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The optimized perturbation theory (OPT) is confronted to first-principle lattice simulations. We compare
results from the Polyakov linear-sigma model (PLSM) in OPT with the conventional mean-field approximation
(MFA). At finite temperatures and chemical potentials, the chiral condensates and the decofinement order
parameters, the thermodynamic pressure, the pseudocritical temperatures, the subtracted condensates, the
second- and high-order moments of various conserved charges (cumulants) obtained in MFA are compared
with OPT and also confronted to available lattice quantum chromodynamics (QCD) simulations. We conclude
that when moving from lower- to higher-order moments of different quantum charges, OPT becomes more
closer to lattice QCD simulations. The higher-order moments of conserved charges, such as baryon, strange, and
electric charge, are proportional to powers of the correlation length and thus expected to diverge at the critical
endpoint of the QCD phase boundary. Making sure that one approximate approach is more sensitive than another,
even slightly, is crucial for implementing PLSM, for instance, in positioning critical endpoint and providing an
important signature for the possible experimental detection.
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I. INTRODUCTION

In quantized field theory [1–6], the linear-σ model
[7] (LSM) with a spinless scalar field σa [8] and triplet
pseudoscalar fields πa was introduced in order to describe
the pion-nucleon interactions and the chiral degrees of
freedom. This low-energy effective model has the generators
Ta = λa/2, where λa are Gell-Mann matrices, and a real
classical field forming an O(4) vector; �� = Ta(�σa, i �πa). The
chiral symmetry is explicitly broken by the 3 × 3 matrix field
H = Taha, where ha are the external fields. Under SU(2)L×
SU(2)R chiral transformation, for instance, � → L+�R, σa

acquires finite vacuum expectation values, which in turn break
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SU(2)L× SU(2)R down to SU(2)L+R. This results in massive σ

particle and light or even nearly massless Goldstone bosons.
Accordingly, the constituent quarks gain masses, as well,
mq = gfπ , where g is the coupling and fπ is the pion decay
constant. In the same matter, fermions can be inserted in this
model either as nucleons or as quarks. It has been shown that
the σ field under chiral transformations exhibits the same
behavior as that of the quark condensates, i.e., σ can be taken
as an order parameter for the quantum chromodynamics
(QCD) chiral phase transition [9–13]. Accordingly, the
phase structure [12,14–16], the properties of QCD in finite
magnetic fields [16–19], and also various thermodynamic
quantities have been estimated and reported, at finite baryon
density [14,18,20] and isospin asymmetry [21]. In almost
all these studies, a comprehensive confrontation with the
first-principle lattice calculations was the main part. The LSM
with its various extensions as examples on QCD-like effective
models put forward a major goal to—as perfect as possible—
reproduce various quantities simulated in lattice QCD.

Quantum mechanically, the spontaneous symmetry break-
ing could be achieved by introducing a coherent state and
minimizing the free energy density. Assuming that the system
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of interest is enclosed in a cubic box and imposing periodic
boundary conditions, the fields can be uniquely decomposed
[22] into φ(r, t ) = 〈φ(t )〉 + δφ(r, t ) = ∑

k φk (t ) exp(ik · r),
where 〈φ(t )〉 is the spacial expectation value over the box
volume and δφ(r, t ) stands for the remaining fluctuations
relative to a constant background field. It is obvious that φk =
〈φ exp(−ik · r)〉 and the Fourier coefficients satisfy the sym-
metry relation, φ∗

k = φ−k because the fields, themselves, are
real. Having all these estimated, we can now apply the mean-
field approximation (MFA), which is originated in statistical
physics. In the LSM, the meson fields (or fermion/quark
fields) are replaced by their spacial averaged values and all
vacuum and thermal fluctuations are neglected. All quarks
and antiquarks are retained as quantum fields, but averaged
as well.

A generalization of MFA could be the optimized perturba-
tion theory (OPT), also known as δ expansion or variational
perturbation theory [23]. OPT was developed in O(N ) φ4 the-
ory and resums higher-order terms of the naive perturbation
approach [24,25]. Implications in the symmetric and broken
phases [26], Bose-Einstein condensation - Bardeen Cooper
Schrieffer theory of superconductivity (BEC-BCS) [27], and
zero-dimensional O(N ) scalar field model [28], are examples
of the reliability and applicability of OPT. Here, we apply
OPT to O(4) σ model and then compare the results with the
ones obtained from MFA. We aim at determining the sensi-
tivity of OPT relative to MFA. This is the first time, where
both approaches are compared with each other with reference
to the first-principle lattice calculations. Assuring that one
approximate approach is more sensitive than another, even
slightly, is very crucial for the preparation of the Polyakov
linear-σ model (PLSM) for a comprehensive implementation
in mapping out the QCD critical boundary and eventually
finding the critical endpoint (CEP) and thus providing an
crucial signature for the possible experimental detection.

The present paper is organized as follows. A short review
on the optimized perturbation theory and the mean-field ap-
proximation will be given in Sec. II. Section III is devoted to
the results and discussion. This includes chiral condensates
and deconfinement order parameters in Sec. III A, pseudo-
critical temperatures in Sec. III B, thermodynamic pressure in
Sec. III C, fluctuations and correlations of conserved charges,
in Sec. III D. The latter are detailed to second-order in
Sec. III D 1, and higher-order moments in Sec. III D 2. The
final conclusions are outlined in Sec. IV.

