p(N) with mean py and
standard deviation oy.

In complete analogy to Ref. [29], we can derive position
space correlation functions by introducing the partition sum:

Z[j1 =<eXP < / d*x’ j()_c”)e(?c’)>>
N
— Zﬁ(N)(]_[/dzxjp(fj)/dw,-,a(w,-)>
N j=1

X exp ( / d*x j()?)é()?)). (24)

We obtain for the one-point function simply

. 5 o
(€0N = 7= @ Z[j] o p(X). (25)
Similarly, the two-point function reads
IR & 1
(e(X)e(¥)) = WZ[J] o (e@)e(¥))

= (1= ) pEpF) + o p@SPE -3). (26)
We have introduced here the two parameters

_1+03) ﬁ_,uN—af,
puy uy

27)

Let the probability distribution p(¥) describe an event av-
eraged field profile for fixed reaction plane angle ¢g. (We will
perform the averaging over ¢ later on.) We can expand then
along the reaction plane angle ¢ similarly as in Eq. (8):

oo (o]
D0 emTIRgM ™. (28)

m=—oo [=1
m even

p(r.¢) =

The coefficients e(m) are real-valued and nonvanishing only

for even values of m as a consequence of the two discrete
symmetries p(r, g — @) = p(r, g + @) and p(r, pg + @) =
p(r, ¢r + ¢ + 7). Moreover, it follows from the event nor-
mahzatlon (2) and the definition of W(r) in Eq. (1) that
=1/mandé ‘(0) =0forl > 1.
Usmg the i 1nverse relation (9) and the orthogonality relation
(6), we can obtain two-mode correlation functions from the
position space two-point function:

2.
(elm)em) — 1 / ”d¢1 p—
1 l
ron (2n)2c§:’")cg’”) 0

2 ) 00 oo
X / d¢2 e_lmzq)z / dr1 r / drz r
0 0 0

X I, [Zl(lml)p(rl)] my [21(2 2),0(1’2)]
x (e(r1, $1)e(r2, ¢2)). (29)

Performing the integrals, we find

iy
) _my, _ (=D 72X oo
(61l n )= Py Cz(m]) 811 bOmy+my,0 + — €

o0
my+my) (m| "y, —m —my) = (m+my)
x < by g
I=
+(1— ﬁ)e_l(”7l+m2)¢k gl(lml) Elng)' (30)

The numbers b( b ") wwith m; + - - - + m, = 0 constitute in-
tegrals over Bessel functions and are deﬁned through
b(m]""'m”) i 1 1
lowh = o ) )

1
X/o dp p Iy (1" 0) I, (2" p).  BD)
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Let us now also introduce an ensemble average with a ran-
domized reaction plane angle ¢y using the following notation:

1 2

(...)0 = 2— der(...). (32)
b4

By doing this averaging we obtain then

m
(ermlem)) = e [ —
1 ) 2 (ml) 1,62 1,—Hm2

° 2w

+ (1= B —m & ™. (33)

Randomized two-mode correlators are thus only nonvanish-
ing if m; 4+ my = 0. This follows directly from the statistical
azimuthal symmetry around the beam axis. Furthermore, two-
mode correlators in the IPSM are real-valued. From (28) we
can read off that (g (m)y — e‘im"”*é(’”). This implies

(™). = 8uog™. (34)

One-mode correlators of event-plane averaged events thus
vanish for modes with m # 0, which is again a consequence
of azimuthal rotation symmetry. Keeping in mind that e(o)
the only nonvanishing coefficient for m = 0 in the expansion
(28), we can conclude that the two-mode correlators above
are equal to their respective connected two-mode correlation
function,

), = i)

={a"e™), — el 69

except for m;y =m, =0 and [} =, = 1. In the latter case,
one obtains
_ ﬂ, (36)

(e, =

The first term in Eq. (33) corresponds to the connected
two-mode correlation function for a spherically symmetric
spatial distribution p(r, ¢) = W (r)/m, while the second term
(without the part with 8) accounts for geometry. Mathemat-
ically, it arises because the operations averaging over the
reaction plane angle and passing from moments to connected
correlation functions do not commute with each other [29].
Specifically the contribution due to geometry reads

(E(m')e(m2)>
I b ¢, geometry

0 it (I1, my, L, my) = (1,0, 1,0),
(Wll) m2)8
€,

otherwise.

my,—my
(37)

We have now fully characterized the one-point and
two-point correlation functions within the independent point-
sources model. By taking higher-order functional derivatives
of the partition sum (24) one can also calculate higher-order
correlation functions when needed.

