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Nanophononics is essential for the engineering of thermal transport in nanostructured electronic devices, it
greatly facilitates the manipulation of mechanical resonators in the quantum regime, and it could unveil a new
route in quantum communications using phonons as carriers of information. Acoustic phonons also constitute
a versatile platform for the study of fundamental wave dynamics, including Bloch oscillations, Wannier-Stark
ladders, and other localization phenomena. Many of the phenomena studied in nanophononics were inspired by
their counterparts in optics and electronics. In these fields, the consideration of topological invariants to control
wave dynamics has already had a great impact for the generation of robust confined states. Interestingly, the use
of topological phases to engineer nanophononic devices remains an unexplored and promising field. Conversely,
the use of acoustic phonons could constitute a rich platform to study topological states. Here, we introduce
the concept of topological invariants to nanophononics and experimentally implement a nanophononic system
supporting a robust topological interface state at 350 GHz. The state is constructed through band inversion, i.e., by
concatenating two semiconductor superlattices with inverted spatial mode symmetries. The existence of this state
is purely determined by the Zak phases of the constituent superlattices, i.e., the one-dimensional Berry phase.
We experimentally evidenced the mode through Raman spectroscopy. The reported robust topological interface
states could become part of nanophononic devices requiring resonant structures such as sensors or phonon lasers.
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I. INTRODUCTION

In macroscopic acoustics exciting effects such as acous-
tic cloaking [1,2], superlensing [3], traps for electrons [4],
and rainbow trapping [5] have recently been reported.
Nanophononics, relying on the same wave mechanics, ad-
dresses the engineering and manipulation of high-frequency
phonons at the nanoscale [6–9]. Phonon engineering in the
gigahertz-to-terahertz range has major implications in other
domains: in optomechanics for the manipulation of mechanical
resonators in their quantum ground state [10,11], in electronics
for determining the thermal transport properties of nanostruc-
tured devices [8,12,13], and even in solid-state quantum com-
munications, where acoustic phonons could serve as carriers of
quantum information [14–16] interfacing quantum bits based
on different solid-state platforms [17,18]. In the high frequency
regime, the resulting low thermal phonon occupation number
allows one to readily prepare mechanical systems in their
quantum regime [10,11].
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Fundamental building blocks in nanophononics are finite-
size nanoscale superlattices [19,20] presenting a periodic
modulation of the elastic properties. Such devices exhibit
high reflectivity bands for acoustic phonons in the gigahertz-
to-terahertz range and are usually employed as distributed
Bragg reflectors (DBRs) [21,22]. DBRs are at the heart of
key advances in nanophononics such as acoustic nanocavities
formed by enclosing a resonant acoustic spacer in between
two DBRs [9,21–25]. The high reflectivity bands of phononic
DBRs originate directly from the associated minigaps of the
corresponding infinite periodic superlattice.

In nanophononic systems, the low speed of sound and
the long mean free path of acoustic phonons make the full
phononic wave function accessible to optical probes. Together
with state-of-the-art nanofabrication technologies, engineered
acoustic phonons constitute a versatile platform for the investi-
gation of complex wave dynamics and localization [23,26,27].
For instance, based on one-dimensional nanophononic struc-
tures impressive advances have been reported on the feeding of
a laser mode by shaking quantum dots [28], on the development
of efficient optomechanical platforms [11], on coherent tera-
hertz sound amplification [25], and on multifunctional material
phonon devices [29,30]. However, up to now, the control of
acoustic phonon propagation in periodic media solely relies
on λ/4 interference stacks, creating frequency intervals where
elastic waves cannot propagate, i.e., phononic band gaps. The
full information contained in the acoustic band diagram, in
particular the underlying spatial mode symmetries, has not yet
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been exploited to design acoustic devices beyond the standard
Fabry-Perot resonator.

Topological invariants have been widely used to describe the
quantum Hall effect [31–34] and electrically conducting poly-
mers [35,36] and for the conception of unidirectional optical
waveguides [37,38]. In periodic media, topological invariants
allow for an efficient description of the information beyond
the mere band-gap existence. For one-dimensional systems,
the Zak phase [39], i.e., the one-dimensional Berry phase [40],
is usually invoked as a topological number [35,41–44]. For
instance, the Zak phases corresponding to two concatenated
systems determine the existence of an interface mode confined
between them. Such a mode is robust against perturbations
in the systems that do not affect the values of their Zak
phases. Recently, first reports have merged these concepts
from topology with acoustics in the kilohertz-to-megahertz
range [17,41,45–48]. At higher frequencies, where disorder
can become a limitation and fabrication techniques are more
challenging, no experimental studies have been performed
yet. Disorder has been previously considered in phononic
structures in the kilohertz-to-megahertz range [49–51], and in
nanophononic structures; however, in this case it has not been
related to robustness in topological systems.

In this paper, we introduce the concept of topological invari-
ants to nanomechanics in the hundreds-of-gigahertz range and
experimentally implement a nanophononic system in which an
interface state at 350 GHz is constructed. This topological state
is designed through band inversion [42], i.e., by concatenating
two superlattices with inverted spatial mode symmetries at the
band edges around a common minigap, in the absence of a
resonant spacer. The existence of this state is purely deter-
mined by the Zak phases of the constituent superlattices. It is
then experimentally evidenced through high-resolution Raman
spectroscopy. As the development of phonon lasers [25] and
optomechanical sensing applications relies on resonant struc-
tures, robust topological interface states could become a pow-
erful ingredient in the development of nanophononic devices.

