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Interlayer hybridization and moiré superlattice minibands for electrons and excitons
in heterobilayers of transition-metal dichalcogenides
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Geometrical moiré patterns, generic for almost aligned bilayers of two-dimensional crystals with similar lattice
structure but slightly different lattice constants, lead to zone folding and miniband formation for electronic states.
Here, we show that moiré superlattice (mSL) effects in MoSe2/WS2 and MoTe2/MoSe2 heterobilayers that
feature alignment of the band edges are enhanced by resonant interlayer hybridization, and anticipate similar
features in twisted homobilayers of transition-metal dichalcogenides (TMDs), including examples of narrow
minibands close to the actual band edges. Such hybridization determines the optical activity of interlayer excitons
in TMD heterostructures, as well as energy shifts in the exciton spectrum. We show that the resonantly hybridized
exciton energy should display a sharp modulation as a function of the interlayer twist angle, accompanied
by additional spectral features caused by umklapp electron-photon interactions with the mSL. We analyze the
appearance of resonantly enhanced mSL features in absorption and emission of light by the interlayer exciton
hybridization with both intralayer A and B excitons in MoSe2/WS2, MoTe2/MoSe2, MoSe2/MoS2, WS2/MoS2,
and WSe2/MoSe2.
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I. INTRODUCTION

Van der Waals (vdW) heterostructures consist of layers
of atomically thin two-dimensional (2D) crystals, vertically
stacked and held together by vdW forces [1,2]. The weak vdW
interlayer bonding lifts the usual lattice-matching restrictions,
allowing the formation of stable, high-quality heterostructures
of incommensurate 2D crystals, both aligned and with an
arbitrary mutual orientation. This has been demonstrated by
recent experiments with graphene on boron nitride [3–5],
where moiré superlattice minibands have been observed in
scanning tunneling microscopy [6,7], magnetotransport [8],
capacitance [9], and infrared spectroscopy [10] measure-
ments. Of particular interest for optoelectronics are vdW
heterostructures of various transition-metal dichalcogenides
(TMDs) [11–16], due to the gapped nature of these semi-
conducting 2D materials, which have a direct band gap in
the monolayer form [17,18], strong coupling to light [19],
and valley-dependent optical selection rules [20–22]. When
combined into bilayers, the pair of 2D crystals acquires the
band alignment shown in Fig. 1. The nearly identical lattice
constants of TMDs with hexagonal lattices leads to the ap-
pearance of moiré patterns [16,23], which have long periods
in the case of almost aligned heterostructures. The resulting
moiré superlattice (mSL) can generate flat minibands with
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high densities of states, potentially interesting from the point
of view of strongly correlated states in TMD heterobilay-
ers [24], analogous to recent observations in twisted bilayer
graphene [25]. It also has potential to modify the excitonic
spectrum and change selection rules for optical transitions,
due to electron-photon umklapp processes involving mSL
reciprocal lattice vectors.

In this paper, we study the interplay between relative inter-
layer orientation and band alignment in TMD heterobilayers
and twisted homobilayers, in particular, in the regime of
resonant interlayer hybridization. Based on the TMD work
function data and band alignments available in the literature
[26–28], we choose to focus this study on mSLs in het-
erobilayers formed by TMD layers with nearly degenerate
carrier bands: MoSe2/WS2 and MoTe2/MoSe2, which feature
almost exact band alignment in undoped structures, and also
on twisted homobilayers of TMDs, such as MoSe2. We study
the dependence of hybridization and moiré effects on the mis-
alignment angle θ of the 2D crystals in such heterostructures,
and find that, while superlattice effects are weak for arbitrary
angles, they become dominant for close interlayer alignment
near θ = 0◦ and 60◦ (Fig. 1), producing narrow minibands
near the actual band edges. We argue that, analogously to the
case of twisted bilayer graphene [29], these systems are highly
nonperturbative, and their description must explicitly consider
hybridization effects, rendering recent theoretical approaches
based on harmonic moiré potentials [24,30–32], while appli-
cable to heterobilayers with nonresonant band edges, unsuit-
able to describe this class of TMD heterostructures.

Also, we study the interplay between resonant hybridiza-
tion of intralayer and interlayer excitons and moiré super-
lattices in MoSe2/WS2 and MoTe2/MoSe2 heterobilayers,

2469-9950/2019/99(12)/125424(24) 125424-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.125424&domain=pdf&date_stamp=2019-03-25
https://doi.org/10.1103/PhysRevB.99.125424
https://creativecommons.org/licenses/by/4.0/


DAVID A. RUIZ-TIJERINA AND VLADIMIR I. FAL’KO PHYSICAL REVIEW B 99, 125424 (2019)

FIG. 1. Twisted bilayer of TMDs MoX2 and WX′
2. Top left: band

alignment, where almost resonant conduction band states of same
spin and valley quantum numbers are identified by the same color.
Top right: atomic arrangement and bond orientation for almost par-
allel (P, θ ≈ 0◦) orientation of the two crystals. Basis Bravais vectors
for each layer are indicated as ân and â′

n. Transition-metal atoms are
shown in gray and blue, and chalcogens in orange and red. Center:
band alignment and atomic arrangement for the almost antiparallel
(AP, θ ≈ 60◦) heterobilayer. Bottom: hexagonal Brillouin zones of
the two crystals (BZ and BZ′), where the band edges appear at the
Brillouin zone corners K and K′. Interlayer hybridization produces
electron Bragg scattering from the moiré superlattice, illustrated in
the left sketch. This leads to band folding, and the formation of the
superlattice mini Brillouin zone (mBZ) on the right.

leading to the formation of hybridized excitons (hX) con-
taining strongly mixed electron or hole states involved in the
formation of intralayer (X) and interlayer (IX) excitons. Our
estimates for the X and IX binding energies indicate that the
weaker binding of the latter, due to the additional electron and
hole out-of-plane separation, can significantly enhance the
resonant condition between the two exciton species. We show
that the optical spectra of hXs are dominated by their bright
intralayer exciton component, resulting in identical selection
rules as intralayer excitons in monolayer TMDs, in stark
contrast to earlier predictions for IXs in nonresonant TMD
heterostructures [31,33]. We present an analysis of the opti-
cal spectra of both resonant and nonresonant heterobilayers,
compared in Fig. 2. In the former case, we find that the energy
and state composition of optically active hybridized excitons
varies sharply with interlayer orientation, producing a strong
modulation of the corresponding absorption signatures with
twist angle, marked with green arrows in Fig. 2. For closely
aligned resonant heterobilayers, the optical spectrum also

FIG. 2. Comparison between the low-energy absorption spec-
tra (in arbitrary units) of TMD heterobilayers with resonant
(MoSe2/WS2, left) and nonresonant (MoSe2/MoS2, right) con-
duction band edges, as function of the interlayer twist angle. In
MoSe2/WS2, hybridized excitons form close to perfect alignment
(θ = 0◦) and antialignment (θ = 60◦), leading to the avoided cross-
ings marked with green arrows. The white arrows point to absorption
lines enabled by moiré umklapp processes, corresponding to higher
exciton momentum states that become visible as they are folded onto
zero momentum by the moiré superlattice. For MoSe2/MoS2, the
MoSe2 A and B excitons lie hundreds of meV above the lowest mo-
mentum bright IX states, such that their hybridization is negligible,
making the IX dark in our approximation. For large twist angles, the
zero-momentum IX energies are raised toward the intralayer exciton
energies, becoming semibright and eventually producing hX states.

displays a bright absorption line at higher energies enabled
by moiré umklapp processes (white arrows in Fig. 2), which
fold finite-momentum exciton states onto zero momentum,
allowing them to acquire a finite oscillator strength and pro-
viding direct experimental evidence for mSL minibands for
the excitons in the system. These signatures are absent in
closely aligned nonresonant heterobilayers, where the low-
energy optical features correspond to IXs (red arrows in
Fig. 2) that only mix weakly with the bright intralayer exciton
states. Finally, we show that hXs are sensitive to out-of-plane
electric fields, due to their large IX components, and argue
that vertical electrical bias can be used to tune the strength of
mSL effects on excitons in TMD heterostructures.

For this purpose, in Sec. II, we introduce a general inter-
layer hybridization model for twisted TMD heterobilayers,
parametrized using currently available ab initio parameters of
monolayer TMDs (Table III). In Sec. III, we derive an effec-
tive low-energy Hamiltonian that incorporates moiré superlat-
tice effects in terms of harmonic potentials specific to each
of the monolayer bands [24,30–32], which we find are ap-
plicable to TMD heterostructures with large band-edge off-
sets, such as MoSe2/MoS2 bilayers. We discuss the short-
comings of this harmonic-potential approach, and show that
it breaks down in the case of resonant hybridization. In
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FIG. 3. Moiré patterns formed by parallel (P) and antiparallel (AP) aligned TMD bilayers. Top- and bottom-layer metal atoms are shown
in blue and gray, with corresponding chalcogens shown in red and orange. For each stacking type, the interlayer conduction and valence band
alignment and spin ordering near the MX2 layer τ = +1 valley is shown for M = Mo and M′ = W. The moiré unit cell is indicated by the
black rhombus, and the encircled areas correspond to regions of the heterobilayer with local registry between the two lattices. For parallel
alignment, these local registries correspond to AA, BA, and AB stacking, analogous to the case of bilayer graphene. By contrast, for antiparallel
alignment we find regions with local 2H , AA′, and BB′ stacking, as shown in the insets.

Sec. IV, we study the opposite limit of perfect interlayer
band-edge degeneracy in TMD homobilayers, and present
results for their band structure features, such as the nature
of the conduction band edges and the appearance of van
Hove singularities in the conduction bands. In Sec. V, we
discuss two cases of TMD heterobilayers with nearly resonant
band edges, namely, MoTe2/MoSe2 and MoSe2/WS2, and
show that they constitute an intermediate case between typical
TMD heterobilayers and homobilayers, which are exactly in
the resonant hybridization regime. In Sec. VI, we study the
effects of strong interlayer hybridization on the band struc-
tures of excitons in such heterostructures based on reported
experimental values for the intralayer and interlayer exciton
energies, and present theoretical predictions for the full optical
spectra of MoTe2/MoSe2, MoSe2/WS2, MoSe2/MoS2, and
WSe2/MoS2 as functions of the interlayer alignment angle θ ,
and electric field strength.

II. MODEL

We describe electronic states in a TMD heterobilayer in
terms of the monolayer conduction and valence band k · p
theory near the band edges of its two constituent layers.
The band edges of the bottom MX2 layer, to which the
highest valence band belongs, are located at the τK valleys
of its Brillouin zone, BZ (τ = ±1). We set K = (4π/aMX2 )x̂,
according to the lattice vectors a1 = aMX2 [x̂/2 + √

3ŷ/2] and
a1 = aMX2 [x̂/2 − √

3ŷ/2], where aMX2 is the corresponding
lattice constant. Similarly, for the top layer, M′X′

2, containing
the lowest conduction band, the band edges appear at the
valleys τ ′K′ of the Brillouin zone BZ′. Because of the lattice

mismatch,

δ = 1 − aM′X′
2
/aMX2 , (1)

and the relative twist angle θ between the two crystals
(Fig. 1, bottom), the valley momenta are related by K′ = (1 +
δ)−1RθK, where Rθ represents counterclockwise rotation by
an angle θ about the z axis. Henceforth, M′X′

2-layer variables
are identified with a prime, and heterobilayers are labeled as
MX2/M′X′

2. We will discuss two inequivalent stacking types:
parallel (P) stacking, for twist angles |θ | < 30◦; and antiparal-
lel (AP) stacking, for |θ − 60◦| < 30◦. The two configurations
are shown in Figs. 1 and 3, and any twist angle outside the
range 0◦ � θ � 60◦ is related to one of these two stacking
types by 120◦ rotations or mirror reflection.1

Locally, the exact heterostructure stacking is determined
by θ , δ, and a unit-cell vector r0, representing the shortest in-
plane shift between transition-metal atoms of the two layers,
as illustrated in Fig. 1. For small twist angle and/or lattice
mismatch, a superlattice structure emerges, known as a moiré
pattern [16,23], where the stacking determined by r0, set to re-
late positions of M and M′ atoms, is approximately preserved
locally at the origin, and periodically along the heterostruc-
ture’s surface, as shown in Fig. 3. Moreover, the interlayer
registry varies inside the superlattice unit cell, producing two

1An alternative nomenclature is used, e.g., in Refs. [33,39], where P
and AP stacking configurations are referred to as R and H stacking,
respectively. We choose the former convention to avoid confusion
with standard nomenclature for commensurate stacking.
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TABLE I. Interlayer in-plane translation vector r0 corresponding
to different commensurate stackings, for twist angles θ = 0◦ (P) and
θ = 60◦ (AP), and perfect lattice matching δ = 0. We use lattice
vectors a1 = a0[ x̂

2 +
√

3
2 ŷ] and a1 = a0[ x̂

2 −
√

3
2 ŷ], where a0 is the

lattice constant.

r0 P stacking AP stacking

0 AA AA′
a1−a2

3 = a0√
3
ŷ AB BB′

a2−a1
3 = − a0√

3
ŷ BA 2H

additional regions of approximately commensurate stacking,
corresponding to local values of r0 different than that at the
origin. As an example, Fig. 3 shows the case of r0 = 0, where
the sequence of locally commensurate regions in the moiré
unit cell is AA, BA, and AB for P stacking, and 2H , AA′,
and BB′ for AP stacking [34,35], contrasting the two stacking
types. The local r0 values for these commensurate stacking
types are shown in Table I.