C. Color glass condensate large-N, model

Recently, an analytic calculation of the connected two-
point function of an energy momentum tensor directly after
a heavy-ion collision has been reported based on the CGC

picture [25]. The latter is essentially a model for the field
theoretic description of color fields based on the paradigm of
saturation. Here we concentrate on the result of Ref. [25] in
the large-N, limit and refer to the model as the CGC large-N,
model.

Let us start with the expectation value of energy density in
the McLerran-Venugopalan (MV) model [25]:

(e(®) = %Qi ()07, DN (38)

The Q,, denote the momentum scale that characterizes the
colliding nuclei and N is a model-dependent constant. The
latter is ultraviolet and infrared divergent for the MV model.
When regularized, it reads

4

where m is an infrared and 1/L is an ultraviolet momentum
regulator. Ideally one would like to consider m — 0 and L —
0. Because the expectation value for energy density in Eq. (38)
is finite, this is also the case for the product Q?N .

Note that we have been using the symbol ¢ (instead of €)
for the energy density, since it has not yet been normalized
according to Eq. (2). For this purpose, we introduce the scaled
field e(X) = Ae(X), with some normalization constant A that
also converts the units from [¢] = GeV* to [¢] = fm >
order to determine A, consider the normalized energy density
for central collisions

(e, = 0, (40)

b4
with the background field W (r) obtained from Eq. (38). With
the saturation scale Q?, := Q2(0)A and W, := W(0) at the
center of the fireball, we obtain

3a W,
= a4 Os aS = i' (41)
Qs,O

4
Following Refs. [26,31,33] the saturation scale Qs,- of a
single nucleus can be related to a thickness function:

A

2

NQG? ° T, 42
0 (x) = T (0) (x). 42)
The thickness function is defined as
+0o0
Ty(X) = f dzpnua (X, 2), 43)
—00

with ppy the nuclear charge density that can be approximated
with a Woods-Saxon profile [13]. Also, Qy,(0) is the value of
the saturation scale at the center of the nuclei.

The energy density defined in this way has to be considered
at fixed impact parameter and reaction angle band is given by

4A o

3¢ TAl(O)TAz(O)
The averaged energy density for each centrality class can

be obtained by averaging over a suitable distribution of impact

parameters. For the present paper we have used the impact
parameter distribution p(b) obtained from TRENTO, since there

(€)= Tai (R + b/2)Tia (R — b/2). (44)
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is not a canonical choice for p(b) in the CGC large-N, model
itself.

(€(®)e@)), = A*[Covlemv]I(0T; %, 3)lyo

1
=A2<84 e z<Qfl+sz>{16+32e > — 6de
r

1

202 231 =
(04 +02 4 42 2
+2ez(Qn Q;z)[ 0l (Qszr

Here, X and y are positions in the transverse plane, and
7 =X — ¥ denotes their difference. The two-point function
depends on the local nucleon saturation scale Q. The latter
is related to the thickness function through Oy, the strong
coupling constant g, and the model-dependent function I'(x)
as in Ref. [25]:

2
Q(”) g2 rG— )Q2< ”), 46)

with the function I" defined in the MV model as

— L Kmr). (47)

T =
(r) 2rm?  2mm

As pointed out before, Q; is divergent and only in combination
with AV does it lead to a finite result. Therefore it is useful to
express the saturation scale directly in terms of finite quanti-

ties like the thickness function:
r2Q? SN TE=F), (%+5) OF
rOEY) _ N TG, (R4 Qo 48)
2 ) T4(0)

e Y

The ratio I'(X — ¥) /A needs a special consideration, since

for the MV model as it stands it is ill defined due to the log-

arithmically divergent constant A/ and the strong dependence

of the function I' on the infrared regulator m. For small values
of m the function I has the leading behavior

r~ g~ (49)
~ —log| — ),

" 8 & m2r?

and together with (39) we find for the ratio that enters (48)

L(r)  r* log(z)
N T sx log( 2L2)'

(50)

This depends on both infrared momentum regulator m and
ultraviolet momentum regulator 1/L, respectively, while we
are ultimately interested in the limit L — 0 and m — 0. Here
we observe that if we first take m — 0 we obtain

2
F(r) log(mzrz) . "_, 1)

N 87’[ ]og( 5 2) + log(Lz) 8

which is finite and also independent of L so that the limit
L — 0 can be safely taken, as well. To make progress,
we assume that this is the right prescription although in

The expression for the two-point function in leading order
in the large-N, limit as given in Ref. [25] is

Qs2 2 ) ) _
4 TR0 (04 — 2NN 4 8. 0% + 48)
2
+ ¢ T (Qﬂ*Qv“)[Q“ OhLr® + (40,05 +12877)(QF + Q%) + 16 ¥4 (QF + 0%)” + 1024]

4HN? +40]}) +[1 < 2]. (45)

(

principle the limits m — 0 and L — 0 do not need to
commute.