II. OPTIMIZED PERTURBATION THEORY
AND MEAN-FIELD APPROXIMATION

We intend to check whether the optimized perturbation
theory (OPT) would be able to play the role of an alternative
to the nonperturbative approximation, such as the mean-field
approximation (MFA), of the PLSM. This is the primary
goal set forward for the present paper. In general, an OPT
procedure aims at optimizing a linear δ expansion to the
Lagrangian density. The basic idea of OPT becomes obvious
when expanding the chiral Lagrangian, Eq. (1), from which
we realize that even analytic nonperturbative calculations be-
yond what MFA would reach become accessible. Concretely,

the OPT procedure in PLSM goes as follows:

Lδ = (1 − δ) L0(η) + δ L = L0(η) + δ [L − L0(η)],

(1)

where η is an arbitrary mass parameter, which can be fixed
through an appropriate variational method [29],1 and L0(η)
is the free Lagrangian density, in which η is included. The
parameter η is equivalent to mass. Thus, the implementation
of OPT to PLSM is apparently accompanied by an expansion
in terms of the arbitrary parameter δ. Accordingly, Eq. (1)
shows that the underlying symmetries in the chiral limit seems
to not be modified. The term which is proportional to η is
added to the Lagrangian, while the same term multiplied
by δ is then subtracted. At δ = 1, the original Lagrangian
L can be recovered, straightforwardly. At δ = 0, a solvable
Lagrangian L0 is obtained. In general, the parameter δ is also
used as a dummy constant, in order to label the orders of the
perturbative calculations. Thus, δ is initially taken as a small
value and afterwards fixed to unity.

A short review on the LSM is now in order. LSM has chiral
Lagrangian of Nf quark flavors including the structure of
mesons and quarks. With the incorporation of the Polyakov-
loop potential,

L = Lψ̄ψ + Lm − U (φ, φ∗, T ), (2)

where the first term stands for the Lagrangian density for bary-
onic (fermionic) fields with Nc color degrees of freedom, the
second term gives the contributions of the mesonic (bosonic)
fields, and finally the third term represents the Polyakov-loops
potential incorporating the gluonic degrees of freedom and the
dynamics of the quark-gluon interactions.

When implementing the OPT approach, Eq. (1), on the
PLSM Lagrangian, Eq. (2), we get

Lψ̄ψ =
∑

f

ψ f [iγ μDμ − δ gTa(σa + iγ5πa)

− (1 − δ) η]ψ f , (3)

Lm = Tr[∂μ�†∂μ� − (m2 + (1 − δ) η2)�†�]

+ δ {c(Det[�] + Det[�†]) − λ1 (Tr [�†�])2

− λ2 Tr[�†�]2 + Tr[H (� + �†)]}, (4)

U (φ, φ∗, T ) = −b T [54 φ φ∗ e−a/T + ln(1 − 6φφ∗

− 3(φφ∗)2 + 4(φ3 + φ∗3))], (5)

where ψ are Dirac spinor fields for the quark flavors f =
[u, d, s], while Dμ, μ, γ μ, and g are covariant derivative,
Lorentz index, chiral spinors, and Yukawa coupling con-
stant, respectively. φ and φ∗ are the order parameter of the
Polyakov-loop variables and their conjugates, respectively.
We notice that that Polyakov Lagrangian, Eq. (5), is not
directly impacted by the OPT approach, for instance, η or δ are
not present, while Lψ̄ψ and Lm are impacted. We also notice
that Lψ̄ψ is given in terms of η, while Lm of η2. The reason
for this can be understood due the OPT approach and the role

1This parameter is different from the PLSM parameters.
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of η, Eq. (1). It is obvious that η as a modified mass parameter
goes with the masses in the PLSM. Last but not least, when
δ → 0, the standard PLSM Lagrangian [18] can be obtained.
Up to now, construction of PLSM Lagrangian, MFA does not
apply.

It should be noticed that the Lagrangian density of the
fermions is deformed by adding a gaussian term ψ̄ (1 − δ)ηψ

to the original Lagrangian density. All terms, in which the
coupling constant g is included, are multiplied by δ. As
discussed earlier, at δ → 1, the original Lagrangian density of
the fermionic and mesonic contributions can entirely be recov-
ered. The generator operator � is a complex matrix for nonet

meson states, � = ∑N2
f −1

a=0 Ta(σ̄a + i π̄a). In U(3) algebra, the

generator operators Ta = λ̂a/2 are related to the Gell-Mann
matrices λ̂a [30]. The parameters m2, hl , hs, λ1, λ2, and c
are determined, at σ meson mσ = 800 MeV [31]. It should
be emphasized that the estimation of all these parameters is
not affected by MFA or OPT approaches. They are depending
on masses and decay constants as partly elaborated in the
well-known PCAC relations [31,32].

When using OPT instead of MFA to evaluate the free
energy F of the PLSM, analytic nonperturbative calculations
become possible through a prescription known as the principle
of minimal sensitivity (PMS) [33,34]. PMS states that F ,
Eq. (9), can be minimized to the variations of η, at δ = 1:

∂FOPT

∂η

∣∣∣∣
η̄,δ=1

= 0. (6)

Accordingly, we emphasize that the expectation value of η̄

is related to the sigma fields σ f ; η ∼ σ f [35]. Consequently,
the grand-canonical partition function2 Z , which is given in
dependence on the temperature T and the chemical potentials
of f th quark flavor μ f is defined by the path integral over all
bosons, fermions, antifermions:

Z = Tr exp

[∑
f =u,d,s μ f N̂ f − Ĥ

T

]

=
∫ ∏

a

DσaDπa

∫
DψDψ̄

× exp

⎡
⎣∫

d4x(L +
∑

f =u,d,s

μ f ψ̄ f γ
0ψ f )

⎤
⎦, (7)

where Ĥ the chiral Hamiltonian density. The chemical poten-
tials μ f are related to the conserved charge numbers of baryon
number (B), electric charge (Q), and strangeness (S) for each
of the quark flavors, f = [u, d, s]:

μu = μB

3
+ 2μQ

3
,

μd = μB

3
− μQ

3
,

μs = μB

3
− μQ

3
− μS. (8)

2MFA also enters the play but only when constructing the partition
function Z as detailed in Refs. [12,14–21,36].

FIG. 1. Diagrams illustrating the corrections to the free energy
up to δ2 expansion. The fermionic contributions are depicted as solid
lines. The propagators of σ fields are represented by the dashed lines.