II. RESULTS AND DISCUSSION

The direct link between an acoustic DBR and the topolog-
ical properties of its corresponding band structure constitutes
the base of our paper [52]. Let us establish the connection
between the topological properties of periodic media and
traditional concepts in phononics and photonics. Since a DBR
is a periodic medium for phonons, it has an associated band
structure with frequency bands of propagating Bloch modes
and band gaps, in which only evanescent phonons are solutions
to the acoustic wave equation [52]. A state confined in between
two concatenated DBRs can only exist for frequencies that fall
into a band gap for both DBRs. To get a localized state in a
cavity made by two DBRs and a spacer, i.e., a Fabry-Perot
resonator [53], the reflection phases φleft and φright of the
individual reflectors and the phase picked up by propagation
through the spacer have to add up to an integer multiple of 2π ;
i.e., a stationary wave is formed according to

φleft + 2φspacer + φright = 2mπ, m ∈ Z. (1)

The DBR reflection phases can be positive or negative
depending on the structure of the considered DBRs. In a

more general picture, Eq. (1) can also be fulfilled in the
extreme case of the complete absence of a spacer, when directly
concatenating two different DBRs in order to generate an
interface state, that is,

φleft + φright = 2mπ, m ∈ Z. (2)

It is noteworthy that this phase condition is general and
therefore also applies to other systems, for example localized
surface plasmons [54], electromagnetic waves pinned at the
interface between two optical materials, or an electronic wave
localized at the interface between two semiconductors [55].
Superlattices presenting a periodic modulation of the optical
refractive index have been studied in optics as building blocks
for DBRs and cavities, as well as for the formation of optical
interface states between concatenated lattices [53,56].

A yet unexplored way to fulfill Eq. (2) in nanophononics
is by making use of topological properties related to infinite
superlattices through the concept of band inversion. In two-
dimensional materials the concept of inverted band structures
usually refers to systems where the conduction- and valence-
band symmetries are inverted [33]. In the context of this paper,
we note that two one-dimensional systems present inverted
bands when (1) they have a common band gap and (2) the
modes at the band edges present opposite spatial symmetries.
These two systems belong to two different topological phases
as discussed below. The intimate relation between topological
phases and Eq. (2) arises since two DBRs with inverted bands
present opposite signs in the reflection phases across the
common minigap [41,42].

One of the simplest realizations of the band inversion
principle is depicted in Fig. 1. We consider a DBR which is
constituted by alternating layers of GaAs and AlAs with acous-
tic impedances ZGaAs = ρGaAsvGaAs and ZAlAs = ρAlAsvAlAs (ρ
denotes mass density and v denotes speed of sound). At a
design frequency f0 = 175 GHz the total acoustic path length
of the unit cell is set to half a phonon wavelength λ/2, i.e.,
the thicknesses d of the two layers obey dGaAs

vGaAs
+ dAlAs

vAlAs
= 1

2f0

and a phase of π is accumulated by a phonon at frequency f0

traversing both layers of the cell. As a consequence, all band
gaps of the DBR are centered at integer multiples of f0.

To describe how the overall acoustic path length is dis-
tributed between the two materials, we define a parameter
−1 < δ < 1 as sketched in Fig. 1(a). Keeping f0 constant,
the thicknesses of the layers are dGaAs = vGaAs

4f0
(1 + δ) and

dAlAs = vAlAs
4f0

(1 − δ). The particular case of a DBR made of
λ/4 layers is therefore described by δ = 0.

In Fig. 1(b) we show three acoustic band structures corre-
sponding to cases of different values for δ. First, for δ = −0.1
the second minigap is open, presenting a symmetric (anti-
symmetric) Bloch mode at the lower (upper) band edge [see
insets on the left of Fig. 1(c)]. Second, for δ = 0 the second
minigap is closed and thus no symmetries can be assigned to the
degenerate edge modes. Third, for δ = +0.1 we observe the
same band gaps as in the first case, but the spatial symmetries
of the band-edge modes are inverted [see insets on the right
of Fig. 1(c)]. We denote (anti)symmetric modes with a violet
(red) dot.

We can follow the evolution of the width of the acoustic
minigap when varying the value of δ continuously [shown in
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(a)

(b)

(c)

FIG. 1. Band inversion and topological phases of a nanophononic
DBR. (a) Schematic of a nanophononic DBR and its unit cell
parametrized by δ which describes the relative thickness of the
materials (see text). Dark (light) shades correspond to GaAs (AlAs)
layers. (b) Acoustic band structures of a nanophononic DBR for three
different values of δ. The first and second minigap can be identified
around 175 and 350 GHz, respectively. For δ = 0 (center) the second
minigap is closed, while for δ = ±0.1 (left and right) it is open. The
symmetries of the modes at the Brillouin-zone center (indicated with
colored circles) are inverted in energy. Accordingly, the Zak phases
of the two bands bounding the second minigap exchange. (c) Band
inversion of the second acoustic minigap around 350 GHz. Shown
are the frequencies of the band edges (violet and red) bounding the
minigap (gray) as a function of the parameter δ. A sign change in
δ marks the transition between the topological phases A and B of a
DBR. While for δ < 0 the Bloch mode at the lower (upper) band edge
has a symmetric (antisymmetric) displacement pattern with respect
to the centers of the material layers, these symmetries exchange for
δ > 0. The band edge modes are illustrated in the insets of panel (c).