Possible corrections can arise if one extends the MV model
such that more scales get involved. However, this goes beyond
our present scope and we therefore work with the expression

POIEY) _ oNe T(Hy) %o
4 2 8w 2 JTx(0)

(52)

as the relation between the saturation scale and the nucleus
thickness function. Note that 7> cancels now on both sides
so that the saturation scale Q?(%, ¥) actually depends only on
(X +73)/2.

The two-point function in this model, like the one-point
function, has to be considered at fixed impact parameter and
reaction angle b. The two-point function for a given centrality
can be obtained through the impact parameter distribution
p(b) as a weighted average over an impact parameter window
[b1, by]. In particular the impact parameter dependence can
be introduced in a similar way as for the one-point function,
namely, by shifting the transverse plane dependence of the sat-
uration scale by a E/ 2 term. This corresponds to the following
replacement in Eq. (45):

X+y I;q .
QA Q ( +§,x—y),
b

—2,2—y>. (53)

The dependence of this expression on the reaction plane
angle is given by the direction of b, s0 ¢ is fixed in Eq. (49).
As we discussed in Sec. III A, connected two-mode correla-
tion functions in an ensemble with randomized reaction plane
angle have two contributions, one corresponding to an az-
imuthal average of the correlation function, and another from
the product of one-point functions.

Two-mode correlation functions can be obtained using
(29) with (45) as position space two-point function and
two additional integrations to account for the average over
the impact parameter distribution p.(b) of a given ensem-
ble and the reaction plane angle. It is very convenient to
make use of some properties of the CGC large-N, posi-
tion space two-point function (45) to reduce the number
of integrals and hence the computation time. Indeed, the
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two-point function depends on the position variables only
through

re=1x-y — 2rirycos(¢r — ¢), (54

as well as
RL=13+5+b? =[x+ +b
=+ 2b[ry cos(¢1 — ¢r) + racos(g — ¢r)l.  (55)

Here we parametrized the impact parameter as b=
b(cos(¢r), sin(¢g)) to make its two independent parameters
explicit. The two-point function thus takes the form

(e(r1, @1)e(r2, $2))e = G(r1, 2, b, cos(¢ — ¢2),
X cos(¢p1 — ¢r), cos(¢pz — ¢r)). (56)

Hence, introducing additional integrations over the impact
parameter and the reaction plane angle as well as performing
the following change of integration variables,

br—> P =¢1 — b, ¢r— P2 — Pr, (57)

expression (29) simplifies to

() () S 00 00

m nmy mp,

e"e = — dr; r1/ dry ry
< I L )c Cl(m])cl(zma)/‘0 0

X [21" 00 s [21 072)]

00 2 2
x / db pe(b) / dox / 49 imi
0

x G(ry, r2, b, cos @, cos(¢ + dg), cos ¢r).
(58)

The Kronecker delta arises from the ¢; integration. Just as
for the IPSM, two-mode correlators thus vanish except for
my + my = 0. Furthermore, G is upon integration over ¢ an
even function in ¢ (the relative minus sign between ¢ and ¢z
popping up in the fifth argument of G can be handled with
a change of integration variables ¢g — —¢g), which implies
that two-mode correlators are real-valued.

We computed two-mode correlation functions for the
CGC large-N, model by numerically evaluating (58) with
a nonsymmetric background field from (38) and adding the
contribution from geometry (37).

D. MAGMA model

Recently, a simplification of the CGC large-N, model
has been proposed. Dubbed MAGMA, it considers the energy
density as a superposition of localized interactions falling
off like 1/r> [26]. The connected position space two-point
correlation function of energy density in this model can be
written as

(@®e))e = f(%)sma — ), (59)

with the local function

f&x =

984 Qél(x)Qéz(x)[Q”(x)lOg(Q ( )>

1 %) log (Q 1] )>] 60)

Note that we use A2 to correctly scale our fields. In Eq. (60)
an infrared cutoff regulator m has been introduced. It should
be chosen such that the following scale hierarchy holds:

1 1
— € — <R, (61)
O, m

where R denotes the nuclear radius. The saturation scale is
proportional to the thickness function [see (42)], and its im-
pact parameter dependence is implemented by

) _ b
05 () — 03 (x + 5),

b
Q x) — QY2 (x — z) (62)

The function f in Eq. (60) can then be written as
W& Ta(r_)Tu(ry)
702 T20)

X[m)lo (Qf,on(r+))+[r - ]}
7:0) 2 \Um? T,0) R &

f&® =

(63)

where we defined ry = |X¥ & 13/2|. Remarkably, the strong-
coupling constant g drops out. Following [26], we will set
m = 0.14GeV and Q¢ = 1.24 GeV.