The heterobilayer Hamiltonian has the general form

H = H0 + Ht, (2)

where

H0 =
∑
s,τ

∑
α=c,v,c′,v′

∑
k

Eα
τ s(k)c†

ατ s(k)cατ s(k). (3)

Here, the operators ccτ s(k) and cvτ s(k) [cc′τ ′s(k) and cv′τ ′s(k)],
annihilate electrons of spin quantum number s =↑, ↓ and
wave vector τK + k (τ ′K′ + k) in the conduction and valence
bands of the MX2 (M′X′

2) layer. Setting the energy reference
at the highest valence band edge, the conduction and valence
band dispersions can be approximated as

Ev′
τ s(k) = −δv − [sτ + sgn

(
�v′

SO

)]
�v′

SO − h̄2k2

2mv′
,

Ev
τ s(k) = −[sτ + sgn

(
�v

SO

)]
�v

SO − h̄2k2

2mv
,

E c′
τ s(k) = Ẽg + [sτ + sgn

(
�c′

SO

)]
�c′

SO + h̄2k2

2mc′
,

E c
τ s(k) = Ẽg + δc + [sτ + sgn

(
�c

SO

)]
�c

SO + h̄2k2

2mc
, (4)

where Ẽg is the heterostructure band gap; δc and δv are the
interlayer conduction and valence band edge detunings; �α

SO
is the spin-orbit splitting of band α = v, c, v′, c′; and mα are
effective masses. These model parameters, illustrated in Fig. 1
and presented in Table III, are based on density functional the-
ory (DFT) [27,36,37] and GW [26,38] calculations recently
reported in the literature.

The matrix elements for interlayer tunneling between
the conduction (α = c) or valence bands (α = v) have the
general form

〈α′, τ ′K′ + k′|Ht|α, τK + k〉

= 1√
NN ′

∑
R,R′

ei(τK+k)·R′
e−i(τ ′K′+k′ )·R〈ϕα′,R′ |Ht|ϕα,R〉, (5)

where Ht is the tunneling Hamiltonian, N and N ′ are the
numbers of unit cells in the MX2 and M′X′

2 layers, and ϕα,r is
a Wannier function centered at atomic site r. In the two-center
approximation, the atomic matrix element 〈ϕα′,R′ |Ht|ϕα,R〉 can
be Fourier transformed as

〈ϕα′,R′ |Ht|ϕα,R〉 = 1√
NN ′

∑
q

eiq·(R′−R)tα′α (q), (6)

which after substitution into (5) gives Ht in the form

Ht =
∑
s,τ,τ ′

∑
k∈BZ

∑
k′∈BZ′

[
T c

τ ′τ (k′, k)c†
c′τ ′s(k

′)ccτ s(k)

+ T v
τ ′τ (k′, k)c†

v′τ ′s(k
′)cvτ s(k)

]
, (7)

with interlayer hopping terms [39]

T α
τ ′τ (k′, k) =

∑
G,G′

δk−k′,G′−G+(τ ′K′−τK)

× tα (k + τK + G) e−iG·r0 . (8)

Here, G and G′ are the reciprocal lattice vectors of the MX2

and M′X′
2 layers, respectively, and τ ′K′ − τK gives the in-

terlayer valley mismatch. As described in Ref. [39], the in-
terlayer tunneling functions tc(q) and tv(q) are constrained,
respectively, by the angular momentum quantum numbers 	z

of the conduction and valence bands at the τ and τ ′ valleys.
Because the conduction band states near the K valleys are
formed by in-plane-isotropic ϕc = dz2 orbitals [36], for both
valleys we have 	z = 0. By contrast, the valence band states
at the τ valley consist of ϕv = (dx2−y2 + iτdxy)/

√
2 orbitals,

with 	z = −τ . Therefore, under C3 rotations we obtain

tc(C3q) = tc(q), tv(C3q) = ei 2π
3 (τ ′−τ )tv(q). (9)

To a good approximation [39], we can set

|tα (q)| =
{|tα| for q = K, C3K, C2

3 K,

0 for q > K,
(10)

where Cn
3 represents rotation by 2nπ

3 . Thus, we may define

tc(K) = tc(C3K) = tc
(
C2

3 K
) = tc,

tv(K) = tv, tv(C3K) = ei 2π
3 (τ ′−τ )tv, (11)

tv
(
C2

3 K
) = ei 4π

3 (τ ′−τ )tv.

The approximation (10) truncates the sum in Eq. (8) to
include only G = 0, and the two Bragg vectors

G2 =(C3 − 1)K,

−G1 =(C2
3 − 1

)
K, (12)

which connect the three equivalent K valleys. These reciprocal
lattice vectors are shown with black arrows in the bottom
panel of Fig. 1. At this point, the stacking type (P or AP)
must be specified to determine which M′X′

2-layer Bragg vec-
tors give the dominant interlayer hopping terms. For closely
aligned P-stacked structures, the Kronecker delta in Eq. (8)
couples states near the band edges only if τ ′ = τ , and for
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TABLE II. Interlayer conduction and valence band tunneling in
the locally commensurate regions of moiré superlattices in P- and
AP-stacked TMD heterobilayers.

P stacking |T c
+,+| |T v

+,+| AP stacking |T c
−,+| |T v

−,+|
AA 3|tc| 3|tv| AA′ 3|tc| 0
AB 0 0 BB′ 0 0
BA 0 0 2H 0 3|tv|

M′X′
2-layer Bragg vectors (red arrows in Fig. 1, bottom)

G′
2 = (C3 − 1)K′,

−G′
1 = (C2

3 − 1
)
K′. (13)

One can verify that, for these specific Bragg vectors, the
generalized umklapp condition in Eq. (8) becomes k − k′ =
τCη

3 �K, where η ∈ {0, 1, 2}, and we have defined

�K ≡ K′ − K (P stacking). (14)

Alternatively, for AP stacking, we must set τ ′ = −τ , indi-
cating that tunneling takes place between opposite K valleys
of the electron and hole layers, which are closely aligned in
reciprocal space for this range of twist angles. The relevant
M′X′

2-layer Bragg vectors in this case are

G′
3 = (C2

3 − C3
)
K′,

−G′
2 = (1 − C3)K′, (15)

leading to k − k′ = τCη

3 �K, with

�K ≡ −K′ − K (AP stacking). (16)

This leads to the simplified hopping terms

T c
τ ′τ (k′, k) ≈

2∑
η=0

δk−k′,Cη
3 �K tc eiK·r0 e−iCη

3 K·r0 ,

T v
τ ′τ (k′, k) ≈

2∑
η=0

δk−k′,Cη
3 �K tvei

2ηπ

3 (τ ′−τ ) eiK·r0 e−iCη
3 K·r0 .

(17)

Equation (17) allows us to determine how the different locally
commensurate regions shown in Fig. 3 contribute to interlayer
carrier tunneling. Exactly at the valley (k = k′ = 0), and
neglecting the lattice mismatch within each region (�K = 0),
we write

T c
τ ′τ (0, 0) ≈ tceiK·r0

[
e−iK·r0 + e−iC3K·r0 + e−iC2

3 K·r0
]
,

T v
τ ′τ (0, 0) ≈ tveiK·r0

[
e−iK·r0 + e−i[C3K·r0− 2π

3 (τ ′−τ )]

+ e−i[C2
3 K·r0− 4π

3 (τ ′−τ )]
]
. (18)

Table II summarizes the results of Eq. (18) for the various
locally commensurate regions of the moiré superlattice, ob-
tained by substituting the appropriate r0 values of Table I.
For P-stacked (AP-stacked) TMD heterostructures, conduc-
tion band tunneling takes place in AA (AA′) regions, whereas
valence band tunneling occurs in AA (2H) regions [33,40].
This result was first presented in Ref. [33], where it was also

reported that the parameter |tv| is somewhat larger for AP
stacking, and |tc| � |tv| for both stacking types, based on DFT
calculations. In addition, it was shown that matrix elements tcv

and tvc exist, representing electron hopping between the con-
duction and valence bands of different layers, which are sig-
nificantly smaller than tc. As the latter couple states separated
by energies comparable to the heterostructure’s band gap, we
neglect them in the following. We assume this hierarchy for
the interlayer hopping elements, setting tc = 26 meV, based
on recent experiments on MoSe2/WS2 heterobilayers [41],
and tv = 2tc. We use these values for all materials discussed,
for the purpose of obtaining a general qualitative description
of TMD heterobilayers, keeping in mind that these matrix
elements are material dependent.

With Eq. (17), Ht periodically mixes electronic states
of the two layers, whose wave vectors are separated by
b±n ≡ ±(Cn−1

3 − Cn−2
3 )�K, where n runs cyclically through

{1, 2, 3} (Fig. 1, bottom). Note that b1 and b2 can be inter-
preted as the primitive vectors of the reciprocal lattice dual
to the real-space moiré pattern shown in Fig. 3, and define
the mini Brillouin zone (mBZ) presented in Fig. 1. Defining
the reciprocal vectors bmn = mb1 + nb2, with m and n inte-
gers, the electron- and hole-layer dispersions can be folded
into the mBZ to form a series of minibands with operators
(α = c, v, c′, v′)

cmn
ατ s(q) ≡ cατ s(q + bmn); q ∈ mBZ, (19)

which couple according to Eq. (17) to produce what we hence-
forth call a moiré band structure. Then, the nth conduction
and valence moiré bands have operators given by the linear
combinations of the folded band operators

Cn
cτ s(q)≡

∑
i, j

Anτ s
i j (q) ci j

cτ s(q)+
∑
i, j

Anτ s
i j

′(q) ci j
c′τ ′s(q),

Cn
vτ s(q)≡

∑
i, j

Bnτ s
i j (q) ci j

vτ s(q)+
∑
i, j

Bnτ s
i j

′(q) ci j
v′τ ′s(q), (20)

where τ ′ = ±τ for P and AP stacking, respectively. In addi-
tion to the valley mismatch �K, the spin-dependent ampli-
tudes Anτ s

i j
(′ ) and Bnτ s

i j
(′ ) depend on the spin ordering of the

monolayer bands. Figure 3 shows that the detuning between
the highest spin-polarized MX2 valence band and the M′X′

2

valence band of the same spin increases dramatically (by
hundreds of meV) from P to AP stacking, consequence of
the large intralayer valence band spin-orbit splittings (see
Table III). This results in strong or weak interlayer valence
band mixing for P or AP stacking, respectively, leading to
qualitatively different behaviors in the two stacking limits
(see, for example, Figs. 7 and 8). This is not the case for
the spin-polarized conduction bands, for which the spin-orbit
splittings are much weaker, of only tens of meV.