Fig. 1(c)]. The violet and red lines indicate the frequencies
of the two band edges enclosing the considered gap. In gray,
the span of the minigap is indicated. Exactly at δ = 0 the
symmetries of the edge modes undergo an inversion, marking
a topological transition. A topological transition is usually
characterized by topological invariants such as the Zak phase
(i.e., the Berry phase for Bloch bands in one dimension [39]).
The Zak phase of the acoustic bands can be computed by an
integration across the Brillouin zone as follows [41]:

θn
Zak =

∫ π/a

−π/a

[
i

∫
unit cell

1

2ρ(z)v(z)2 dzu∗
n,k(z)∂kun,k(z)

]
dk.

(3)

(a) (b)

(c)

FIG. 2. Topological interface state at 350 GHz. (a) Local
phononic band diagram of two concatenated DBRs presenting in-
verted bands (δ = −0.1 for the left DBR and δ = +0.1 for the right
DBR). Notice that the Zak phases and the mode symmetries are
inverted at the interface. (b) Phonon reflectivity corresponding to the
structure indicated in panel (a). Each DBR contains 20 centrosymmet-
ric unit cells. The mode at 350 GHz corresponds to the topologically
confined state, which appears at the center of the acoustic minigap. (c)
Spatial displacement pattern |u(z)| of the topological interface state at
350 GHz (black) together with the DBR structure. The mode envelope
shows a maximum at the interface between the two DBRs and decays
evanescently in both directions away from the interface. Green and
blue color schemes denote spatial regions with different topological
phases.

Here, un,k(z) is the mechanical displacement of the Bloch
mode’s cell-periodic part in the nth band as a function of
position z along the superlattice.

As it can be observed in Fig. 1, the Zak phases correspond-
ing to the phononic bands bounding the second minigap from
the top and below appear inverted in energy when crossing the
topological transition point at δ = 0. It has been demonstrated
[42] that the Zak phases corresponding to the bands below a
certain minigap are directly linked to the sign of reflection
phase φ in that minigap, hence establishing the link with
Eq. (2). For the second minigap the sign of the reflection phase
is determined by the Zak phases of the zeroth and the first
bands [42]

sgn[φ] = exp
[
i
(
θ0

Zak + θ1
Zak

)]
. (4)

Note that the link between the band structure and the
reflectivity properties of a DBR was established by assuming
a semi-infinite DBR terminated at the center of a layer.
Terminating the DBR at the center of a layer implies that
the first unit cell is centrosymmetric as sketched in Fig. 1(a).
In this case, the connection between mode symmetries and
reflection phases can be heuristically understood, since the
antinode (node) at the DBR surface results in a reflection phase
φ evolving from zero to π across the band gap for δ < 0 and
from –π to zero for δ > 0, respectively. That is, the sign of
δ directly determines the sign of φ for frequencies inside the
band gap [42,52].

Consequently, by concatenating two DBRs with inverted
bands as shown in Fig. 2(a), the first one with δ = −0.1 and
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the second one with δ = +0.1, the resonance condition Eq. (2)
is automatically fulfilled in the second minigap. Notice that
the two DBRs present exchanged spatial mode symmetries
at the band edges. Likewise, in the left DBR the Zak phases of
the bands bounding the second minigap are inverted with re-
spect to the right DBR. Since the DBRs terminate at the center
of a GaAs layer the resonance condition is fulfilled at the center
of the minigap (see Appendix B). Figure 2(b) shows the calcu-
lated acoustic reflectivity for a structure composed of 20 unit
cells in each DBR. A clear stop band and a dip in the reflectivity
can be observed. The minigap shown in Fig. 2(a) corresponds
to the stop band in Fig. 2(b). The dip at 350 GHz corresponds
to the phononic mode confined at the interface between the two
DBRs. We have calculated the corresponding displacement
profile, i.e., the modulus of the mechanical displacement |u(z)|,
and show it in Fig. 2(c) (black) superimposed by the DBR
layer schematics. Light and dark colors represent AlAs and
GaAs layers, respectively. For clarity, green and blue indicate
the two different topological phases. The envelope of the field
has a maximum at the interface between the two DBRs with
different topological phases. This mode disappears if the bands
of the two constituent DBRs are not inverted (not shown here).

In nanophononic and nanophotonic applications, DBRs are
usually constituted by an integer number of bilayers. That is,
the array is terminated at the interface between two different
materials, for instance n periods of GaAs/AlAs bilayers, in
contrast to what was shown in Fig. 2, where an integer number
of centrosymmetric unit cells is considered. As we will show
below, the bilayer approach also leads to topological interface
states.