At this point it is worth working out some general
properties of two-point models of the form (59) with a
model-dependent function f. Note that for f(X) x p(X)
this reproduces the connected part of the IPSM posi-
tion space correlation function in Eq. (26). The function
f(X¥) changes when one transforms fields according to
Eq. (19).

An expression for two-mode correlation functions can be
obtained from (59) using (29):

! /oodr r Jm,[ (m‘),o(r)]

( (my) (Wh)) —
Zﬂc(m])c(mZ) 0

611 Elz

2 d )
X Iy [Zl(zmz)p( )] / 27‘? efz(m1+mz)¢f(r’ ®).
(64)

The function f can in general depend on the az-
imuthal angle ¢ in a nontrivial way, therefore it is natural
to consider its Fourier expansion. Introducing f,(r) =
1/Q2m) [dp e ™ f(r, ), we obtain

(my) (mz)

611 61, Z 8m1+m2 menllz 2 m)’ (65)
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FIG. 1. Impact parameter distribution with 30 histogram bins
from 10° Pb-Pb events generated by TRENTO and normalized such
that [;° db p(b) = 1.

with

(my,mpsm) __

1 /1
= 5 | 4P P I (P
e (2n)c§:"‘)cg"2) 0 4 h )

Sm(p)
W(p)

If the model function f depends on the impact parameter
vector as well, one would have to include an additional in-
tegral [ dbp.(b) as well as an averaging integral over the
reaction plane angle. In this case, however, thanks to the delta
distribution in Eq. (59), the reaction plane angle appears only
as ¢ — ¢r. The ¢ average then assures that BZ‘}ZIZ'mz;m vanishes
for m # 0. Hence, the two-mode correlation functions vanish
for m; + my # 0. They are also real-valued because B;””IIJMWH)
constitutes an integral over real-valued functions if m = 0.
We computed two-mode correlation functions for the
MAGMA model by numerically evaluating (66) with a non-
symmetric background field from Eq. (38) and, just like for

X Iy (21 p) (66)

W(r), 0-1%
0.051 .
--- TrENTo
----- CGC
0.041 ===~___
~\\\xx
< AN
£0.03 N
= “'\‘
2 N
£0.02 kN
= N
-\
BN
0.01 N
SN
¢.‘\\\
0.00 RS T
0 2 4 6 8 10
r (fm)
(a)

the CGC large-N. model, by adding the contribution from
geometry (37).

V. COMPARISON OF INITIAL FIELD MODELS

With four initial-state models at hand, we shall now com-
pare their predicted two-mode correlations. We will first
specify how we categorized TRENTO events into centrality
classes. Since the other models do not have an independent
way of defining a centrality class but rather rely on the distri-
bution of the impact parameter as an external input, we adopt
the same distribution as obtained in TRENTO and the corre-
sponding centrality class definition. Next we will compare the
four different models presented before in terms of their one-
point functions. Subsequently, we will focus on two-mode
correlators in the four models and compare them.

A. Centrality classes

The total initial transverse entropy is to a good approxi-
mation proportional to the final charged-particle multiplicity
per unit rapidity [34]. This allows us to categorize TRENTO
events in centrality classes according to multiplicity, the 0—
1% class containing the 1% of all events with the highest
multiplicity, 1-2% referring to the succeeding 1%, and so on.
The multiplicity of an event is highest in central collisions and
decreases for increasing impact parameters. We will mainly
constrain our analysis to two centrality classes: the rather
central 0—1% class as well as the 20-21% class, for which
we expect a nonvanishing impact parameter to play a role.
Numerical data for these as well as other centrality classes
will be made available as ancillary files to this paper.

Defining centrality by means of the multiplicity is useful
since it is directly accessible through experiments. Another
possibility is to define centrality through the impact parame-
ter. This is the natural choice for the two CGC models, as they
are parametrized by b. It is not obvious, and typically not true,
that the two centrality definitions lead to identical ensembles.
However, in the following, we will assume ensembles to be
sufficiently similar for a comparison between the different
models to be valid.