Having defined the hybridization model (2), in the fol-
lowing sections we study two important limit cases for
the interlayer band alignment. First, in Sec. III we look at
MoSe2/MoS2 as a typical example of type-II semiconduct-
ing TMD heterostructures, with large band offsets δc, δv �
100 meV. Then, in Sec. IV, we study the opposite limit of
δc = δv = 0, choosing bilayer MoSe2 as a case study.
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TABLE III. Ab initio parameters for the three heterobilayers discussed, and for bilayer MoSe2, extracted from Refs. [26,27,36–38,42,43].
The effective masses are based on GW or G0W0 calculations; heterostructure band gaps Ẽg and conduction and valence band edge detunings
δc and δv are based on the G0W0 approximation; spin-orbit couplings and momentum matrix elements at the valley (γ ) are obtained from DFT
(HSE and LDA); and the monolayer lattice constants a0 and a′

0 and interlayer distances d are based on DFT (HSE), or experimental values for
bulk crystals.

Ẽg (eV) δv (eV) δc (eV) �e
SO (meV) �e′

SO (meV) me/m0 me′/m0 γ (eV Å) a (Å) a′ (Å)
�h

SO (meV) �h′
SO (meV) mh/m0 mh′/m0 γ ′ (eV Å) d (Å)

BL-MoSe2 1.330a 0.0 0.0 11.0b 11.0b 0.38c 0.38d 2.20f 3.289b 3.289b

93.0b 93.0b 0.44c 0.44d 2.20f 6.463g

MoSe2/MoS2 0.960a 0.630a 0.370a 11.0b 1.5b 0.38c 0.35d 2.20f 3.289b 3.157b

93.0b 74.0b 0.44c 0.43d 2.22f 6.972f

MoTe2/MoSe2 0.860a 0.470a 0.070a 18.0b 11.0b 0.69e 0.38c 2.16f 3.516b 3.289b

109.5b 93.0b 0.66e 0.44c 2.20f 7.421f

MoSe2/WS2 1.270a 0.270a 0.060a 11.0b − 16.0b 0.38c 0.27c 2.20f 3.289b 3.16b

93.0b 241.5b 0.44c 0.32c 2.59f 6.913f

aReference [26]
bReference [36].
cReference [42].
dReference [38].
eReference [37].
fReference [27].
gReference [43].

III. PERTURBATION THEORY FOR NONRESONANT
INTERLAYER HYBRIDIZATION AND HARMONIC

POTENTIAL APPROXIMATION FOR MOIRÉ
SUPERLATTICES

The importance of interlayer hybridization depends cru-
cially on the ratio between the interlayer tunneling matrix
elements tα and the band edge detunings δα . When these ratios
are small, one can treat Ht perturbatively, in terms of the k-
dependent energy corrections produced by the tunneling pro-
cesses, which in real space form a periodic potential [44,45].
This approach to describing the effects of a moiré superlattice
on the electronic states has been used in Ref. [24], and for
excitons in Refs. [30–32], where the potential was estimated
from ab initio calculations. In this section, we derive the
tunneling contribution to this potential from the microscopic
Hamiltonian (2), based on a perturbative treatment of the
elementary excitations in the heterobilayer (conduction band
electrons and valence band holes). For clarity, the final result
is presented in terms of the conduction and valence band
dispersions.

We apply the unitary transformation U = eiS to the Hamil-
tonian (2), with S an anti-Hermitian operator. The resulting

rotated Hamiltonian H̃ = UHU† is given to second order
in S as

H̃ = H0 + Ht + i[S, H0 + Ht] − 1

2!
[S, [S, H0 + Ht]]. (21)

We eliminate Ht to first order by choosing [46] i[S, H0] =
−Ht , and keep only terms up to second order in S to get the
effective model H̃ = H̃0 + Hm. The first term corresponds to
Eq. (3), with the renormalized dispersions

Ẽv′
τ ′s(k) = Ev′

τ ′s(k) −
2∑

η=0

|tv|2
Ev

τ s

(
k − Cη

3 �K
)− Ev′

τ ′s(k)
,

Ẽv
τ s(k) = Ev

τ s(k) +
2∑

η=0

|tv|2
Ev

τ s(k) − Ev′
τ ′s

(
k + Cη

3 �K
) ,

Ẽ c′
τ ′s(k) = E c′

τ ′s(k) −
2∑

η=0

|tc|2
E c

τ s

(
k + Cη

3 �K
)− E c′

τ ′s(k)
,

Ẽ c
τ s(k) = E c

τ s(k) +
2∑

η=0

|tc|2
E c

τ s(k) − E c′
τ ′s

(
k − Cη

3 �K
) , (22)

whereas the second term gives (n = ±1, ±2, ±3)

Hm = 1

2

∑
s,τ,n

∑
k

⎡
⎣ |tc|2eiGn·r0 c†

cτ s(k + bn)ccτ s(k)

E c
τ s(k) − E c′

τ ′s

(
k − Csgn(n)(n+1)

3 �K
) + |tv|2eiGn·r0 ei

2π
3 sgn(n)sgn(|n|−2)c†

vτ s(k + bn)cvτ s(k)

Ev′
τ ′s

(
k − Csgn(n)(n+1)

3 �K
)− Ev

τ s(k)

− |tc|2eiGn·r0 c†
c′τ ′s(k + bn)cc′τ ′s(k)

E c
τ s

(
k + Csgn(n)(n−1)

3 �K
)− E c′

τ ′s(k)
− |tv|2eiGn·r0 ei

2π
3 sgn(n)sgn(|n|−2)c†

v′τ ′s(k)cv′τ ′s(k + bn)

Ev′
τ ′s(k) − Ev

τ s

(
k + Csgn(n)(n−1)

3 �K
)

⎤
⎦+ H.c. (23)
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FIG. 4. (a) Virtual processes giving rise to the intralayer scatter-
ing terms (23). A state in band c with wave vector k (black dot)
tunnels to the band c′ state k′ = −�K + k + b1 (faint red circle),
subsequently hopping back to band c, with final wave vector k − b2.
(b) Energy diagram of the virtual processes, for θ ≈ 0◦ or θ ≈ 60◦.
The effective model (24) breaks down at the crossings between bands
c and c′ (red dashed circle). A small detuning δc allows a crossing at
or near the band edges, such that the model cannot describe low-
energy electrons. Because of larger values of δv, the model correctly
describes low-energy holes. See also Figs. 11–14. (c) Extended mBZ
scheme, representing the top valence minibands that couple through
(23) at the κ point. Same color lines represent degenerate levels at
the κ point, with the three blue ones being closest to the band edge,
and mixing through the term (26).

Hm represents scattering of electrons and holes by moiré
vectors bn, produced by two sequential interlayer tunneling
processes. Figure 4(a) shows an electron near the τ = 1 valley
of band c tunnel into band c′ through one of the processes
depicted in the bottom panel of Fig. 1, followed by a second
tunneling process back into band c. The net result is a scat-
tering process of the initial state by a moiré Bragg vector bn.
An inverse Fourier transform of Eq. (23), taking k → 0 in the
dispersions, gives simple real-space harmonic potentials for
each of the bands of the form (α = c, c′, v, v′)

Vα (r) =
3∑

n=1

(
V n

α eibn·r + V n
α

∗e−ibn·r). (24)

This is the same type of harmonic potential, as used in
Refs. [24,30–32] for both carriers and excitons in TMD
heterobilayers. Whereas in those cases the coefficients V n

α

were determined by fitting to the spatial variation of the
heterostructure band gap, as determined by DFT calculations,
in our analysis they are determined from a microscopic model.
We point out, however, that our approach is based purely
on interlayer tunneling, and neglects lattice relaxation in the
regions of commensurate stacking.

Whether Eq. (24) constitutes a valid low-energy theory for
carriers near the band edges in a heterostructure with twist
angle θ depends on the band alignment. To illustrate this, we
take the first term of Eq. (23) near the τ =1 valley (k →0),
and note the divergence when δc + s(τ�e

SO − τ ′�e′
SO) +

(|�c
SO| − |�c′

SO|) = h̄2�K2
ττ ′

2mc′
. As shown in Fig. 4(b), this is due

to a crossing of the two conduction bands, which can occur at
or near the bottom of the higher-energy band for some values
of �K(θ ). The resulting strong interlayer mixing of electronic
states near the higher band edge leads to the breakdown of
perturbation theory. Turning to band c′, the third term in
Eq. (23) does not show a divergence, reflecting the fact that
a higher parabolic band can never cross the bottom of a

lower one. This, however, does not guarantee the validity of
the harmonic-potential approximation. To make this statement
precise, we define perturbative parameters

Pτ
cs =

∣∣∣∣ tc
E c

τ s(0) − E c′
τ ′s(�K )

∣∣∣∣,
Pτ ′

c′s =
∣∣∣∣ tc
E c

τ s(�K ) − E c′
τ ′s(0)

∣∣∣∣,
Pτ

vs =
∣∣∣∣ tv
Ev′

τ ′s(�K ) − Ev
τ s(0)

∣∣∣∣,
Pτ ′

v′s =
∣∣∣∣ tv
Ev′

τ ′s(0) − Ev
τ s(�K )

∣∣∣∣, (25)

for each band, where τ and τ ′ are determined by the twist
angle, as discussed in Sec. II: τ ′ = τ for P stacking and τ ′ =
−τ for AP stacking. The effective potential (24) correctly
describes low-energy carriers in valley τ of band α when
Pτ

α � 1, and interlayer band mixing is weak. This condition
may not be met if the interlayer detunings δc or δv are small,
as illustrated in Fig. 4(b).

Using MoSe2/MoS2 as an example, we take ab initio
[26,27] results for the monolayer band parameters (Table III).
The perturbative parameters plotted in Fig. 5(a) as functions
of the twist angle suggest that the harmonic-potential picture
holds for angles |θ | < 5◦ and |θ − 60◦| < 5◦. Although the
small-twist-angle approximations leading to Eqs. (13) and
(15) are not applicable for θ ∼ 30◦, Fig. 5(a) shows that all
perturbative parameters are negligible for large twist angles,
and interlayer tunneling effects can be neglected, as expected
for strongly misaligned heterobilayers. Thus, our model can
be applied safely for 0◦ � θ � 60◦. We numerically diago-
nalized both the full hybridization Hamiltonian (2), and the
harmonic-potential effective model (24), using a large basis
of moiré bands [47]. Dispersions with valley quantum number
τ = 1 near the main conduction and valence band edges
are shown in Figs. 5(b) and 5(c), for P- and AP-stacked
configurations, respectively, along the mBZ path defined in
Fig. 1. Their τ = −1 counterparts can be obtained by time-
reversal symmetry, and are not explicitly shown. The figures
show quantitative agreement between the full Hamiltonian
and the harmonic approximation near the band edges for
MoSe2/MoS2. A shortcoming of the model (25) is visible in
the valence bands, however, where the avoided crossings at
±κ are not captured by the harmonic approximation, and in-
stead a Dirac cone appears. This crossing is not accidental, but
exact; it appears for all material pairs (see Figs. 11–14), and
can be understood as follows: the three lowest minibands, with
indices (00), (01), and (0,−1), become degenerate at the ±κ

points, as sketched in Fig. 4(c). Evaluating the corresponding
coefficients, given by the second term of Eq. (23), we find
that the three minibands couple through the C3-symmetric
Hamiltonian

h =

⎛
⎜⎝

ε t e−iG1·r0 t eiG2·r0

t eiG1·r0 ε t e−iG3·r0

t e−iG2·r0 t eiG3·r0 ε

⎞
⎟⎠, (26)
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FIG. 5. (a) Perturbative parameters for all four τ = 1 monolayer
band edges of MoSe2/MoS2, as functions of twist angle. The har-
monic potential (24) is valid below the gray line, representing P+

αs =
0.1. (b), (c) Moiré miniband structure of P-stacked MoSe2/MoS2 at
twist angle θ = 1◦ and AP-stacked MoSe2/MoS2 at θ = 59◦, respec-
tively, obtained from direct diagonalization of both the full hybridiza-
tion Hamiltonian and the effective harmonic-potential model. For the
full Hamiltonian, spin-up (-down) bands are shown with triangles
(circles). Spin-up and -down minibands of the harmonic-potential
model are shown with dashed and solid cyan lines, respectively. In
each case, the band diagrams on the right indicate the spin ordering
of the hybridizing bands. We use [41] tc = tv/2 = 26 meV; all other
parameters are listed in Table III.

where

ε = Ẽv
+↓(�K ), t = |tv|2

Ev′
+↓(�K ) − Ev

+↓(�K )
. (27)

The resulting eigenvalues are ε + 2t , and a doubly degen-
erate level ε − t , responsible for the spurious level cross-
ing. By comparison, the harmonic potentials proposed in
Refs. [24,30–32] give the simpler but less symmetric form

h =

⎛
⎜⎝

ε V V ∗

V ∗ ε V

V V ∗ ε

⎞
⎟⎠

with eigenvalues ε + 2 Re V and ε − Re V ± √
3|Im V |,

which allow a gap opening at κ .