Then, the free energy density can be deduced as

FOPT(T, μ f ) = −T

V
ln [Z] = �(σl , σs) + U (φ, φ∗, T )

+�ψ̄ψ (T, μ f ). (9)

When recalling Feynman graphs up to δ2, the OPT ap-
proach can be depicted. Figure 1 shows the contributions in
orders of δ and the color degrees of freedom Nc. The left
panel (a) shows the zero order, δ0, with 1/N0

c or O(δ0 N0
c ),

which is shown as thick solid lines representing the fermionic
contributions, for which the system is composed of quarks
and antiquarks. The free energy density of these contributions
have been evaluated by different approximations including
MFA [12,14–21,36–38] and Hartree-Fock method (HFM)
[39]. The middle panel (b) of Fig. 1 shows the first-order
corrections of δ with 1/N0

c or O(δ N0
c ) and how this comes

up with an additional contribution rather than those of both
MFA and HFM. The dashed line represents the propagator of
the σ field. This is the version we are utilizing in the present
calculations.

The right panel (c) of Fig. 1 shows the second-order
corrections of δ with 1/N0

c or O(δ2N0
c ) belonging to the next-

to-leading order (NLO) expansions [40,41]. We notice that the
first two diagrams are the propagators up to O(δ2). These
are considered to be an OPT approach for a gas with free
fermions whose masses are converged by the modified mass
parameter η → η + δ(σ f − η) [29,35]. The last diagram is
already included in the second order of O(δ2) and written with
the usual mass parameter η [29,35]. Let us now consider the
first two diagrams to determine the PLSM free energy density
in finite volume, FOPT(T, μ f ), Eq. (9), the “optimized” δ

expansion.
As discussed, the full construction of the OPT free energy

density in finite volume is given in Eq. (9). In the right-hand
side (rhs), the first term, �(σl , σs), stands for the potential
of the mesonic contributions in pure nonstrange (σl ) and pure
strange (σs) condensates

�(σl , σs) = (m2 + (1 − δ) η2)

(
σ 2

l + σ 2
s

)
2

+ δ

{
λ1

2
σ 2

l σ 2
s + (2λ1 + λ2)

8
σ 4

l + (λ1 + λ2)

4
σ 4

s

− c

2
√

2
σ 2

l σs − hl σl − hs σs

}
. (10)

We now explicitly show that the last term in rhs of Eq. (9),
�ψ̄ψ (T, μ f ), which represents the potential of the quarks
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and antiquarks contributions and the chiral condensates in the
mean-field limit reads

�ψ̄ψ (T, μ f )

= −2 T
∑

f =u,d,s

∫
d3 �P

(2π )3
[I (+)

f (T, μ f ) + I (−)
f (T, μ f )]

+ 2 δ Nc

∑
f =u,d,s

∫
d3 �P

(2π )3

{
(m f + η)

E f
(η − σ f )

× [1 − n(+)
f (T, μ f ) − n(−)

f (T, μ f )]

}
. (11)

The Fermi-Dirac distribution functions I (+)
f (T, μ f ) and

n(+)
f (T, μ f ) are defined—in widely used notations—as

I (+)
f (T, μ f ) = ln

[
1 + 3

(
φ + φ∗ e− E (+)

f
T

)
e− E (+)

f
T + e−3

E (+)
f
T

]
,

(12)

n(+)
f (T, μ f ) =

(
φ∗ + 2φe− E (+)

f
T

)
e− E (+)

f
T + e−3

E (+)
f
T

1 + 3
(
φ + φ∗ e− E (+)

f
T

)
e− E (+)

f
T + e−3

E (+)
f
T

,

(13)

where E (±)
f = E f ∓ μ f are the energy-momentum dispersion

relations, in which the upper sign is applied for quarks and
the lower sign for antiquarks. These relations are subject to

modifications due to OPT, E f = [| �P|2 + (m f + η)2]
1/2

. By
replacing E (+)

f with E (−)
f and the order parameter of the

Polyakov-loop variable φ with its conjugate φ∗ or vice versa,
we find that the terms I (−)

f (T, μ f ) and n(−)
f (T, μ f ) are

identical to I (+)
f (T, μ f ) and n(+)

f (T, μ f ), respectively. It is
worth highlighting that the second term in the rhs of Eq. (11)
approximately equals the derivative of the first term in the
mean-field of the averaged mass parameter η̄.

The second line in Eq. (11) is approximately the gap
equation of the quark condensate [42,43]. By minimizing the
thermodynamic potential with respect to the quark condensate
〈q̄ f q f 〉, this definition becomes obvious, which shall play
an essential role in clarifying the impacts of OPT compared
to MFA, as illustrated in Fig. 5. The modified Fermi-Dirac
distribution functions for quarks and antiquarks, Eq. (13),
with finite Polyakov-loop variables are derived explicitly by
the summation over the Matsubara frequencies [42]. These
distribution functions straightforwardly lead to the standard
form, especially in the limit that φ, φ∗ → 1, i.e., within the
deconfined phase. On the contrary, within the confined phase,
φ, φ∗ → 0, the exponential term grows by a factor of 3.

For the free energy density in PLSM, OPT and MFA
procedures work as follows:

(i) Optimized perturbation theory (OPT): Eq. (9) is to be
estimated, where Eqs. (10), (11), and (5) shall be taken
into account, and

(ii) Mean-field approximation (MFA): the chiral limit of
the mean-field is obtained when the thermodynamic

potentials in Eq. (9) are determined at δ → 1 and η =
0 (or vanishing arbitrary mass parameter).