W(r), 20-21%

--- TrENTo
0.08{ _ S A CGC
\\\\'."
<0.06 N
£ AN
5 %
=) <
<0.04 N
= \
S By
RN
0.02 "}\
N
..\\
RN
0.00 B
0 2 4 6 8 10
r (fm)

FIG. 2. Background fields W (r) as defined in Eq. (1) for the 0—1% centrality class (a) and the 20-21% centrality class (b). The background
field for TRENTO will be also used for the IPSM, while the CGC background field enters into the CGC large-N,. model and MAGMA.
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£m, 0-1% &m, 20-21%
0.30] 1 -—= m=0 0.3 -—— m=0
L — m=1 § - m=1
0.25 \\ m=2 020 m=2
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i x - s £
1 S
0.05 \ o1
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(a) (b)
FIG. 3. Coefficients éfm) as defined in Eq. (15) for the 0—1% centrality class (a) and 20-21% centrality class (b), obtained from 10° Pb-Pb
events generated by TRENTO. The error bars correspond to the statistical uncertainty of the respective means. Lines have been added to guide
the eye.

In order to define centrality classes in terms of the impact
parameter, we take the impact parameter distribution p(b)
obtained from TRENTO (see Fig. 1) and use its percentiles
as an impact parameter window [buin, bmax] Of a given cen-
trality class. The impact parameter distribution p.(b) for a

centrality class of width 1%, which enters into (58), is then
given by

therefore the W function [defined in Eq. (1)] entering in the
Bessel-Fourier expansion in Eq. (8) is different for the two
classes of models, as well. Recall that the TRENTO entropy
density (which determines its energy density) is defined in
Eq. (22) to be proportional to a generalized p average of the
reduced thickness functions. In contrast, the energy density

in the CGC models is given by (44) as the product of the
pe(b) = {IOOp(b), if bin < b < bimax,

saturation scales O of two nuclei, the position dependence
) (67) of which is taken proportional to the reduced thickness func-
0 otherwise. tions of the corresponding nuclei. The MAGMA model and the
A more sophisticated scheme would be to determine the CGC large-Ne model share the same energy density deﬁpltlon.
. e e In the IPSM model the energy density can be considered
impact parameter distribution for each (multiplicity based)
centrality class with TRENTO.

as an input, therefore we choose to take TRENTO one-point
functions.

In Fig. 2 we show the resulting background field profiles
B. Expectation value of energy density

W (r) as a function of the radius in the two classes of models,
The TRENTO model and the CGC models differ in their  tor the 0-1 and 20-21% classes. The TRENTO profile is slightly
mean energy density definition for a given centrality class, broader than the CGC energy density on average, which is due

mmmm TrENTO — CGC
0.0 -f-------------1
—-0.2 A 5_(12) 5(22) 5(32) 5—22) ] 5(52)
{e® {e® {e® {e®
. P —— :;_ 17 ___= : __ :_\ B =] JZ£__T= -
6 2I0 4I0 6I0 8I0 6 2I0 4I0 6I0 8I0 (I) 2I0 4I0 6I0 8I0 (I) 2I0 4I0 6I0 8I0 (I) 2I0 4I0 6I0 8I0
Centrality (%) Centrality (%) Centrality (%)

Centrality (%) Centrality (%)

FIG. 4. Comparison of the coefficients El('") as defined in Eq. (15) from the TRENTO model and CGC, as a function of centrality. TRENTO
data are obtained from 10> Pb-Pb events. Line thickness for TRENTO reflects the statistical uncertainty.
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TABLE 1. Best-fit parameter values of the IPSM. Values ob-
tained by a least-squares minimization to the five TRENTO data points
G, 0<m< 4.

Class (%) o B
0-1 6.1 x 1073 43 x 1073
20-21 1.3 x 1072 3.2 x 1073

to different definitions of energy density in terms of thickness
function Eq. (22) with p = 0 in TRENTO and Eq. (44) for the
CGC models.

C. One-point functions

The IPSM necessitates the coefficients El(m) in order to

predict two-mode correlations [see Eq. (33)]. They also appear
in the geometry term (37), which has to be added to the CGC
large-N, and MAGMA models to compute two-mode functions
with randomized reaction angles. As has been discussed in
Sec. IIT A, the coefficients él("’ are related to expectation val-
ues (61('")) at a fixed reaction plane angle ¢z = 0.

In Fig. 3 we present El('") computed from TRENTO events
as a function of / and m for two centrality classes. For both
centrality classes, expectation values with m odd vanish, as

follows from symmetry considerations. In addition, for m =
0, only 550) = 1/m ~ 0.32 is nonvanishing, as we have con-
cluded before.