IV. RESONANT INTERLAYER HYBRIDIZATION
IN TWISTED TMD HOMOBILAYERS

Whereas the large band-edge offsets δv and δc guarantee
the validity of the harmonic-potential model for most TMD
heterobilayers, the opposite limit of δv = δc = 0 can be found
in TMD (homo)bilayers. Figure 6 shows that the perturbative
parameters for twisted bilayer MoSe2 are small only for
strongly misaligned configurations (10◦ < θ < 50◦), whereas
for close alignment or antialignment, interlayer hybridization
cannot be treated as a perturbation.

We present the band structures of P- and AP-stacked
bilayer MoSe2 in Figs. 7 and 8, respectively. We point out
that, in the case of homobilayers, a more symmetric mBZ can
be defined by shifting our chosen mBZ (Fig. 1) by −�K.
This transforms γ → κ and κ → κ ′, up to a moiré Bragg
vector, corresponding to the convention followed in, e.g.,
Refs. [47,48]. Here, however, we will use the mBZ convention
of Fig. 1, for the sake of consistency. To show the degree
of interlayer state mixing, we color code the plot symbols in
Figs. 7(a) and 8(a), according to the expectation value of the
out-of-plane electric polarization, given by [see Eq. (20)]

�n
cτ s(q) = ed

2

∑
i, j

[∣∣Anτ s
i j (q)

∣∣2 − ∣∣Anτ s
i j

′(q)
∣∣2],

�n
vτ s(q) = ed

2

∑
i, j

[∣∣Bnτ s
i j (q)

∣∣2 − ∣∣Bnτ s
i j

′(q)
∣∣2], (28)

for each moiré band, at every wave vector q ∈ mBZ. In
Eq. (28), we have assumed, without loss of generality, that
the M′X′

2 (MX2) layer is at the top (bottom) of the het-
erostructure; e is the elementary charge, and d is the interlayer
distance (see Table III). The polarizations take values from
− 1

2 (blue) to 1
2 (red), in units of ed , for electron states fully

localized in the MX2 and M′X′
2 layers, respectively. These

values correspond to the state’s out-of-plane electric dipole
moment, measured with respect to the central plane of the
stack.

Figures 7(a) and 8(a) show weak polarization of the elec-
tronic states in several regions of mBZ, indicating an even
spatial distribution in the out-of-plane direction between the
two MoSe2 layers, caused by the strong interlayer mixing.
The highest valence states in the case of AP stacking are the
exception, however, as seen in the bottom panel of Fig. 8(b).
This is because, as illustrated in the right panel of Fig. 6, in
AP-type bilayers the interlayer tunneling takes place between
states of opposite valley quantum number (τ ′ = −τ ), which
due to spin-valley locking in the monolayers [49], have oppo-
site ordering of the spin-polarized bands. Therefore, bands of
same spin quantum number in opposite layers are separated
by a large spin-orbit splitting, typical of TMD valence bands
(see Table III), and hybridize only weakly.

For the lowest conduction bands, however, a modest spin-
orbit-coupling strength of order 10 meV allows for strong
interlayer hybridization also in the case of AP stacking
(Fig. 6, right), producing stark qualitative differences between
moiré band structures for P- and AP-MoSe2 bilayers, seen in
the top panels of Figs. 7(a) and 8(a). For P-type bilayers, the
lowest conduction bands of a given valley τ have the same
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FIG. 6. Perturbative parameters for the conduction and valence band edges of twisted bilayer MoSe2, as functions of the twist angle. For
all bands, the perturbative approach described in Sec. III is valid only for strong misalignment angles 10◦ � θ � 50◦, and breaks down near
close alignment and antialignment. Left and right panels show schematics of the homobilayer’s atomic arrangement and band alignment for P
and AP stacking, respectively.

spin quantum number in both monolayers, and mix to form
the moiré band edge shown in Fig. 7(a). The miniband edge
has two branches, located at mBZ points γ and κ , which
belong to the same spin-polarized mixed miniband, and are
separated only by a shallow saddle point, which produces
a van Hove singularity close to the band edge, as shown
in Fig. 7(b). For AP-type bilayers, the two branches of the
conduction band edge belong to minibands of opposite spin
quantum number, as shown in Fig. 8(a). Note that above each
band minimum at γ or κ , the opposite-spin miniband flattens
significantly, producing the van Hove singularity shown in
Fig. 8(b).

FIG. 7. (a) Moiré conduction and valence minibands of P-type
twisted bilayer MoSe2, for twist angle θ = 3.5◦. Spin-up (spin-
down) bands are shown with triangles (circles), and the symbol
color represents the out-of-plane electric dipole moment of the state.
(b) Corresponding density of states near the conduction band edge.
We use [41] tc = tv/2 = 26 meV; all other parameters are listed in
Table III.

V. INTERLAYER HYBRIDIZATION AND MOIRÉ
SUPERLATTICE MINIBANDS FOR ELECTRONS

IN MoTe2/MoSe2 AND MoSe2/WS2

In this section we discuss TMD heterobilayers in which the
interlayer band alignment produces accidental near-resonant
hybridization between either the conduction or valence band
edges of the two constituting TMD layers. This situation
has been predicted [26–28] for the conduction bands of
MoSe2/WS2 heterostructures, and recently confirmed by pho-
toluminescence experiments [41]. Moreover, first-principles
estimates based on G0W0 calculations [26] also point to-
ward near-resonant conduction bands in MoTe2/MoSe2

FIG. 8. (a) Moiré conduction and valence minibands of AP-type
twisted bilayer MoSe2, for twist angle θ = 56.5◦. Spin-up (spin-
down) bands are shown with triangles (circles), and the symbol
color represents the out-of-plane electric dipole moment of the state.
(b) Corresponding density of states near the conduction band edge.
We use [41] tc = tv/2 = 26 meV; all other parameters are listed in
Table III.
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FIG. 9. Perturbative parameters for the conduction and valence
bands of twisted (a) MoTe2/MoSe2 and (b) MoSe2/WS2 heterostruc-
tures. In both cases, the highest valence bands show weak interlayer
mixing in close alignment and antialignment, and a perturbative
treatment of interlayer hybridization is appropriate. By contrast, the
lowest conduction bands mix resonantly in the moiré regime, and
hybridization effects must be treated exactly.

(see Table III and Fig. 10). Similarly to the case of TMD
homobilayers, for this class of heterostructures, the harmonic-
potential approximation breaks down precisely for closely

aligned and antialigned configurations, where effects of the
moiré superlattice are most prominent. This is shown by the
perturbative parameters presented in Fig. 9, which indicate
that, for θ ≈ 0◦ and 60◦, it is necessary to treat the interlayer
tunneling term (7) exactly, due to near-resonant interlayer
hybridization at the conduction band edges.

A. P-stacked MoTe2/MoSe2

Figure 10(a) sketches the atomic arrangement and inter-
layer band alignment of P-stacked twisted MoTe2/MoSe2.
The corresponding moiré conduction and valence miniband
structures for θ = 1◦ are presented in Fig. 11(a), as obtained
by direct diagonalization of the full Hamiltonian (2). All
bands shown have valley quantum number τ = 1, and the τ =
−1 bands can be obtained by a time-reversal transformation.
As expected from Fig. 10(a), we find that P-MoTe2/MoSe2

is an indirect-band-gap semiconductor, with the valence and
conduction band edges located at the γ and κ points. However,
note that, whereas the highest valence bands are well localized
in the main hole layer, similarly to the case of MoSe2/MoS2

[Fig. 5(b)], the lowest conduction bands show significant
depolarization across the mBZ. This is due to the strong
interlayer mixing caused by the relatively small detuning of
77 meV between hybridizing band edges, which distributes

FIG. 10. Band alignment schematics for P- and AP-stacked twisted MoTe2/MoSe2 and MoSe2/WS2 heterostructures, and bilayer MoSe2.
Respective atomic arrangements are also shown, for reference. (a) The spin ordering of the conduction bands in P-MoTe2/MoSe2 and
AP-MoSe2/WS2 corresponds to the case of P-type bilayer MoSe2. (b) A similar correspondence is found between AP-MoTe2/MoSe2,
P-MoSe2/WS2, and AP-type bilayer MoSe2.
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FIG. 11. (a) Moiré conduction and valence minibands of twisted
P-MoTe2/MoSe2, with twist angle θ = 1◦. Spin-up (-down) bands
are shown with triangles (circles), with symbol color representing
the state’s out-of-plane electric dipole moment. The cyan curves
in the lower panel show the harmonic-potential approximation to
the highest valence bands, which hybridize weakly between layers.
(b) Corresponding density of states near the conduction band edge.

the miniband states between the two layers, similarly to
the case of P-type TMD homobilayers [Fig. 7(a)]. More-
over, a comparison between the conduction miniband density
of states of P-MoTe2/MoSe2 and of P-type bilayer MoSe2

[Figs. 11(b) and 7(b)] shows important parallels between
the two cases, in particular, the formation of two van Hove
singularities above the band edge.

B. AP-stacked MoTe2/MoSe2

Figure 10(b) shows the band alignment of AP-stacked
MoTe2/MoSe2, where states near the MoTe2 τ valley hy-
bridize with those at the MoSe2 τ ′ = −τ valley, which have
the opposite spin ordering in both the conduction and valence
bands. The corresponding moiré miniband structure, for twist
angle θ = 59◦, is shown in Fig. 12(a), and the conduction
miniband density of states is presented in Fig. 12(b). As in the
case of P stacking, for AP stacking we find an indirect-gap
semiconductor, whose highest valence bands are largely con-
fined to the MoTe2 layer, whereas the conduction minibands
show different degrees of interlayer mixing throughout the
mBZ. The conduction band alignment in this case is more
closely related to AP TMD homobilayers (Fig. 8), due to the

FIG. 12. (a) Moiré conduction and valence minibands of twisted
AP-MoTe2/MoSe2, with twist angle θ = 59◦. Spin-up (-down) bands
are shown with triangles (circles), with symbol color representing
the state’s out-of-plane electric dipole moment. The cyan curves in
the lower panel show the harmonic-potential approximation to the
highest valence bands. (b) Corresponding density of states near the
conduction band edge.

FIG. 13. (a) Moiré conduction and valence minibands of twisted
P-MoSe2/WS2, with twist angle θ = 1◦. Spin-up (-down) bands
are shown with triangles (circles), with symbol color representing
the state’s out-of-plane electric dipole moment. The cyan curves in
the lower panel show the harmonic-potential approximation to the
highest valence bands. (b) Corresponding density of states near the
conduction band edge.

opposite spin ordering of the bands, which somewhat dimin-
ishes resonant hybridization of the band edges. Similar quali-
tative features are apparent in the density of states [Figs. 8(b)
and 12(b)], which show a single van Hove singularity near the
band edge.