Having the free energy estimated weather in OPT or in
MFA, the thermodynamic quantities which are thought to
describe the chiral structure of the QCD matter, at finite
temperatures and finite chemical potentials can be determined.
These quantities play the role of the thermodynamic order pa-
rameters characterizing whether the system undergoes phase
transition. Concretely, the order parameters are the mean
σ fields (σ̄l , and σ̄s) and the Polyakov-loop variables (φ̄,

and φ̄∗), which are analytically estimated from the global
minimizing of the real part of the PLSM free energy density in
finite volume, Re [FOPT(T, μ)], with respect to the associated
thermodynamic order parameter, at a saddle point

∂FOPT

∂σ̄l

∣∣∣∣
σ̄l

= 0,
∂FOPT

∂σ̄s

∣∣∣∣
σ̄s

= 0,
∂FOPT

∂φ̄

∣∣∣∣
φ̄

= 0,

∂FOPT

∂φ̄∗

∣∣∣∣
φ̄∗

= 0. (14)

These expressions can be solved, numerically. For MFA, these
expressions are the ones assuring global minimization and
consequently determine the various order parameters. For
OPT, we have to assure the principle of minimal sensitivity
(PMS), Eq. (6), in addition to Eqs. (14). Only when all
expressions outlined in Eqs. (14) and (6) are fulfilled, T and μ

can be determined and then enter further OPT calculations. To
summarize, the differences between OPT and MFA become
now obvious, namely for MFA, FOPT → F and Eq. (14) are
the only global minimization to be fulfilled. For OPT, Eq. (6)
must be fulfilled, as well.

In the section that follows we present results on the
chiral condensates and the deconfinement order parameters,
Sec. III A. Section III C is devoted to results for the ther-
modynamic pressure. The fluctuations and the correlations of
various conserved charges shall be discussed in Sec. III D. The
second-order moments shall be outlined in Sec. III D 1, while
the higher-order moments are the topics of Sec. III D 2.

III. RESULTS AND DISCUSSION

In the present section, we study the quark-hadron phase
structure of the QCD matter at finite temperature and chemical
potential in MFA and OPT in PLSM. To this end, we first
calculate the PLSM chiral condensates, σl and σs, and the
deconfinement order parameters φ and φ∗. To judge about
the reliability of both types of approximations, we compare
the PLSM subtracted condensate for pure mesonic σ fields
with the lattice QCD (LQCD) calculations. In doing this,
we can determine the pseudocritical temperatures at different
chemical potentials in MFA and then in OPT. The results
in both approximations shall be summarized in the QCD
phase diagram compared with recent lattice QCD simulations.
As a further check, we discuss some PLSM features of the
thermodynamics. We limit the discussion on the pressure.
Then, we move to the fluctuations and the correlations of
various conserved charges, which are deduced from the sec-
ond derivatives of the pressure, for instance, with respect to
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FIG. 2. (a)–(f) The temperature dependence of the normalized condensates for nonstrange σl/σl0 and strange σs/σs0 chiral condensates in
MFA (solid curves) and in OPT (dashed curves) and that of order parameter of Polyakov-loop variables φ (dashed curves) and φ∗ in MFA
(dotted-dash curves) and φ (dotted curves) and φ∗ in OPT (double dotted dash curves) are given at μ f = 0, 50, 100, 150, 200, and 250 MeV,
respectively.

the corresponding chemical potential. Last but not least, we
compare between the PLSM results on high-order moments
of particle numbers.

A. Chiral condensates and deconfinement order parameters

As discussed in Sec. II, the chiral condensates (σl and
σs) and the Polyakov-loop variables (φ and φ∗) can be
evaluated by solving the gap equations, Eqs. (14) and (6),
Re [FOPT(T, μ)], at the subtle point. The vacuum values of
nonstrange and strange chiral condensates, at vanishing chem-
ical potential μ f = 0 MeV, are σl0 = 92.5 MeV and σs0 =
94.2 MeV, respectively. The various PLSM parameters are
estimated, at mσ = 800 MeV. As introduced, for MFA, the
gap equations to be solved for the ones given in Eq. (14).

In panels (a), (b), (c), (d), (e), and (f) of Fig. 2 the
temperature dependence of the order parameters which are
calculated in MFA and OPT at different chemical potentials
μ f = 0, 50, 100, 150, 200, and 250 MeV, respectively, are
depicted. The temperature dependence of the order parameter
of the Polyakov-loop variables φ (dashed curves) and φ∗
(dotted-dash curves) in MFA and φ (dotted curves) and φ∗
(double dotted dash curves) and in OPT are also illustrated in
the same panels, at the given chemical potentials.

Between the MFA and OPT calculations for φ and φ∗,
there are small differences below and above Tχ . While, almost
no difference exists between the PLSM calculations for σl

and σs in MFA and OPT. In the hadronic phase, at T < Tχ ,
both approximations become distinguishable, especially in the
region of the phase transition. A larger difference appears in
the quark-gluon phase.

(i) The thermal behavior of σl and σs starts at almost the
same value; the one corresponding to their vacuum
condensates. In this region, the effect of the chemical
potential is apparently negligible. The increase in
chemical potential seems to repair the increase in the
phase transition. With this regard, we notice that OPT
is more sensitive than MFA. This is a fundamental
difference which might favor OPT against MFA.

(ii) We also notice that in OPT σl starts its prompt phase
transition more rapidly than MFA. While in MFA
σl begins a likely first-order phase transition, at μ =
200 MeV, panel (e) of Fig. 2. In OPT, the first-order
phase transition is indicated for σl , at μ = 100 MeV.

(iii) For σs, there is always a smooth phase transition,
although, OPT at T � Tχ is accompanied with a faster
drop in σs than MFA. The corresponding Tχ remains
nearly identical, Fig. 4.

With this regard, it is in order now to summarize the pro-
cedures utilized in determining the pseudocritical temperature
Tχ [20].

(i) The first one utilizes the temperature dependence of
the chiral susceptibility. This is the second derivative
with respect to the chemical potential or the first
derivative of the subtracted condensate �ls, Eq. (15),
with respect to the chemical potential, Eq. (17) and
Fig. 6. Tχ is precisely positioned at the inflection point,
at which a maximum in the chiral susceptibility takes
place.

(ii) The second procedure utilizes the intersection
point of the normalized chiral condensate and the
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FIG. 3. Left panel (a) illustrates the temperature dependence of the subtracted condensate �ls in MFA (solid curve) and in OPT (dashed
curve) and compares these with recent lattice QCD simulations [48] (solid band). Middle panel (b) shows the MFA subtracted condensate,
at μ = 0.0 (solid curve), 50.0 (dashed curve), 100.0 (dotted curve), 150.0 (dotted-dash curve), 200.0 (double dotted-dash curve), 250.0,
(long-dash curve), and 300.0 MeV. (dotted long-dash curve). Right panel (c) depicts the same as in the middle panel but here for OPT.