Note also that the moduli of the nonvanishing expectation
values decay approximately exponentially with increasing
values of [, which highlights a posteriori that our cho-
sen set of basis functions is well suited to describe initial
field profiles using a low number of expansion coefficients.
We note that the decay as a function of / is much more
quick in the 0-1% class than in the 20-21% class. This is
only natural as the coefficients El(m) quantify azimuthal vari-
ations of the background field [see (28)]. The background
field, on the other hand, is symmetric for central collisions
and ever more elliptically deformed for higher centrality
classes.

In Fig. 4 we compare the coefficients El(m) between TRENTO
and CGC as a function of centrality. The two models agree
with each other for all m and [ for central collisions. On the
other hand, for peripheral collisions energy density fluctua-
tions differ substantially between the two models. This can be
seen as a consequence of the different definitions of the energy
density in terms of the reduced thickness functions.

The coefficients él('") as defined in Eq. (15) and displayed
in Fig. 3 can fully characterize the contribution to harmonic
flow coefficients from the collision geometry. To characterize

G\™.~™, 0-1% class

m=0 m=1 m=2 m=3 m=4
0.008
3 ‘ "
23] ' | "m_ |1 "m |
=z -2 T ] ] ]
G, | 1 | | | 0.004
'_
5- 4 . . .
6- 4 . . .
— b b "1 {000
o l- b
2 5] ] ] ] ]
(9
237 I 1 i T H T .- -0.004
—_ 4_ - - - -
Q
g 59 - - - -

e+ A A1 1R 0008

1] I 1 1 1 0.03

2. B - - -

s 34 1 | | | 0.02
n
= 4 . 1 1 1

5 ] ] i ] | 0.01

Ll m] my my

1- 4 . . .

2 i 1 1 1 -0.01
@© .
| | L
g 4] I O I | I I -0.02

5 1 g ] ] ]

SN R S S— -0.03

123456 123456 123456 123456 123456
/2 ’2 Iz I2

FIG. 5. Connected two-mode correlation functions with m; + m, = 0 for four initial-state models, averaged over the 0—1% centrality class.
Different colors are used to distinguish positive and negative values as well as the two colorbar scales.
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FIG. 6. Connected two-mode correlation functions with m; + m, = 0 for four initial-state models, averaged over the 20-21% centrality
class. Different colors are used to distinguish positive and negative values.

contributions from fluctuations we need also two-point func-
tions, to which we turn next.

D. Two-mode correlation functions

We shall now turn to our key quantity of interest, namely,
connected two-mode correlation functions of ensembles with
randomized reaction plane angles. For this discussion we in-
troduce the following notation,

G(ml~m2) —

A (68)

et

for the connected two-mode correlation function, and for the
diagonal part

e ) (69)

It follows from the statistical azimuthal rotation symmetry
that the two-mode correlation functions are real-valued and
vanish except for m; + my; = 0. We can therefore constrain
our analysis to real-valued correlators of the form G;l'f’l’;'")
We have explained in the previous section for each individ-
ual model how to retrieve two-mode correlators. However, we
still need to fix the constants « and § in the IPSM for compar-
isons to the other models to be possible. This was carried out
by fitting the IPSM expression (33) to five TRENTO correlators,
namely, those G(lm) with 0 < m < 4. There are two reasons
for this specific choice. First, we demanded correlators on
the diagonal as we can expect them to be nonvanishing re-
gardless of centrality. And secondly, we made sure to choose

correlators with a small index /. The reason is that we cannot
expect the IPSM with its point-shaped contributions to remain
valid as we pass to finer details in position space. The best-fit
values for o and B for the two centrality classes in question
are presented in Table I.

In Figs. 5 and 6 we present color plots of G;:’l’;_m), with az-
imuthal wave numbers m = 0, 1, 2, 3, 4, and as a function of
the radial wave numbers /; and [, for the two centrality classes
0-1 and 20-21% and comparing the four models introduced
before. Note that this representation is only possible because
the correlators are real-valued and depend for fixed m only on
the two indices /; and /5.

In the 0-1% class, all four models show approximately
diagonal two-mode correlation functions. While the off-
diagonal correlators are almost rigorously zero in the IPSM,
they are more pronounced in TRENTO, especially for higher
values of /; and /,.

Both the IPSM and the MAGMA model have significantly
larger diagonal values G\ than the TRENTO and CGC large-
N, model. This is actually the reason to use two different color
schemes in Fig. 5. Moreover, one observes here already that
the diagonal values G;m) decay with [ in the TRENTO and CGC
large-N, model, while they actually increase for the IPSM and
MAGMA models. This is directly linked to the assumption of
pointlike sources. We will further comment on this below.