C. P-stacked MoSe2/WS2

MoSe2/WS2 heterostructures are different from all the
cases discussed so far, due to the presence of different
transition-metal atoms in the two TMD layers. In particular,
tungsten-based TMDs are known [36] to display a nega-
tive spin-orbit-coupling constant for the conduction band,
as opposed to the positive one found in molybdenum-based
TMDs (see Table III). This results in opposite ordering of
the spin-polarized conduction bands of MoSe2 and WS2 in
a P-MoSe2/WS2 heterostructure, as illustrated in Fig. 10(b),
an analogous situation to AP-type homobilayers.

Figure 13(a) shows the moiré band structure of P-
MoSe2/WS2 at twist angle θ = 1◦, with the density of states
corresponding to the conduction band shown in Fig. 13(b).
Notice the strong electric dipole moment imbalance between
the spin-up and spin-down conduction bands, indicated by
the symbol colors in Fig. 13(a). This strong spin asymmetry
is caused by the combination of opposite spin splittings of
the monolayer conduction bands, and the small interlayer
offset δc = 60 meV, which produces almost perfect alignment
between the (τ = 1) spin-down band edges (28 meV) and
a much larger detuning of the spin-up bands (82 meV), as
illustrated in Fig. 10(b). This leads to different levels of
interlayer mixing for the two spin-polarized minibands.

D. AP-stacked MoSe2/WS2

Finally, Fig. 14 shows the moiré band structure and con-
duction miniband DOS for AP-type MoSe2/WS2 at twist
angle θ = 59◦, corresponding to the schematic shown in
Fig. 10(a). For this range of angles, where MoSe2 τ valley
states hybridize with WS2 states of valley quantum number
τ ′ = −τ , both layers show the same spin ordering in the
conduction bands, and the situation is qualitatively similar to
the case of P-type homobilayers. Some similarities between
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FIG. 14. (a) Moiré conduction and valence minibands of twisted
AP-MoSe2/WS2, with twist angle θ = 59◦. Spin-up (-down) bands
are shown with triangles (circles), with symbol color representing
the state’s out-of-plane electric polarization. The cyan curves in
the lower panel show the harmonic-potential approximation to the
highest valence bands. (b) Corresponding density of states near the
conduction band edge.

the two cases can be found in Fig. 14, such as the spin
polarization of the bottom band across the mBZ, and a rough
two-peak structure in the density of states near the conduction
band edge, reminiscent of the van Hove singularities shown in
Fig. 7(b).

E. Electrical control of moiré superlattice effects

The band structure calculations presented in Figs. 11–14
show that P- and AP-type MoTe2/MoSe2 and MoSe2/WS2

heterostructures are type II semiconductors, with a γ − κ

indirect band gap. However, it is possible to reduce the
offset between the conduction band edges by application of
a positive interlayer bias voltage [50–52] VB. In fact, recent
experiments [51] have demonstrated that interlayer voltages
of up to approximately 200 mV can be produced in TMD
bilayers by means of metallic gates. The resulting potential
gradient along the heterostructure’s out-of-plane axis will
lower the MX2 (bottom) layer’s c band while raising the M′X′

2
(top) layer’s c′ band, such that a suitable value of VB can
impose a degeneracy between the two minima at γ and κ .

Figures 15(a) and 15(b) show the conduction mini-
band structures of P-type MoTe2/MoSe2 and AP-type
MoSe2/WS2, under the critical bias voltages VB that es-
tablishes a band-edge degeneracy at the γ and κ points.
In both cases, we find that the critical bias is twist-angle
dependent, giving values of 83.5 mV for perfectly aligned
P-MoTe2/MoSe2, and a lower value of 78 mV for twist angle
θ = 5◦. Note that both of these values correspond to energies
greater than the band offset of 70 meV, indicated in Fig. 10(a).
The same trend is found for AP-MoSe2/WS2, where the
critical bias for perfect antialignment (θ = 60◦) is 72 mV,
compared to 67 mV for θ = 57◦, and to the 60 meV offset
shown in Fig. 10(a). The lowest conduction minibands shown
in Fig. 15 bear striking resemblance to those of P-type TMD
homobilayers (Fig. 7), with two branches of the band edge at
the γ and κ points belonging to the same spin-polarized band,
and a van Hove singularity forming just above the band edge.

Similarly, Figs. 16(a) and 16(b) show the corresponding
cases of critical interlayer bias for AP-MoTe2/MoSe2 and
P-MoSe2/WS2, both for perfect (anti)alignment and for a

FIG. 15. Conduction minibands and DOS at critical bias voltage
VB, for (a) P-MoTe2/MoSe2 and (b) AP-MoSe2/WS2 heterostruc-
tures with different degrees of alignment. In both cases, VB is
weakly twist-angle dependent. Spin-up (-down) bands are shown
with triangles (circles). The two branches of the band edge belong
to a single spin-polarized band, analogously to the case of P-type
TMD homobilayers (Fig. 7).

finite misalignment angle, showing also a weak twist-angle
dependence of the critical bias voltage. The conduction mini-
bands in these cases show direct correspondence to those of
AP-type TMD homobilayers (Fig. 8), with the γ - and κ-point
branches of the band edge belonging to bands of opposite
spin polarization, and a flattening of the second conduction
miniband above each minimum that is particularly clear in
P-MoSe2/WS2, as a result of the similar effective electron
masses of the two layers (Table III).

In the case of TMD homobilayers, the band-edge degen-
eracy at the γ and κ points is a direct consequence of the
identical dispersions of the two layers, as well as the perfect
band alignment in the case of P stacking. However, note
that this is not the case for P- or AP-type MoTe2/MoSe2

and MoSe2/WS2 since the predicted critical VB are twist-
angle dependent, and can, in fact, be larger than the actual
offsets between the hybridizing bands. The reason behind this
discrepancy is the asymmetry between the conduction band
dispersions of the two layers, parametrized by their different
effective electron masses (Table III). Thus, when these bands
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FIG. 16. Conduction minibands and DOS at critical bias voltage
VB, for (a) AP-MoTe2/MoSe2 and (b) P-MoSe2/WS2 heterostruc-
tures with different degrees of alignment. Spin-up (-down) bands are
shown with triangles (circles). The two branches of the band edge
belong to different minibands of opposite spin polarization, similarly
to the case of AP-type TMD homobilayers (Fig. 8).

are folded into the mBZ, different miniband configurations are
obtained at γ and κ , producing an asymmetry between the
band minima at those points in the mBZ.

VI. mSL MINIBANDS FOR RESONANTLY HYBRIDIZED
INTRALAYER AND INTERLAYER EXCITONS

Much of the current interest in the properties of TMD
systems stems from their outstanding monolayer optical prop-
erties [17–19], produced by their direct band gap at the K
points, and dominated by the formation of strongly bound
2D intralayer excitons (X). By contrast, in twisted TMD
heterobilayers such as those discussed in Secs. III–V, the
ground-state excitons are formed by electron and hole states
confined to opposite layers, known as interlayer excitons
(IXs) [14,50,56,57]. The wave-vector mismatch between the
electron and hole band edges shown in, e.g., Fig. 5, means
that the center-of-mass momentum of low-energy IXs is finite,
and energy-momentum conservation forbids radiative recom-
bination, unless mediated by some compensating mechanism,

TABLE IV. Theoretical binding energies and Bohr radii of the
four types of intralayer and interlayer excitons shown in Eq. (30), for
different TMD heterostructures on a SiO2 substrate. The screening
lengths were obtained from Refs. [42,53,54], and we assume an aver-
age dielectric constant ε = 2.45 for the SiO2/vacuum environment,
following Ref. [55].

εX (eV) εIX (eV) aX (Å) aIX (Å)
MX2/M′X′

2 r∗ (Å) r′
∗ (Å)

εX′ (eV) εIX′ (eV) aX′ (Å) aIX′ (Å)

0.176 0.164 21.4 21.4
WS2/MoS2 37.89 38.62

0.194 0.163 18.2 21.5
0.170 0.157 21.4 21.7

WSe2/MoS2 45.11 38.62
0.183 0.158 18.9 21.7
0.195 0.170 17.8 19.8

MoSe2/MoS2 39.79 38.62
0.191 0.172 18.4 19.4
0.196 0.162 17.7 21.5

MoSe2/WS2 39.79 37.89
0.174 0.164 21.5 21.1
0.169 0.158 21.5 21.3

WSe2/MoSe2 45.11 39.79
0.185 0.157 18.4 21.7
0.177 0.147 15.7 20.1

MoTe2/MoSe2 73.61 39.79
0.152 0.151 20.9 18.9

such as phonon or impurity scattering. In other words, the
lowest-energy IX is momentum dark.

Until recently [41], Xs and IXs have been mostly discussed
as independent objects; however, it is clear that the band
hybridization effects predicted in Secs. IV and V must lead
to mixing of IX and X states [58]. Indeed, as the (positive)
binding energy εIX of IXs is smaller than that of Xs, εX, due
to the additional out-of-plane distance between the electron
and hole, the detuning between the lowest X and IX energies
must be approximately δc − (εX − εIX), which improves the
resonant condition. To show this, we estimate the binding
energies of all possible species of X and IX for different TMD
heterobilayers, by solving the two-body problem for elec-
trons and holes using the finite-elements method, considering
the Keldysh-type [59] long-range intralayer and interlayer
interactions

ϕintra (q) ≈ 2π

εq[1 + (r∗ + r′∗)q]
,

(29)

ϕinter (q) ≈ 2π

εq[1 + (r∗ + r′∗ + d )q]
,

derived in Ref. [55]. The results are presented in Table IV. In
Eq. (29), q represents momentum transfer; d is the interlayer
distance; r∗ = 2πκ/ε (r′

∗ = 2πκ ′/ε) is the screening length
of layer MX2 (M′X′

2), with κ (κ ′) the in-plane dielectric
susceptibility, and ε is the average dielectric constant of
the environment. The corresponding exciton Bohr radii were
estimated as the root-mean-square (RMS) width of the numer-
ically obtained lowest bound-state wave function, which is of
s type. From Tables III and IV, we can see that the difference
in binding energies of the intralayer and interlayer excitons,
εX − εIX, is comparable to δc for materials with near-resonant
band edges, such as MoTe2/MoSe2 and MoSe2/WS2. This
leads to enhanced hybridization between these Xs and IXs,
as compared to electrons and holes, resulting in hybridized
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excitons (hXs) formed by resonantly mixed X and IX states.
As we show below, similar resonant conditions can arise also
for higher-energy intralayer and interlayer excitons, such that
signatures of hX s can appear all throughout the optical spectra
of TMD heterobilayers. These strongly mixed states have a
large intralayer component that allows them to recombine
radiatively, making hXs semibright, whereas the out-of-plane
electric dipole moment, inherited from their interlayer com-
ponent, makes hXs sensitive to the electrostatic environment
of the heterobilayer, through the Stark effect.