To prove the existence of topological states in real
nanophononic systems, we performed all-optical Raman-
scattering measurements on a planar GaAs/AlAs sample with a

layer structure as sketched in Fig. 3(a). The sample was grown
by molecular-beam epitaxy (MBE) on a (001) GaAs substrate
and consists of two parts: In the center it contains two con-
catenated acoustic DBRs with 20 GaAs/AlAs bilayers each,
designed for a frequency of 2f0 = 354 GHz and with inverted
bands corresponding to the parameter choice δ = −0.1 and
+0.1 for the left and right DBR, respectively. This acoustic
structure is enclosed by two GaAlAs-based optical DBRs (see
the Methods section for details) designed for a wavelength of
λopt = 940 nm such that the acoustic nanostructure serves as a
2λopt spacer of a resonant optical microcavity [57–59].

The resonance energy of a planar optical microcavity shows
a parabolic dependence on the incidence angle. It is therefore
possible to establish a double optical resonance (DOR) with a
single cavity mode by tuning the laser wavelength to match
the resonance wavelength at a given incidence angle, and
resonantly collecting the scattered Raman signal at normal
incidence [see the schematics in Fig. 3(a)] [21,57]. Moreover,
the use of the optical microcavity allows us to simultaneously
access phonons usually observable only in back or forward
scattering geometry, while at the same time enhancing the
signals by several orders of magnitude [59].

In practice, instead of tuning the laser to match the cavity
mode, the sample was grown with an in-plane thickness
gradient, such that its optical resonance shifts with a gradient
of approximately 100 nm/in. across the wafer. This allows us
to fix the laser wavelength and establish the DOR condition
by only optimizing the position on the sample. The angle of
incidence, in addition, allows us to select the frequency range
of the Raman signal. Note that the resonance frequency of
the topological interface state also shifts due to the in-plane
thickness gradient of the sample. An experimental scan in po-
sition with a fixed angle of incidence is shown in Fig. 3(b). The

FIG. 3. High-resolution Raman spectroscopy of a topological nanophononic interface state. (a) Sample structure with the topological
acoustic structure acting as the 2λ wide spacer of an optical superstructure. (b) Raman spectra as a function of laser incidence position on
the sample showing the double optical resonance (DOR) condition. (c) Experimental Raman spectrum (solid black) together with photoelastic
model calculation (solid red). The model calculation is convoluted with a Gaussian (2σ = 13 GHz) to account for the finite experimental
resolution (dashed red). (d) Simulated acoustic reflectivity of the sample. The topological interface mode at 360 GHz corresponds to peak B
in the Raman spectrum. (e) Layer schematics of the topological structure together with mechanical mode profiles corresponding to the peaks
marked A through C in panel (c). Peak B originates from the topological interface mode showing a maximum at the interface between the two
superlattices; peaks A and C are extended modes in the structure.
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shift of the interface state amounts to approximately 600 MHz
over the displayed region. As a function of the incidence
position we observe that the collected Raman intensity varies
substantially over few-micrometer distances and exhibits a
clear maximum which corresponds to simultaneous resonant
excitation and collection for Raman photons at frequency shifts
around 350 GHz.

A single Raman spectrum measured under the DOR con-
dition is displayed in Fig. 3(c) (black). Three clear peaks at
323 GHz (A), 360 GHz (B), and 397 GHz (C) can be observed.
As discussed below, peak B corresponds to the topological
interface mode, while peaks A and C are phonons distributed
along the DBRs generating Raman signals in backscattering
configuration. These peaks are a general feature of acoustic
superlattices and samples formed by DBRs [60–63].

The simulated acoustic reflectivity of the studied sample
is shown in Fig. 3(d). The clear dip in the stop band around
360 GHz is generated by the topological interface mode
between the two DBRs and can be assigned to the main peak
(B) of the experimental spectrum. Notice that if the spatial
mode symmetries of any of the two constituent DBRs are
changed this interface mode disappears and the reflectivity
simply shows the stop band.

In Fig. 3(e) the layer structure of the acoustic part of
the sample is superimposed with the calculated mechanical
displacement patterns at the three peak frequencies. Profile
B presents a characteristic exponential decay into the DBRs.
This decay is determined by the reflectivity of the two DBRs.
Peaks A and C, on the other hand, show an almost uniform
displacement along the structure, without any indication of
confinement. To further account for the experimental results,
we performed a photoelastic model calculation [21,52,60]
based on Eq. (5):

I (ω) ∝
∣∣∣∣
∫ ∞

−∞
Elaser(z)E∗

scat(z,ω)
∂u(z,ω)

∂z
p(z)dz

∣∣∣∣
2

. (5)

In this model the frequency-dependent Raman intensity
I (ω) is simulated by evaluating the mode overlap between
the electric field of the incident laser, the outgoing Raman-
scattered field, and the strain distribution of the corresponding
phonon at frequency ω. The integral furthermore contains
the material- and wavelength-dependent photoelastic constant
p(z). Since the sample was grown along the [001] direction of
the zinc-blende-type crystal lattice, in our case the only relevant
component of the photoelastic tensor is p12 = p13 [64,65].
Moreover, with an experimental wavelength of λopt = 915 nm
only the photoelastic contribution of GaAs with an electronic
transition around 850 nm needs to be taken into account.
The photoelastic constant of AlAs is negligible since the
closest electronic transition occurs at much higher energies.
The results of the simulation are plotted together with the
experimental data in Fig. 3(c) (solid red). We have furthermore
taken into account the finite resolution of the spectrometer
of 13 GHz by convoluting the simulation with a Gaussian
distribution (dashed red). Evidently, the model captures all
features of the measured data. In particular, the relative heights
and spectral positions of the three peaks are in excellent
agreement. We stress that for this model we only used design
parameters of the sample. No further fitting was needed apart