Polyakov-loop variables, as dictated by the lattice
QCD simulations, Fig. 2 [44].

With this regard, we believe that the first procedure leads
to a precise estimation for Tχ , at different chemical potentials.
The pseudocritical temperature Tχ is an essential thermody-
namic quantity for the QCD phase structure. In the section that
follows, we confront our calculations on σl and σs to recent
lattice QCD calculations.

B. Pseudocritical temperatures

Another thermodynamic quantity which plays the role of
an order parameter is the normalized net-difference between
the nonstrange and strange chiral condensate, known as the
subtracted condensates �ls [45], this quantity was directly
simulated in lattice QCD,

�ls = σl − (hl/hs) σs|T
σl − (hl/hs) σs|T =0

, (15)

where hl (hs) are nonstrange (strange) explicit symme-
try breaking parameters which are to be estimated from
the Dashen-Gell-Mann-Oakes-Renner (DGMOR) relations
[46,47]. Figure 3 shows the temperature dependence of the
subtracted condensate, at different chemical potentials. The
left panel (a) depicts the PLSM results in MFA (solid curve)
and in OPT (dashed curve). These are compared with the con-
tinuum extrapolation of recent lattice QCD simulations [48].
There is a good agreement, especially within the region of the
phase transition, where the condensates decline very rapidly.
It is obvious that at T < Tχ , �ls first remains unchanged hav-
ing unity as value. With the increase in temperature, a rapidly
decrease takes place within the region of the phase transition.
With further increase in the temperature, �ls becomes almost
temperature independent. In this region, the colored quark-
gluon phase, �ls keeps its low value almost unchanged, which
apparently means that the quark and gluon are deconfined and
their related degrees of freedom are liberated.

The middle and right panels of Fig. 3 show the temperature
dependence of the subtracted condensates at various chemical
potentials for MFA and OPT, respectively. Here, we also

observe that at low temperatures, �ls keep their values (unity)
unchanged for a while, i.e., until the temperatures reach some
values. Again, the further increase in the temperature gives
almost the same behavior as the one obtained in the left panel
(a). We notice that the increase in the chemical potentials
tends to increase the rate of the rapid drop in �ls. The larger
chemical potential, the narrower is the temperature region,
within which �ls decline to low values. It is apparent that
hadron-quark phase transition of first order seems to start
taking place, at μ f = 200–250 MeV.

The results obtained when comparing �ls with recent lat-
tice QCD simulations, encourage mapping out the QCD phase
diagram. This is another confrontation of the PLSM results
in MFA and in OPT with the first-principle calculations. As
discussed earlier, the pseudocritical temperatures in PLSM,
Tχ is to be estimated in different procedures. Having this done,
we can now map out Tχ at different baryon chemical potential
μB = 3 μ f .

Figure 4 depicts the Tχ -μB plane. The PLSM results in
MFA (solid curve) and in OPT (dashed curve) are compared
with the lattice QCD simulations [49] (dashed band), [50]
(grid band), and also with the experimental estimations in the
STAR experiment at the BNL Relativistic Heavy Ion Collider
(RHIC) (closed symbols) [51] and the ALICE experiment
at the CERN Large Hadron Collider (LHC) (open symbols)
[52]. For the lattice QCD simulations [49], the dashed band
indicates the type of the phase transition. The grid band shows
the same as the dashed band but here for the first-principle
lattice QCD calculations [50]. While the solid band refers
to the boundary of the critical temperature, the dashed band
illustrates the boundary of Tχ , which was obtained from the
baryon susceptibility, Fig. 6.

The PLSM results in MFA (solid curve) and in OPT
(dashed curve) agree well with both lattice QCD calculations.
The agreement looks very convincing, especially when focus-
ing on the lattice QCD simulations [49] (solid and dashed
bands), which are recently refined [50] (grid band). The
inside box zooms out the region, within which the lattice
QCD calculations are reliable. When focusing on the possible
differences between MFA and OPT, we would report on
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FIG. 4. The chiral phase diagram of the PLSM resulted in MFA
(solid curve) and in OPT (dashed curve) is compared with recent
lattice QCD simulations [49] (solid and dashed bands) and [50] (grid
band). Furthermore, these are confronted to the experimental results
of the STAR [51] (closed symbols) and ALICE experiments [52]
(open symbols).

an almost identical result. Apart from the observation that
OPT is accompanied with a slightly higher Tχ , especially
at large μB, both approximations result in identical Tχ . We
notice that the phase transitions in MFA and in OPT cross
over. Both result in identical Tχ , at μB � 450 MeV. At larger
μB, they start being distinguishable; OPT has a higher Tχ

than MFA.
So far, we conclude that either in the order parameters or

in the subtracted condensates or in the pseudocritical temper-
atures both MFA and OPT are almost identical, especially at
small μB. At higher μB, OPT becomes slightly more sensitive
than MFA, which represents a corner milestone in preparing
PLSM for an extensive scan for critical phenomena, such as
QCD critical endpoint.

In the section that follows, we compare PLSM results in
OPT and in MFA with recent lattice QCD calculations for the
thermodynamic pressure, which can be derived directly from
the total free energy density, Eq. (9).

C. Thermodynamic pressure

The thermodynamic pressure p(T, μ f ) = −F (T, μ f )
plays an important role in deriving various thermodynamic
quantities. After addressing the PLSM in MFA and in OPT
and estimating the corresponding order parameters [chiral (σ
fields) and deconfinement (Polyakov)], it is now comprehen-
sible to analyze the thermodynamic pressure. As done in the
previous section, we aim at confronting the PLSM results on
the pressure with recent lattice QCD calculations [53]. The
earlier have been estimated in MFA and in OPT, separately.
We aim at determining which approach agrees well with the
lattice QCD calculations.