Consider the X states of MX2 and M′X′
2, and all possible

IX states of the MX2/M′X′
2 heterobilayer, given respectively

by [60,61]∣∣Xτ τ̄
ss̄ (Q)

〉 = 1√
S

∑
q

Xq c†
cτ s

(
mc

mc + mv
Q + q

)

× cvτ̄ s̄

(
− mv

mc + mv
Q + q

)
|�〉,

∣∣X′τ ′ τ̄ ′
s′ s̄′ (Q)

〉 = 1√
S

∑
q

X ′
q c†

c′τ ′s′

(
mc′

mc′ + mv′
Q + q

)

× cv′ τ̄ ′ s̄′

(
− mv′

mc′ + mv′
Q + q

)
|�〉,

∣∣IXτ ′ τ̄
s′ s̄ (Q)

〉 = 1√
S

∑
q

Yq c†
c′τ ′s′

(
mc′

mc′ + mv
Q + q

)

× cvτ̄ s̄

(
− mv

mc′ + mv
Q + q

)
|�〉,

∣∣IX′τ τ̄ ′
ss̄′ (Q)

〉 = 1√
S

∑
q

Y ′
q c†

cτ s

(
mc

mc + mv′
Q + q

)

× cv′ τ̄ ′ s̄′

(
− mv′

mc + mv′
Q + q

)
|�〉. (30)

In each case, the exciton center-of-mass momentum is repre-
sented by Q; Xq, X ′

q, Yq, and Y ′
q are the corresponding electron-

hole relative motion wave functions in reciprocal space; |�〉
is the neutral ground state of the heterobilayer in the absence
of interactions; and S is the heterostructure’s surface area. The
Xs and IXs have parabolic dispersions given by

E τ τ̄
X,ss̄(Q) = E τ τ̄

X,ss̄ + h̄2Q2

2(mc + mv)
,

E τ ′ τ̄ ′
X′,s′ s̄′ (Q) = E τ ′ τ̄ ′

X′,s′ s̄′ + h̄2Q2

2(mc′ + mv′ )
,

E τ ′ τ̄
IX,s′ s̄(Q) = E τ ′ τ̄

IX,s′ s̄ + h̄2Q2

2(mc′ + mv)
,

E τ τ̄ ′
IX′,ss̄′ (Q) = E τ τ̄ ′

IX′,ss̄′ + h̄2Q2

2(mc + mv′ )
. (31)

We will focus on intravalley X and X′ states, formed by
electrons and holes that can recombine in the absence of
intervalley scattering. For IX and IX′, we consider only the set
of low-energy states that can hybridize with intravalley X and
X′ according to Eq. (17), such that we must set τ ′ = ±τ for P
or AP stacking, respectively. We further assume that no spin
scattering mechanisms are present in the system, and an ex-

FIG. 17. Schematics of the different intralayer and interlayer
excitons in Eq. (30) with valley quantum number τ = 1, for
P-stacked MoSe2/WS2. Wavy lines indicate binding of the electron
and hole by electrostatic interactions. The MoSe2 A and B excitons
correspond to the states X++

↓↓ and X++
↑↑ , whereas the WS2 A and B

excitons are X′++
↓↓ and X′++

↑↑ , respectively.

citon can recombine only if its constituting electron and hole
have opposite spin quantum numbers. We call such excitons
spin bright, and in the opposite case, the exciton is called spin
dark. The eight spin-bright exciton species are represented
schematically in Fig. 17 for the case of P-MoSe2/WS2, and
the intralayer exciton states are labeled according to the usual
nomenclature of A and B excitons.

In principle, the exciton energies at zero momentum can
be obtained from the ab initio band alignment parameters of
Table III, together with the binding energies of Table IV, as

E τ τ̄
X,ss̄ = E c

τ s(0) − Ev
τ̄ s̄(0) − εX,

E τ ′ τ̄ ′
X′,s′ s̄′ = E c′

τ ′s′ (0) − Ev′
τ̄ ′ s̄′ (0) − εX′ ,

E τ ′ τ̄
IX,s′ s̄ = E c′

τ ′s′ (0) − Ev
τ̄ s̄(0) − εIX,

E τ τ̄ ′
IX′,ss̄′ = E c

τ s(0) − Ev′
τ̄ ′ s̄′ (0) − εIX′ . (32)

However, the former quantities depend directly on the in-
tralayer and interlayer band gaps, which may be underesti-
mated by ab initio methods. Instead, we use experimental
values available in the literature, presented in Table V. These
correspond to the A- and B-Xs of each layer, and the lowest-
energy IX excitons of the heterostructure. In our present
notation, these states are, respectively, (τ = +1) X++

↓↓ , X′τ ′τ ′
↓↓ ,

and IXτ ′+
↓↓ , where τ ′ = ± for P and AP stacking.

We estimate the energies of the higher states IXτ ′+
↑↑ and

IX′+τ ′
ss by combining the experimental values of Table V
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TABLE V. Experimental values for the intralayer and inter-
layer A exciton energies in TMD heterobilayers, extracted from
Refs. [41,50,62–64]. In our calculations for material pairs with more
than one reported value, we take the average of the values shown.

Intralayer

MX2/M′X′
2 MX2 (eV) M′X′

2 (eV) Interlayer (eV)

WS2/MoS2 1.97a 1.82a 1.42a

MoSe2/MoS2 1.65b 1.95b 1.33b

MoSe2/WS2 1.56c 1.96c 1.57c

WSe2/MoSe2 1.65d 1.57d 1.35d, 1.39e

aReference [62].
bReference [65].
cReference [41].
dReference [64].
eReference [50].

with the ab initio spin-orbit splittings and conduction band-
edge offsets of Table III, and the binding energies of
Table IV. This same strategy is followed for all IXs in the
case of MoTe2/MoSe2, for which no experimental results are

TABLE VI. Experimental values for the intralayer A and B
exciton energies in monolayer TMDs, extracted from Refs. [66–70].
In our calculations for materials with more than one reported value,
we take the average of the values shown.

A exciton energy (eV) B exciton energy (eV)

MoS2 1.84a 2.00a

MoSe2 1.58a 1.76a

MoTe2 1.10–1.20b,c,d 1.35b, 1.44d

WS2 2.01a, 1.99e 2.39a, 2.26e

WSe2 1.66a, 1.63e 2.10a, 2.07e

aReference [66].
bReference [67].
cReference [68].
dReference [69].
eReference [70].

available at the moment, using the experimental monolayer X
energies in Table VI.

Similarly to carrier states, different intralayer and inter-
layer exciton species are mixed by the tunneling term Ht in
Eq. (2). Using the simplified form (17), we obtain the matrix
elements

〈
IXτ ′τ

ss̄ (Q̄)
∣∣Ht

∣∣Xττ
ss̄ (Q)

〉 = 2∑
η=0

δQ−Q̄,Cη
3 �KMη

IX X(Q),

〈
IX′ττ ′

ss̄ (Q̄)
∣∣Ht

∣∣Xττ
ss̄ (Q)

〉 = 2∑
η=0

δQ−Q̄,Cη

3 �KMη

IX′ X(Q),

〈
IXτ ′τ

ss̄ (Q̄)
∣∣Ht

∣∣X′τ ′τ ′
ss̄ (Q)

〉 = 2∑
η=0

δQ−Q̄,Cη
3 �KMη

IX X′ (Q),

〈
IX′ττ ′

ss̄ (Q̄)
∣∣Ht

∣∣X′τ ′τ ′
ss̄ (Q)

〉 = 2∑
η=0

δQ−Q̄,Cη

3 �KMη

IX′ X′ (Q), (33)

with any other matrix elements between the relevant bright excitons being equal to zero. In Eq. (33), �K is chosen according to
Eqs. (14) and (16), and we have defined

Mη
IX X(Q) ≡ tceiK·r0 e−iCη

3 K·r0

∫
d2r e

−i[
mc

mc+mv
− mc′

mc′+mv
]Q·r

e
−i[

mv
mc′+mv

]Cη
3 �K·r

Y ∗(r)X (r),

Mη

IX′ X(Q) ≡ −t∗
v e−iK·r0 eiCη

3 K·r0 e−i
2ηπ

3 (τ ′−τ )
∫

d2r e
−i[

mc
mc+mv

− mc
mc+mv′ ]Q·r

e
−i[

mc
mc+mv′ ]Cη

3 �K·r
Y ′∗(r)X (r),

Mη

IX X′ (Q) ≡ −tveiK·r0 e−iCη
3 K·r0 ei

2ηπ

3 (τ ′−τ )
∫

d2r e
−i[

mc′
mc′ +mv′ − mc′

mc′ +mv
]Q·r

e
−i[

mc′
mc′ +mv

]Cη
3 �K·r

Y ∗(r)X ′(r),

Mη

IX′ X′ (Q) ≡ t∗
c e−iK·r0 eiCη

3 K·r0

∫
d2r e

−i[
mv′

mc+mv′ − mv′
mc′+mv′ ]Q·r

e
−i[

mv′
mc+mv′ ]Cη

3 �K·r
Y ′∗(r)X ′(r), (34)

with X (r), X ′(r), Y (r), and Y ′(r) the real-space relative motion wave functions, given by the inverse Fourier transforms of Xq,
X ′

q, Yq, and Y ′
q.

The expressions in (34) can be simplified by noting that, in each case, the difference of mass ratios appearing in the
argument of the first exponential is much smaller than one for the heterostructures discussed (see Table III). Then, assuming
two-dimensional s states for the X and IX wave functions [53], with corresponding Bohr radii aX, aX′ , aIX and aIX′ , yields the
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momentum-independent expressions

Mη

IX X ≈ 4 tceiK·r0 e−iCη
3 K·r0

aXaIX

(
aX + aIX

aXaIX

) [(
aX + aIX

aXaIX

)2

+ m2
v�K2

(mc′ + mv)2

]−3/2

,

Mη

IX′ X ≈ −4 t∗
v e−iK·r0 eiCη

3 K·r0 e−i
2ηπ

3 (τ ′−τ )

aXaIX′

(
aX + aIX′

aXaIX′

)[(
aX + aIX′

aXaIX′

)2

+ m2
c�K2

(mc + mv′ )2

]−3/2

,

Mη

IX X′ ≈ −4 tveiK·r0 e−iCη
3 K·r0 ei

2ηπ

3 (τ ′−τ )

aX′aIX

(
aX′ + aIX

aX′aIX

) [(
aX′ + aIX

aX′aIX

)2

+ m2
c′�K2

(mc′ + mv)2

]−3/2

,

Mη

IX′ X′ ≈ 4 t∗
c e−iK·r0 eiCη

3 K·r0

aX′aIX′

(
aX′ + aIX′

aX′aIX′

)[(
aX′ + aIX′

aX′aIX′

)2

+ m2
v′�K2

(mc + mv′ )2

]−3/2

. (35)

Analogously to Eq. (17), Eq. (33) defines a mBZ for exci-
tons, where X and IX states with center-of-mass momenta
separated by moiré Bragg vectors bmn mix. The resulting
intralayer-interlayer hybridization model can be solved by
direct diagonalization within the mBZ defined in Fig. 1.

A. hX formed by IX hybridization with the interlayer A exciton

Figure 18 shows the moiré band structures for the (τ = 1)
X and IX states in perfectly aligned (P-type) and antialigned

(AP-type) MoTe2/MoSe2 and MoSe2/WS2. For both material
pairs, the flatness of the lowest exciton bands is a consequence
of the resonant condition between the intralayer A exciton
and the IXτ ′+

↓↓ (detunings are approximately 10 meV for
MoSe2/WS2 and 40 meV for MoTe2/MoSe2), combined with
the reduced size of the mBZ at perfect alignment or antialign-
ment. The symbol colors in Fig. 18 indicate the composition
of the exciton state, with blue or red representing a large X
or IX component, and intermediate colors corresponding to
hXs. Note that multiple high-energy γ -point hXs appear in

FIG. 18. (a), (b) Main (τ = 1) bright exciton moiré bands for perfectly aligned and antialigned MoTe2/MoSe2 and MoSe2/WS2. The dark
exciton bands are also shown in gray. For reference, the atomic arrangements of P and AP stacking are presented in the panel (c) insets. (c), (d)
Energy and activation temperature T� of the main optically active (Q = 0) bright exciton state, as functions of the twist angle. In all panels, the
symbol color represents the state composition, with red (blue) corresponding to pure interlayer (MX2-intralayer) excitons. Intermediate colors
indicate strong mixing of IX and X species, corresponding to hybridized excitons hX.
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FIG. 19. Photoluminescence (PL) at room temperature (left) and absorption spectra (center) as functions of twist angle for MoTe2/MoSe2

(top) and MoSe2/WS2 (bottom), close to parallel and antiparallel alignment. PL curves for different twist angles are offset for clarity, and
the decoupled MX2-A exciton energy, obtained at θ = 30◦, is indicated by the vertical blue line. For MoTe2/MoSe2, a second PL feature is
clearly visible at room temperature, for θ ≈ 0◦ and |θ − 60◦| ≈ 0◦. A faint second PL peak appears also in MoSe2/WS2, shown magnified
(multiplied by a factor of 10) in the figure. These secondary spectral features are thermally activated, and disappear at low temperatures.
The full low-energy exciton spectrum is overlaid on top of each absorption map (blue and yellow curves), showing multiple momentum-dark
exciton states. Blue curves correspond to the 10 minibands obtained from the first MX2-A exciton band (1 line), the lowest IX bands (3 lines),
and the first folding of the MX2-A band into the mBZ (6 lines), shown schematically in the top- and bottom-right panels. In the top-right
panel, same-color lines indicate degenerate exciton states at the γ point. Multiple hX states are identified by avoided crossings of the exciton
minibands close to (anti)alignment, and sketched on the center-right panels. White arrows indicate absorption signatures from photon umklapp
proceses associated to one of the latter six exciton bands, which is maximally hybridized with the first MX2-A exciton, thus becoming bright.
This absorption line is direct evidence of the moiré superlattice. All PL and absorption line shapes are assumed of Lorentzian form, with
broadening of 5 meV.

both materials, some of which are optically active and should
contribute to the heterostructure’s absorption spectrum, as
discussed in Figs. 19, 20, and 21.