(a) (b)

FIG. 4. Symmetrization of the topological interface state. (a) Top:
Interface between two DBRs constructed from standard bilayers used
in the experimental configuration. Middle: We remove a thin layer of
GaAs at the interface (orange), such that the rightmost layer of the
left DBR becomes as thick as the leftmost layer of the right DBR
(i.e., we replace a dark blue by a dark green layer). Bottom: Resulting
interface between two topologically different DBRs constructed from
centrosymmetric unit cells. (b) Corresponding phonon reflectivity
spectra of two concatenated DBRs from different topological phases
with 20 unit cells each (δ = −0.1 on the left and δ = +0.1 on
the right). From top to bottom we gradually tune the unit cells
from standard asymmetric bilayers (blue) to centrosymmetric unit
cells (red) by removing GaAs at the interface, resulting in a small
perturbation of the mode frequency. For better visibility subsequent
curves are vertically offset by 0.5.

from global scaling factors to account for the in-plane thickness
gradient of the sample and the measured overall intensity.

In what follows, we describe how the implementations
described in Figs. 2 and 3(a) are related. The system in
Fig. 2 is based on DBRs composed of centrosymmetric unit
cells, a conception coming from topology. The system in
Fig. 3 with DBRs composed of integer numbers of bilayers
is the paradigm for standard solid-state micro-optical and
nanophononic devices. Figure 4 shows a series of calculated
reflectivity spectra corresponding to concatenated pairs of
DBRs with inverted bands where the DBRs are formed by
an integer number of centrosymmetric unit cells (red) or an
integer number of GaAs/AlAs bilayers (blue). We discuss how
to map these two cases.

We start from standard bilayers as sketched in the top part
of Fig. 4(a). The interface is formed by a light green (AlAs,
δ = −0.1) layer and a dark blue (GaAs, δ = +0.1) layer. This
is the same system as studied in Fig. 3. Next, we decompose
half a dark blue layer (GaAs, δ = +0.1) into half a dark green
layer (GaAs, δ = −0.1) plus an additional remainder. This thin
remainder has a thickness of �dGaAs = vGaAs

4f0
δ, which is much

smaller than each of the other layers in the full structure. By
performing this decomposition which is graphically illustrated
in case II of Fig. 4(a), the interface between the two DBRs can
now be set between two DBRs constituted by centrosymmetric
unit cells separated by a perturbation (orange) that can be
adiabatically varied in thickness. When this perturbation is
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absent, the system reproduces the case discussed in Fig. 2.
This case is sketched in case III of Fig. 4(a).

By following this method it is always possible to associate
a system based on an integer number of standard bilayers
to a system based on centrosymmetric unit cells. There is
a smooth evolution of the mode frequency between the two
extreme cases [Fig. 4(b), black curves]; in other words it
is always possible to go smoothly from configuration I to
configuration III in Fig. 4(a). The existence of a confined state
in configuration I implies the existence of an associated mode
in the adiabatically connected situation III of Fig. 4(a). Two
direct consequences arise.

(1) The mode in configuration I will be slightly redshifted
with respect to the associated mode generated by centrosym-
metric unit cells in case III since an effective small propagation
phase φspacer is introduced for the bilayers. In the studied case
the mode appears shifted by only approximately 2 GHz for
a frequency of 350 GHz. This shift is hence well below our
experimental resolution.

(2) The existence of a mode in the centrosymmetric config-
uration is not a sufficient condition for the existence of an asso-
ciated mode in configuration I. The extreme case of a topologi-
cally confined mode vanishing when changing to the configura-
tion of standard bilayers, however, only occurs for values of δ in
a small range around δ ≈ ±0.5. The emergence of this second
consequence is addressed in detail in Appendices A and B.

An important property of topologically protected states is
their robustness against disorder that does not change the
underlying topological invariants. In what follows, we evaluate
the robustness of the investigated structures. A disorder that
does affect the Zak phases can be introduced as a uniform
distribution of variations in δ (ranging from −�δ/δ to +�δ/δ)
for each unit cell. We compare the performance of three
devices: (i) two concatenated DBRs, each one composed
of an integer number of centrosymmetric unit cells with
inverted bands (δ = −0.1 for the first DBR, δ = +0.1 for the
second DBR), i.e., the structure presented in Fig. 2; (ii) two
concatenated DBRs, each one composed of an integer number
of standard bilayer unit cells with inverted bands (δ = −0.1
for the first DBR, δ = +0.1 for the second DBR), i.e., the
structure that was reported in Fig. 3; and (iii) a standard
Fabry-Perot resonator formed by two identical DBRs (λ/4,

3λ/4 corresponding to δ = 0.5, which maximizes the span of
the stop band) enclosing a λ/2 spacer. For a discussion of
Fabry-Perot resonators as topological structures see Ref. [66].

In Figs. 5(a)–5(c) we show simulated phonon reflectivity
spectra for the three structures as a function of the disorder
strength �δ/δ. In panel (d) we plot the dependence of the
resonance frequency for each of the confined phonon modes.
In panels (a)–(c) the black areas correspond to the stop band,
with Bragg oscillations on both sides. As �δ/δ increases, these
Bragg oscillations disappear. The line within the stop band
corresponds to the confined phonon mode.