With this regard, we calculate the Stefan-Boltzmann (SB)
limit which can be defined from the partition function of an
ideal gas of free quarks and gluons [54] with Nc color degrees

of freedom and Nf quark degrees of freedom as

pSB
T 4

= 0.8 Gg

72
π2 +

∑
f

G f

72

[
0.7 π2 + 3

(μ f

T

)2

+ 3

2π2

(μ f

T

)4
]
, (16)

where Gg and G f are the degeneracy factors for gluons
and quarks, respectively. These are defined as Gg =
spin polarization[0, 1] × (N2

c − 1), G f = spin polarization
[+1/2, −1/2] × parity[ψ, ψ̄] × NcNf , i.e., the degeneracy
factors, Gg = 16 and G f = 36. In this limit, i.e., taking into
account the first two terms π2

72 [(0.8 × 16) + (0.7 × 36)], the
SB limit for thermodynamic pressure reads pSB/T 4 = 5.209
for Nf = 2 + 1 quark flavors.

The upper panels of Fig. 5 depict the temperature depen-
dence of the normalized thermodynamic pressure p/T 4 de-
duced form the PLSM in MFA and OPT, at different chemical
potentials. The left-hand panel (a) shows the PLSM pressure
in MFA and in OPT, at μ f = 0 MeV and compares these
with recent lattice QCD calculations [53] (closed circles). We
observe that the PLSM results agree well with the lattice
QCD calculations, as reported in Refs. [12,14–21,36]. At
low temperatures, the PLSM results are slightly lower than
the lattice QCD calculations. The comparison seems to be
improved in the region of the quark-hadron phase transition.
At high temperatures, there is a good agreement, at least
up to T � 2.5Tχ . It is worth emphasizing that the PLSM
curves—similar to the lattice QCD—seem to saturate below
the SB limit. At T � 2.5Tχ , the gap with the SB limit is about
31.8% for MFA (solid curve) and a little bit more for OPT
(dashed curve), 34.9%. In light of this, one concludes that the
phase transition in both approaches has the same transition
(crossover), very similar to the lattice QCD calculations and
the deconfined phase seems strongly correlated.

Middle (b) and right (c) panels of Fig. 5 show p/T 4

as functions of T , at μ f = 0, 50, 100, 150, 200, 250, and
300 MeV in MFA and in OPT, respectively. We find that the
increase in μ f apparently drives the phase transition form
being a smooth crossover to a prompt first-order phase tran-
sition. In light of this, the pseudocritical temperature Tχ (μB)
seems not to be a universal constant. At least, increasing μB

decreases Tχ , similar to the behavior depicted in Fig. 4. Not
shown here, we report on other dependences, namely that
Tχ depends—as well—on different variables, for instance,
the type of the approximation used in the PLSM, the input
parameters, and the Polyakov potential which is there to
integrate the dynamics of gluon interaction to the PLSM chiral
model.

The bottom panel of Fig. 5(d) shows differences between
OPT and MFA in a semilog scale. The difference in the
scaled pressure �p/T 4 (double-dot-dashed line) is compared
with the difference in second term of Eq. (11) (dot-dashed
curve). The latter represents main contributions added by the
OPT approximation, i.e., an extra term relative to MFA. We
conclude that both approximations MFA and OPT seem not
to be giving the same thermodynamic pressure. This would
not be obvious from a blind comparison as in the top panels.
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FIG. 5. The same as in Fig. 3 but here for normalized pressure P/T 4 (a)–(c). The PLSM results are compared with lattice QCD simulations
[53]. The bottom panel (d) illustrates the temperature dependence of the PLSM in MFA and OPT on the normalized pressure (double-dot-
dashed line) and the second term in Eq. (11), the subtracted normalized pressure (dot-dashed curve).

A great portion of such a difference is to be credited to the
second term of Eq. (11).

In the section that follows, we move to high-order mo-
ments. In doing this, we aim at highlighting whether the
higher-order moments would enhance the difference between
MFA and OPT, as observed in Fig. 5 or eventually not. We
first present calculations for quadratic fluctuations for the
same quantum charges and correlations, i.e., mixed quantum
charges in Sec. III D 1. The higher-order moments shall be
elaborated in Sec. III D 2.

D. Fluctuations and correlations of conserved charges

The fluctuations and the correlations of the various con-
served quantum charges, X = [B, Q, S], can be estimated
from the derivatives of the total free energy density of the
system of interest, Eq. (9), with respect to the associated
chemical potential, Eq. (8),

χ
BQS
i jk = ∂ i+ j+k (p(T, μ̂X )/T 4)

(∂μ̂B)i (∂μ̂Q) j (∂μ̂S )k
, (17)

where μ̂X = μX /T , the superscripts i, j, and k run over
integers giving the orders of the derivatives. With this regard,
it is informative to estimate the fluctuations (diagonal) and
correlations (off-diagonal) of PLSM in MFA and in OPT.
The thermal expectation values of the conserved charges
X = [B, Q, S], first-order moments, are estimated from the

derivative of the partition function Z (T, μX ) with respect to
corresponding chemical potential μX as

〈NX 〉 = T
∂ ln[Z (T, μX )]

∂μX
. (18)

The cumulants of the quantum number distributions are given
as

CX
n = V T 3χX

n , (19)

where σ 2 = 〈(δN2)〉 = V T 2χX
2 is the variance and κ =

CX
4 /(σ 2)2 is the kurtosis. One can construct products of

moment, which can be related to the measured multiplicities
of the produced particles [55], for instance,

κσ 2 = CX
4

CX
2

= χX
4

χX
2

, (20)

i.e., ratios of quartic to quadratic cumulants of the net-
quantum number fluctuations. The fluctuations of conserved
quantum charges can be determined in the SB limit, i.e.,
for an ideal gas with free constituents. These are listed in
Table I, where only up to the fourth order cumulants are finite.
Comparing these values with our calculations indicates how
far is the deconfined system from the SB limit.