The evolution with twist angle of the lowest bright γ

exciton energy and state composition are shown in Figs. 18(c)
and 18(d), displaying sharp variations of approximately 50 to
70 meV in both material pairs, when θ departs from 0◦ or
60◦. For those twist-angle ranges, the lowest bright γ exciton
is hX-A, formed by resonant hybridization of an IX with the
A intralayer exciton, whereas for strong misalignment angles
10◦ � θ � 50◦, it is the fully bright X-A state. The slight
asymmetry of the curve, especially visible for MoTe2/MoSe2

[Fig. 18(c)], is caused by the opposite conduction band spin-
orbit splitting in the τ ′ = ±1 valleys of the M′X′

2 layer,
resulting in different IX energies for P and AP configurations.
The blue curves in Figs. 18(c) and 18(d) show the γ exciton
activation energy kBT� as a function of twist angle, indicating
what temperature T� is required to populate these exciton
states, and produce photoluminescence. Note that for the case
of MoSe2/WS2, this is always lower than room tempera-
ture (kBT� < 25.8 meV), reaching values as low as ∼1 meV
at θ = 60◦. Based on these results, we have evaluated the

photoluminescence spectra of both heterostructures (Ap-
pendix A), which we present for different twist angles in
Fig. 19.

The latter figure also shows the MoTe2/MoSe2 and
MoSe2/WS2 absorption spectra for varying interlayer twist
angle (Appendix B), which captures the full optical spectrum
of the heterostructure. For both alignment cases, the lowest hX
pair, labeled hX-A, is formed by resonant hybridization of an
IX with the MX2 intralayer A exciton (IX+±

↓↓ and X++
↓↓ , respec-

tively), driven by interlayer electron hopping. The IX com-
ponent of each hX-A state is formed by an electron and hole
residing in different layers, and thus separated by a distance of
approximately 6 Å (Table III). This IX component possesses
an electric dipole moment of 30 to 50 D (∼10−18 C Å), and
will couple to out-of-plane electric fields Ez, modifying the hX
energies (Stark shift) and state compositions, and ultimately
splitting them into pure Xs and IXs. This is shown in Figs. 20
and 21, where we present the absorption spectra of P- and AP-
type MoTe2/MoSe2 and MoSe2/WS2, respectively, for fixed
twist angle and varying field strength Ez. In each case, the
IX can be easily identified within the lower-energy multiplet
of lines by its Stark shift, and direct correspondence with the
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FIG. 20. Absorption spectra of parallel (top) and antiparallel
(bottom) MoTe2/MoSe2, for varying out-of-plane electric field. The
energies of various intralayer and interlayer exciton states, in the
limit of tc = tv = 0, are shown for reference. Line shapes are as-
sumed of Lorentzian form, with broadening of 5 meV.

reference, free IX line, shown in red. X-A, on the other hand,
can be identified by its lack of a Stark shift, recovering its
unperturbed value at large, negative Ez (blue line).

The optical spectra of hXs are dominated by their large
intralayer-exciton component, leading to identical optical se-
lection rules as the monolayers [49]. This is in stark con-
trast to IXs in TMD heterostructures with nonresonant band
edges, whose optical selection rules are determined by the
local stacking [31,32,61] (see Fig. 3), and dominated by
the weak interlayer tunneling matrix elements tcv and tvc,
discussed in Sec. II. In addition to the case of MoSe2/MoS2,
shown in Fig. 2, Fig. 22 shows the absorption spectra of
WS2/MoS2 and WSe2/MoSe2, where intralayer and inter-
layer excitons are strongly off resonance, as reported in
Table V. For WS2/MoS2, the lowest-energy interlayer exciton
line (IX±+

↓↓ for P and AP stacking, respectively) is completely
absent in our approximation (tvc = tcv = 0) due to negligi-
ble hybridization with the bright intralayer WS2 − A and
MoS2 − A excitons. In WSe2/MoSe2, the lowest absorption
peak visible corresponds to IX±+

↓↓ , which in our approxima-
tion gains oscillator strength only for large twist angles as
it approaches the energy of the MoSe2 − A exciton, even
showing an avoided crossing at photon energies between 1.5
and 1.6 eV for θ ≈ 8◦. Note that, due to the ordering of
the intralayer exciton energies in these heterobilayers, this
avoided crossing is produced by interlayer hole tunneling, as

FIG. 21. Absorption spectra of parallel (top) and antiparallel
(bottom) MoSe2/WS2, for varying out-of-plane electric field. The
energies of various intralayer and interlayer exciton states, in the
limit of tc = tv = 0, are shown for reference. Line shapes are as-
sumed of Lorentzian form, with broadening of 5 meV.

opposed to electron tunneling, discussed below in the context
of MoSe2/WS2 and MoTe2/MoSe2 heterostructures. Surpris-
ingly, the intralayer exciton lines of perfectly aligned P- and
AP-stacked WS2/MoS2 and WSe2/MoSe2 display intricate
fine structures, corresponding to higher intralayer exciton
minibands, which should be discernible at low temperatures,
and appear as anomalous broadening of the intralayer exciton
lines in high-temperature experiments.

B. hX formed by IX hybridization with the intralayer B exciton

In addition to the sharp hX energy modulation shown
in Figs. 18(c) and 18(d), the higher-energy features in the
absorption spectra also reflect the formation of a secondary
pair of hXs for P stacking, and two secondary pairs of hXs for
AP stacking. In the former case, the pair of lines labeled hX-B
originates as the MX2 intralayer B exciton (X++

↑↑ ) hybridizes
resonantly with IX++

↑↑ , through interlayer electron tunneling.
This type of mixing also occurs in the latter case of AP
stacking, producing the pair of lines labeled hX-B′ in Fig. 19.
Surprisingly, an additional near resonance between the M′X′

2
A exciton (X′−−

↑↑ ) and the interlayer exciton IX−+
↑↑ appears

for relatively large misalignment angles, 60◦ − θ ≈ 8◦, giving
rise to a third pair of hXs, labeled hX-C. By contrast to all
previously discussed cases, hX-C are produced by interlayer
tunneling of holes, as sketched in the right panels of Fig. 19.
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FIG. 22. Absorption spectra of WS2/MoS2 (top) and
WSe2/MoSe2 (bottom). For reference, blue and red curves show the
energies of different intralayer and interlayer excitons, respectively,
in the limit of tc = tv = 0. Whereas for P-WSe2/MoSe2 a faint
IX++

↓↓ line is visible at low energies, labeled IX, the corresponding
line is absent in P-WS2/MoS2 due to its larger detuning with the
MoS2 − A exciton. For both material pairs, the intralayer exciton
lines display complex fine structures close to perfect alignment
and antialignment, coming from moiré exciton minibands that mix
strongly with the main A or B exciton.

This type of mixing is possible only for AP stacking in both
MoTe2/MoSe2 and MoSe2/WS2, where the top valence band
of the MX2 layer and that of the M′X′

2 have opposite spin
quantum numbers. The smooth twist-angle crossover from
hX-B to hX-C produces a clear absorption line that shifts with
increased misalignment by a remarkable 200 meV. This is
enabled by the large interlayer hole tunneling matrix element
|tv| > |tc|, which gives strong mixing between the M′X′

2 A ex-
citon and IX−+

↑↑ even at θ ≈ 60◦, where the detuning between
these two exciton states is relatively large. Figures 20 and
21 show that sufficiently large, positive electric fields bring
down the higher-energy IX′+±

ss states, due to their positive
electric dipole moments (see Fig. 17), allowing them to also
hybridize with the M′X′

2 B exciton to produce the complex
absorption signatures appearing in the top-right corner of each
panel.

C. hX fine structure due to mSL-induced umklapp
electron-photon interaction

Perhaps the most important features appearing in Fig. 19
are the additional absorption lines indicated by white arrows,

FIG. 23. Reflectivity spectra, typically measured in optics exper-
iments, of MoTe2/MoSe2 and MoSe2/WS2 for various twist angles
near perfect alignment and antialignment. The absorption peaks
predicted in Fig. 19 translate into double features, where the exciton
energy can be read as the point of maximum negative derivative
between the peak and the trough.

which accompany the hX-A and hX-B signatures for θ ≈ 0◦
or 60◦, especially pronounced for MoSe2/WS2. These lines
originate from the minibands obtained by the first folding
of the A or B intralayer exciton dispersion into the mBZ, to
the new γ point. These states become optically active due
to umklapp photon absorption processes, in which a mSL
Bragg vector is transferred to the crystal, thus making exciton
states with finite momenta b0,±1, b±1,0, and b±1,±1 bright.
This is depicted in the right panels of Fig. 19. The presence of
these lines can provide direct evidence of moiré superlattice
effects. We have verified that, for aligned MoTe2/MoSe2

and MoSe2/WS2 heterostructures, the three-peak spectra pro-
duced by the two main hX lines and the third umklapp line
are robust to variation of the main theoretical parameters
considered (the interlayer electron hopping energy tc, and the
conduction band masses of the two TMD layers), and should
thus be visible in real samples with different preparation
methods, and under different conditions. This is shown in
Figs. 24 and 25 of Appendix C.

Figures 20 and 21 show that the umklapp photon ab-
sorption lines disappear below some negative electric field
value, but remain bright for Ez > 0, and can be identified
with the purple reference lines corresponding to the energy
of the first folded A or B γ exciton, up to an overall red-
shift due to interaction with higher-energy IX minibands. The
splitting of this triad formed by the two hX-A or -B lines
and the first A or B umklapp photon absorption line, into
a pair of lines that do not undergo a Stark shift, plus one
that does, can serve to identify both the hybridized exciton
physics and the moiré superlattice effects in an experimental
setting. As a final remark, we note that the optical spectra of
TMD heterostructures are normally measured through their
reflectivity, rather than absorption properties. Figure 23 shows
our prediction for the reflectivity spectra of MoTe2/MoSe2

and MoSe2/WS2, obtained from our absorption calculations
via a Kramers-Kronig relation [71].
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VII. CONCLUSIONS

We have studied the interplay between band alignment and
the presence of emergent moiré superlattices (mSL) in twisted
heterobilayers of transition-metal dichalcogenides (TMDs).
Starting from a microscopic interlayer tunneling Hamiltonian,
we have derived effective harmonic potentials based on per-
turbation theory, to describe the effects of moiré patterns on
the electron and hole bands of TMD heterostructures with
large interlayer offsets between carrier band edges. We have
shown that this approach fails in TMD homobilayers, and
in heterostructures such as MoSe2/WS2 and MoTe2/MoSe2,
where bands of the two constituent monolayers hybridize
resonantly. Our results show that the influence of higher
moiré superlattice minibands for the low-energy electron
band structure in these heterobilayers becomes increasingly
important as the interlayer band edges offset is reduced; in
other words, that resonant interlayer hybridization amplifies
the moiré superlattice effects on the electronic structure. By
treating hybridization effects exactly, we have predicted the
appearance of van Hove singularities near the conduction
miniband edges in these materials close to perfect alignment,
of potential interest for the study of strongly correlated elec-
tron physics in TMDs.