As shown in panel (d), for the centrosymmetric case
(blue) the mode remains stable for all values of �δ/δ and
well centered in the minigap. The topological interface state
between two DBRs formed by bilayers (red) remains stable
around the unperturbed frequency for �δ

δ
< 1. For bigger

values it presents a clear redshift. In contrast, the frequency
of the Fabry-Perot cavity mode (gray) remains centered in the

FIG. 5. Stability of the interface state to disorder. Simulated
phonon reflectivity of two concatenated DBRs with inverted bands
(δ = −0.1 for first DBR, δ = +0.1 for the second DBR) each with 20
unit cells. A dip in reflectivity indicates the presence of a topological
interface mode at 350 GHz [see also Fig. 2(b)]. Random fluctuations
in δ for each unit cell are introduced with a uniform distribution
ranging from −�δ/δ to +�δ/δ. (a) Centrosymmetric unit cells. (b)
Standard bilayers. (c) Fabry-Perot resonator (see text for details). (d)
Resonance frequency of the confined mode as a function of disorder
strength �δ/δ. The Fabry-Perot resonance undergoes fluctuations that
are much stronger than the ones shown by the topological cavities. The
acoustic minigap in panels (a) and (b) ranges from 347 to 353 GHz
while it ranges from 340 to 360 GHz in panel (c), respectively.

minigap, but it undergoes fluctuations that well exceed those
observed for the bilayer case. We observe that the topological
structures outperform the standard Fabry-Perot resonator in
stability. It must be noted, however, that this is not an indication
for the quality factor of the structures.

For the first structure, the perturbations on the unit cell
do not affect the Zak phases corresponding to the two DBRs
provided that �δ

δ
< 1. As a consequence, the mode remains

pinned at the center of the minigap. In the second case, a
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change in δ affects the Zak phase and thus results in frequency
fluctuations and an overall shift of the interface mode. For the
third case, the stability of the mode is mainly determined by
fluctuations of the thickness in the central spacer. Notice that
for this case, regardless of the magnitude of the perturbation,
there is always a confined mode within the stop band. The
topological interface states between two different DBRs are
more tolerant to the explored thickness fluctuations than the
standard Fabry-Perot resonator.

III. METHODS

A. Sample preparation

The sample was grown by MBE on a (001) GaAs substrate.
The outer optical cavity DBRs were grown from alternating
layers of Ga0.9Al0.1As/Ga0.05Al0.95As with an optical thick-
ness of λopt/4 per layer at a vacuum wavelength of λ0 =
940 nm and 12(16) layer pairs on the air (substrate) side. The
topological acoustic structure between the optical DBRs was
grown from alternating layers of GaAs/AlAs with 20 layer
pairs for the DBR facing air and 19.5 layer pairs facing the
substrate. Layer thicknesses are given by dGaAs = vGaAs

4f0
(1 + δ)

and dAlAs = vAlAs
4f0

(1 − δ) with δleft = −0.1 (DBR facing air)
and δright = 0.1 (DBR facing substrate) for a design frequency
of 2f0 = 354.2 GHz using the values vGaAs = 4780 m/s and
vAlAs = 5660 m/s for room temperature. The parameters are
chosen such that the optical path length of the acoustic structure
is exactly 2λ; i.e., in the optical domain the acoustic structure
represents the resonant spacer of a cavity. The sample was
furthermore grown with an in-plane thickness gradient such
that its optical resonance varies from 830 to 1050 nm under
normal incidence across a 2-in. wafer. This gradient allows us
to keep the optical wavelength of the excitation laser fixed and
establish the DOR condition by optimizing both the position
and incidence angle on the sample.

B. Raman measurements

Raman-scattering experiments were performed at room
temperature in backscattering configuration. For optical
excitation we used a tunable continuous-wave Ti:sapphire
laser (M2 SolsTiS) working at a wavelength of 915 nm. We
irradiated an approximate power of 20 mW onto the sample
surface at an incidence angle of 11◦ and focalized to a 50-μm
spot. Raman spectra were collected normal to the sample
surface and recorded with a liquid nitrogen cooled CCD
camera (Princeton Instruments) after being dispersed in a
double monochromator (HIIRD2 Jobin Yvon). To establish
the DOR condition we optimized both the incidence angle of
the laser on the sample and the position on the sample along
the in-plane thickness gradient.

IV. CONCLUSIONS

In summary, by applying the concept of band inversion
to nanophononic periodic superlattices we have successfully
constructed a topological nanophononic interface state at
350 GHz. Contrary to a Fabry-Perot resonator, where two
identical DBRs enclose a resonant spacer, the implemented
resonator relies on two different DBRs without any spacer.
We experimentally evidence the existence of the topolog-

ically confined mode by high-resolution Raman-scattering
spectroscopy. Corresponding photoelastic model calculations
perfectly account for all major features of the measured Raman
spectra, in particular the signature peak of the topological
interface state at approximately 350 GHz.