In the next section, we focus on the second-order fluctua-
tions and the correlations of various conserved charges.
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TABLE I. Cumulants for baryon, B, electric charge, Q, and
strangeness quantum numbers, S, in an ideal gas, i.e., SB limit.

Cumulants in SB limit B Q S

χX
2 1/3 2/3 1

χX
4 2/9π 2 4/3π 2 6/π 2

1. Second-order moments

With this regard, the PLSM results for the second-order
fluctuations are deduced at i + j + k = 2. In the calculations
presented in Fig. 6, we consider the MFA and OPT ap-
proaches, at μ f = 0. As done in almost all figures, the PLSM
results are compared with recent lattice QCD calculations.

Figure 6 depicts the temperature dependence of the
quadratic fluctuations χX

2 (left-hand panel) and the quadratic
correlations χXY

11 (right-hand panel) as calculated in the PLSM
in MFA (solid curves) and in OPT (dashed curves) as func-
tions of T , at vanishing chemical potential. Our calculations,
the diagonal fluctuations, χX

2 , are compared with recent lattice
QCD calculations; Wuppertal-Budapest (grid-filled bands)
[56] and HotQCD [57] (solid-filled bands) and [58] (solid

curve). Figure 6 shows in panels (a), (b), and (c) the suscep-
tibilities for the net-baryon numbers, the net-electric charge,
and the net-strangeness, respectively. The phase transition
(crossover) is defined where the mesonic degrees of freedom
start to be liberated from the confined phase (bound mesons)
and the system is converted to the deconfined (free quarks and
gluons) phase [59,60].

It is obvious that the susceptibilities seem to have small
values, at low temperatures, where in this region the mesonic
contributions become dominant. Accordingly, the chiral con-
densates have maximum values due to the relevant degrees
of freedom responsible for the small fluctuations, Fig. 2. It is
apparent that in the region of crossover the fluctuations rapidly
arise with the increase in temperature. It should be noticed that
the chiral structure of the mesonic states plays an essential
role in the temperature dependence of the fluctuations and the
quark number multiplicities. It is believed that a new state of
matter, i.e., massless quark and gluons, is produced.

At high temperatures, the system reaches the deconfined
state and therefore the fluctuations raise from fixed values
to maxima, even if remains slightly below the SB limit. The
explicit calculations from PLSM, as well, reach ≈94.3% and
≈88.8% of their respective ideal gas limits in MFA and in
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OPT, respectively. We notice that the differences between the
PLSM results and the corresponding SB limits vary according
to different scenarios, for instance, the several mechanisms
of the inclusion dynamics and the degrees of freedom of
quark flavors and gluons. Furthermore, the differentiation with
respect to μ f and the various types of statistical errors in
the numerical simulations would contribute to the potential
differences.

The right-hand panel of Fig. 6 illustrates the same as in
the left-hand panel but here for the off-diagonal fluctuations
(correlations) of the conserved quantum charges χXY

11 ; χ
BQ
11

(top panel), χ
QS
11 (middle panel), and −χBS

11 (bottom panel).
We notice that the PLSM correlations agree well with the
lattice QCD calculations with continuum extrapolation [57].
The variation in the temperature behavior of the correlations
of the baryon number with the electric charge, χ

BQ
11 , panel (d),

is dominated by the mesonic contributions, at low tempera-
tures. χBQ

11 arises almost exponentially with the increase in the
temperature. Again χ

BQ
11 vanishes, at high temperatures, be-

cause in this limit the quarks become massless [59,60]. While
the correlations of the strangeness S with the electric charge
Q and that of the strangeness S with the baryon number B;
χ

QS
11 and −χBS

11 , respectively, clearly manifest the effect of the
strangeness degrees of freedom [61,62]. These correlations
are related to the quark-flavor fluctuations: χBS

11 = −(χ s
2 +

2χus
11 )/3 and χ

QS
11 = (χ s

2 − χus
11 )/3 [57]. As emphasized when

discussing the quadratic fluctuations, the correlations here
are also sensitive to the quark-hadron contributions. We ob-
serve that the PLSM results agree well with the continuum
extrapolation of the lattice QCD calculations, especially at
low temperature and within the region of crossover. At high
temperatures, we find that the PLSM results on χ

QS
11 and −χBS

11
are below the SB limit. Such a difference is to be estimated as
≈6% and ≈12% for MFA and OPT, respectively.

We conclude that the comparison between the PLSM
results and the lattice QCD calculations shows that OPT
reproduces the first-principle fluctuations relatively better than
MFA, especially within the region of the phase transition.
Also, OPT seems to reproduce well the available lattice QCD
correlations better that MFA.

2. Higher-order moments

The ratios of the higher-order moments, such as χB
4 /χB

2 ,
χ

Q
4 /χ

Q
2 , χS

4 /χS
2 , χB

6 /χB
2 , and χB

8 , are proposed as experimental

signatures for the phase transition [63]. The PLSM results
on the higher-order moments of different quantum charges in
MFA are compared with the ones in OPT. We also compare
these with the lattice QCD simulations and the available
experimental results. We start first with the PLSM results
on the product of the higher-order moments κ σ 2 or χX

4 /χX
2 ,

Eq. (20), for which measurements at various beam energies,
for instance Ref. [64], and the lattice QCD calculations, at
finite temperatures [58,60] are available, Fig. 7.

The susceptibility of the net-baryon number is proposed
as a signature for deconfining hadrons into colored massless
quarks and gluons [65]. It was suggested that the particle
number correlations are directly coupled to the variance of the
order parameter and thus becomes sensitive to the correlation
length ξ in a universal manner that χn ∼ ξ n(5−η)/2−3, where η

is a critical exponent to be defined from the universality class.
With this regard, we highlight that the higher-order moments
of conserved charges, which are proportional to powers of
the correlation length and expected to diverge at the critical
endpoint of the QCD phase boundary, play an essential role
in locating CEP and thus providing an important signature for
its experimental characteristics.