We have also developed a general description of low-
energy excitons in TMD heterobilayers, and found that
the small interlayer conduction band-edge detunings in
MoSe2/WS2 and MoTe2/MoSe2 result in nearly degenerate
intralayer and interlayer exciton states, with the resonant con-
dition further enhanced by the difference in binding energies
of these two exciton species. This gives rise to hybridized
excitons (hXs), which inherit the brightness of intralayer
excitons and the polar nature of interlayer excitons. Presently,
our model neglects the effects of periodic strain that may
develop in each layer of the heterostructure, and which can
affect the energies of the band edges. Such effects may be
most important for the best lattice-matched and highly aligned
structures (e.g., WSe2/MoSe2 and WSe2/WS2), as well as
homobilayers, and should be added on top of the hybridization
effects studied here. Using experimental values for the exciton
energies reported in the literature on TMD heterobilayers,
we have evaluated the full optical spectra of MoSe2/WS2

and MoTe2/MoSe2 heterostructures, and made predictions
for explicit signatures of strong intralayer-interlayer exciton
hybridization, and of the presence of the moiré superlattice.
Hence, we predict that mSL-modified hXs should be ubiqui-
tous to TMD heterostructures, and dominate the low-energy
spectrum of closely aligned TMD heterobilayers with near-
resonant band edges, in agreement with recent experimental
developments [41].
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APPENDIX A: PHOTOLUMINESCENCE
OF HYBRIDIZED EXCITONS

To estimate the photoluminescence (PL) intensity of a
TMD heterobilayer MX2/M′X′

2, we assume a photoexcited
thermal population of excitons described by the Bose-Einstein
distribution

nB(E , T ) = 1

e(E−Egnd )/kBT − 1
, (A1)

where Egnd is the global minimum of the exciton moiré band
structure.

The light-matter interaction Hamiltonian is given by

HLM = eγ

h̄c

∑
s,η

∑
ξ,k

√
4π h̄c

V ξ
c†
vηs(k − ξ‖)ccηs(k)a†

η(ξ)

+ eγ ′

h̄c

∑
s′,η′

∑
ξ,k′

√
4π h̄c

V ξ
c†
v′η′s′ (k′ − ξ‖)

× cc′η′s′ (k′)a†
η(ξ) + H.c., (A2)

where the operator a†
τ (ξ) creates a photon of momentum h̄ξ

and circular polarization η (η = ±1 corresponding to coun-
terclockwise and clockwise polarization, respectively); γ and
γ ′ are the momentum matrix elements at the MX2- and M′X′

2-
layer K valleys, respectively (Table III); and V = SL, with S
the heterostructure surface area and L the height of the optical
cavity. We evaluate the radiative decay (number of photons per
unit time) of hXs perturbatively, using Fermi’s golden rule in
its thermodynamic form

�i = 2π

h̄

∑
f

|〈 f |HLM|i〉|2 nB(E , T )δ(E f − Ei ), (A3)

with single-photon final states | f 〉 ≡ a†
η(ξ)|�〉, and initial

states

|i〉 = ∣∣hXτ
s (Q)

〉
n

≡
∞∑

m=0

[
Asτ

nm(Q)
∣∣Xττ

ss (Q)
〉
m + Bsτ

nm(Q)
∣∣IXτ ′τ

ss

〉
m

+Csτ
nm(Q)

∣∣X′τ ′τ ′
ss

〉
m + Dsτ

nm(Q)
∣∣IX′ττ ′

ss

〉
m

]
. (A4)

The indices m, n number the minibands, and stand for the
double index (i, j) introduced in Eq. (19), and Q ∈ mBZ.
With the definitions of Eq. (30), we obtain the matrix elements

〈η, ξ|HR

∣∣hXτ
s (Q)

〉
n

= e

h̄c

∞∑
m=0

δξ‖,Q+bm

√√√√ 8h̄c

L
√

|Q + bm|2 + ξ 2
⊥

×
[
δη,τ

γ Asτ
nm(Q)

aX
+ δη,τ ′

γ ′Csτ
nm(Q)

aX′

]
. (A5)

Note that for τ = τ ′ (P stacking), Fermi’s golden rule will give
interference between the last two terms in Eq. (A5), whereas
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no interference occurs for τ ′ = −τ (AP stacking). Keeping this in mind, we will focus on the latter case, for the sake of
concreteness. Fermi’s golden rule gives

�τ
n,s(Q) = 16πe2

h̄2c L

∑
ξz

nB
(
E τ

n,s(Q)
)δ
[

E τ
n,s(Q) − hc

√|Q + bm|2 + ξ 2
z

]
√|Q + bm|2 + ξ 2

z

⎡
⎣
∣∣∣∣∣

∞∑
m=0

γ Asτ
nm(Q)

aX

∣∣∣∣∣
2

+
∣∣∣∣∣

∞∑
m=0

γ ′Csτ
nm(Q)

aX′

∣∣∣∣∣
2
⎤
⎦. (A6)

Given the steepness of the photon dispersion relation, all terms with bm �= 0 are removed by the Dirac delta function in (A6).
Moreover, only light-cone excitons with center-of-mass momentum Q � QLC ≈ E τ

n,s(0)/hc can recombine, according to energy-
momentum conservation. Given the smallness of QLC, we set Q = 0 for the exciton dispersions and wave-function coefficients
in (A6). After taking the continuum limit for ξz to evaluate the sum as an integral, we find that

S−1�τ
n,s ≈ 2e2 nB

(
E τ

sn(0)
)

π2h̄2c

[∣∣∣∣γ Asτ
n0(0)

aX

∣∣∣∣
2

+
∣∣∣∣γ ′Csτ

n0 (0)

a′
X

∣∣∣∣
2
]∫ ∞

0
dξz

δ
[

E τ
n,s(0) − hc

√
Q2 + ξ 2

z

]
√

Q2 + ξ 2
z

. (A7)

The total PL intensity (photons per unit time per unit area) is obtained by evaluating this integral, and further integrating the
resulting expression over exciton wave number within the light cone, finally giving

IPL,n = e2

h̄c

2E τ
n,s(0) c

4π3(h̄c)3

[∣∣∣∣γ Asτ
n0(0)

aX
+ γ ′Csτ

n0 (0)

a′
X

∣∣∣∣
2
]

(P),

IPL,n = e2

h̄c

2E τ
n,s(0) c

4π3(h̄c)3

[∣∣∣∣γ Asτ
n0(0)

aX

∣∣∣∣
2

+
∣∣∣∣γ ′Csτ

n0 (0)

a′
X

∣∣∣∣
2
]

(AP). (A8)

A significant exciton population will only exist in the few lowest-energy minibands, so we evaluate only IPL,0 and IPL,1. The main
PL line appears for photon energies h̄ω = E τ

0,s(0), and has an activation temperature given by E τ
0,s(0) − Egnd ≡ kBT� [Figs. 18(c)

and 18(d)]. For Fig. 19, we have introduced a Lorentzian line shape

L(h̄ω) = β/π[
h̄ω − E τ

n,s(0)
]2 + β2

,

with phenomenological broadening β = 5 meV.

APPENDIX B: OPTICAL ABSORPTION BY HYBRIDIZED EXCITONS

For the heterostructure’s optical absorption spectrum (number of photons absorbed per unit time per unit area), we have used
the T = 0 version of Fermi’s golden rule, with relaxed energy conservation (line broadening):

�i = 2π

h̄

∑
f

|〈 f |HLM|i〉|2 β/π

(E f − Ei )2 + β2
, (B1)

setting |i〉 = a†
η(ξ)|�〉 and | f 〉 = |hXτ

s (Q)〉n [see Eq. (A4)]. After some algebra, we obtain the absorption rate for photons of
momentum h̄ξ and polarization η given by

�ηs(ξ) ≈ 16π

h̄Lξ

e2

h̄c

∑
n

∣∣∣∣∣
∑

m

[
γ Asτ

nm(0)

aX
+ γ ′Csτ

nm(0)

aX′

]∣∣∣∣∣
2

β/π[
hcξ − Eη

n,s(0)
]2 + β2

(P),

�ηs(ξ) ≈ 16π

h̄Lξ

e2

h̄c

∑
n

⎡
⎣
∣∣∣∣∣
∑

m

γ Asτ
nm(0)

aX

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

m

γ ′Csτ
nm(0)

aX′

∣∣∣∣∣
2
⎤
⎦ β/π[

hcξ − Eη
n,s(0)

]2 + β2
(AP). (B2)

The total number of absorbed photons is obtained by multiplying this expression by the number of photon states in the
infinitesimal energy range ε to ε + dε, that is, the number of photons with wave number of magnitude between ε/hc and
[ε + dε]/hc. Since the reciprocal volume element is 4πξ 2 dξ , and each volume element contains SL/(2π )3 photon states, this
number of photons is [SL/(2π2h̄2c3)]ε2dε. The resulting total absorption rate from exciton band |hXτ

s 〉n is given by

Aτ
n,s(ε) ≈ εdε

π h̄2c2

8

h̄

e2

h̄c

∑
n

∣∣∣∣∣
∑

m

[
γ Asτ

nm(0)

aX
+ γ ′Csτ

nm(0)

aX′

]∣∣∣∣∣
2

β/π[
hcξ − Eη

n,s(0)
]2 + β2

(P),

Aτ
n,s(ε) ≈ εdε

π h̄2c2

8

h̄

e2

h̄c

∑
n

⎡
⎣
∣∣∣∣∣
∑

m

γ Asτ
nm(0)

aX

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

m

γ ′Csτ
nm(0)

aX′

∣∣∣∣∣
2
⎤
⎦ β/π[

hcξ − Eη
n,s(0)

]2 + β2
(AP). (B3)
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FIG. 24. Dependence of the low-energy three-peak structure in
the absorption spectrum of perfectly aligned (θ = 0◦) MoTe2/MoSe2

on (a) the electron interlayer hopping energy tc, and (b) the MoTe2

and (c) MoSe2 conduction band masses. Reference mass values
mMoTe2

c and mMoSe2
c are given in Table III.

In an experimental setup, the energy differential dε can be
identified with the detector’s resolution, which we set to
1 meV, together with the phenomenological line broadening
β = 5 meV, to produce the spectra of Figs. 2 and 19–21.

APPENDIX C: DEPENDENCE OF THE MoTe2/MoSe2

AND MoSe2/WS2 OPTICAL SPECTRA ON THE
MODEL PARAMETERS

We evaluated the low-energy absorption spectra of per-
fectly aligned (θ = 0◦) MoTe2/MoSe2 and MoSe2/WS2, for
different values of the relevant parameters in our theoret-
ical model: the interlayer electron tunneling energy tc and the

FIG. 25. Dependence of the low-energy three-peak structure in
the absorption spectrum of perfectly aligned (θ = 0◦) MoSe2/WS2

on (a) the electron interlayer hopping energy tc, and (b) the MoSe2

and (c) WS2 conduction band masses. Reference mass values mMoSe2
c

and mWS2
c are given in Table III.

conduction and valence band masses mc and mv. The latter
two parameters affect the intralayer and interlayer exciton
masses and Bohr radii, such that the intralayer-interlayer
exciton mixing energies of Eq. (35) are modified by all three
parameters. Therefore, for each combination of mc and mv,
we evaluated the relevant exciton Bohr radii using the finite-
elements method discussed in Sec. VI. Figures 24 and 25 show
the variation of the three main hX absorption peaks discussed
in the main text with varying tc, mc, and mv within 50% of
their reference values. The weak dependence found for both
material pairs indicates that the three-peak structure should
appear for samples of different qualities, and prepared by
different methods, where all three parameters may vary.
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