We have calculated Zak phases for the bands bounding
the considered minigap, which are directly associated to the
reflection phases of the individual superlattices. In the case
of a DBR terminated by a centrosymmetric unit cell, the Zak
phase purely depends on the sign of δ, and becomes a good
topological number to engineer a confined state. Structures
based on DBRs terminated by bilayers can be considered as
small perturbations of the centrosymmetric case. As such,
the same Zak phases used for the structure terminated by a
centrosymmetric unit cell can be used for a wide range of
values of δ to generate a topologically confined mode. It is
worth mentioning that for the perturbed case the Zak phases
computed using Eq. (3) do not show a discrete distribution of
just two possible values zero and π .

The presented GaAs/AlAs material platform is at the base
of a wide range of applications in optoelectronics, photonics,
and nanophononics. It is also naturally compatible with active
media. The discussed construction principle and material
platform can be directly applied in the 20-GHz range where
full control of the three-dimensional phononic density of states
and strong optomechanical interactions were recently demon-
strated [10,11]. Since we have established a direct connection
between centrosymmetric unit cells and standard bilayers
these concepts can be readily transposed to existing real-life
applications in optoelectronics, photonics, and optomechanics.

This paper bridges two research fields: topology and
nanomechanics. On one side, we show how acoustic phonons
can constitute a platform to study topological properties. On the
other side, the use of topological invariants makes it possible
to revisit the problem of phonon confinement with exciting
perspectives.
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APPENDIX A: EXISTENCE OF AN INTERFACE STATE
IN THE ACOUSTIC MINIGAP

When considering concatenated DBRs composed of stan-
dard GaAs/AlAs bilayers, a counterintuitive dependence of
the topological state on the width of the acoustic minigap
occurs. In a standard acoustic Fabry-Perot resonator, where
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two superlattices enclose a spacer, the broader the band gap
the shorter the evanescent confinement length of the cavity
mode in the DBRs [10,67]. That is, the spatial confinement
can be optimized by maximizing the width of the acoustic
minigap. However, in the case of a topological nanophononic
mode confined in between two DBRs made from standard
bilayers, an increase in the width of the minigap can induce
its complete disappearance. We illustrate this effect in Fig. 6
by considering again the example of two DBRs with 20 unit
cells each and inverted bands bounding the minigap centered
at 2f0 = 350 GHz. In Fig. 6 we vary the parameter δ, which
determines the width of the minigap, and study its influence on
the resonance of the topological interface state. In panel (a) we
show the upper and lower band edge (blue and red) together
with the resonance frequency of the topological nanophononic
interface state for unit cells from standard bilayers (black) and
for centrosymmetric unit cells (gray, cf. Fig. 2 of the main
text). For this calculation we always consider two DBRs for
which the condition −δleft = δright is satisfied. As an example,
we plotted the phonon reflectivity for δ = −0.2 (left DBR) and
δ = +0.2 (right DBR) in panel (b), as indicated by the dotted
vertical line in panel (a). Like in Fig. 4 of the main text, we
observe that the frequency of the topological state is redshifted
from the band-gap center in the case of standard bilayers. With
increasing values of δright we observe that the redshift grows
nonlinearly. In particular, for a value of −δleft = δright ≈ 0.4 the
resonance occurs exactly on the band edge. For values beyond
this point no resonant interface state is found inside the band
gap anymore. In contrast, for the centrosymmetric unit cells the
topological interface state always appears at the center of the
acoustic minigap (gray). Hence, the wider we open the acoustic
band gap the more susceptible the confined mode becomes to
the small perturbation of the interface that we introduce by
changing from centrosymmetric unit cells to bilayers.

(a) (b)

FIG. 6. Topological interface state resonance tuned by width of
the bandgap. (a) Upper and lower band edge (blue and red) as a
function of parameter δ. We show the resonance frequency of a
topological interface state (black) confined in between two DBRs
with δleft = −δright , each made from 20 standard GaAs/AlAs bilayers.
With growing band gap the interface state redshifts towards the lower
band edge and ceases to exist beyond δ ≈ 0.4. (b) Phonon reflectivity
spectrum for δright = 0.2 (indicated by the dotted line in panel (a).
The horizontal blue and red lines indicate the width of the phononic
band gap for this choice of parameters; the sharp dip in reflectivity
indicates the resonance frequency of the interface state.

As we show in Appendix B, all the observations stated above
are fully backed up by taking into account the phase shifts due
to the addition of a small perturbation at the interface between
two superlattices as depicted in Fig. 4.

APPENDIX B: FINITE-SIZE EFFECTS ON
THE TOPOLOGICAL STATE FREQUENCY

A detailed understanding of the precise evolution of the
interface state resonance inside the minigap requires one to
take into account the actual evolution of the reflection phases
φleft and φright across the acoustic band gap. We show that
these phases are a function of the system size, i.e., the number
of DBR unit cells that we consider.

Considering centrosymmetric unit cells, an interface mode
appears at the center of the acoustic minigap when concate-
nating two DBRs with inverted bands [41,42]. Figure 7(a)
illustrates the two particular choices of centrosymmetric
unit cells (left) and standard GaAs/AlAs bilayers (right) as
discussed in the experimental section of the main text. The
color codes remain the same as in Fig. 2 of the main text. As a
first step to formalize the perturbation of the interface between
two DBRs by an additional layer, we add a new parameter
0 � κ � 1 to the parametrization of the unit cell by δ, as
introduced in Fig. 1(a). κ quantifies the internal distribution
of the materials inside the unit cell when changing gradually
from centrosymmetric unit cells to standard bilayers. More
precisely, for κ = 0 (κ = 1) the unit cell starts with a full layer
of AlAs (GaAs) followed by GaAs (AlAs) and for κ = 0.5
a full layer of AlAs is enclosed in between two GaAs half
layers, i.e., the unit cell is centrosymmetric. While κ does not
have any influence on the band structure of an infinite periodic
superlattice, it evidently has a critical impact on the terminating
layer of a DBR, i.e., on the reflection phases φleft and φright.