The off-diagonal elements in the two CGC models are—
relative to the corresponding diagonal elements—smaller than
they are in TRENTO. In a direct comparison of the two CGC
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FIG. 7. Variation of the diagonal values of two-point correlators G;'") [defined in Eq. (69)] as a function of the radial wave number / in
the four models for two centrality classes in comparison. The left and right column correspond to the 0-1% class and the 20-21% class,

respectively. See text for further discussion.

models, the correlators of the MAGMA model are in this sense
more diagonal than those of the CGC large-N, model.

In the IPSM, strict diagonality is a direct consequence of
centrality: The coefficients €™ vanish for (m, 1) # (0, 1) in
central events so that only the term proportional to §;, ;, in
expression (33) survives. In contrast to the IPSM, the off-
diagonal elements in TRENTO are likely to result from the
fact that the assumption of point-shaped sources is dropped
in favor of an extended Gaussian shape. This fits with the
observation that the off-diagonal elements become more pro-
nounced for higher radial wave numbers [ and /', which probe
finer structures in position space.

When passing from the 0-1% class (Fig. 5) to the 20-21%
class (Fig. 6), one can equally make out deviations from the
initially diagonal structure, most notably for those entries
with either /y =1 or [, = 1 of color plots with m =2 and
(less prominently) m = 4. These off-diagonal contributions,
however, result from noncentrality of the collisions, expressed
through the geometry term in Eq. (37).

A further aspect that all color plots share concerns the sign
of the diagonal elements. Indeed, we have

sign(G"™) = (=1)". (70)
This a direct consequence of Eq. (10), which implies
(m) (m) (—m) m( _(m)_(m)
G" =" ) = (=1)"(e," ™)
m m 2
= (—1)"{|e™ ). (71)

The plots establish that two-mode correlation functions are
largest on the diagonal. On the other hand, the correlator Ggo)
is vanishing in all models. It corresponds to the variance of
efo), which quantifies fluctuations of the integrated field, i.e.,
total transverse energy. Fluctuations of this quantity are natu-
rally suppressed for narrow centrality classes, as we consider
them here.

In Fig. 7 we compare the variation of the correlators G;m)
on the diagonal as a function of / in the four models and for
different values of m. As we established before, the sign of the
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FIG. 8. Variation of |G;’")| in the four models as a function of centrality. The dotted black lines for m = 2 and 4 correspond to the
contribution from geometry which has been added to the two CGC models. In comparison, the solid light gray lines stand for the corresponding
geometry contribution in TRENTO. The sign of a correlator G;"’) can be recovered from Eq. (70).

data series follows a (—1)" pattern. Regardless of centrality,
the diagonal elements in TRENTO and the CGC large-N, model
seem to converge towards zero for large radial wave numbers
[ after peaking at around [ &~ 3. For m = 2, the geometry
part covers the peak in the 20-21% class, making the curve
decrease monotonously. In contrast, the correlators of the
IPSM and MAGMA diverge linearly with / and with similar
slopes. This is likely a consequence of the pointlike approx-
imation for correlations underlying these two models. It is
well possible that the higher / modes are actually efficiently
damped by a viscous fluid evolution and that the increasing
behavior for large / is therefore not visible in final-state ob-
servables. This will be investigated in further work.

Interestingly, the TRENTO correlators agree fairly well with
those of the CGC large-N, model, in both centrality classes.
For small values of /, the IPSM agrees with the previous two
models as well; only from around / = 3 on can an increasing
disparity be observed. Similarly, MAGMA data match the other
models up to [ =3 for m =0 and [ = 1 for m = 4, while
diverging away for higher values of /.

The variation of the IPSM correlators shows that the as-
sumption of point-shaped sources is fairly valid as long as one
probes coarse structures in position space. However, for radial
modes with large wave numbers /, the finer structure of corre-
lations in position space is unveiled. Hence, the IPSM begins
to differ from models working with finite source extensions.
The close similarity between the IPSM and MAGMA is natural,
because the latter model can be seen as a generalization of
the IPSM but still shares with it a Dirac-distribution-shaped
contact term.

Finally in Fig. 8 we show how the diagonal parts of the
two-mode correlators G;’") [defined in Eq. (69)] depend on
centrality. The absolute value of the presented correlators
seems to be monotonously increasing as a function of cen-
trality. This is a natural consequence of geometry contributing
more significantly with rising centrality to the correlators.

As for the agreement of the four models with each other,
this can be investigated with respect to the mode numbers m
and [/ as well as centrality. Figure 8 suggests that the four
models lead to similar results for central collisions and show
increasing discrepancy as a function of centrality.