In Fig. 7, κ σ 2 for net-baryon number (left panel), for elec-
tric charge (middle panel), and for strangeness (right panel)
are depicted as functions of T , at μB = 0 MeV. The results
are compared with the lattice QCD calculations [60] (closed
symbols) and HotQCD collaboration [58]. We find that at
low temperatures χB

4 /χB
2 starts from unity, where the mesonic

contributions are dominant within the hadron phase. With the
increase in T , a rapid drop in χB

4 /χB
2 = κ σ 2 takes place, due

to the rapid increase in χB
2 within the region of crossover,

left panel of Fig. 7. At high temperatures, the temperature
dependence of χB

4 /χB
2 reaches a saturated plateau, even with

much lower values than that in the confined phase. We notice
that the PLSM results in MFA and OPT seem to nearly
approach the SB limit, χB

4 /χB
2 |SB = 2/(3π2).

Middle and right-hand panels of Fig. 7 draw the moment
product κσ 2 for the net-electric charge and the net-strangeness
multiplicity, respectively, as calculated from the PLSM and
compared with the lattice QCD calculations (closed symbols)
[60]. It is apparent that the κσ 2 approaches unity, at low tem-
peratures and also the SB limit, at high temperatures, while
at T ∼ Tχ , there is an obvious peak observed in both quan-
tum charges [60]. At higher temperatures, κσ 2 for the net-
charge agrees with the lattice QCD simulations, while that of
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FIG. 8. The temperature dependence of susceptibilities of the conserved charges χB
6 /χB

2 and χB
8 computed in PLSM in MFA (solid curve)

and in OPT (dashed curve) is graphically compared with the lattice QCD calculations [66] (solid symbols) and [58] (bands).

net-strangeness multiplicity seems to have a different depen-
dence, at least within the region of temperatures covered by
the lattice calculations we compare with. These lattice calcu-
lations are about 10 years old. To the authors’ best knowl-
edge, so far no recent calculations are available to compare
with. We observe a qualitative agreement, especially at high
temperatures so that the results approach the SB limits 2/π2

and 6/π2 for the net-electric charge and the net-strangeness
multiplicities, respectively.

The comparison between the PLSM results in MFA and in
OPT is qualitatively possible when confronting both results
with the continuum extrapolation of the lattice QCD results
[58]. In Fig. 8, the temperature dependence of the susceptibil-
ities of the conserved charges χB

6 /χB
2 (left panel) and χB

8 (right
panel) computed in PLSM in MFA (solid curve) and in OPT
(dashed curve) is compared with the lattice QCD calculations
[66] (solid symbols) and [58] (bands).

For χB
6 /χB

2 (left panel), at T/Tχ � 1.2, although with the
vanishing temperature dependence, the PLSM results agree
excellently with the lattice QCD calculations. At lower tem-
peratures, we find a minimum at Tχ followed by a rapid arise.
This continues to a maximum at χB

4 /χB
2 ≈ 1. The lattice QCD

calculations are limited to 0.8Tχ . The temperature dependence
of these quantities are significant for the quark-hadron phase
transition [59,60]. Within their large error bars, we conclude
that both PLSM approaches, MFA and OPT, at least qualita-
tively, reproduce well the recent lattice QCD calculations.

For χB
8 (right panel), the excellent agreement, at T/Tχ �

1.2 exists here, as well. Decreasing the temperature unveils an
interesting structure. It seems that a sinusoidal dependence is
obtained. The sinusoidal oscillation is also supported by the
lattice QCD calculations [66]. The most remarkable features
of such PLSM results in both MFA and OPT likely indicate a
smooth crossover between the hadronic and partonic phases.
At T/Tχ � 0.8, χB

8 vanishes. The structure produced by OPT
fits well with the lattice QCD simulations.

So far, we conclude that OPT is more sensitive to the
higher-order moment products χB

6 /χB
2 and χB

8 than the MFA.
The off-diagonal cumulants of the net-proton, the net-charge,
and the net-kaon multiplicity distributions are also measured
in the STAR experiment, at energies ranging between 7.7

and 200 GeV within the rapidity |y| < 0.5 and the transverse
momentum range 0.4 < pT < 2.0 GeV [67–69]. In a future
study, a comprehensive comparison with the STAR results is
intended.

IV. CONCLUSIONS

We have generalized PLSM calculations in order to in-
corporate zero- and higher-order δ expansions, i.e., MFA and
OPT. While MFA is originated in statistical physics and was
applied to a wide spectrum of numerical implications [12,14–
21,36], OPT was developed in O(N ) φ4 theory in order
to resume the higher-order terms of the naive perturbation
approach. In MFA the time evolution of fields are averaged
at a fixed time, while in OPT the time evolution of fields
are estimated, perturbatively. We have intended to point out
whether the MFA generalization, OPT, reproduces identi-
cal results or eventually improves the PLSM calculations
as reported in MFA. The present article is the first which
introduces a comprehensive comparison between MFA and
OPT. If improvements are achieved, we aim at highlighting
how the high-order moments are affected by OPT.

At finite temperatures and chemical potentials, we have
compared the chiral condensates and the decofinement or-
der parameters, the thermodynamic pressure, the subtracted
condensates, the pseudocritical temperatures, the second- and
high-order moments of various conserved charges (cumu-
lants) obtained in MFA with the ones obtained in OPT. These
calculations are then confronted to available lattice QCD
simulations. In general, we conclude that when moving to
lower- to higher-order moments, the OPT approach becomes
more and more closer to lattice QCD simulations than the
MFA. Concretely, we have found that OPT is more sensitive
to χB

6 /χB
2 and χB

8 than the MFA. The higher-order moments
of conserved charges is conjectured to play an essential role
in positioning CEP. That OPT is found slightly more sensitive
than MFA furnishes PLSM with slight more capability to pre-
dict signature for CEP and its possible experimental detection.

The convincing OPT results outlined in this study encour-
age the trial to compare with the measurements that are and
shall be available in the near future. Accordingly, some PLSM
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parameters can be adjusted, properly, on one hand. On the
other hand, the critical phenomena that might be detected
in the experimental results and are sensitive the higher-order
moments could likely be predicted.
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