When inspecting the concatenated DBRs on the left side of
Fig. 7(a) on the level of material layers instead of unit cells, it
becomes evident that the structure may also be regarded as a
standardλ/2 cavity spacer resonant at 2f0, enclosed in between
two DBRs with a phononic band gap centered at 2f0. To see
this, take into account that the two layers bounding the interface
in between the two DBRs contribute acoustic path lengths
of 0.5 vGaAs

4f0
(1 + δ) + 0.5 vGaAs

4f0
(1 − δ) = 0.5 vGaAs

2f0
resulting in a

combined half-wavelength central layer of GaAs.
By comparing this cavitylike configuration to the bilayer

configuration on the right of Fig. 7(a), it is, however, possible
to establish a direct mapping between them. Consequently, we
can use the symmetric configuration as a starting point to inves-
tigate the resonance conditions for the interface configuration
which we have implemented experimentally. Essentially, this
mapping consists in removing half a layer of GaAs from the
rightmost unit cell of the left DBR and adding half a layer
of GaAs to the leftmost unit cell of the right DBR, following
the lines of Fig. 4(a) in the main text. These two layers are,
however, of different thickness due to the band inversion, i.e.,
due to the different value of δ on the left and on the right lattice.
In Fig. 4 the particular case of going from centrosymmetric
unit cells to bilayers was illustrated, furthermore satisfying
the condition δleft = −δright. In the general case of an arbi-
trary choice of κ and δ the additional reflection phase of a
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FIG. 7. Finite-size effects on the topological state frequency. (a)
Interface between two DBRs with inverted bands for centrosymmetric
unit cells (left) and standard bilayers (right). All color codes are as
defined in Fig. 2(c). (b) Reflection phases φleft (green) and φright (blue)
as well as their sum (black) across the acoustic minigap (shaded
gray) for δleft = −δright = −0.2 and bilayer unit cells (solid lines,
20 unit cells per DBR; dotted lines, semi-infinite DBRs). The red
dot marks the frequency of the topological interface state confined
between these two DBRs. Dashed lines show phase shifts following
Eq. (B1). (c) Topological interface state resonance frequency as a
function of parameter δ for two DBRs with bilayer unit cells and
δleft = −δright . The band edges are shown in red and violet (indicating
the edge mode symmetries of the left DBR). The interface state
resonance frequencies for 10, 20, and 100 bilayers in each of the
two concatenated DBRs are shown in black. Parameter ranges for
which no interface state occurs are shaded in gray; numbers indicate
the number of unit cells per DBR.

semi-infinite DBR that has to be taken into account compared
to the reflection phase of a DBR composed of centrosymmetric
unit cells is given by the family of lines

m(f,κ,δ) = −π

[
(0.5 − κ)(1 + δ)

f

f0
− m

]
, m ∈ Z. (B1)

In Fig. 7(b) we show the reflection phases φleft (green)
and φright (blue) for the nanophononic interface state. Here,
we chose δ = −0.2 on the left and δ = +0.2 on the right
and DBRs composed of 20 standard bilayers. For frequencies
inside the acoustic minigap (shaded in gray) we have calculated
the individual reflection phases (green and blue) and their sum
(black), as well as the reflection phases for a pair of semi-
infinite DBRs with the same parameters for κ and δ (dotted,
same colors). The dashed green and blue lines indicate the
corresponding frequency-dependent phase shifts m following
Eq. (B1). We find that the resonance condition for the interface
state is fulfilled at a frequency of 346 GHz (marked by the red
dot) and that taking the additional phase shifts into account
results in the interface mode resonance being offset from
the band-gap center. To arrive at a more complete picture
of the conditions under which the band inversion principle
allows the confinement of an acoustic interface state in the
common band gap of two concatenated DBRs, we furthermore
systematically varied δ and traced the evolution of the interface
state resonance for different numbers of unit cells. The results
are summarized in Fig. 7(c). As a function of δleft = −δright we
show the two edges of the second acoustic band gap (red and
blue) and determined the resonance frequency of the resulting
acoustic interface state when concatenating two DBRs with
10, 20, and 100 unit cells each (black).

We find that for all numbers of unit cells interface states
appear for very large and very small magnitudes of δ, but
as we approach δ ≈ ±0.5, i.e., a maximally opened acoustic
band gap, the resonances move closer to the band edges and
eventually cease to exist beyond a critical magnitude (areas
shaded in gray). We also observe that these critical points lie
closer to the maximally opened gap for a larger number of unit
cells. That is, a larger pair of DBRs supports acoustic interface
states for a wider range of δ. The origin of this trend becomes
clear from the observation in Fig. 7(b), that for a finite DBR
the reflection phase does not span a full interval of π over the
course of the band gap. Hence, for a larger pair of DBRs the
resonance condition from Eq. (2) can still be fulfilled closer to
the band edges.
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