Generally, for low values of [ and m, the four models lead
to similar results, the discrepancy depending only slightly on
centrality. Instead, the models diverge faster away from each
as a function of centrality when increasing values of m and
[ are chosen. The m dependence of this phenomenon seems
weaker than its / dependence. In addition, the TRENTO data
match up well with the large-N, model, and the IPSM with
MAGMA, as we discussed before. Equally, the / dependence
supports our previous discussion of the limits of the [IPSM
resulting from the point-shaped nature of its sources.

We note also that TRENTO and the IPSM show in all panels
of Fig. 8 a maximum around the 80% centrality. It is difficult
to give meaning to the precise position of this maximum, but
it is also related to the specific choice of the function W (r)
in the definition of the mode expansion in Eq. (8). While the
latter is not unique, the actual correlation functions of energy
density in position space are independent of this choice.

Interestingly the geometry contribution of the CGC large-
N. model dominates the correlation function (dotted black line
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with respect to light green line in Fig. 8); meanwhile, the
corresponding contribution in TRENTO (solid light gray line) is
much smaller than the value of the two-point function (solid
orange line).

Figure 8 thus suggests that the four models agree fairly
well with each other for sufficiently low radial wave num-
bers / and centrality classes. In this regime, the analytically
solvable IPSM would then exhibit universal properties shared
with other initial-state models. A detailed investigation of our
results shows that this universality is restricted to not too large
values of the radial wave number / and more pronounced
for the more central multiplicity classes. This is interesting
because one expects that higher / modes are anyway damped
more strongly by dissipative effects in the fluid regime.

VI. CONCLUSION AND OUTLOOK

We have studied here models for the event-by-event fluc-
tuations in the initial energy density distributions of Pb-Pb
collisions at ,/sxy = 2.76 TeV in ensembles with randomized
reaction plane angles. For this purpose, we used a com-
plete Fourier-Bessel mode expansion scheme for fluctuations
around a background profile specific to a given centrality
class. The statistical properties of different models for the
initial state can then be characterized through one-mode and
two-mode correlation functions depending on azimuthal wave
numbers m and radial wave numbers /.

Comparing four different initial-state models that are cur-
rently discussed in the literature, we have computed two-mode
correlation functions of initial energy density. While TRENTO
and the two CGC models demanded a numerical evaluation,
the IPSM allowed us to find analytical expressions for correla-
tors. Presenting the results exemplary for the centrality classes
0-1 and 20-21%, we were able to capture characteristics of
fluctuations for central collisions as well as effects of the
collision geometry for less central collisions.

Indeed, the IPSM qualitatively agrees with three signif-
icantly more extended initial-state models, as nonvanishing
two-mode correlation functions are of approximately diagonal
form with off-diagonal corrections in noncentral collisions.
For small radial wave numbers /, the IPSM agrees even quan-
titatively with the other models, while differences could be
explained with the point-shaped nature of sources in the IPSM
for larger /.

An important outcome of this paper is actually the con-
crete values of one-point functions and two-mode correlators
for the different models. We have obtained them in numer-
ical form and will make them available to the public as

ancillary files accompanying this paper. In a future publi-
cation we plan to use these initial data together with the
FLUIDUM framework [9,12,28,29,35-38]. This will allow one
to calculate from them two-particle correlation functions
and harmonic flow coefficients that can be measured ex-
perimentally. We are curious to see whether any of the
four models discussed here is favored by experimental data.
For a first step one could actually use the fluid parame-
ters (overall normalization of entropy density, initialization
time, viscosities, and freeze-out temperature) obtained in
Ref. [38] by fitting to transverse momentum spectra of iden-
tified particles. No additional parameters would be needed
and one could directly see which initial-state model works
best.

An interesting possibility also arises from the observation
that the two-mode correlation functions of all four investi-
gated models agree reasonably well for small radial wave
numbers / and for central collisions, indicating there a form
of universality. It is expected that modes with higher values of
| are damped more strongly by shear and bulk viscous dissi-
pation. Also they lead to oscillating patterns on the freeze-out
surface and one can therefore expect that they have a weaker
contribution to final-state two-particle correlation functions.
The observed universality for central collisions suggests to
concentrate on those in order to constrain thermodynamic
and transport properties of the quark-gluon plasma, while
more peripheral centrality classes might be more suitable to
distinguish between different initial-state models (see also
Refs. [39-41]).

Before closing, we would like to mention possible ways to
continue this line of research. One could extend the analysis
in this paper to n-mode correlation functions with n > 2.
Furthermore, one should also look into other collision sys-
tems than Pb-Pb. The general methods employed here can
be applied to arbitrary collision systems as long as a fluid
description is applicable.
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